Power of Two Choices \&
 Randomized Load Balancing

Hoeteck Wee

Load Balancing

PROBLEM. assign a sequence of m jobs to n machines so that every machine gets as few jobs as possible.

- job \rightarrow ball; machine \rightarrow bin

TRIVIAL SOLUTION. assign ball i to bin $i(\bmod n)$

- well-spread: every bin gets m / n balls
- requires coordination and maintaining global state

RANDOMIZED SOLUTION. assign each ball to a random bin

- problem? with prob $1 / n^{m}$, all balls are assigned to bin 1 CLAIM. with prob ≥ 0.9, every bin gets $\leq m / n \log m$ balls
- focus on $m=n$ for simplicity

THEOREM. with prob ≥ 0.9, every bin gets $O\left(\frac{\log n}{\log \log n}\right)$ balls

Basic Tools

FACT. (union bound) Let E_{1}, \ldots, E_{n} be events. Then

$$
\operatorname{Pr}\left[E_{1} \vee E_{2} \vee \cdots \vee E_{n}\right] \leq \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]+\cdots+\operatorname{Pr}\left[E_{n}\right]
$$

- E_{1}, \ldots, E_{n} do not have to be independent
- example: 100 devices, each fails 0.01% prob

$$
E_{i} \text { : device } i \text { fails }
$$

$$
E_{1} \vee E_{2} \vee \cdots \vee E_{100} \text { : some device fails }
$$

with prob 99%, no device fails ("union bound over 100 devices")

FACT.: (bounds on binomial coefficients)

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{n e}{k}\right)^{k}
$$

Maximum Load

1. bound $\operatorname{Pr}[$ bin i gets $\geq k$ balls]

$$
\begin{aligned}
\operatorname{Pr} & {[\exists \text { subset of } k \text { balls all of which fall into bin } i] } \\
& \leq \quad\binom{n}{k} \cdot(1 / n)^{k} \quad \text { (union bound over subsets of } k \text { balls) } \\
& \leq \quad(n e / k)^{k} \cdot(1 / n)^{k}=(e / k)^{k} \\
& \leq 1 / n^{2} \quad \text { for } k \geq \frac{3 \ln n}{\ln \ln n}
\end{aligned}
$$

2. union bound over all n bins:

$$
\operatorname{Pr}\left[\text { some bin gets } \geq \frac{3 \ln n}{\ln \ln n} \text { balls] } \leq 1 / n\right.
$$

example: $n=1$ million, maximum load is at most 16 w.h.p.

Power of Two Choices

TWO-CHOICE APPROACH. pick 2 bins at random, and place ball in least loaded bin

THEOREM. maximum load is $O(\log \log n)$ with prob ≥ 0.9

- arbitrary tie breaking
- sampling with replacement
- start by considering $n / 8$ balls and n bins

Analysis (step one)

- STEP ONE: a graph representation
- n vertices (one for each bin)
- $n / 8$ edges: for each ball, connect the two random bins with an edge
- ignore ordering of the balls/edges for now
- Q: what is the maximum load for a star graph? ternary tree of depth 2?
- CLAIM 1: w.p. $1-O(1 / n)$, every connected component in the graph has size $O(\log n)$
- CLAIM 2: w.p. $1-O(1 / n)$, the average degree in every induced subgraph is at most 6 .

Analysis (step one)

- CLAIM 1: w.p. $1-O(1 / n)$, every connected component in the graph has size $O(\log n)$
- PROOF
connected component of size $\geq k$ means
\exists a subset of k vertices with $\geq k-1$ internal edges

$$
\begin{aligned}
& \sum_{|S|=k,|E|=k-1} \operatorname{Pr}[E \text { is a set of } k-1 \text { edges with both end-points in } S] \\
& \leq \quad \sum_{|S|=k,|E|=k-1}\left((k / n)^{2}\right)^{k-1} \\
&= \frac{n^{2}}{k^{2}}\binom{n}{k}\binom{n / 8}{k-1}\left(\frac{k}{n}\right)^{2 k} \leq \frac{n^{2}}{k^{2}}\left(\frac{n e}{k}\right)^{k}\left(\frac{n e}{8 k}\right)^{k}\left(\frac{k}{n}\right)^{2 k} \leq n^{2}\left(\frac{e^{2}}{8}\right)^{k}
\end{aligned}
$$

- ALTERNATIVE PROOF...\exists a path of length k

Analysis (step one)

- CLAIM 2: w.p. $1-O(1 / n)$, the average degree in every induced subgraph is at most 6.
- PROOF

The complement is, \exists a subset of k vertices with $>3 k$ internal edges.

$$
\begin{aligned}
& \sum_{k=1}^{n} \sum_{|S|=k,|E|=3 k} \operatorname{Pr}[E \text { is a set of } 3 k \text { edges with both end-points in } S] \\
\leq & \sum_{k=1}^{n}\binom{n}{k}\binom{n / 8}{3 k}\left(\frac{k}{n}\right)^{2 \cdot 3 k} \leq \sum_{k=1}^{n}\left(\frac{n e}{k}\right)^{k}\left(\frac{n e}{24 k}\right)^{3 k}\left(\frac{k}{n}\right)^{6 k}=\sum_{k=1}^{n}\left(\frac{e^{3}}{24} \cdot \frac{k^{2}}{n^{2}}\right)^{k} \\
\leq & \sum_{k=1}^{4 \log n} \frac{16 \log ^{2} n}{n^{2}}+\sum_{k=4 \log n}^{n} \frac{1}{n^{2}}=O(1 / n)
\end{aligned}
$$

Analysis (step one)

- STEP ONE: a graph representation
- n vertices (one for each bin)
- $n / 8$ edges: for each ball, connect the two random bins with an edge
- CLAIM 1: every connected component has size $O(\log n)$
- CLAIM 2: the average degree in every induced subgraph is at most 6 .
- NEXT, iterative vertex removal

Analysis (step two)

- STEP TWO: iterative vertex removal
- at each iteraction, remove all vertices (\& incident edges) with deg ≤ 12
- obsERVATION 1: remove at least $1 / 2$ the vertices in each iteration.
- CLAIM 2 says average deg is ≤ 6, so less than $1 / 2$ have deg >12.
- OBSERVATION 2: terminates in $\log \log n+O(1)$ iterations.
- CLAIM 1 says initially, every connected component has size $O(\log n)$
- apply previous observation to each connected component.
- CLAIM 3: The load of a bin (vertex) removed in iteration i is $\leq 13 i$.
- implies maximum load is $13 \log \log n+O(1)$ w.h.p.
- will refer to ordering of the balls/edges

Analysis (step two)

\checkmark CLAIM 3: The load of a bin (vertex) removed in iteration i is $\leq 13 i$.

- PROOF by induction.
- Base case: trivially follows from deg bound.
- Analyze load of bin v (vertex) removed in iteration $i+1$, 3 types of incident edges:
I. ball does not land in v
II. deleted in iterations $1, \ldots, i \longleftarrow$ any number of such edges
III. deleted in iteration $i+1 \longleftarrow$ at most 12 of these
- Exploit ordering: examine loads right after the last type II edge (v, w).
- w is deleted in iteration $\leq i$, so bin w has load at most $13 i$.
- Ball lands in bin v means bin v now has load $\leq 13 i+1$.
- At most 12 type iII edges after that

From $n / 8$ balls to n balls

- CLAIM: Suppose when tossing $n / 8$ balls into n bins, the max load is L w.p. at least $1-\delta$. Then, when tossing n balls into n bins, the max load is $8 L$ w.p. at least $1-8 \delta$.
- PROOF:
- View tossing n balls as running 8 phases of tossing $n / 8$ balls
- By a union bound, prob. that max load exceeds L in any of the 8 phases is at most 8δ.
randomization can be useful!

终

