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SUMMARY

Large organizations always have a strong demand for storage from data-intensive applications and instru-
ments. In this paper, we present the design, implementation, and evaluation of a new virtual storage
system, Storage@desk, which can aggregate a large number of distributed machines within an organi-
zation to provide storage services with quality of service guarantees. Because storage virtualization is
the prominent goal, Storage@desk provides clients with the abstraction of a hard drive by utilizing the
Internet SCSI protocol. As such, data access to new storage services is transparent so that clients do not
need to modify any existing applications nor change their current practices. Storage@desk replicates data
and employs version-based journaling for high availability. It utilizes a market-based model for resource
management and a feedback controller for automated performance control. We have developed a prototype
of Storage@desk that implements the core components. Copyright � 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Data-intensive applications and instruments have been a driving force for the surging demand for
storage in large organizations. The common solutions for enterprise-scale storage systems include
Direct-Attached Storage (DAS) where storage resources are owned and managed locally, Network-
Attached Storage (NAS) that provides file-based storage services to multiple networked clients,
and Storage Area Network (SAN) that provides to clients the block-level access utilizing standard
protocols (e.g. SCSI, Fibre Channel (FC)). However, despite the fact that hard disk cost decreases
quickly every year, these solutions remain expensive—not only in terms of hardware and software
costs but also the human time and effort for maintenance and management. On the other hand, it
has been repeatedly observed that commodity desktop machines within a large organization are
underutilized [1–3].

In this paper, we present Storage@desk (SD), a new virtual storage system that aggregates the
underutilized storage resources in the existing information infrastructure and provides a virtual
storage pool for clients. Two important properties of Storage@desk are storage virtualization
and Quality of Service (QoS) management. We achieve storage virtualization in Storage@desk
by implementing the IETF standard Internet SCSI (iSCSI) protocol [4] which supports the
transport of SCSI commands and data over TCP/IP networks. This standard-based iSCSI inter-
face allows block-level access from clients and applications without any deviation from the
existing practices. When remote storage is attached, a client shall not tell the difference between
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Storage@desk storage from a locally attached hard drive, and Storage@desk shall handle the
distributed resource management on the system level. That is, on Storage@desk storage, a
client can make partitions (primary, logical), create file systems (e.g. NTFS, ext2, ext3, HFS),
make directories and subdirectories, and perform various file operations (e.g. create, open,
copy, move, modify, delete). Beyond storage virtualization, we achieve QoS management in
Storage@desk by utilizing techniques from journaling to feedback control theory. While iSCSI
is being integrated to several Linux distributions, a vanilla Linux iSCSI server will not provide
core Storage@desk functionalities such as storage aggregation, metadata management, journaling,
and performance control. Ideally, Storage@desk shall deliver storage service to each client in
a way that satisfies the system-level and client-level QoS guarantees (e.g. capacity, availability,
performance).

The contributions of this work are two folds: (1) We have identified and presented a new paradigm
for virtual storage system design. Storage@desk is an attempt to build a general-purpose virtual
storage system with QoS guarantees on top of the aggregate, unused disk storage of a collection of
interconnected desktop machines. In contrast with the existing distributed file systems that utilize
the file abstraction, Storage@desk supports the iSCSI standard-based, block-level interface that
has been demonstrated as easy to use. The architecture is flexible and highly extensible. A working
prototype has been implemented and outperforms NFS and CIFS on the IOzone benchmark.
(2) The systematic design methodology in Storage@desk lays a good foundation for future research
in distributed storage systems, as the core ideas of storage aggregation and virtualization can be
extended for new usages and applied in new host environments. We believe that Storage@desk
will inspire new ways of thinking about idle distributed storage resources and can potentially
become a storage system of choice for data-intensive computing in large organizations. Instead
of making central storage bigger, making local storage bigger on desktop machines becomes
a feasible storage solution, which will change the organizational pattern for future hardware
purchases. Furthermore, we envision that Storage@desk works closely with virtual machines (e.g.
VirtualBox [5]) in the future. The potential benefits include easy data management and dynamic job
migration.

In our previous publications, we have presented the various aspects of Storge@desk, including a
feasibility study in [3], market-based resource allocation in [6], and automated performance control
in [7]. In this paper, we intend to summarize the design and implementation of Storage@desk,
and present a thorough evaluation, without reiterating the details from the previously published
papers. Interested readers can refer to [8] for a complete description.

The remainder of the paper is organized as follows. Section 2 discusses the related work.
Section 3 presents the design of Storage@desk and Section 4 summarizes the evaluation of this
storage system. Section 5 concludes and presents the future research directions.

2. RELATED WORK

2.1. Resource aggregation

Many systems have attempted to harness idle resources on desktop computers, CPU cycles
(e.g. Condor [1], Entropia [9], SETI@home [10]), storage (e.g. FARSITE [11, 12], FreeLoader
[13]), and the computer as a whole (e.g. Berkeley NOW project [14]). In particular, FARSITE
provides an NTFS-like interface on Windows-based machines, different from Storage@desk’s
block interface in a heterogeneous environment. Furthermore, xFS [15] is a serverless network
file system (NFS) that removes the bottleneck of a central server and allows each individual
machine to act as a server. As a log-structured file system, xFS utilizes cooperatively file caching
to improve the performance and a token-based scheme to maintain cache consistency. Although
we share the view on technology trends on machines and networks and both utilize software
RAID, there exist a few noticeable distinctions between Storage@desk and xFS. First, while
Storage@desk allows heterogeneous clients to mount a virtual volume as long as they understand
the iSCSI protocol, xFS provides an abstraction of NFS file system to UNIX clients. Second,
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every storage server is treated equally (as peers) in xFS. In contrast, we have demonstrated in [3]
that these machines present very different characteristics, such as availability and performance.
When identified, the machines with higher QoS can help deliver a better storage service. Third,
the xFS prototype does not support data encryption and relies on the OS kernel to enforce data
protection.

2.2. Storage systems

DAS could lead to inefficient utilization of resources due to the one-to-one relationship between
a server and storage, thus creating a proliferation of data islands that obstruct data sharing. In
the enterprise world, two alternatives that exist today are either NAS or SAN. In contrast to DAS
which directly connects a server to its storage, an NAS server handles data requests at the file
level from other application servers and workstations in a TCP/IP network, whereas an SAN
allows many servers to access block-oriented data based on protocols such as FC or FC-to-SCSI.
Their advantages are better utilization of storage resources through centralized access, increased
scalability, and higher data availability. However, FC networks are expensive and work only for
short distances. Furthermore, the centralized storage repository can become a single point of failure
and a performance bottleneck due to bandwidth saturation.

OceanStore [16] is a global-scale storage system that provides data access to mobile devices and
applications. While Storage@desk shares the view of utility computing in OceanStore by intro-
ducing a market model to provide the monetary incentives for resource providers and consumers,
the support of a variety of QoS properties is not available in OceanStore. Without purchasing any
new disks, Storage@desk can make the best use of current storage capabilities scattered around
the organization to provide large amounts of virtual storage.

2.3. Distributed file systems

Distributed file systems have mostly been implemented in one of three ways: centralized file
systems (e.g. NFS [17–19] and AFS [20]), server-less (Peer-to-Peer or P2P) file-sharing networks
(e.g. Napster [21], Gnutella [22], and Freenet [23]), and cluster file systems (e.g. PVFS [24] and
HPFS [25]). Widely used, the NFS utilizes RPC and XDR to share data among heterogeneous
systems. The Andrew File System (AFS) is a well-known distributed file system that comes with
strong user authentication, global namespace, and client-side volume caching. AFS requires kernel
modifications on the client system and its administration is challenging. Unlike NFS that has
limited support for replication and location independence, Coda [26] improves AFS availability
by supporting server replication and disconnected operations. P2P file systems enable file-sharing
among a number of users on a best effort basis. However, compared with Storage@desk, they lack
support of storage sharing, QoS management, and access control.

As its name implies, Parallel Virtual File System (PVFS) aims at providing high-performance
IO for concurrent operations. Its main limitations are lack of support for dependability and other
platforms beyond Linux. GPFS is also based on a Linux/Unix platform and creates a shared
disk file system in a cluster with the support of concurrent read/write operations to a single file.
Storage@desk supports concurrent read operations and provides access to distributed heterogeneous
storage resources. Higher-level concepts and abstractions such as files and directories may be
layered on top of Storage@desk.

The Google File System [27] (and its open-source implementation Hadoop) is designed to
work with large files and file append operations. The main objectives include high scalability,
fault tolerance, and high performance on low-cost hardware. As part of their cloud computing
infrastructure, Amazon’s Simple Storage Service (S3) is an object-based storage system for internet-
scale computing whose main idea is to provide an inexpensive, reliable, and scalable storage
solution for web applications and users. S3 provides web standards (e.g. REST and SOAP)-based
interfaces. While Amazon S3 architecture is not publicly known, it is likely that S3 is similar to
GFS and Hadoop, both of which utilize remote procedure calls and custom APIs.
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3. STORAGE@DESK SYSTEM

In this section, we present the architecture in Section 3.1, client in Section 3.2, and databases and
metadata management in Section 3.3. We explain storage machine in Section 3.4 and iSCSI server
in Section 3.5. Finally, we discuss data replication and journaling algorithm in Section 3.6.

3.1. Architecture

Storage@desk achieves the goal of storage virtualization by providing an abstraction of a virtual
volume, which consists of an array of blocks with a fixed length, e.g. 512 or 1024 bytes. Similar
to a locally attached hard disk, a client accesses virtual volume in blocks, removing them from the
burden of distributed resource management behind the scene. The advantage is that Storage@desk
allows users to utilize new storage services without changing their applications or existing practices.
As a result, for a client, new and inexpensive storage is always ready to use. This is in strong
contrast to high learning curve from other distributed storage systems, e.g. Amazon S3 SOAP
interface.

Storage@desk architecture consists of five core components: clients that attach and utilize virtual
volume, iSCSI servers (with volume controllers on them) that aggregate distributed storage and
provide service to clients, storage machines that contribute idle resources, volume controllers that
manage the volume, and one or more databases to hold the system metadata. Figure 1 illustrates the
Storage@desk architecture. ISCSI servers provide storage virtualization by implementing the iSCSI
protocol. Clients interact with the system through iSCSI servers in order to smoothly integrate with
a host operating system. To this end, the iSCSI servers become the iSCSI targets by translating
the iSCSI protocol into the function calls in Storage@desk. The corresponding storage machines
will then serve these function calls. A client can utilize any standard iSCSI initiator. Similar to
the SCSI protocol, an iSCSI initiator (client) appears as an SCSI adapter attached to an SCSI
bus while an iSCSI target (server) provides a storage device on the SCSI bus. Typically, iSCSI
initiators are device drivers in the kernel that speak the iSCSI protocol and emulate SCSI devices.
Software initiators are available for most operating systems, including Windows iSCSI initiator
[28] and Linux iSCSI initiator [29, 30].

Each virtual volume requires a client to create a one-to-one connection between an iSCSI
initiator and target. In Storage@desk, each iSCSI server supports a virtual volume, and a client
can interact with several iSCSI servers for multiple different volumes. If a volume is read-only,
multiple clients can talk to numerous servers for concurrent accesses to this volume. In the next
section, we will present the login process and examples of both initiators. When a client wants to
read or write to a volume, the iSCSI request is sent to the iSCSI server. In order to know where

Figure 1. Storage@desk architecture. Clients interact with the system via an iSCSI interface. Arrows
indicate the iSCSI commands from clients and data to clients; Arrows indicate metadata path to the

database; Arrows indicate data interactions between iSCSI servers and machines.
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the data is, the server needs to know the mapping from the virtual address space to the physical
locations. If the mapping is unknown at that moment, the server will contact the volume database
for that information. The database keeps all metadata associated with the volumes, machines, and
mappings. Once the server knows the mapping, it will contact the corresponding storage machines
to retrieve or update the data. The mapping is subsequently cached on the server for future usage.
Volume controllers manage the volumes. They are in charge of setting up the initial mappings,
and making changes to the mappings later on if needed. Finally, as resource providers, storage
machines hold data on their local hard drives. Upon receiving requests from the server, they will
respond with either data for a read or a status for a write.

3.2. Client

After installing Windows iSCSI initiator [28] or Linux iSCSI initiator [29, 30], a client can connect
to a virtual volume in Storage@desk by going through two stages, target discovery and log on.
The target discovery stage is also called the Discovery login session while the log on stage is the
Normal login session. A target in this case refers to a virtual volume in Storage@desk. The login
process establishes an iSCSI TCP/IP connection between an initiator and a Storage@desk iSCSI
server, performs authentication if required, and negotiates the parameters to be used. Figures 2
and 3 show both sessions for the Windows and Linux iSCSI initiator, respectively.

The login process uses a request–response model, defined by the iSCSI protocol. In the Discovery
login session (Figures 2(a) and 3(a)), a client wants to find out the available targets (virtual
volumes) on an iSCSI server. After receiving a request Protocol Data Unit (PDU) from the
client, the server will reply a response PDU with target names, their IP addresses, and ports.
Each PDU contains a Basic Header Segment, an optional Data Segment, and other optional
segments. While a Basic Header Segment contains a list of metadata fields, a Data Segment is
composed of a number of Key=Value pairs where the key is a predefined iSCSI keyword. In this
session, the client sends its name (InitiatorName=iqn.1991-05.com.microsoft:jim.cs.virginia.edu)
and asks the server to return a list of all the iSCSI targets (SendTargets=All). The server responds
with the target name (TargetName=iqn.edu.virginia.cs.storagedesk:test1) and IP address (Targe-
tAddress=128.143.69.26:3260,1). Many iSCSI keywords are self-explanatory and please refer to
the iSCSI protocol specification [4] for their definitions.

In the Normal login session (Figures 2(b) and 3(b)), the most important thing for both the
client and server is to negotiate a set of operational parameters that can be used in the full-feature
phase. Both sides can start to exchange SCSI commands and data after a successful negotiation.
Either side may reject the login when facing an unfavorable negotiation result. An example of
the Discovery login session is given in Figure 4. Storage@desk supports many common SCSI
commands [31], e.g. TEST UNIT READY, READ (6), WRITE (6), INQUIRY, MODE SENSE,
READ CAPACITY, READ (10), WRITE (10), and REPORT LUNS (Logical Unit Number). Note
that the authentication can be added to the session, which we will discuss in Section 3.5.

Once a client logs in a virtual volume in Storage@desk, the volume appears as another locally
attached hard drive. Thus, the client can make partitions (e.g. primary and extended partition) and
create file systems (e.g. FAT, NTFS, ext2, ext3). Figure 5 illustrates what a virtual volume looks
like in Windows. In this example, a new 50 GB volume appears as disk drive F with the file
system as NTFS. Similarly in Figure 6, the Storage@desk virtual volume in Linux becomes the
SCSI drive /dev/sda1, and the client mounts it at /storagedesk.

3.3. Metadata

Metadata management is crucial in Storage@desk. Storage@desk saves metadata information from
volumes, blocks, to machines in a relational database. Without loss of generality, we describe in this
paper a single, centralized database scheme. We make this assumption because we have observed
that most metadata operations are read rather than write operations and can thus benefit from
aggressive local caching. In contrast, xFS [15] replicates the global management map to all the
managers and clients. Although we agree that the map is relatively small, we feel that the number
of changes that will happen would make it difficult to maintain a consistent global map on every
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Figure 2. A Windows iSCSI initiator discovers: (a) and logs on (b) to a Storage@desk volume.

Figure 3. A Linux iSCSI initiator discovers: (a) and logs on (b) to a Storage@desk volume.

machine within a large-scale system. This problem is largely avoided in Storage@desk, where we
can either partition metadata across multiple databases or employ a master–slave database scheme.
If necessary, these two methods can be combined. In the first scheme, metadata is partitioned
into multiple databases according to predefined criteria, e.g. volume identifiers. For each partition,
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Client

InitiatorName=iqn.1991-05.com.microsoft:jim.cs.virginia.edu 
SessionType=Normal 
TargetName=iqn.edu.virginia.cs.storagedesk:test1 

iSCSI Server 

TargetPortalGroupTag=1

A List of Example Parameters: 
InitialR2T=No 
ImmediateData=Yes 
MaxRecvDataSegmentLength=65536 
DefaultTime2Wait=0 

InitialR2T=Yes
ImmediateData=Yes

MaxRecvDataSegmentLength=65536
DefaultTime2Wait=2

SCSI Command Request / Data-In PDU 

SCSI Command Response / Data-Out PDU

Figure 4. Normal session. Arrows −→ indicate the request from the client to the server; Arrows ���
indicate the response from the server to the client.

Figure 5. A virtual volume in Windows.

server replication can be further employed for high availability and performance. In the master–
slave scheme, metadata is stored in the master and slave databases. The metadata first is sent to
the master and then forwarded to the slaves. When a slave fails and later recovers, the master will
use the log of the updates to bring it up to date. When the master fails, one of the slaves can take
over the requests and become a new master. When the old master is back, it will become a slave
to the new master, after retrieving all the updates that happened during the period when it was
down. This ensures consistent metadata across the master and slave databases. If needed, the old
master can become the master again.

On a higher level, the Storage@desk database stores three types of metadata about the system:
volumes, mappings, and storage machines, each of which becomes a separate table in the database.
Figure 7 presents the pseudo-schemes of the Storage@desk database. Conceptually, a virtual volume
is an array of fixed-length blocks that can be grouped in a number of virtual chunks. By definition,
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Figure 6. A virtual volume in Linux. Mount and list a volume.

Volume

Machine

Mapping

Vol ume ID Name Replication Virtual Chunks 

Vol ume Replica Virtual Chunk Machine

IP address Machine ID Physical Chunks Data Directory 

Physical Chunk 

QoS

QoS

Figure 7. Conceptual database schemas. Arrows represent associations between the tables.

a virtual chunk is also an array of blocks. We introduce the concept of virtual chunks for two
reasons: (1) a virtual volume may become too big for any single storage machine to hold and
(2) virtual chunk becomes an intermediate allocation unit for easy management between volumes
and blocks. On the other hand, a physical chunk is a copy of the corresponding virtual chunk on
any storage machine. The physical chunk has the same size as the virtual chunk and holds the
same number of blocks. A virtual chunk can be mapped to multiple physical chunks on storage
machines, depending on the replication degree. As a virtual volume consists of multiple virtual
chunks, a number of distributed storage machines holding the physical chunks can collaboratively
present the abstraction of a virtual volume. As shown in Figure 7, the volume table includes the
volume identifier, name, replication degree, and number of virtual chunks.

A storage machine divides its available storage into a number of physical chunks. The machine
table includes the identifier, the IP address (or location information), data directory (where the
physical chunks reside), and number of physical chunks. There is a one-to-many relationship
between one virtual chunk and many physical chunks. The mapping table reflects this relationship
by mapping a replica of a virtual chunk to a physical chunk. In the mapping table, the number of
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mappings for a virtual volume is the number of virtual chunks times the replication degree. With
the mapping from the mapping table, an iSCSI server can locate physical chunks on one or many
storage machines to read and write blocks in a virtual volume.

ISCSI servers and storage machines have sensors on them to collect information that contain
current statistics of the running system which consists of the latest characteristics of storage
machines and the current performance of the iSCSI servers. This information is used to organize
and affect the physical location of storage blocks and the allocation of resources (e.g. storage
machines) in order to meet the QoS requirements specified with each volume.

3.4. Storage machine

Each machine that participates in a Storage@desk system runs a single service daemon. This
service is responsible for servicing requests from iSCSI servers and keeping the database updated
with their current QoS statistical information. At their most basic level, these requests are various
versions of read, write, allocate, and free.

In addition to servicing client requests for blocks, the storage machine also acts as a sensor
and feeds current QoS-related information back into the Storage@desk system. Specifically, this
information includes such things as CPU load, memory load, disk availability, network load, and
bandwidth, etc. All of this information becomes metadata in the database.

Another responsibility that storage machines take on is data integrity. Users may select from a
wide variety of data integrity mechanisms (including on-disk encryption, sandboxing, check sums,
digesting, etc.). From that the set of configurable options, various machines will support various
subsets of available mechanisms. For example, a given storage machine may run on a virtual
machine (such as Xen [32], Virtual PC [33], VMWare [34], etc.) with abilities to sandbox the
storage machine service from regular users.

3.5. ISCSI server

ISCSI servers act as the interface point between clients and virtual storage resources (they imple-
ment the iSCSI layer). They are responsible for retrieving and maintaining the volume mapping
from the database and translating iSCSI requests from the clients into proper calls on the storage
machines. Furthermore, the iSCSI server is responsible for maintaining all relevant caches of
data and metadata for the system. When clients connect to a Storage@desk system via the iSCSI
interface, they will establish an iSCSI session with an iSCSI server. A single iSCSI server can
handle one or more clients, and a given client can interact with more than one iSCSI servers.
Storage@desk supports dynamic volume creation and removal.

ISCSI servers achieve data confidentiality with the help of data encryption algorithms (e.g.
DES [35], 3DES, AES [36]). The Storage@desk prototype utilizes the AES algorithm and the
key is managed on per volume basis. They are also responsible for maintaining and enforcing
access-control security policies. ISCSI servers explicitly allow or deny requests based on Challenge
Handshake Authentication Protocol (CHAP) [37] as per the iSCSI protocol specification. CHAP
is used to authenticate a client by verifying whether the client possesses a shared password or
secret. The authentication process consists of four steps. First, a client attempts to connect to the
server. Second, the server randomly generates a challenge message and sends it to the client. Third,
the client uses a one-way hash algorithm (e.g. MD5 [38]) to calculate a value from the challenge
message and its secret value. Four, upon receiving the client’s response, the server does its own
calculation and compares the local result against the response. A successful verification requires
that both the client and server have the knowledge of the secret. The secret will be safeguarded
and never sent over the network.

The current prototype does not secure the connections between iSCSI servers and storage
machines. This is based on the assumption that Storage@desk will be deployed within a single
organization, thus a relatively trustworthy environment. Stronger security could become desirable
if this assumption no longer held true for a particular environment.
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Virtual
Chunk 

Virtual Volume 

Storage Machine 

Physical
Chunk 

Volume 
Database

Client
iSCSI Initiator 

iSCSI Server 
Journal

Storage Machine Storage Machine 

Figure 8. Data, metadata, and control flows in Storage@desk. Arrows indicate the data flow, while
Arrows indicate the metadata flow.

3.6. Replication and journal

Storage@desk tolerates failures from the storage machines through replication. The replicas on
multiple storage machines improve reliability and availability of virtual volumes and offer possi-
bilities for load balancing. We may choose from a number of replication strategies, e.g. RAID 1,
RAID 5, erasure code, etc. For simplicity, we implement RAID 1 in the prototype and plan to add
erasure code as a future feature.

In Figure 8, a client has a virtual volume that consists of three virtual chunks. Since the
replication degree is 2, each virtual chunk is replicated to two physical chunks and distributed on
three storage machines. The replicas of one virtual chunk are ensured not to reside on the same
storage machine to minimize correlated failures. For reads, the iSCSI server will pick one of two
storage machines to send the requests. For updates, the server will try to write to two machines
simultaneously. This ensures that the machines always hold the latest data. However, replication
alone cannot provide high availability and maintain data consistency, as machines and networks
are often unreliable and likely to fail for various reasons for a period of time.

To solve this problem, we have designed a version-based journaling algorithm. When an iSCSI
server receives a write request, a version number is automatically generated by a monotonically
increasing function, which ensures that a total ordering among writes and makes it easier to
distinguish ‘fresh’ data from ‘stale’ data. A larger-than relationship between two version numbers
indicates the happened-after relationship between two writes. An iSCSI server keeps an on-disk
journal of writes before propagating them to the storage machines. An entry in the journal consists
of a version number, the starting position of this write request, and an array of bytes, i.e. the data
to write. In addition, the iSCSI server records the latest version number for each storage machine.

For a read request, the iSCSI server will need to compare versions between the virtual and
physical chunks and send requests to the storage machine that has the latest physical chunk. For
a write request, the iSCSI server logs this request in the journal and immediately updates the
version number of the volume. At this moment, the server can ensure to the client that the data
is saved and will be recorded on the physical storage. Next, the server sends the request along
with the version number to the storage machines. When a storage machine is able to complete the
request, it will report back to the iSCSI server with an OK flag. Once the iSCSI server receives an
OK from a storage machine, it will update the version number of the machine. When the iSCSI
server receives an OK from every storage machine, it can safely remove the entry from the journal
because all the replicas have been successfully updated. If an OK is not received from a particular
storage machine, the iSCSI server marks the machine as down and leaves the journal intact. The
version number of the machine will not be updated. Any subsequent read requests will no longer
be forwarded to this machine.
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When a machine recovers from the failure, the journal can be used to bring it up to date. The
iSCSI server replays all the entries in the journal whose version numbers are greater than that of
the machine and are destined to that machine. The server removes entries from the journal if they
are no longer needed. Once the machine is brought up to date, the iSCSI server can start to send
read and write requests to it again. There exist two ways to prevent the journal from growing too
large. If the machine stays down for an extended time, instead of waiting for it to come back
online, the iSCSI server may choose to create a replica on another machine. The iSCSI server can
also actively monitor the size of the journal. Once the journal reaches a predetermined threshold,
the server can start to create new copies on other storage machines and empty the journal when
the new machines are ready.

Algorithm 1: Journaling algorithm

Upon receiving a new request, Ri
Increase the version number Vi
Create an entry Ei =new entry (Vi , Ri );
Write Ei to the journal
FOR each storage machine DO

Write Ei to the storage machine
IF succeeded THEN

Update version number of the machine
END IF

END FOR
IF successfully updated all the machines THEN

Remove Ei from the journal
ELSE

Leave Ei in the journal
END IF

4. EVALUATION

4.1. Introduction

We have developed a prototype of Storage@desk. The prototype is written in Java with 6800 lines
of code. In this section, we will evaluate Storage@desk using benchmarks on the prototype. We use
two kinds of benchmarks, a popular file I/O benchmark tool IOzone [59], and a microbenchmark
written in Message Passing Interface (MPI) [39]. First in Sections 4.2 and 4.3, we use IOzone to
compare read and write bandwidth of Storage@desk with those of Common Internet File System
(CIFS) [40] in Windows and NFS in Linux. In Section 4.4, we write the MPI microbenchmark to
reveal the bandwidth of parallel access in Storage@desk. Then, we utilize a fileop utility in the
IOzone benchmark to gauge throughput in Section 4.5. Next, we use IOzone again to measure
journaling performance in Section 4.6 and data encryption overhead in Section 4.7. Finally, in
Section 4.8, read and write workloads for controller evaluation are generated by the IOzone
processes on the clients.

4.2. Read and write performance in windows

In this test, the client runs on a Windows XP machine with a P4 CPU at 2.4 GHz, 1 GB RAM,
and a 100 Mb/s network connection. Iperf [78], a network testing tool, measures the bandwidth
between the client and server as 11.1 MB/s, which can be considered as theoretical maximum
bandwidth. (However, as we will see later, this number may be exceeded due to the effects of
local operating system cache.) The client uses a Microsoft iSCSI initiator and creates an NTFS file
system on a virtual volume of 50 GB with the replica degree of two. We use IOzone to generate
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Figure 9. Write performance comparison between Storage@desk and CIFS. The point represents the mean
and the error bar shows the standard deviation.

various workloads, e.g. reads and writes. The client has one IOzone process that will issue the
requests to the virtual volume with a record size of 1 MB.

We install the database server and iSCSI server on two Windows Server 2003 machines and
storage machines on three Linux machines with Fedora 7 using kernel 2.6.23. MySQL [78] is the
choice of database. All servers have the same hardware configuration: 8x Xeon CPUs at 2.33 GHz,
16 GB RAM, and one 250 SATA GB hard drive at 7200 rpm. Our evaluations reveal that the iSCSI
server uses about 5% or less of CPU and works well with a JVM of maximum 512 MB heap size.
The machines are connected via 100 Mb/s networks.

We compare the performance of Storage@desk against that of CIFS. With the CIFS protocol,
a client creates a network drive by mapping a share from the file server in the Department of
Computer Science at the University of Virginia. In this test, the client writes files from 1 MB to
1 GB to the Storage@desk volume and reads them back. We intentionally log out and on to the
volume between the writes and reads to flush the memory caches on the client. Similarly, the client
writes and reads the same set of files to a network drive using the CIFS protocol. Unless explicitly
specified, we turn on the journaling algorithm on the iSCSI server. For each test, we repeat the
process for 10 times and calculate the mean and standard deviation. To ensure that cache effects
are eliminated, we unmount the file system between tests unless specifically noted.

Figure 9 demonstrates the write performance from both Storage@desk and CIFS. Storage@desk
writes faster than CIFS for small files. For files smaller than 32 MB, Storage@desk achieves a write
bandwidth above 12 MB/s, compared with 7 MB/s for CIFS. Because Storage@desk provides an
abstraction of local hard drive, the operating system is able to apply local cache to improve the
write requests, as one can see that the cache appears to be less than 32 MB. The cache allows
the bandwidth to slightly exceed the theoretical maximum value of 11.1 MB/s. For large files
Storage@desk presents a slightly better write bandwidth than CIFS where the bandwidth hovers
at the level of 7 to 8 MB/s. It is worthy of note that for the majority of file sizes, the standard
deviation value is within 10% of each measurement. This shows that the performance is relatively
consistent over the tests.

Figure 10 demonstrates the read performance from both Storage@desk and CIFS. Storage@desk
is able to read at around 10 MB/s for files smaller than 1 GB with the exceptions of 1 and 4 MB
files where the bandwidth is below 6 MB/s and 2 MB file where the bandwidth is close to 13 MB/s
(the OS cache may have caused this anomaly for 2 MB files). For 1, 2 and 4 MB/s, CIFS has a read
bandwidth below 4 MB/s, while for files from 8 MB to 1 GB the bandwidth is around 5.5 MB/s.
As the file size increases, the standard deviation becomes smaller, which indicates a decreasing
variation in the performance. In this case, Storage@desk outperforms CIFS by a large margin,
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Figure 10. Read performance comparison between Storage@desk and CIFS. The point represents the
mean and the error bar shows the standard deviation.

about 40% for most file sizes. If we did not intentionally log out the volume on the client side,
Storage@desk would achieve a read bandwidth of 655–780 MB/s for files smaller than 512 MB
given the help of the operating system cache.

In summary, Storage@desk holds bandwidth advantages over CIFS when reading and writing
small files and has a similar performance as CIFS for large files.

4.3. Read and write performance in Linux

Now we repeat the above process in a Linux cluster of 64 nodes and compare the performance
of Storage@desk against NFS. Each node in the cluster runs Linux kernel 2.6 with Dual 1.6 GHz
Opteron252 processor and 2 GB RAM. As a resource provider, each node is a storage machine
and contributes 25 GB of local hard drive into the Storage@desk system. In the meantime, any
node can be a client utilizing an open-source iSCSI implementation, Open-iSCSI initiator [41].
In this test, the client node creates an ext3 file system on the virtual volume which is 50 GB with
the replica degree of two.

For consistency, we use the same setup in Section 4.2, i.e. the same database server, iSCSI server
and file server in the Department of Computer Science. Similarly, IOzone is used to generate reads
and writes of 1 MB records. The difference is that a client mounts an NFS share on the file server.

Although Storage@desk presents larger oscillations on bandwidth, on average it outperforms
NFS by eight times for files from 1 MB to 512 MB when writing to them. Figure 11 shows write
performance for both Storage@desk and NFS. The improved performance can be attributed to a
combined effect of local caches in the operating system and journaling provided by Storage@desk.
When the caches are filled and writes have to go through the network, Storage@desk performs
closely to NFS, which is the case for 1 GB files. In this case, both systems behave similarly—a
write request from a client will be sent to a remote server and written to the server disks.

When reading a file, NFS is better than Storage@desk as shown in Figure 12. NFS is able to
deliver a bandwidth of above 40 MB/s because the client only needs to talk to one central file
server where the hard drives are closely attached. In contrast, the client in Storage@desk talks to
one iSCSI server and the server has to communicate with multiple storage machines in multiple
locations to serve the requests. This distributed nature limits the bandwidth to 20 MB/s, but as we
will see in the next section, it can help in delivering a high aggregate bandwidth for concurrent
data access. Further, one could place the iSCSI server on the client machine, reducing the number
of hops from two to one.
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Figure 11. Write performance comparison between Storage@desk and NFS. The point represents the
mean and the error bar shows the standard deviation.

Figure 12. Read performance comparison between Storage@desk and NFS. The point represents the mean
and the error bar shows the standard deviation.

In summary, Storage@desk outperforms NFS for writes and has a slight disadvantage when it
comes to reads.

4.4. Parallel access

In the previous test, the client connects to an iSCSI server in the local area network. However,
we can actually run the iSCSI server on the same machine where the client resides. The obvious
benefit is to reduce the number of indirect communications and allow the client to directly talk
to the storage machines. This is even more beneficial in the case when a number of clients want
to access one volume simultaneously. Compared with NFS where the central file server inevitably
becomes the bottleneck, Storage@desk can distribute the workload among a number of client
machines and supports concurrent access to a single data set.

In this test, we use the same 64-node Linux cluster and run the iSCSI server on each node. Using
the Open-iSCSI initiator, each client logs in the local server and mounts to the same virtual volume.
We create a benchmark to measure the read performance within the cluster. The benchmark adds
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Table I. Aggregate read and reread bandwidth for multiple clients reading a 128-MB file simultaneously.

Aggregate bandwidth (MB/s) 1 2 4 8 16 32

Read 7.70 11.09 22.01 25.20 32.10 41.84
Reread 695.12 1338.70 2630.22 5219.40 610.66 235.23
Speedup 90.33 120.72 119.48 207.10 19.02 5.62

Figure 13. Aggregate read and reread bandwidth for multiple clients reading a 128-MB file simultaneously.

an MPI barrier before and after each read operation, which released all clients at the same time. As
a common usage on clusters, this test can reveal the ‘worst’ possible behavior because all clients
are reading the same file simultaneously. To compute the bandwidth, we multiply the number of
MPI tasks (readers) by the file size and divide by the elapsed time. The code was written in C and
compiled by gcc with default settings.

First, we choose a 128 MB file size for our concurrent clients experiment and display both the
first (read) and second read (reread) performance in Table I and Figure 13. When there were two
clients, their aggregate read bandwidth is 11.09 MB/s. When there were 32 clients, the aggregate
bandwidth is 41.84 MB/s. While the aggregate bandwidth for the first read increases with the
number of concurrent clients, that of the second read presents a significant improvement, e.g. the
speedups are 120 and 207 for four and eight clients, respectively. When there are four clients, each
one achieves a bandwidth of 658 MB/s and the aggregate bandwidth of four clients is 2630 MB/s.
When there are eight clients, each one achieves about a reread bandwidth of 652 MB/s and the
aggregate bandwidth of eight clients is 5219 MB/s. This suggests that the client OS cache plays
a positive impact on the second read. However, when the number of clients exceeds eight, the
aggregate reread bandwidth decreases as the cache effect slumps.

Now we examine the read and reread performance for a number of different file sizes, from
16 to 256 MB. First, let us look at the read performance as shown in Figure 14. For every
file size, the aggregate read bandwidth scales nicely as the number of clients increases. For the
smallest measured file size of 16 MB, one client generates a bandwidth of 2.31 MB/s, eight clients
19.36 MB/s, and 32 clients 33.42 MB/s. For the largest measured file size of 256 MB, one client
generates a bandwidth of 16.7 MB/s, eight clients 31.58 MB/s, and 32 clients 46.60 MB/s. With
a few exceptions, the aggregate bandwidth improves slightly as the file that the clients are reading
gets larger. This is consistent for all the files from 16 to 256 MB, clearly showing the scalability
of our system.

Figure 15 displays the reread performance for a number of different file sizes, from 16 to
256 MB. In this case, the performance scales for small files, e.g. for 16 MB files, one client
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Figure 14. Aggregate read bandwidth for different file sizes when multiple clients are reading the same file.

Figure 15. Aggregate reread bandwidth for different file sizes when multiple
clients are reading the same file.

generates a bandwidth of 624 MB/s, eight clients 3593 MB/s, 16 clients 4521 MB/s, and 32 clients
9518 MB/s. The speedups are 5.76, 7.25, and 15.25, respectively. For 64 MB files, one client
generates a bandwidth of 655 MB/s, eight clients 5435 MB/s, 16 clients 5490 MB/s, and 32 clients
7584 MB/s. The speedups are 8.30, 8.38, and 11.58, respectively. However, as we have seen
before, the speedup drops when the file reaches 128 and 256 MB, especially when the number of
clients is above eight. This situation happens because the file sizes have exceeded the cache. The
performance can be improved by adding another level of caches in Storage@desk to provide the
capacity of holding a large amount of data.

4.5. Throughput

In this test, we shift our attention to throughput performance. We use a utility called fileop in the
IOzone benchmark. Fileop creates three levels of directory structure: each of the top two levels
contains 10 sub-directories, whereas the bottom level consists of 10 files of 1 KB. Hence, in total it
creates 100 directories and 1000 files. During the test, fileop performs a wide range of operations,
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Table II. Average throughput (Ops/s) comparison between CIFS and Storage@desk.

Average mkdir rmdir create read write close stat chmod readdir delete

SD 1032.9 461.2 147.4 12687.7 4314.5 303.6 2516.2 1164.2 24908.6 1453.6
CIFS 58.5 75.7 65.4 806 452 24.5 33.4 74.6 157.3 85.4

Table III. Best throughput (Ops/s) comparison between CIFS and Storage@desk.

Average mkdir rmdir create read write close stat chmod readdir delete

SD 2884 4128.5 2198.6 14339.4 5679.5 367 2682.5 1271.8 30144.3 1921.8
CIFS 85.9 108.2 86.3 1024.3 620.7 32.2 45.1 107.1 216.7 116.8

Table IV. Worst throughput (Ops/s) comparison between CIFS and Storage@desk.

Average mkdir rmdir create read write close stat chmod readdir delete

SD 175.5 12.6 1 3518.6 601.8 63 1221.5 586.1 11929.4 288
CIFS 20.2 25 11.6 47.2 31 5.3 8.1 11.3 58.6 12.8

including mkdir, rmdir, create, read, write, close, stat, chmod, readdir, and delete. The average,
best, and worst numbers for each operation are reported in operations per second (Ops/s).

In the average case shown in Table II, Storage@desk significantly outperforms CIFS in every
category because of the help Storage@desk gets from the OS cache. Notably for the read operation,
Storage@desk is able to provide service at 12 687.7 Ops/s while CIFS at 806 Ops/s. This order of
magnitude improvement can also be seen for the write operation. Similarly for directory operations
such as mkdir or chmod, Storage@desk has a throughput of an order of magnitude better than
CIFS. For example, Storage@desk can create directories at a speed of about 20 times faster than
CIFS, read directory metadata 15 times faster, and remove them 6 times faster.

Tables III and IV show the best and worst case for all operations, respectively. It is worthy to
note that the average case is very close to the best. This indicates that the worst case happens
rather occasionally. Specifically, for CIFS the average numbers are around 70% of the best while
for Storage@desk 80% except for mkdir, rmdir, and create operations. In contrast, the worst
numbers are further away from the average, below 30% most of the times. The create operation
of Storage@desk lags behind others in performance with the worst throughput at 1 Ops/s, but
on average it still beats CIFS. Figure 16 displays the throughput in all three cases for both
Storage@desk and CIFS.

In summary, for a wide variety of file operations, Storage@desk beats CIFS in best, average,
and worst cases. In particular, for directory operations, Storage@desk shows an order of magnitude
improvement over CIFS.

4.6. Journaling

In addition to providing data consistency over machine failures, the journaling algorithm actually
offers a boost to write performance by acting as a write-through cache on iSCSI servers. Figure 17
shows the difference between the case when the journal is enabled and disabled. Without the
journal, the write performance presents a slowly decreasing trend, dropping from 3.99 MB/s for
a 1 MB file to 3.06 for a 2 GB file. In contrast, the journal helps provide a bandwidth of above
7 MB/s for all file sizes and above 12 MB/s for a 16 MB file and smaller. It is important to note
that the journal performs at a stable level when the file size increases from 32 to 1 GB. The drop
from 12 to 8 MB/s at file size 32 MB is again related to the internal caches.
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Figure 16. Throughput of Storage@desk and CIFS in average, best, and worst cases.

Figure 17. Journaling algorithm performance.

4.7. Data encryption overhead

In this section, we investigate the overheads incurred by data encryption. Recall that the prototype
utilizes the AES algorithm. Figure 18 illustrates the measured bandwidths for writing and reading
a file in cases that the encryption is enabled and disabled. On average, writing a file when
the encryption is enabled has a bandwidth 6.55 MB/s less than that of reading a file when the
encryption is disabled. This reflects a 68% reduction of the mean bandwidth. Figure 19 presents
the encryption overhead for reading a file. In contrast, the average bandwidth for reading a file
when the encryption is enabled is 84% of the average when the encryption is disabled or 1.4 MB/s
less. It is interesting to note that, for files between 16 to 1 GB, the bandwidth gap remains relatively
stable for both cases. Compared with writing a file, data encryption introduces much less overhead
in reading. The asymmetric performance happens because on the block level SCSI reads and writes
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Figure 18. Encryption overhead for writing a file. The point represents the mean and the
error bar shows the standard deviation.

Figure 19. Encryption overhead for reading a file. The point represents the mean and the
error bar shows the standard deviation.

do not contain the same number of blocks in a single request, that is, each read request has more
blocks than write and the amortized cost is therefore reduced.

5. CONCLUSION

In this paper we have designed, implemented, and evaluated Storage@desk, a new virtual storage
system that is motivated by three facts: the need for disk storage driven by data-intensive appli-
cations, abundant yet idle resources within large organizations, and the need for varied quality
of storage service. Storage@desk creates a virtual storage pool by aggregating free disk space
from distributed machines that can be accessed by users across an organization with the goal of
providing an inexpensive storage solution that more efficiently utilizes current hardware and the
IT budget.
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In the current design, iSCSI interface is the only interface that is supported by Storage@desk.
Many different interfaces can be added, such as a Java API, Filesystem in Userspace (FUSE) [42],
and SOAP [43] web services interfaces as used in Amazon S3 [44]. The BitTorrent [45] protocol
can also be exploited to provide simultaneously data delivery from multiple storage machines.
In addition, the current prototype utilizes encryption algorithms and CHAP to provide data
protection and access control. In the future, we will add support for client authentication via
protocols, e.g. Kerberos [46], and secure communications via IPsec [47].
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