
GPU-Accelerated Scalable Solver for Banded Linear Systems

Hang Liu
George Washington University

Jung-Hee Seo Rajat Mittal
Johns Hopkins University

H. Howie Huang
George Washington University

Abstract—Solving a banded linear system efficiently is im-
portant to many scientific and engineering applications. Current
solvers achieve good scalability only on the linear systems that
can be partitioned into independent subsystems. In this paper, we
present a GPU based, scalable Bi-Conjugate Gradient Stabilized
solver that can be used to solve a wide range of banded linear
systems. We utilize a row-oriented matrix decomposition method
to divide the banded linear system into several correlated sub-
linear systems and solve them on multiple GPUs collaboratively.
We design a number of GPU and MPI optimizations to speedup
inter-GPU and inter-machine communications. We evaluate the
solver on Poisson equation and advection diffusion equation as
well as several other banded linear systems. The solver achieves
a speedup of more than 21 times running from 6 to 192 GPUs
on the XSEDE’s Keeneland supercomputer and because of small
communication overhead, can scale upto 32 GPUs on Amazon
EC2 with relatively slow ethernet network.

I. INTRODUCTION

A fast solver of banded linear systems is critical for a
variety of scientific simulations, e.g, quantum chromodynam-
ics (QCD) and computational fluid dynamics (CFD), where
solving large banded linear systems accounts for the majority
of the runtime, e.g., 90% or more of the CFD runtime can be
spent on solving two partial differential equations (PDE) [1].
Clearly, there is an urgent need for a generic solver, especially
a scalable solver for a single integrated linear system, like
our motivating problem of cardiac simulation that we will
present shortly. In this paper, we are interested in developing a
GPU based high-performance solver for such linear systems.
In our case, there is inherent dependence within the linear
system, thus the problem could not easily be decomposed into
disjointed sub-systems, which in turn poses a challenge in
achieving high scalability on large-scale GPU based super-
computers.

Recent works fall short in delivering either generality or
scalability. On one hand, existing scalable solvers are only
applicable for specific banded linear systems. For example, [2]
employs domain decomposition to divide the QCD problem
into smaller independent blocks. In this case, when applying
the Dirichlet boundary [3], each block can be solved inde-
pendently. In other words, matching one sub-domain with
one block largely avoids the inter-node communication, which
contributes to good scalability of this solver. For another
example, [4] is a solver for tridiagonal matrix (simplified
banded linear system) with stable feature. Using the SPIKE
algorithm [5] that divides a large banded matrix into several
smaller, independently solvable matrices, this solver requires
the gathering of all ”spikes” and solving them on a single
machine. This limit explains its modest scalability of 16 GPUs.
Furthermore, there are a few projects that can scale on many
GPUs for certain problems, such as wave simulation [6][7],
basin simulation [8] and FFT [9].

On the other hand, current generic banded system solvers
cannot work with large problems. For example, NVIDIA’s

CUSP [10] provides a Bi-Conjugate Gradient STABilized
(BiCGSTAB) solver that is applicable for banded problems,
but it only works on one GPU. Similar limitation on scalability
is also observed in other related works [11][12][13]. Notably,
in [14], the solver decomposes the banded system into a set of
the equations solved by multiple GPU threads, but again this
solver runs only on one GPU.

In this paper, we design and develop a GPU based
BiCGSTAB solver (GBCG) that meets both generality and
scalability requirements. It is well suited for all types of
banded linear systems. And this solver combines a new
matrix decomposition method with several optimizations for
inter-GPU and inter-machine communications to achieve good
scalability on large-scale GPU clusters. The popular iterative
solvers for linear system A~x = ~b are the multi-grid (MG)
methods [15][16][17], and the Krylov space solvers (e.g.,
conjugate gradient (CG) solver [3][18], generalized minimal
residual method (GMRES) [19], and BiCGSTAB [20]). Gen-
eral speaking, Krylov space solvers enjoy several benefits
such as inherent parallelism, applicability on arbitrary grid
size, and suitable for any boundary conditions. Note that we
also develop a GPU based Stencil Conjugate Gradient solver
(GSCG) that can be used to accelerate the symmetric positive
definite matrix banded linear systems.

Our approach of matrix decomposition [21] is to factorize
the large matrix into smaller sub-matrices in the row-oriented
fashion, and solve the sub linear systems in parallel. For a
generic linear system like Poisson equation and advection-
diffusion (AD) equation that are generated from our motivating
heart simulation problem, large matrices cannot be partitioned
into independent sub-matrices. Since the construction of the
matrix is already done row-wise in the target problem, our
method requires no additional communication during matrix
decomposition, for every machine solves the rows it has
already constructed. However, a number of data transfers are
still required in order to correctly solve the problem. For
example, the correlation of the sub-matrices is maintained
by a vector communication before the Sparse Matrix-Vector
Multiplication (SpMV). Specifically, each machine talks to its
neighboring machines to update the vectors that are needed
by the boundary rows of the sub-matrices during SpMV
operations. For the vector communications, we introduce two-
phase communication protocol for neighboring machines to
reduce the overhead, and for the scalar communications, we
apply a tree based broadcast method for all the participating
machines. In addition, we utilize the registered memory on
MPI calls to inform the network adapter about the virtual-to-
physical address of the buffer, and overlap data copying from
GPU to the registered memory with GPU computation. By
combining these techniques, we are able to significantly reduce
the time required for both vector and scalar communications.

The contributions of our work are two-fold. First, to the
best of our knowledge, this is the first work in designing
and implementing a scalable GPU-based solver for a single

TABLE I: Summary for GPU based solvers
Solver Problem Type Decomposition Type Subsystem type GPU No. Achieved/Max Speedup Efficiency
CUSP BICG[10] General N.A. N.A. 1 N.A. N.A.
Li[14] Banded system SPIKE Independent 1 N.A. N.A.
Ament[12] Poisson Domain based Dependent 1⇒6 1.9/6 32%
Babich[2] QCD Domain based Independent 64⇒256 2.56/4 64%
Chang[4] Tridiagonal system SPIKE Independent 1⇒16 10/16 62.5%
Our GBCG Banded system Matrix based Dependent 6⇒192 21.8/32 68.1%

integrated banded A~x = ~b linear system. In particular, we
design row-oriented matrix decomposition method to divide
the banded linear system, and utilize several GPU and MPI
optimization techniques to minimize the communication over-
heads from the tight correlation among the sub-systems. As
a result, we are able to achieve 70% of the ideal network
(InfiniBand) bandwidth. Table I presents a comparison of our
GBCG and several existing solvers.

Second, we evaluate our solvers and new combined simu-
lator on two different GPU clusters, i.e., XSEDE’s Keeneland
supercomputer and Amazon EC2 GPU cluster. With our new
GBCG solver, we can run the cardiac simulation with very
high resolutions which was difficult before. Furthermore, the
tests show that our GSCG outperforms the CUSP CG solver by
more than 22%. Also, the GBCG solver can achieve close to 22
times speedup from 6 to 192 GPUs, enjoying fast InfiniBand
network on Keeneland, and thanks to small communication
overhead, can scale upto 32 GPUs on Amazon EC2 with
ethernet network. Note that all the experiments in this paper
are studied in double precision, and it is easy to support other
precisions.

The paper is organized as follows: we present the back-
ground of our simulation and discuss the problem definition in
Section II. In Section III, we propose the matrix decomposition
based scalable GBCG and GSCG solvers, and present several
hardware based optimizations. In Section IV, we evaluate
GBCG on Keeneland and Amazon GPU clusters. Finally, we
conclude in Section V.

II. BACKGROUND
A. Motivation

CFD is widely used in scientific and engineering fields to
investigate fluid motion and its interactions with certain defined
boundaries. In CFD, the Navier-Stokes equations which govern
the fluid motion are discretized into linear systems of millions
of equations and thus the solution for large scale problem
remains computationally challenging. Most of CFD codes are
however written in Fortran or C, and translation of whole code
to CUDA for GPUs is non-trivial. The major time consumption
part of CFD code is the linear system of equations that can
be written in the form of A~x = ~b, which is also the target
problem for our GPU based banded system solver.

For the application of GPU accelerated flow solver we
consider the simulation of blood flow pattern inside the human
left ventricle. Features of cardiac flows that include highly
complex three-dimensional geometries, relatively high (4,000)
Reynolds numbers [1] that result in transition to turbulence,
and finally, large-scale boundary motion induced by active
(muscle contraction) as well as passive (flow-induced such as
in valve leaflets) mechanisms, represent a significant challenge
for modeling of cardiac hemodynamics and it demands large

Fig. 1: LV schematic

Fig. 2: GPU accelerated diastole and asystole of left ventricle

amount of computational resources. A related work [22] uses
GPU to simulate the complex boundary CFD which is the
same type as our work, but this work is conducted on only
one GPU. In addition, muscle based cardiac simulation is also
a popular research topic [23][24][25][26].

In Figure 1, we use a simplified three-dimensional geomet-
ric model of the left ventricle which is constructed based on
high resolution, multi-detector contrast CT scan data of the
normal human left ventricle. The 3D ventricle model is rep-
resented by triangular surface meshes and immersed into the
rectangular, Cartesian volume grid for the flow simulation. The
left ventricle motion (expansion and contraction) is prescribed
by satisfying the blood volume flow rate. A size of physical
domain for the flow simulation is 6cm× 6cm× 11cm in real
dimension and the blood flow comes into the ventricle through
the mitral inlet by the expansion of the ventricle. The flow
field simulation is performed by solving the incompressible
Navier-Stokes equations using the immersed boundary method.
In this method, the boundary condition on the surface of
arbitrary geometry is satisfied by using the ghost cells so that
the problem can be solved on the Cartesian topology. The
details about immersed boundary technique can be found in
[1]. Figure 2 presents the screenshot of one heartbeat cycle
at three different stages with iso-surface of vortical structure,
stream lines, and velocity vectors which are generated by our
new simulator. This 2562 × 512 problem running for 10,000
time steps 1 is calculated using GBCG in this work, which
was not possible before with the previous MG solver due to
its limitations for large problem sizes. Note that we discretize
a heart of 6cm × 6cm × 11cm in physical dimensions into a
mathematical model with 2562×512 cells. The evaluations of
our new cardiac simulation are discussed in Section IV.

1In this work, a whole left-ventricle beat time interval is sampled by 10,000
times, each time is called a time step.

B. Problem Definition

The incompressible Navier-Stokes equations are written as

∇ · ~u = 0,
∂~u

∂t
+ (~u · ∇)~u+

1

ρ
∇p = ν∇2~u (1)

where ~u is a velocity vector, p is a pressure, ρ and ν are
the density and kinematic viscosity of the fluid. The base line
flow solver used in this study is Vicar3D which is developed
by our group at JHU. Here, the equation (1) is solved on the
non-body conformal Cartesian grid and the physical boundary
of any shape is treated by the sharp-interface immersed bound-
ary method. The incompressible Navier-Stokes equations are
usually solved by the fractional step method and a three-step
method implemented in the current flow solver can be written
as

~u ∗ −~un

∆t
= −(~u · ∇)~u+ ν∇2~u, (2)

∇2p =
ρ

∆t
(∇ · ~u∗), (3)

~un+1 = ~u ∗ −∆t

ρ
∇p. (4)

The equation (2) is the advection-diffusion (AD) equation
solved for the intermediate velocity, ~u∗. The pressure is
obtained by solving the Poisson equation, equation (3), and
the final velocity field is obtained by the velocity correction
step, equation (4). It is important to note that equation (2)
and (3) are differential equations and solving these equations
takes most of computational time for the flow simulation. If we
apply second-order central finite differencing method, equation
(2) and (3) are written as(

1− 1

2
∆tν · δ2i,j,k

)
~u∗ =

~un + ∆t

{
−(~u · ∇)~u+

1

2
ν∇2~u

}
=
−−−→
RHSAD, (5)

δ2i,j,kp =
ρ

∆t
(∇ · ~u∗) =

−−−→
RHSp, (6)

where δ2i,j,k is a central differencing operator for the Lapla-
cian on the Cartesian grid system which is defined by

δ2i,j,kφ =
1

∆xi
(
−φi+1,j,k + φi,j,k

0.5(∆xi+1 + ∆xi)
+

φi,j,k − φi−1,j,k

0.5(∆xi + ∆xi−1)
) +

1

∆yi
(
−φi,j+1,k + φi,j,k

0.5(∆yj+1 + ∆yj)
+

φi,j,k − φi,j−1,k

0.5(∆yj + ∆yj−1)
) +

1

∆zi
(
−φi,j,k+1 + φi,j,k

0.5(∆zk+1 + ∆zk)
+

φi,j,k − φi,j,k−1

0.5(∆zk + ∆zk−1)
), (7)

where (i, j, k) are the indices in (x, y, z) dimension,
respectively and (∆x,∆y,∆z) are computational grid spacing.
Once φi,j,k is arranged into one dimensional array ~x, equations
(5) and (6) are linear systems of equations that can be written
in the matrix form as

A~x = ~b. (8)

where each row of A is the stencil of corresponding entry in
~x. In this paper, we develop GBCG and GSCG for different
type of flow simulations, and they are integrated with the flow
simulator Vicar3D to solve equations (5) and (6). The storage
format of A is optimized for GSCG and GBCG, respectively.
We will discuss them in detail in Section III.

III. SCALABLE GPU-BASED SOLVERS

In this section, we first discuss the matrix decomposition
method. Next, our GPU based GBCG solver is presented.

We further address the communication overheads in GBCG
by MPI and GPU communication optimizations. Last, we
introduce GSCG method.

A. Matrix Decomposition

Current decomposition methods such as domain decom-
position, functional decomposition [27], or SPIKE algorithm
[28] are not applicable for an integrated banded linear system.
Briefly, domain decomposition aims to split the whole physical
domain into several smaller sub-domains and iteratively seek
the solution by coordinating the calculation of adjacent sub-
domains [29][30]. Often the problems for each sub-domain
should be intrinsically independent to avoid massive communi-
cation overhead. Similarly, functional decomposition calculates
several sub-functions, which are independent with each other,
in parallelism. Further, the SPIKE algorithm also aims to
divide a large banded linear systems into several independent
sub-system. In this case, the solving of the ”spikes” is a
global procedure done by a single thread, thereby limiting the
scalability.

In this work, we design a row-oriented matrix decompo-
sition for a generic banded linear system. In this approach,
the matrix A is factorized into an equal number of smaller
canonical forms, each of which contains the same number of
the rows of matrix A. Similar division is also applied to ~x
and ~b. Figure 3 describes the matrix decomposition method
for A~x = ~b when employing three GPUs. In this case, GPU
0 has A0 ~x0 = b0, GPU 1 A1 ~x1 = b1 and GPU 2 A2 ~x2 = b2.
Specifically, A is divided into three sub-matrices (A1, A2

and A3) that have the same number of rows. next, the sub-
vectors that multiply with the sub-matrices should contain
extra buffers so that they can be reached by the boundary
rows of the sub-matrices. For example, the second GPU which
solves A1 ~x1 = ~b1 contains a SpMV of A1 and ~x1. Assuming
the first row of A1 (A1[0]) is the k-th row of A (A[k]), the first
non-zero element of A1[0] (note A1 contains seven elements)
reaches as far as (k-plane width) element of ~x. Therefore, ~x1
need to have extra buffers at the boundary. If the vectors do
not participate in SpMV operation, they are divided without
buffers. Due to A is a narrow-banded matrix, every row of
A only needs a relatively small portion of (plane width) the
vector for SpMV.

A= x=
b=

AMZ
AMY
AMX

AC
APX
APY
APZ

plane width

A2

A1

A0 x0

x2

x1

buffer

buffer

buffer

buffer

b0

b1

b2

Fig. 3: Matrix decomposition

Our approach of row-oriented matrix decomposition is
more appropriate for banded linear system than typical LU
(lower-upper, LU factorization) or column-oriented matrix

decomposition [3]. For one, this approach avoids the inter-
machine communication during the procedure of dividing
A~x = ~b into sub-systems. In our target problem, every row of
A is constructed by one machine. And after the construction
of the linear system, all GPUs of the machine only solve the
sub-linear equation constructed by its own CPUs. Therefore,
there is no communication needed for decomposition. In
contrast, both LU and column-oriented matrix decomposition
need inter-machine communication for adjusting the workload
during decomposition. And for the solving procedure, all of
them need the same amount of communications as ours.

B. GPU-based Bi-Conjugate Gradient stabilized (GBCG)

The high level idea of GBCG is similar to pre-conditioner
BiCGSTAB [31], which can be divided in four components:
pre-conditioner, CG, Bi (bi-direction) and stabilized. The pre-
conditioner aims to improve the condition number of the sparse
matrix and hence accelerate the solver’s convergence speed
[3]. CG means that BiCGSTAB evolves from CG solver, and
Bi means the search direction contains two parts which are
introduced by the BiCG algorithm. Since BiCG aims to solve
the linear system without requiring matrix A to be self-adjoint,
it maintains the correct search direction by combining the
direction with the residual direction, where pi and s stand for
these two directions in BiCGSTAB. Last, stabilized indicates
that two convergence constants are computed to repair the
irregular convergence behavior of BiCG. This is done by
computing ρi and α with the initial vector r̂0 which does not
change. Theoretically, BiCGSTAB is likely to become stagnate
when the convergence requirement is very high. But we vary
precision requirement to 10−15 without suffering this problem.
For the common cases, we only require the precision to 10−5

at most.

The algorithm of GBCG is presented in algorithm 1.

 Algorithm 1: GBCG
𝐫�𝟎 = 𝐫𝟎 = 𝐛 − A𝐱𝟎 ρ0 = α = ω0 = 1 𝐯𝟎 = 𝐩𝟎 = 𝟎
While �|𝐫𝐢−𝟏|�max > ϵ and i = 1, 2, … , imax do:
ρi =< 𝐫�𝟎, 𝐫𝐢−𝟏 > β = ρi

ρi−1
× α

ωi−1
 𝐩𝐢 = 𝐫𝐢−𝟏 + β(𝐩𝐢−𝟏 − ωi−1𝐯𝐢−𝟏)

𝐲 = K−1𝐩𝐢 𝐯𝐢 = A𝐲 α = ρi
<𝐫�𝟎,𝐯𝐢>

𝐬 = 𝐫𝐢−𝟏 − α𝐯𝐢 𝐳 = K−1𝐬 𝐭 = A𝐳

ωi = <K
−1𝐭,K−1𝐬>

<K−1𝐭,K−1𝐭>
 𝐱𝐢 = 𝐱𝐢−𝟏 + α𝐲 + ωi𝐳 𝐫𝐢 = 𝐬 − ωi𝐭

Matrix decomposition distributes each GPU the same size
of workload and every GPU performs GBCG on its own
workload. Once each GPU proceeds to the boxes in GBCG,
inter-GPU communication is required. In algorithm 1, we use
solid and dotted boxes to show two types of communications.
The solid box indicates the scalar communication and dotted
box stands for vector communication. The first solid box
represents residual checking. Each GPU communicates with all
other GPUs to obtain the global maximum norm of residual.
If the precision requirement is not achieved and the current
iteration time is below the iteration limit, GBCG continues to
correct xi; otherwise GBCG terminates and returns xi. Within
every iteration, there are three more solid boxes that stand for
the global scalar sum communication, e.g., the first solid box
is ρi communication. Each GPU only holds its own part of the

inner dot product of < r0, ri−1 >. Therefore, a communication
is required to sum all ρis reside on different GPUs. And the last
solid box stands for the sum communication for the numerator
and denominator respectively. GBCG puts the local values in a
single MPI message in order to save the communication time.

The dotted boxes in algorithm 1 are for vector communica-
tion to update the vector buffer before a SpMV. The reason of
vector communication is explained earlier in Section III-A. In
total, six vector communications is required per-iteration for
GBCG.

GBCG stores the banded matrix by a format evolves from
Diagonal (DIA) format [32][33]. Specifically, we utilize DIA
format other than other formats such as Coordinate (COO),
Compressed Sparse Row (CSR), ELLPACK (ELL), Hybrid
(HYBRID) to store banded matrix for two reasons. First, DIA
is space efficient for banded matrices. For example, in a cubic
domain with n as the number of cells in each dimension, the
generated sparse matrix A needs to store 7n3−6n2 + 12n−8
double precision values. DIA consumes 7n3 storage units, and
ELL, CSR, COO and HYBRID require more storage spaces.
Second, we optimize the matrix entry access time by arranging
every row of DIA format contiguously into one array. In
particular, DIA stores the seven diagonal parallel sequences
into several arrays. We put the seven arrays into one array by
row-wise fashion. Therefore, every row of the banded matrix is
stored contiguously. As a result, one warp threads can access
global memory in one time to fetch all the requested data for
this whole warp since they are stored contiguously [34]. In the
meantime, continuous data storage leads to more TLB hits that
deliver the faster memory access time.

Applicability to Banded Linear Systems: As it has
already shown that BiCGSTAB is applicable for all sparse
linear systems [3], our solver can be applied to other linear
systems, beyond Possion and AD equations in our cardiac
simulation. We further evaluate our solver on other banded
linear systems from the Matrix Market [35], such as SHER-
MAN1 (oil reservoir simulation), NOS7 (Lanczos with partial
re-orthogonalization) and GR 30 30 (finite-difference Lapla-
cians). Further explanation for these systems can be found
in [35]. For these linear systems, as the largest matrix is
1,000×1,000, our solver can solve them within 200 ms per
iteration on a single GPU.

C. Communication Optimization Strategies

Six communications per-iteration as required by our solver
could possibly become the Achilles’ heel for high scalability.
The native implementation shows long communication time
and leads to poor GBCG scalability. To address this problem,
we develop two inter-machine communication optimization
strategies to improve the communication speed substantially.
Specifically, we can achieve 70% of the idealized communi-
cation bandwidth. As a result, these optimizations lead GBCG
scale to O(100) GPUs.

With Poisson equation expressed in terms of A~x = ~b, 25.3
double precision Gflop per-iteration is required for GBCG to
solve 2562× 512 problem. And assuming 16 double precision
Gflops can be achieved for each GPU, one GBCG iteration can
be completed within 8 ms of wall clock time by 192 GPUs.
Here we use 16 Gflops per GPU, double the numbers from [9]

that achieves 8 Gflops double precision per GPU (including
communication time) when employing 192 GPUs. As this
is all computation time in one iteration, all communication
operations of GBCG must be faster than 8 ms.

The Keeneland supercomputer uses Mellanox FDR Infini-
Band with 56Gb/s bandwidth (54.54 Gb/s after signaling over-
heads). Ideally, the vector communication between neighboring
machines, for 256×512 double precision array, can be as short
as 154 µs. And the scalar communication is almost the time
of sending protocol headers time since the data is only one
double precision scalar. In total, six communications can be
completed in around 300 µs which is shorter than 8 ms.
Therefore, GBCG can scale to large number of GPUs even if
we only achieve 5% of idealized bandwidth. But without any
optimization, our first implementation cannot achieve even 1%
of the idealized network bandwidth mostly due to congestion.
Figure 6(a) shows that the native communication for vector is
around 50 ms.

0 1 2 3 4 5 6 7
Phase 1:
Phase 2:

Fig. 4: Two-phase based neighboring machine vector communication

0 1 2 3 4 5 6 7

O O O

O

O

O

O O=Gather or Distribute

Fig. 5: Tree topology based scalar communication

Vector communication: Our optimized vector communi-
cation leverages three optimization techniques. First, we utilize
registered memory for MPI data exchange. Specifically, the
sending and receiving buffers are allocated as pinned memory.
In the meantime, we use the mpi leave pinned flag to inform
the network adapter the virtual-to-physical address mapping
of the sending and receiving buffers. Second, we overlap the
copying of sending data from GPU to CPU with GPU com-
putation. Third, we exploit two-phase communication strategy
to overcome communication congestion. Figure 4 presents the
two-phase strategy with eight machines. In the first phase,
we allow machine pairs [0 1], [2 3], ..., [6 7] to communi-
cate. In the second phase, the [1 2], [3 4], ..., [5 6] machine
pairs talk with each other. Figure 6(a) plots the performance
of different vector communication techniques. Compared to
native implementation, two-phase optimization alone renders
3× speedup for 64 machines. One step further, the combination
of two-phase and registered memory optimizations enables our
solver to achieve 70% of idealized communication bandwidth.
Figure 6(a) also points out that any optimization strategy alone
cannot provide such communication speed. In detail, our vector
communication time for 64 machines is 448µs seconds (the
average of 0.2 million tests).

Scalar communication: Here tree topology based scalar
broadcast is utilized to optimize scalar communication. Specif-
ically, our solver conducts scalar communication for exchang-
ing the global maximum or global sum information across all
the machines. In the native implementation, every machine
simply conducts the broadcast and performs the calculation.
This introduces both network congestion and long communica-
tion time. Figure 5 describes our tree topology based broadcast

16 32 64
0.001

0.01

0.02

0.04

0.05

Machine number

T
im

e
 c

o
n
s
u
m

p
ti
o
n
 (

S
e
c
)

Native

Two−phase

Reg. mem

Reg. mem + two−phase

16 32 64
0

0.000003

0.0001

0.0003

0.0004

Machine number

T
im

e
 c

o
n
s
u
m

p
ti
o
n
 (

S
e
c
)

Native

Tree topology

(a) Vector (b) Scalar
Fig. 6: Communication optimizations: (a) Vector communication
with registered memory and two-phase communication (b) Scalar
communication with tree topology for broadcast.

method. Specifically, the scalar number from each machine is
to gather to one machine in a tree based manner for processing.
Afterwards, the result is distributed to all machines in the
reverse order. Through this optimization, the number of scalar
communication decreases from 642×2 to 63×2 times. Figure
6(b) demonstrates that our solver can complete 64 machines
scalar communication in 46.2 µs (the average of 0.2 million
tests).

D. GPU-based Stencil CG (GSCG) Algorithm

In this part, we develop the GSCG method that is dedicated
for banded linear systems with positive definite symmetric
matrices by applying matrix decomposition to standard CG
method [18]. From the decomposition aspect, the distribution
of the workload in GSCG is the same as the GBCG algorithm.
We develop GSCG for several reasons. First, CG is applicable
for several existing problems, e.g., heat dissipation and PDE
on uniform grid. And most importantly, if our heart simulation
problem is non-immersed body case discretized on uniform
mesh, CG is applicable as well. Second, it solves a simpler
matrix that can be further optimized. Specifically, CG has only
one SpMV and three communications (one vector, two scalar)
per iteration. Third, since CG requires the sparse matrix to
be positive definite symmetric, we propose to use a stencil
to represent the whole sparse matrix in Poisson and AD
equations. In the cardiac simulation, we gather all the cells
of the fluid body x[x axis, y axis, z axis] into ~x by x axis
first, y axis and z axis last. Therefore, (x axis, y axis, z axis)
of every entry x[i] can be induced by index i easily. With the
cell’s position, we can decide its stencil (note the stencil of
each cell is uniquely determined by its location). For example,
every interior cell (x axis×y axis×z axis 6=0) has the stencil
[-1, -1, -1, 6, -1, -1, -1], and the boundary cell is applied with
Neumann or Dirichlet condition [1].

TABLE II: GSCG vs. CUSP-CG time consumption

Problem size GSCG CUSP-CG Speedup
(# of grid points) (seconds) (seconds)

1283 1.97 2.20 1.12
2563 30.6 35.9 1.17
3003 59.0 72.2 1.22

The stencil representation for banded matrix helps save
the precious on-device memory space and reduce the data
access time. Specifically, as we discuss in Section III-B, the
generated sparse matrix for Poisson or AD equations consumes
7n3 − 6n2 + 12n − 8 double precision storage, where n is
the number of cells in each dimension (cube case). Here

the stencil representation for sparse matrix needs only one
integer to indicate the dimension of the physical domain, as
it is discretized on a uniform grid mesh. As we discussed
before, GSCG does not have to access on-device memory for
matrix entries any more. And [36] points out memory data
access is the bottleneck for solving sparse A~x = ~b on GPU.
At meantime, our evaluation shows SpMV consumes around
80% of per-iteration CG time. And the results show that our
GSCG is 22% faster than CUSP CG. The detail test results
are presented in Table II.

IV. EXPERIMENTS

In this work, we mainly use two GPU clusters: Keeneland,
a supercomputer belong to NSF Extreme Science and En-
gineering Discovery Environment (XSEDE) program; and
Amazon Elastic Compute Cloud (EC2), which provides GPU
instances on demand for high-performance computing appli-
cations. In Amazon EC2, the users need to pay for other
resources, e.g., storage and network, besides the GPU in-
stances. Keeneland and EC2 have NVIDIA Telsa M-class
GPU codenamed Fermi M2090 and M2050, respectively.
Keeneland installs three GPUs on each node and EC2 two
GPUs. Specifically, M2050 has one Telsa GPU with 448
CUDA cores with 515 Gflops double precision floating point
peak performance, and M2090 has one GPU Tesla GPU with
512 CUDA cores with 665 Gflops double precision floating
point peak performance. M2090 has 6GB GDDR5 memory,
twice as much as M2050. ECC is on for both M2050 and
M2090. By default, the results present in this section are run
on Keeneland, which has Linux 2.6.32 kernel with libraries
such as gcc 4.4.6, ifort 12.1.5, Open MPI 1.6.1, and CUDA
5.0. Note that GPUDirect v3 of CUDA 5.0 on Keeneland is
not supported. The compilation optimization flag is set as -
O0. We set up the same environment on Amazon instances as
Keeneland.

We have implemented both GSCG and GBCG in C and
CUDA with Jacobi pre-conditioner [3], and have also in-
tegrated the solvers with our cardiac simulation code. On
each machine, we utilize one host thread to issue all GPU
kernels with GPU stream. During scalar communication, host
thread works out the local result first. Next, a MPI based
communication is used to obtain the global result. For vector
communication, the inter-GPU communication can happen on
the same machine or two different machines. We overlap
these two communications. First, GBCG issues GPUDirect
P2P inter-GPU communication to stream for two GPUs on the
same machine. Next, GBCG conducts two-phase, registered
memory based inter-GPU vector communication for two GPUs
on different machines.

In this work, we study GBCG scalability by testing our
new cardiac simulator. Since FEM leads to the same type of
A~x = ~b for AD and Poisson equations, here we report the
evaluation of Poisson equation unless otherwise specified. We
conduct the evaluation of GBCG with different optimization
approaches, problem sizes, precision requirements and plat-
form environments. In this section, we use small, medium,
and large problems to stand for 1283, 2563 and 2562 × 512
problem sizes, respectively. For different precision criteria,
we use low, medium, and high precisions for 5E-2, 5E-3
and 5E-4 precision requirements, respectively. By default, we

6 12 24 48 96 192

0.2

0.5

1

2

4

8

GPU number

T
flo

ps

Vector+scalar
Vector
Native

Fig. 7: Gflops of different optimization techniques for GBCG.

present GBCG results with large problem and high precision
requirement.

Every test is run for 1,000 time steps of the cardiac
simulation. Within each time step, GBCG requires from 67
to 216 iterations to converge. Therefore, our performance
measurement is an average (arithmetic mean) of 67,000 to
216,000 iterations. The computation rates are reported in terms
of Gflops that is determined by dividing the total arithmetic
operations—treating all types of double precision floating point
operations as 1 flop—per iteration by the average per iteration
time (including computation and communication time). To
clearly characterize the reason of strong or weak scalability
trends in our solver, we define communication overhead as the
ratio of communication time and the total runtime. Note this
communication ratio only measures the MPI communication
and does not include the communication between CPU and
GPU, as MPI communication is the major overhead for our
solver.

A. Scalability Analysis

Different Optimizations: Overcoming communication
limitation is vital for our solver to achieve strong scaling.
Figure 7 plots the strong scaling of GBCG corresponding to
different communication optimization methods as mentioned
in Section III-B. We see significant Gflops increase after the
two optimized GBCG due to native GBCG having higher
communication ratio. Specifically, native GBCG consumes 9
ms, 9.8 µs and 33 ms for vector, scalar communication
and one iteration when using 24 GPUs. As a result, the
communication overhead is 54.5%. For 48 GPUs, native
GBCG spends 47.79 ms per iteration. But it needs 20.72
ms for vector communication (scalar communication is 10
µs) which leads to communication ratio of 86.3%. Therefore,
native GBCG can only scale to 24 GPUs but instantly feel
a Gflops drop when GPU number increases to 48. For the
vector communication optimized GBCG, it needs 7.63 ms
per-iteration with 448 µs and 350 µs for vector and scalar
communication on 192 GPUs, respectively. The corresponding
communication ratio is 30.1%. This result shows that scalar
communication becomes important as vector communication
decreases. With the tree-based scalar communication, the total
time consumption, vector and scalar communication times are
5.91 ms, 448 µs and 46.2 µs, respectively. The communication
ratio becomes 18.3%. This evaluation highlights that efficient
MPI communication is essential for scaling our solver.

Different Problem Sizes: Figure 8 shows the scalability
trends of different problem sizes. As expected, GBCG cannot
scale well for small problem size with 192 GPUs since
the total time consumption, vector communication and scalar

6 12 24 48 96 192

0.2

0.5

1

2

4

8

GPU number

T
flo

ps

Large problem
Medium problem
Small problem

4.3 Tflops

3.8 Tflops

1.0 Tflops

Fig. 8: Scalability of different Poisson equation problem sizes: small,
medium and large.

6 12 24 48 96 192

0.2

0.5

1

2

4

8

GPU number

T
flo

ps

High precision
Medium precision
Low precision

4.3 Tflops

2.0 Tflops

2.8 Tflops

Fig. 9: The scalability of different precision criteria.

communication time consumption are 1.7 ms, 428 µs and
46.2 µs, respectively. The communication ratio is 61.2%.
But for medium problem, the total time consumption, vector
communication, scalar communication takes 3.3 ms, 438 µs
and 46.2 µs, respectively. Therefore, the communication ratio
is 32.1%. For large problem, the communication ratio is very
small at 18.3%. One can see that both medium and large
problems can scale nicely to O(100) GPUs.

Different Precision Criteria: We also observe that
the per-iteration time consumption varies when the precision
criterion fluctuates. Figure 9 plots GBCG scalability trends
corresponding to different precision requirements. Clearly, the
simulation with high precision scales better than medium
precision. And medium precision obtains better Gflops than
low precision. According to our test, low, medium and high
precision problems need 57, 67 and 145 iterations on average
to converge, respectively. These iteration difference leads to
the Gflops difference for two reasons. First, every time step,
host memory has to talk to device memory for initializing
A~x = ~b. More iterations cause host and device communication
to occupy less percentage of per-iteration time. Second, [34]
points out the L3 cache can hide the global memory access
time. As L3 cache needs warm-up, it also helps when we
increase the iteration count.

Weak Scalability: To show our solver can balance work-
load well when problem size increases, we also evaluate the
weak scalability of GBCG in cardiac simulation. Figure 10
presents weak scalability of solving AD and Poisson equations.
To keep every processor the same workload, as problem size
increases, the GPU number increases accordingly. In this
test, small problem employs 12 GPUs, medium problem 96

Advection diffusion Eq. Poisson Eq.

0.5
0.6
0.7
0.8
0.9

1

Problem types

N
or

m
al

iz
ed

 G
flo

ps

Small−12GPUs
Medium−96GPUs
Large−192GPUs

Fig. 10: Weak Scalability: small problem on 12 GPUs, medium
problem on 96 GPUs and large problem on 192 GPUs.

6 12 24 48 96 192

0.2

1

5
10
20
40
80

GPU number

T
im

e
to

 s
ol

ut
io

n
(s

ec
)

Card. sim.
Poisson Eq.
Ad. Eq.

9.0×

16.0×

5.2×

4.5×

Fig. 11: Runtime of Poisson, AD equation and the simulation.

GPUs and large problem 192 GPUs. The runtime of Poisson
equation shows that our workload distribution approach can
maintain a good weak scalability across different problem size.
Specifically, per GPU Gflops of large problem on 192 GPUs
can maintain 80% that of small problem on 12 GPUs. But
for AD equation, since it can converge in 10 iterations every
time step, data copy from host memory to on-device memory
takes large portion of the runtime. Therefore, it has a worse
weak scalability. Note that GBCG can converge quickly for
AD equation due to its good matrix condition number. We use
10−12 as the convergence criteria for AD equation.

Time to Solution: With both AD and Poisson equations
ported to GPU clusters, we further study the performance of
our new cardiac simulation. Figure 11 plots the per time step
time consumption for cardiac simulation, Poisson equation and
AD equations. As one may recall, before these two equations
account for around 90% of the cardiac simulation time. With
the new solver, the runtime of two equations is only 11% of
the cardiac simulation. Figure 11 also shows that our new
integrated cardiac simulation can maintain good scalability
from 6 to 192 GPUs. We integrate our solver to cardiac
simulator while giving other work full CPU resources. For
Poisson equation, the time to solution speedup is 16 ×, but for
Gflops is 21.8 ×. The difference results from 1) for different
number of GPUs, it takes different numbers of iterations to
converge, and 2) more GPUs mean more buffers, leading to
more operations per-iteration. Therefore, the speedup of Gflops
is higher than time to solution.

B. Amazon

We study our solver scalability on Amazon GPU high
performance instance in this part. According to [37], the

interconnection of Amazon high performance instance is much
slower than on supercomputers such as Keeneland in this work.
In our test, we put all instances in the same placement group
that shall have good inter-node communication. Figure 12
shows the strong scalability of our solver for large problem
size from 4 GPUs (on 2 instances) to 32 GPUs (on 16
instances) according to different communication optimizations.
The runtimes for vector and scalar communication improve
from 70 ms and 40 ms, to 8 ms and 6 ms, respectively. And
per-iteration time consumption with 32 GPUs are 320 ms, 210
ms and 73 ms for native, vector optimized and vector and
scalar optimized tests. Therefore, the communication ratio of
native, vector communication optimized and vector and scalar
optimized tests are 93.8%, 80% and 54.8%, respectively. These
ratios explain why our optimized solver can scale to 32 GPUs.
Note that all the tests are the average report of 100 time steps
with total around 17,000 iterations.

4 8 16 32
16

32

64

128

256

GPU number

G
flo

ps

MPI vect, scalar optimized
MPI vect optimized
Native

1.×

2.3×
1.8×

Fig. 12: Gflops on Amazon with different optimization techniques.

V. CONCLUSION

In conclusion, we propose matrix decomposition for
banded linear system and develop a highly scalable banded
system solver. In particular, our GSCG solver is 22% faster
than CUSP CG solver, and the GBCG solver that is applicable
for any banded system can achieve close to 22 speedup when
running from 6 to 192 GPUs. Additionally, GBCG is scalable
on Amazon EC2 instances.

For future work, we intend to explore scalability further,
and will focus on various optimizations, e.g., memory coalesc-
ing and memory locality as in [38], improving GPU bandwidth
[39]. Furthermore, we will work on better pre-conditioners for
the GSCG and GBCG solvers for the problems that need a
large number of iterations.

VI. ACKNOWLEDGMENTS

This project is in part supported by National Science
Foundation grants IOS-1124813 and 1124804, and an NVIDIA
Academic Partnership Award.

REFERENCES

[1] R. Mittal et al., “A versatile sharp interface immersed boundary
method for incompressible flows with complex boundaries,” Journal
of Computational Physics, 2008.

[2] R. Babich et al., “Scaling lattice qcd beyond 100 gpus,” in SC, 2011.
[3] H. William et al., Numerical Recipes in C: The art of scientific

computing. Cambridge university press, 1988.
[4] L.-W. Chang et al., “A scalable, numerically stable, high-performance

tridiagonal solver using gpus,” in SC, 2012.

[5] E. Polizzi et al., “Spike: A parallel environment for solving banded
linear systems,” Computers & Fluids, 2007.

[6] D. Komatitsch et al., “Modeling the propagation of elastic waves using
spectral elements on a cluster of 192 gpus,” Computer Science-Research
and Development, 2010.

[7] M. Rietmann et al., “Forward and adjoint simulations of seismic wave
propagation on emerging large-scale gpu architectures,” in SC, 2012.

[8] M. Wen et al., “Using 1000+ gpus and 10000+ cpus for sedimentary
basin simulations,” in CLUSTER, 2012.

[9] A. Nukada et al., “Scalable multi-gpu 3-d fft for tsubame 2.0 super-
computer,” in SC, 2012.

[10] NVIDIA CUSP, “http://developer.nvidia.com/cuda/cusp.”
[11] J. Krüger et al., “Linear algebra operators for gpu implementation of

numerical algorithms,” in TOG, 2003.
[12] M. Ament et al., “A parallel preconditioned conjugate gradient solver

for the poisson problem on a multi-gpu platform,” in PDP, 2010.
[13] G. Knittel, “A cg-based poisson solver on a gpu-cluster,” in HiPC, 2010.
[14] A. Li et al., “Spike:gpu - a gpu-based baned linear system solver,” 2012.
[15] J. Bolz et al., “Sparse matrix solvers on the gpu: conjugate gradients

and multigrid,” in TOG, 2003.
[16] S. Fulton et al., “Multigrid methods for elliptic problems: A review,”

Mon. Wea. Rev, 1986.
[17] H. Anzt et al., “Block-asynchronous multigrid smoothers for gpu-

accelerated systems,” Technical report, Tech. Rep., 2011.
[18] J. Shewchuk, “An introduction to the conjugate gradient method without

the agonizing pain,” 1994.
[19] Y. Saad et al., “Gmres: A generalized minimal residual algorithm for

solving nonsymmetric linear systems.” SIAM J. Sci. Stat. Comput., 1986.
[20] G. Sleijpen et al., “Bicgstab (l) for linear equations involving unsym-

metric matrices with complex spectrum,” Electronic Transactions on
Numerical Analysis, 1993.

[21] H. Liu et al., “Matrix decomposition based conjugate gradient solver
for poisson equation,” in SC, 2012.

[22] W. Li et al., “Flow simulation with complex boundaries,” GPU Gems,
2005.

[23] A. A. Mirin et al., “Toward real-time modeling of human heart ventri-
cles at cellular resolution: simulation of drug-induced arrhythmias,” in
SC, 2012.

[24] B. J. Pope et al., “Performance of hybrid programming models for
multiscale cardiac simulations: Preparing for petascale computation,”
Biomedical Engineering, IEEE Transactions on, 2011.

[25] A. Neic et al., “Accelerating cardiac bidomain simulations using graph-
ics processing units,” Biomedical Engineering, 2012.

[26] S. Niederer et al., “Simulating human cardiac electrophysiology on
clinical time-scales,” Frontiers in Physiology, 2011.

[27] I. Foster, Designing and building parallel programs. Addison-Wesley
Reading, MA, 1995.

[28] E. Polizzi et al., “A parallel hybrid banded system solver: the spike
algorithm,” Parallel computing, 2006.

[29] A. Quarteroni et al., Domain decomposition methods for partial differ-
ential equations. Clarendon Press, 1999.

[30] A. Meyer, “A parallel preconditioned conjugate gradient method using
domain decomposition and inexact solvers on each subdomain,” Com-
puting, 1990.

[31] H. Van der Vorst, “Bi-cgstab: A fast and smoothly converging variant of
bicg in the presence of rounding errors,” J. Sci. Statist. Comput, 1992.

[32] M. Wafai et al., “Sparse matrix vector multiplications on graphic
processors,” 2010.

[33] N. Bell et al., “Efficient sparse matrix-vector multiplication on cuda,”
NVIDIA Technical Report, 2008.

[34] H. Wong et al., “Demystifying gpu microarchitecture through mi-
crobenchmarking,” in ISPASS, 2010.

[35] M. Market, “http://math.nist.gov/matrixmarket/.”
[36] J. Dongarra et al., “An iterative solver benchmark,” Scientific Program-

ming, 2001.
[37] K. R. Jackson et al., “Performance analysis of high performance com-

puting applications on the amazon web services cloud,” in CloudCom,
2010.

[38] J. Wu et al., “Optimized strategies for mapping three-dimensional ffts
onto cuda gpus,” in InPar, 2012.

[39] D. Merrill, “Allocation-oriented algorithm design with application to
gpu computing,” Ph.D. dissertation, University of Virginia, 2012.

