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Abstract—A virtualized data center hosts users and ap-
plications within a large number of virtual machines (VM)
to achieve easy provisioning and high utilization of physical
resources. Energy efficiency and reliability are two primary
concerns for operating a data center. Power saving techniques,
such as dynamic voltage and frequency scaling (DVFS), are
often employed to reduce the supply voltages of the CPUs in
runtime when the computer system utilization is low. However,
DVFS can potentially decrease the system reliability - the
processors at low voltages are more likely to encounter soft
errors that may result in VM or system crashes. In this work,
we propose a data center management framework, DUAL,
which consists of the new virtual machine power and reliability
analysis tools. The framework is designed to balance the dual
needs of a data center: reducing energy consumption and
providing high reliability. The evaluations show that DUAL
can help maintain the desired reliability and significantly
reduce power consumption, which in turn will lower the overall
operational cost of a data center.

I. INTRODUCTION

A data center can have a large number of servers each
hosting dozens of virtual machines (VM) and various appli-
cations, such as database, video streaming, and web servers.
The goal of data center operators is to design effective
management policies to ensure the quality of services at a
competitive cost. Among many parameters of interest, power
efficiency and reliability are two major factors that affect
the overall cost of a data center. It is known that power
consumption makes up a large percentage of the operational
budget of a data center [1]. Power saving techniques such as
dynamic voltage and frequency scaling, or DVFS (e.g., Intel
SpeedStep) can dynamically adjust the CPU voltage when
the utilization changes. As the workload in a data center
fluctuates over time, a common management approach is
to use the DVFS technique to optimize power consumption
with application performance used as a constraint.

Unfortunately, the CPU voltage, which is controlled by
DVFS, has a significant impact on the chip reliability,
because the CMOS chips under low voltages become more
prone to the soft errors [2], [3], [4]. The soft errors in CPUs
could potentially result in silent data corruptions (i.e., data
are corrupted but users do not notice), as well as system
and software crashes. Impacts of soft errors have been well
documented in [5], [6], and in one incidence [7], the soft
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Figure 1. Tradeoffs on power consumption and failure rate

errors that occurred on L2 cache led to the server crashes
and affected several internet companies. Our evaluation also
shows that a virtualized data center could experience seven
times more failures when the DVFS is enabled in processors.
More importantly, as the scale of a data center increases, the
probability of failures and the cost for each visible failure
rise significantly. A single downtime event with a 90-minute
outage can cost half a million dollars on average, including
recovery costs, loss of end-user productivity, and business
disruption [8].

With power and reliability as two major factors, an
ideal data center management policy shall aim to reduce
power consumption while maintaining a low failure rate.
Figure 1 illustrates three operational zones each representing
a tradeoff between power consumption and failure rate.
Generally speaking, as the power saving policy becomes
more aggressive, the data center will consume less energy
but run the risk of increased failure rates. Without consid-
ering the failure cost, one would develop power reduction
algorithms as aggressively as possible and target Zone 1 as
the optimal region. On the other end, if high reliability is
desired, one would aim to reach Zone 3 for the minimal
failure rate, although the power consumption would likely
be the largest. Clearly, Zone 2 offers a potentially good
balance of improving energy efficiency of data centers while
minimizing the system failures.

In this work, we propose a new data center management
framework, DUAL, which leverages the new VM power
and reliability analysis tools to satisfy the dual needs of
operating a data center - both reducing energy consumption
and providing high reliability for VMs. We believe that



an accurate VM power model shall take into account the
frequencies of the processors that are controlled by power
management policies. Similar approach can also be extended
to study a reliability model that estimates VM failure rate.
With the help of both models, system administrators can
employ smart management policies that fine tune power
saving techniques and control the impacts on the reliability
of VMs. Prior research investigated power [9], [10] or
reliability [4], [11] issues, but mostly in an isolated fashion.
To the best of our knowledge, this work is the first attempt
to address both challenges and makes the the following three
contributions:

• We build a DVFS-aware VM power model that takes
inputs from power measurement tools readily available
in data centers to estimate server power consumptions.
Experimental results show that the model can accu-
rately estimate the power consumption of the server
while CPU voltage is dynamically changed. Compared
to a power model that does not consider DVFS, our
model achieves a much better accuracy, reducing the
estimation error from 18.5% to 6.7%.

• We establish a reliability model for VMs by using a
soft error rate model and the VM failure rate based on
a large-scale experiment of simulated fault injections.

• We propose a new DUAL framework that minimizes
server power consumption with a guaranteed failure
rate that can be specified by system administrators.
The evaluation based on google data center trace shows
that by using this framework, the power consumption
is decreased by 10% while the failure rate of a data
center is not affected.

The rest of the paper is organized as follows. Section II
describes the proposed framework and VM power and
reliability models. Section III presents the evaluation setup
and results. Section IV discusses the related work and finally
Section V concludes.

II. DUAL - POWER AND RELIABILITY ANALYSIS
FRAMEWORK

Our goal is to understand the tradeoff between power
consumption and reliability in a data center. In such an
environment, the infrastructure has a set of equipments (e.g.,
power distributions unit or PDU) and tools (e.g., Linux
top and iostat commands) that can be used to collect a
wide variety of system parameters, including CPU and
memory utilization, CPU voltage/frequency, and disk I/O
performance, as well as the failure events in CPU, mem-
ory, devices, and software (e.g., hypervisor and OS). The
proposed DUAL framework utilizes these data to build the
VM power and reliability models, which will assist in the
selection of data center management policy. Figure 2 shows
the architecture of the DUAL framework.

DUAL needs to address three challenges. First, while the
impact of DVFS on performance and energy consumption
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Figure 2. Proposed DUAL Framework

has been extensively studied, its impact on the overall
reliability in a data center environment is unknown. We
intend to answer this question by providing new tools on
power and reliability analysis. The second challenge is that
data centers become increasingly virtualized. Cloud service
providers usually provide the customers with VMs with
various configurations and prices. As such, we need to
quantify power consumption and reliability at the VM level,
extending prior work on physical machines [9], [10], [4].
Third, VMs may have different reliability and power require-
ments. The DUAL framework shall provide the capability
of fine-grained management. With DUAL framework, one
can dynamically control power saving of physical resources
based on specific requirements.

In the following, we explain the three key components:
the VM power model, VM reliability model, and adaptive
reliability and power management.

A. VM Power Model

VM power consumption cannot be measured with a power
meter. Alternatively, we choose to model it based on system
utilizations. We explicitly include the CPU frequency to
model DVFS effects, which was not addressed in [12]. When
system administrators adjust CPU frequencies to achieve the
preferred power consumption, the model, without including
the CPU frequency, may not be able to achieve high ac-
curacy, as we will show shortly. To this end, we build a
new VM power model by using the measurements on CPU
frequencies, CPU utilizations, and disk utilizations. All of
these data are readily accessible from operating systems,
hypervisors, or data center management tools. We decide not
to collect the DRAM statistics, as DRAM energy usage can
be approximated as a constant. Because CPU frequencies are
paired with voltages, here we use the frequency to represent
the CPU voltage and frequency pair in the VM power model.

The power model for a server can be estimated as the



sum of the CPU and disk power consumption. While other
components such as network cards consume power as well,
CPUs and disks are major components that reflect system
activities.

powertotal =

n∑
i=1

(powercpu,i) +

n∑
i=1

(powerdisk,i)

+ poweridle

(1)

where powercpu,i and powerdisk,i represent the power con-
sumption by CPU and disk for VMi, and poweridle is
the idle power of the physical machine - no application is
running in the VMs. For each VM, the power consumption is
calculated by aggregating its dynamic power portion, which
is proportionally divided according to its CPU and disk
usage, and an evenly divided portion of the server idle power.
The accountable power of VMi in a server with n VMs in
total can be calculated as below:

poweri =powercpu,i + powerdisk,i +
poweridle

n
(2)

The CPU power consumption of VMi is estimated as:

powercpu,i = ai×utilcpu,i+bi×utilcpu,i×freqi+di (3)

where utilcpu,i is the utilization for VMi, and freqi is
defined by the relative scaling of frequency between their
minimum and maximum values. If a VM uses multiple cores
with different DVFS states, the average value is used in
this case. In the model, ai and bi are coefficients for CPU
utilization and frequency, and di is a constant. Note that
VMs running with different applications may have different
power characteristics, even if their CPU/disk utilizations and
voltages are the same. Therefore, each VM will have its own
coefficients. In this equation, when the CPU utilization is
zero, the power consumed by this CPU is nearly constant
no matter which DVFS state it is currently in. When CPU
utilization is non-zero, the DVFS state affects the CPU
dynamic power proportionally. We find that this first order
model achieves a relatively good accuracy, and plan to
explore high-order models in future work.

The disk power is characterized as below:

powerdisk,i = ci × utildisk,i + ei (4)

Here utildisk,i is the normalized number of I/O accesses
with respect to the maximum number of I/O accesses
observed, ci is the coefficient for disk utilization, and ei
is the idle power consumed by disks.

The total power consumption of a server can be derived by
aggregating Equation 3, Equation 4 and constant idle power
for other components of a system. Hence, the total power,
powertotal, can be represented as Equation 5.

Note that our model can be trained in runtime when
the system experiences significant changes, e.g., many new
applications come in, and a large number of new VMs are
added.

powertotal =

n∑
i=1

(ai × utilcpu,i)+

n∑
i=1

(bi × utilcpu,i × freqi)+

n∑
i=1

(ci × utildisk,i) + poweridle

(5)

Power Model Validation: We train and evaluate the pro-
posed power model on a Dell PowerEdge R410 rack-mount
server that has two Intel Xeon X5650 six-core processors,
24GB DRAM, a 250GB 7200RPM hard disk for operating
systems, and a 1TB 7200RPM hard disk for data storage. We
install Debian 6.0.6 64-bit operating system and Xen 4.0.1
hypervisor, and use a Watts up Pro power meter to measure
the power consumption of the server. Four benchmarks from
SPEC2006 [13] and PARSEC [14], are used to exercise
CPU, memory, and disk I/O for model training. In particular,
mcf , bzip2 and canneal are chosen to represent user tasks,
and freqmine are chosen to represent the tasks run by cloud
computing providers. One benchmark runs in each VM. For
performance isolation, we pin the virtual CPUs of each VM
to separate physical cores, and thus each server may run up
to 12 VMs simultaneously.

While VMs are running, we collect the total power con-
sumption and monitor CPU and disk utilizations and DVFS
states at every second. We use different DVFS policies while
benchmarks are running to make sure that a number of
samples can be collected at each DVFS state. The timestamp
is used to synchronize the sample data. The idle power is
measured when all VMs are idle and only the monitoring
programs are running in the host operating system. The
model training can be formulated as an optimization prob-
lem, which is shown as below and solved by the least squares
quadratic method:

min
1

2
‖D × x+ poweridle − powertotal)‖2

Subject to : x > 0
(6)

where D is the matrix of the CPU utilization, the disk
utilization and the scaled frequency for each VM (the first
three items in Eq. 5). For example, in the case of four VMs
after n sample intervals, D is a n by 12 matrix. x is the
coefficients that need to be trained. Since power is directly
proportional to CPU and disk usages, all coefficients should
be positive.

Figure 3 shows the measured and estimated power con-
sumptions. One can see that the predicted power consump-
tion closely follows the changes in measurement, with a
mean error of less than 7% and a standard deviation of 4.5%.
Further, we compare the accuracy of our DVFS-aware model
with the model that does not include DVFS states (or the
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Figure 3. The VM Power Model Estimation

DVFS-unaware model, similar to the model used in [12]),
and the comparison is shown in the Table I. The DVFS-
unaware model yields a large absolute mean error, 18.7%,
which is three times more than that of DVFS-aware model.
Furthermore, the standard deviation of the DVFS-aware
model is less than 5%, half of that of the DVFS-unaware
model, which is another strong indicator that our model has
a better accuracy. The reason is that the CPU P-state has a
strong correlation with the power consumption. By including
the CPU P-state, our model can quickly adapt to the changes
in CPU P-state and adjust the power estimation accordingly.

Table I
MODELS ERRORS WITH AND WITHOUT CONSIDERING DVFS

Mean Error Std Dev Max Error
DVFS-aware 6.7% 4.5 % 24.7%

DVFS-unaware 18.5% 9.7% 65.4%

B. VM Reliability Analysis

While a hard error can be detected by running tests
in the factories, a soft error, which is the focus of our
work, needs to be handled during the lifetime of the chip.
Soft error rate (SER) is used to quantitatively measure
the severity of soft errors. For 45nm technology, SER is
estimated at one user-visible failure per month per 100 chips,
which is expected to increase exponentially as technology
scaling [15], [16]. In this work, we aim to understand the
impact of soft errors on VM failure rate. Although fault
injection to physical processor is feasible by introducing
neutron beams, this practice is cost prohibitive and requires
special equipments [17]. Alternatively, we conduct a large
number of simulation based fault injections and construct
the VM failure model based on the results.

On the high level, the VM failure model consists of three
key parameters, SER, the masked rate of soft errors, and the
failure rate for VM and host crashes. As soft errors may be
masked and do not result in visible failures, the latter two
parameters are used to model the failure rate from visible
errors. Formally, the failure rate for one VM in a server with
n VMs can be calculated as below:

Rfailure =10
d(1−F )
1−Fmin × SERdvfs

× (1−Rmasked)×Rcrash ×
2

n+ 1

(7)

Where Rmasked is the percentage of masked soft errors,
and Rcrash is the percentage of errors that lead to VM crash
and host crash, which is obtained from our fault injection
experiments (to be described shortly). In a server with n
VMs, the failure rate for each VM is 1/(n+1), assuming that
the VM manager (VMM) could be treated as another VM,
and the probability of one VM affected by a non-masked soft
error follows uniform distribution. Note that unlike a failure
in a VM that only results in crash within its own domain,
a VMM failure would affect all VMs running on top of it.
Therefore the actual failure rate for a VM is 2/(n+ 1).

SERdvfs represents the SER with DVFS enabled that can
be calculated using the base SER and the current frequency
and voltage, formally written as [4]:

SERdvfs = r × SERno dvfs

= 10
d(1−F )
1−fmin × SERno dvfs

(8)

where r is the ratio between SERdvfs, which is the new
SER with DVFS enabled, and the SERno dvfs, which is
the original SER without DVFS. Also, fmin corresponds to
a minimum-energy frequency, and the variable F is defined
by the relative scaling of frequency between minimum
and maximum values. Note that the values are normalized
frequencies with respect to the maximum frequency. The
parameter d is a manufacturing technology dependent con-
stant - a larger d means that the electrical circuits are more
vulnerable to soft errors, and the SER will be changed more
dramatically with the voltage. In our experiment, we use
d = 1 to represent the potential tenfold increase in SER
when the frequency drops to the minimum frequency [18].

In this work, we estimate the actual failure rate from non-
masking errors by conducting fault injection experiments.
Specifically, we use Simics [19] to simulate a full system
with 4 processors and 2GB memory. Debian 6.01 and Xen
Hypervisor 4.1.2 are installed within the simulated machine.
Two VMs are running with the same benchmarks which
are selected from SPEC2006, PARSEC and Filebench [20].
Each VM is assigned with one virtual CPU and is pinned
to one physical processor. We conduct 2,000 injections for
each benchmark, resulting in 8,000 injections total. The
single bit flip soft errors are injected randomly into source
registers. For each injection, only one error is injected, and
the simulation continues to run. The outcomes are classified
as 1) masked: the error does not trigger any visible faults at
the user level; 2) host crash: the error results in a crash in the
Dom0 or hypervisor, and reboot is required. In this case, all
VMs are affected; 3) VM crash: the error results in a crash
in one VM. Other VMs, Dom0 and hypervisor are running
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Figure 4. Fault Injection Results

correctly. The results are shown in Figure 4. On average,
27.4% of injections result in VM or system crashes. 2% of
injections lead to VM crashes and 25.4% of injections lead
to host system crashes.

C. Adaptive Reliability and Power Manager

In this paper, we mainly focus on the management policy
that utilizes power saving techniques in a balanced manner
to achieve both goals of reducing energy consumption and
maintaining high reliability. Currently, there are several
DVFS algorithms that have been implemented in modern
operating systems. For example, Linux kernel has the onde-
mand and conservative governors. The ondemand governor
dynamically adjusts the CPU voltage and frequency based on
the current CPU utilization. If the utilization is higher than
the specified ondemand threshold, which is often predeter-
mined for all servers, the current voltage will be increased to
the highest level. On the other hand, if the utilization is lower
than this threshold, the current voltage will be decreased
to the next lower level until it reaches the lowest level.
The conservative governor is different in that the voltage is
increased gradually when the utilization is higher than the
up threshold instead of jumping to the highest level. The
voltage and frequency pair decreases step by step when the
utilization is lower than the down threshold.

Unfortunately, the default DVFS algorithms such as
ondemand do not consider the impact of failure rate of
microprocessors, where higher failure rates may lead to
higher occurrences of failures in the system. With our VM
power and reliability models, the DUAL framework can
now estimate VM-level power consumption and reliability
and allow system administrators to balance the tradeoffs
between them. Toward this goal, DUAL includes an adaptive
power and reliability manager that consists of a feedback
control algorithm that automatically adjusts the target reli-
ability based on the actual failure rate, and a new DVFS
algorithm that minimizes the power consumption at the
failure rate which is dynamically determined by the control
algorithm. Specifically, the control algorithm monitors the
current failure rate and sets the desired reliability to increase
the system reliability or to reduce power consumption. When
the servers are experiencing a high failure rate, the controlled
reliability should be increased to avoid potential failures in

the future. When the actual failure rate is low, the system
reliability should be adjusted to a moderate level to reduce
power consumption. The feedback control theory is used to
automatically achieve this goal. The input of this algorithm
is the difference between the actual reliability and the target
reliability. The output is the new controlled reliability. The
control strategy can be formulated as:

Rk = Rk−1 − a× (Rtarget −Ractual) (9)

where Ractual is the actual failure rate monitored by the
algorithm; Rtarget is the target failure rate determined by
system administrators and can be considered as constant in
our experiment; Rk−1 is the controlled failure rate which is
set by the control algorithm at the time k − 1; Rk is the
controlled failure rate which is set by the control algorithm
at the time k; and constant a quantifies the impact of the
difference between the actual and target failure rates. The
bigger value of a means a stronger control effect and a
quicker response, but the system is less stable. Note that
a can be fine tuned when systems are deployed.

After the control algorithm specifies system reliability, a
new DVFS algorithm is proposed to achieve minimum power
consumptions by utilizing our power and reliability models.
The key observation is that the impact of DVFS on VM
power consumption is not always same for all VMs. The
applications can have their own power characteristics - for
some applications power is sensitive to the CPU frequency,
while for others increasing the CPU frequency does not
significantly increase its power consumption. This can be
confirmed from the coefficient of the frequency item in
the VM power model. On the other hand, the processor
reliability is relatively stable across different benchmarks,
as shown in Figure 4. This provides a good opportunity to
achieve the same reliability at the lower power consumption
level.

The algorithm is listed in Algorithm 1. The current CPU
utilization and disk I/O are measured and sent to VM power
and reliability models. In this case, we not only use the mod-
els to estimate the current power consumption and reliability,
but more importantly, we use them to predict the power
consumption and failure rate for all possible combinations of
CPU frequencies and then to find the one with lowest power
consumption that satisfies the failure rate as specified by
system administrators. This combination of CPU frequencies
is then used to set the CPU frequency/voltage state. In this
way, the system reliability is guaranteed with the minimum
power consumption.

III. EVALUATION

In this section, we conduct several case studies to demon-
strate the benefits of the DUAL framework on analyzing and
managing tradeoffs between power and reliability of a data
center. The first case study consists of a simulation based on



Algorithm 1: Reliability-Aware Power Management
Data: cpui, diski and freqi are CPU utilization, disk

utilization and CPU frequency of VMi. Fi is the
list of all available frequencies of VMi. n is
total number of VMs; threshold is the targeted
failure rate

Result: freq1 ... freqn
forall the freq1 in F1 do...

forall the freqn in Fn do
PredictedPower = PowerModel(cpu1 , disk1 ,
freq1 ,..., cpun , diskn , freqn);
PredictedFailure = FailureModel(freq1
,...,freqn);
if PredictedFailure ≤ threshold and
PredictedPower ≤ powermin then

powermin = PredictedPower;
freqmin,1 = freq1;
...;
freqmin,n = freqn;

end
end

end
return freqmin,1 .. freqmin,n;

the Google data center trace to show power reduction and re-
liability improvement when utilizing the DUAL framework.
The second case study analyzes the annual cost of a data
center when failure rate and power cost vary. In both cases,
we use public Google trace to simulate the real data center
operations [21]. The Google trace contains very detailed
statistics of 12,580 machines running millions of tasks over
one month, including the information for our models inputs,
such as the duration of each task, the machine IDs that tasks
are assigned to, and the CPU/disk utilization of each task.
We assume that each machine has the same configuration as
mentioned in Section II-A. We use the average disk times
provided in this trace to represent disk utilizations.

A. Reliability Aware Power Management

In this experiment, we simulate the data center task
allocations and then collect the power consumptions and
failure rates. Here we assume that each server hosts two
VMs. The jobs are assigned to VMs by hashing the job ID
and VM ID. To match the interval in the trace, we use five
minutes as the interval for DVFS sampling and changing.
The power consumptions are normalized with the ondemand
governor with up threshold set to 0.8. The failure rates are
normalized to the baseline that is obtained by setting all
CPUs to the lowest voltage/frequency. Figure 5 shows the
normalized power consumption for the DUAL framework.
While DUAL and ondemand have similar normalized failure
rates, DUAL achieves much better energy efficiency, the
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Figure 5. Power consumption of DUAL, normalized to that of
ondemand policy. The average failure rate of DUAL is slightly
lower than ondemand

maximum power saving is 10% and 5% on average. This
result shows the effectiveness of the proposed DUAL on
reducing power consumptions and maintaining failure rates.

With the capability of stabilizing failure rates, system
administrators can set the controlled failure rates to meet
the reliability requirements in real time, in order to bal-
ance the power consumption and failure rates. We conduct
several experiments to demonstrate such application. Figure
6 shows the power consumption and system reliability
adjusted by algorithms as the actual failure rate changes.
In this experiment, the target failure rate of a data center
is 30 failures per year. The actual failure rate is calculated
by failures/hours. The system reliability is defined by
Mean-Time-Between-Failure (MTBF), which is the inverse
of the failure rate with the unit in hours. In the beginning
(Phase 1), the actual failure rate is 0 indicating that system
reliability is highest. In this case, the tradeoff can be made
by reducing controlled reliability gradually for lower energy
consumption. As the actual failure rate increases (Phase 2),
DUAL is able to increase the controlled system reliability to
avoid potential failures. As the failure rate decreases (Phase
3), DUAL gradually decreases the reliability again for power
saving. These results show that DUAL is able to automati-
cally track and adjust system reliability when observing the
changes in the actual failure rate. Such capability is not
possible with current ondemand policy.

B. Cost Analysis

In this case study, we use the VM power and reliability
models to analyze the annual operation costs of a data
center. For simplification, we define the annual cost to
consist of three components: energy cost, failure cost, and
amortized cost. The first two, the focus of this study, can
be considered the dynamic portion of operational costs that
vary on the amount of energy used and failures encountered.
The amortized cost includes the expenses on personnel and
equipments (e.g., physical infrastructure, network, power
distribution and cooling systems). Formally, the cost func-
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Figure 6. Power consumption and reliability controlled by DUAL
as actual failure rate varies. In Phase 1, the actual failure rate
is 0, and DUAL decreases the controlled reliability deliberately
to reduce the power consumption; in Phase 2, the actual failure
rate increases significantly, and DUAL will increase the controlled
reliability accordingly; and in Phase 3, as the actual failure rate
decreases slowly, DUAL gradually decreases the reliability again
for power saving.

tion can be written as follows:

Cost =

n∑
i=1

(Ti×Costfailure)+Costpower+Costamortized

(10)
where Cost is the total annual cost, n is the total number
of failures, Ti is the duration of the i-th failure in hours,
and Costfailure is the cost per hour for a failure. Note
that the cost of failures depends on many factors and
usually differs from data centers. Costpower is the cost of
power consumption in a year, and Costamortized is the cost
amortized for that period of time.

In this study, we vary the electricity rate from $0.025/kwh,
$0.07/kwh, and $0.25/kwh, labeled as low, medium, and
high rates [22]. The VM power model is used to calculate the
power consumption of over 12,000 machines in the Google
trace. Estimating the cost of a failure is more complicated
and involves the failure rate and recovery cost. The base
error rate is defined as the MTBF of 500 years [23]. Recall
from the previous section, our fault injections reveal that
27.4% of faults result in VM or host crashes. As a result,
seven failures in a year are expected in the data center of
interest. For each failure, the affected system is expected to
recover by rebooting and restoring applications to correct
states. Therefore, the downtimes are relatively short - we
approximate with an exponential distribution with a mean of
30 minutes. This estimation gives the total downtime ranging
from 1 to 170 hours, consistent with the report [24], which
serves as the baseline for the ondemand policy. The number
of failures with the new DUAL framework can be calculated
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Figure 7. Annual operational cost of a data center. Low,
medium and high electricity rates are defined as $0.025/kwh,
$0.07/kwh,$0.25/kwh respectively. Low, medium and high relia-
bility are defined as 80%, 50%, 20% of the baseline failure rate
that is calculated without DVFS.

by multiplying this baseline and the normalized failure ratio
that we obtain from the experiments. Because recovery cost
is estimated at 4% of the overall failure cost [8], we take
the estimated failure cost for Amazon in [24] and calculate
the average recovery cost, $7,200 for each failure.

Figure 7 shows the annual cost of the data center. The
results are shown by different targeted reliability and elec-
tricity rates. Low, medium and high reliability are defined as
80%, 50% and 20% of the baseline failure rate when DVFS
is disabled (highest reliability). For the same electricity rate,
the results are normalized with respect to the one with low
reliability. One can observe some interesting trends in the
figure. If the power cost is high, the failure cost becomes less
important, and can be compensated by power savings. In this
case, the lowest annual cost can be achieved with the lowest
reliability. On the other hand, if the power cost is low, the
reliability cost dominates the overall cost. In this case, the
lower annual cost can be achieved by ensuring the maximum
reliability. However, in the case of medium power cost, the
lowest annual cost can be achieved at medium reliability,
indicating a balance of power saving and system reliability
in the data center. This quantitative analysis suggests that
in order to minimize the operational cost of a data center,
a smart operator should study the historical failure data
and carefully select an optimal power management policy
by taking into consideration both reliability and power
requirements.

IV. RELATED WORK

Power Modeling: Previous work investigated power mod-
els for computer systems [25], [26], [27], but usually in non-
virtualized environments. The work closely related to ours
is [12], which uses CPU/disk/memory utilizations to model
the server power consumption. However, it does not consider
CPU DVFS states, making it less accurate than the proposed
VM model in this paper.



Soft Errors: The impact of DVFS on soft error rate in
processors has been studied, for example, [4] designs a dual
modular redundancy (DMR) technique to stabilize the SER
in multicore processors, but DMR induces hardware and
performance overheads and is not available in commodity
processors. In this paper, we extend an existing analytical
SER model with a new set of fault injection experiments
to estimate the actual failure rate. In this work, we focus
on the soft errors in processors and plan to explore other
components of a computer system in the future. In [28],
fault injection experiments are conducted to understand the
soft error propagation behaviors. In this work, we conduct
fault injections for applications running in virtualized envi-
ronments.

DVFS has been explored for power management in data
centers [29], [30], [10]. However, they rarely consider the
reliability as a constraint. As we point out in Section I, this
may increase the overall operational cost rather than reduc-
ing it. We quantify the relationship between the reliability
and power consumption in our DUAL framework, providing
system administrators with the new capability of optimizing
the overall operational cost.

V. CONCLUSIONS

In this work, we propose the DUAL framework that helps
system administrators optimize both power consumption
and reliability in data centers. In the DUAL framework,
we build a VM power model that explicitly includes the
impact of DVFS algorithms. Experiments show that the new
power model can estimate power consumptions with higher
accuracy. We also propose an adaptive power manager
that minimizes server power consumption while maintaining
high reliability. The evaluations demonstrate how to use
the DUAL framework to quantitatively analyze the tradeoff
between power consumption and reliability, where several
case studies are conducted based on real data center traces.
The results show that DUAL can help data centers to reduce
up to 10% of power consumption, and the optimal cost can
be achieved when considering different energy and failure
costs, as well as various reliability requirements.

In future work, we plan to study more complicated cases
such as more than one VM sharing one core, investigate
new ways to further reduce the overheads and improve
the effectiveness of the DUAL framework, and explore
opportunities to deploy and evaluate DUAL in a production
environment.
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