
{
csci 3|6907

∣∣ Lecture 7
}

Hoeteck Wee · hoeteck@gwu.edu

Announcements

▶ homework: hw4 due after spring break

▶ presentations: Apr 3 (?), 10, 17, 24.

▶ today: probabilistic method & derandomization

part 1 | derandomization

Derandomization

▶ namely, remove the randomness from randomized algorithms.

▶ Eliminate errors, from w.h.p. to always
▶ Theoretical interest: does randomness really help in the design of

algorithms?

▶ two techniques. method of conditional expectations & pairwise
independence.

Finding a Large Cut

▶ theorem: Any graph G with m edges has a cut of size ≥ m
2 .

.
LargeCut Algorithm
..

.

Input: a graph G = ([n],E)

1. Flip n coins r1, r2, . . . , rn, put vertex i in S if ri = 0 and in T otherwise.

2. Output (S,T).

▶ by averaging argument, there exists a choice of r1, r2, . . . , rn that
leads to a cut of size at least m

2 .

▶ find a good sequence of coin tosses “bit by bit”.

LargeCut tree

a
aa

@
@
@

1 2

3

b��������

HHHHHHHH

E[|cut|] = 1

R1 = 0 R1 = 1

b
�

�
�

�

@
@
@
@

R2 = 0 R2 = 1 R2 = 0 R2 = 1

b
�

�
�

�

@
@
@

@

(1) (1)

(0.5) (1.5) (1.5) (0.5)

R3 = 0 R3 = 1

b

J
J
J
J

b

J
J
J
J

b

J
J
J
J

b

J
J
J
J

(0) (1) (1) (2) (2) (1) (1) (0)

question. How to compute labels of the “internal” nodes?

Deterministic LargeCut

▶ definition. Define the conditional expectation

e(r1, r2, . . . , ri) = ER1,...,Rn

[
|cut(S,T)| | R1 = r1,R2 = r2, . . . ,Ri = ri

]
▶ base case. e(λ) = |E|/2.

▶ inductive case. e(λ) = ER1 [e(R1)].

▶ more generally, e(r1, . . . , ri) = ERi+1 [e(r1, . . . , ri,Ri+1)]

i.e. e(r1, . . . , ri) =
1
2 (e(r1, . . . , ri, 0) + e(r1, . . . , ri, 1))

▶ claim. There exists r1, r2, . . . , rn such that
e(λ) ≤ e(r1) ≤ e(r1, r2) ≤ · · · ≤ e(r1, r2, . . . , rn)

▶ q. which is bigger? e(r1, . . . , ri, 0) vs e(r1, . . . , ri, 1)

Deterministic LargeCut

.
Deterministic LargeCut Algorithm I
..

.

1. Set S = ∅,T = ∅

2. For i = 0, . . . , n − 1:

2.1 If |cut({i + 1}, S)| > |cut({i + 1}, S̄)|, set T← T ∪ {i + 1},
2.2 else set S← S ∪ {i + 1}.

▶ remark. This is the “natural” greedy algorithm. Method of
conditional expectations tells us which objective function to
optimize locally.

Derandomization via pairwise independence

▶ analysis, revisited.

E[|cut(S,T)|] =
∑

(i,j)∈E

Pr[Ri ̸= Rj] = |E|/2

▶ observation. suffices that Pr[Ri ̸= Rj] = 1/2 for each i ̸= j; that is,
pairwise independent

▶ e.g., N = 3 vertices, R1,R2 independent, R3 = R1 ⊕ R2

▶ each Ri is an unbiased random bit;
▶ for each i ̸= j, Ri is independent from Rj

▶ question. Can we generate N pairwise independent bits using less
than N truly random bits?

Pairwise independent bits

▶ construction. Let B1, . . . ,Bk be k independent unbiased random
bits. For each nonempty set A ⊆ [k], let RA be the r.v. ⊕i∈ABi.

▶ claim. The 2k − 1 random variables RA are pairwise independent
unbiased random bits.

▶ Clear that each RA is unbiased.
▶ For pairwise independence, consider any A ̸= A′ ⊆ [k]. A’hen,

RA = RA∩A′ ⊕ RA\A′ ; RA′ = RA∩A′ ⊕ RA′\A

▶ RA∩A′ ,RA\A′ ,RA′\A are independent and at least two are non-empty.
▶ Hence, RA,RA′ takes each value in {0, 1}2 with prob. 1/4.

▶ Can generate N pairwise independent bits from ⌈log(N + 1)⌉
independent random bits.

Deterministic LargeCut, II

.
Deterministic LargeCut Algorithm II
..

.

1. For all sequences of bits b1, b2, . . . , b⌈log(n+1)⌉, run the randomized
LargeCut algorithm using coin tosses (rA = ⊕i∈Abi)A ̸=∅ and
choose the largest cut thus obtained.

part 2 | sample and modify

Sample and Modify

▶ stage one. Construct a random structure that does not have the
required properties.

▶ stage two. Modify the structure to have the required property.

▶ application. Obtain bounds on the size of the largest independent
set in a graph (set of vertices with no edges between them).

Existence of large independent sets

▶ theorem: Any graph G with n vertices and m edges has an
independent set with at least n2/4m vertices (provided m ≥ n/2).

▶ construction.

1. Delete each vertex of G (and its incident edges) with prob 1− p.
2. Remove all remaining edges along with one of its adjacent vertices.

▶ claim. Let X and Y be resp. the # of vertices and edges that survive
step 1. Then, construction outputs an I.S. of size at least X − Y.

▶ analysis. E[X] = np and E[Y] = mp2, so E[X − Y] = np − mp2.
maximized at n − 2mp = 0, i.e. p = n/2m and E[X − Y] = n2/m.

the end | next, random walks

