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Announcements

▶ Homework 3 is out, due next Wed

feel free to discuss in groups

homework must be written up individually

▶ There is class on Mar 6 (schedule is not up-to-date)

▶ today: random graphs & probabilistic method



part 1 | random graphs



Random Graphs

▶ Random graph model Gn,p
▶ Distribution over undirected graphs on n vertices
▶ Every edge occurs with probability p
▶ Graph with given set of m edges has probability

pm(1− p)(
n
2)−m

▶ Basic properties
▶ Expected number of edges is p

(n
2

)
▶ Each vertex has expected degree p(n− 1)



Threshold behavior for triangles

▶ today: show that for random graph model Gn,p:

Pr[G contains a triangle] n→∞−→

1 if p = ω( 1n )

0 if p = o( 1n )

▶ If p grows faster than 1
n , almost every graph contains a triangle

▶ If p grows slower than 1
n , almost no graph contains a triangle

▶ threshold behavior: holds for many properties, e.g. “is
connected”, “contains a clique of size 4”, with different “ 1

n ”

▶ “step” zero: X be r.v. for # of triangles in a random graph in Gn,p.

G contains a triangle ⇔ X ≥ 1



Threshold behavior for triangles

▶ goal: show that for random graph model Gn,p:

Pr[X ≥ 1]
n→∞−→

1 if p = ω( 1n )

0 if p = o( 1n )

▶ claim 1: Pr[X ≥ 1] ≤ o(1) if p = o( 1n )
idea: by Markov’s, Pr[X ≥ 1] ≤ E[X].

▶ claim 2: Pr[X ≤ 0] ≤ o(1) if p = ω( 1n )

idea: use Chebyshev’s to argue that Pr[|X− E[X]| ≥ E[X]] = o(1)



Triangles in expectation

▶ computing E[X]: X =
∑

SXS, S ranges over subsets of 3 vertices

XS =

1 if S corresponds to a triangle in G

0 otherwise

▶ E[XS] = p3 and E[X] =
(n
3

)
p3

E[X] =


ω(1) if p = ω( 1n )

Θ(1) if p = Θ( 1n )

o(1) if p = o( 1n )

▶ thus: Pr[X ≥ 1] ≤ E[X] = o(1) if p = o( 1n )

▶ question. Are {XS} independent?



Computing variance

▶ fact: Var
[∑

SXS
]
=

∑
S Var[XS] +

∑
S ̸=T Cov[XS,XT]

▶ Var[XS] = p3(1− p3)

▶ Cov[XS,XT] = E[XSXT]− E[XS]E[XT] = Pr[XSXT = 1]− (p3)2.
▶ Case 1: |S ∩ T| ≤ 1:

Pr[XSXT = 1] = p6 ⇒ Cov[XS,XT] = 0

▶ Case 2: |S ∩ T| = 2:
Pr[XSXT = 1] = p5 ⇒ Cov[XS,XT] = p5 − p6

▶ # pairs (S,T) fall into Case 2?
(n
2

)
(n− 2)(n− 3)

▶ Var[X] =
(n
3

)
p3(1−p3)+

(n
2

)
(n−2)(n−3)(p5−p6) ≤ Θ(n3p3+n4p5)



Completing the analysis

▶ claim 2: Pr[X ≤ 0] ≤ o(1) if p = ω( 1n )

▶ by Chebyshev’s, Pr[X ≤ 0] ≤ Pr[|X− E[X]| ≥ E[X]] ≤ Var[X]
(E[X])2 .

Var[X] ≤ Θ(n3p3 + n4p5) and E[X] = Θ(n3p3)

▶ Var[X]
(E[X])2 ≤ Θ

(
n3p3+n4p5
(n3p3)2

)
= Θ

(
1

n3p3 + p
n2p2

)
= o(1) if p = ω( 1n )



part 2 | probabilistic method



Basic counting argument

▶ fact. If Prx∈U [x has property P] > 0, then ∃ x ∈ U with property P.

▶ theorem: If
(n
k
)
2−(

k
2)+1 < 1, then it is possible to color the edges of

Kn with two colors so that it has no monochromatic Kk subgraph.
▶ can set k ≈ 2 log n, e.g. exists a 2-coloring of the edges of K1000 with

no monochromatic K20.
▶ here, U = all 2-colorings of the edges of Kn and

P = contains no monochromatic Kk subgraph
▶ will show Prx∈U [x contains a monochromatic Kk subgraph] < 1



Avoiding monochromatic subgraphs

▶ claim: If
(n
k
)
2−(

k
2)+1 < 1 and U = all 2-colorings of the edges of Kn,

then Prx∈U [x contains a monochromatic Kk subgraph] < 1.

▶ step one: fix a Kk subgraph corresponding to a subset S of
k vertices.

▶ Picking random x ∈ U ≡ coloring each edge independently at random.
▶ Prx∈U [edges of S form a monochromatic Kk subgraph in x] = 21−(

k
2)

▶ step two: take a union bound.
▶ Prx∈U [x contains a monochromatic Kk subgraph] ≤

(n
k

)
· 21−(

k
2) < 1



Averaging argument

▶ informally: “not everyone is better than average”

▶ example: can show
Ex∈U [# of monochromatic Kk subgraphs in x] < 1.

▶ theorem: Any graph G with m edges has a cut of size ≥ m
2 .

i.e. can disconnect the graph by removing m
2 edges

▶ U = all 2n possible (vertex) partitions/cuts
▶ Claim: Ex∈U [size of the cut x in G] = m

2
.

▶ Picking random x ∈ U ≡ picking each vertex on a random side of the
cut



the end | next, power of two choices


