$\left\{ \operatorname{csci} 3|6907 \mid \operatorname{Lecture} 4 \right\}$

Hoeteck Wee · hoeteck@gwu.edu

▶ Homework 2 is out, due next Wed

feel free to discuss in groups

homework must be written up individually

PART I tail bounds

Tail bounds, III

Chernoff Bounds

Let X_1, \ldots, X_n be *independent* r.v.'s assuming values in $\{0, 1\}$. Let $X = X_1 + X_2 + \cdots + X_n$ and $\mu = \mathbb{E}[X]$. Then,

I. For all $0 < \delta < 1$,

$$\Pr[|X - \mu| \ge \delta\mu] \le 2e^{-\mu\delta^2/3}$$

• **PROOF IDEA.** apply Markov's to non-negative r.v. e^{tX} .

$$\mathbf{E}[e^{tX}] = \prod_{i=1}^{n} \mathbf{E}[e^{tX_i}]$$

• EXAMPLE. toss *n* fair coins...

Chernoff Bounds

Let X_1, \ldots, X_n be *independent* r.v.'s assuming values in $\{0, 1\}$. Let $X = X_1 + X_2 + \cdots + X_n$ and $\mu = E[X]$. Then,

I. For all $0 < \delta < 1$,

$$\Pr[|X - \mu| \ge \delta\mu] \le 2e^{-\mu\delta^2/3}$$

2. For all $0 < \delta < 1$,

$$\Pr[X \le (1-\delta)\mu] \le e^{-\mu\delta^2/2}$$

3. For all $\delta > 0$, $\Pr[X \ge (1+\delta)\mu] \le e^{-\frac{\mu\delta^2}{2+\delta}}$

- ▶ GENERALITY: Markov's ≫ Chebyshev's ≫ Chernoff (non-negative · bounded variance · independence)

PART 2 | birthday paradox & balls-and-bins

QUESTION. What is the probability that amongst 30 people in a room, two share the same birthday? MODEL. Everyone's birthday is independently and uniformly chosen at random amongst 365 days.

ANALYSIS. Pr[all birthdays are distinct] is $(1 - \frac{1}{365}) \cdot (1 - \frac{2}{365}) \cdot (1 - \frac{3}{365}) \cdots (1 - \frac{29}{365}) \approx 0.2937$ MORE GENERALLY... For *m* people and *n* "birthdays", it's

$$(1 - \frac{1}{n}) \cdot (1 - \frac{2}{n}) \cdot (1 - \frac{3}{n}) \cdots (1 - \frac{m-1}{n})$$

$$\approx \prod_{j=1}^{m-1} e^{-j/n} = e^{-m(m-1)/2n} \approx e^{-m^2/2n}$$

 \Rightarrow constant prob of "collision" whenever $m \gtrsim \sqrt{2n \ln 2}$

Chernoff Bound

For any events E_1, E_2 not necessarily independent,

 $\Pr[E_1 \cup E_2] \le \Pr[E_1] + \Pr[E_2]$

- EXAMPLE. two types of errors: first w.p. ≤ 0.1 , second w.p. ≤ 0.2 .
- QUESTION. $Pr[no \ errors] \ge ...$?
- GENERALIZATION.

 $\Pr[E_1 \cup E_2 \cup E_3 \cdots] \leq \Pr[E_1] + \Pr[E_2] + \Pr[E_3] + \cdots$

- *m* balls thrown into *n* bins
 - location of each ball independent and random
- ► Example: job scheduling
 - balls = tasks, bins = processors
- Quantities of interest
 - average load = expected number of balls in each bin
 - maximum load = number of balls in fullest bin
 - number of empty bins (= number of idle processors)
- L_i be r.v. for # balls in Bin i

►
$$L_i \sim B(m, \frac{1}{n})$$
, so $E[L_i] = \frac{m}{n}$, $Var[L_i] = \frac{m}{n}(1 - \frac{1}{n})$

Chernoff Bound

Let X_1, \ldots, X_n be *independent* $\{0, 1\}$ -r.v.'s. Let $X = X_1 + \cdots + X_n$ and $\mu = \mathbb{E}[X]$. Then, for all $\delta > 0$, $\Pr[X \ge (1 + \delta)\mu] \le e^{-\frac{\mu\delta^2}{2+\delta}}$

- Application. bounding $\Pr[L_i \ge 2 \ln n + 1]$ for m = n
 - ► set $\mu = 1, \delta = 2 \ln n$, so $\frac{\mu \delta^2}{2+\delta} \ge 2 \ln n$ $\Rightarrow \Pr[L_i \ge 2 \ln n + 1] \le e^{-2 \ln n} = \frac{1}{n^2}$
 - By union bound, $\Pr[\bigvee_{i=1}^n (L_i \ge 2 \ln n + 1)] \le \frac{1}{n}$
 - Hence, $\Pr[\text{maximum load} \le 2 \ln n + 1] \ge 1 \frac{1}{n}$.
 - e.g. n = 1 million, max load is at most 30 w.h.p.

BETTER ANALYSIS.

$$\begin{aligned} \Pr[L_i \ge k] &= \Pr[\exists \text{ subset of } k \text{ balls all of which fall into bin } i] \\ &\leq \binom{n}{k} \cdot (1/n)^k \\ &\leq (ne/k)^k \cdot (1/n)^k = (e/k)^k \\ &\leq 1/n^2 \quad \text{ for } k \ge \frac{3\ln n}{\ln \ln n} \end{aligned}$$

BETTER BOUND.

- obtain a bound of $O(\frac{\log n}{\log \log n})$ instead of $O(\log n)$ for the maximum load.
- e.g. n = 1 million, max load is at most 16 w.h.p.

Empty Bins

- Let X be random variable for # empty bins.
- Let X_i be r.v. indicating whether Bin *i* is empty.

▶
$$\Pr[X_i = 1] = (1 - \frac{1}{n})^m$$
 and $\mathbb{E}[X] = n(1 - \frac{1}{n})^m$.

▶ NOTE. X_i and X_j are *not* independent, e.g. $\Pr[X_i = 1 \land X_j = 1] = (1 - \frac{2}{n})^m \neq \Pr[X_i = 1] \cdot \Pr[X_j = 1]$

Empty Bins: Variance

- Recall $\operatorname{Var}[X] = \operatorname{E}[X^2] \operatorname{E}[X]^2$
 - ► $E[X^2] = E[(X_1 + \dots + X_n)^2] = \sum_{i=1}^n E[X_i^2] + \sum_{i \neq j} E[X_i X_j]$
 - If $X_i \in \{0, 1\}$, then $E[X_i^2] = E[X_i]$
- Computing $E[X_iX_j]$
 - $E[X_iX_j] = Pr[X_iX_j = 1] = Pr[X_i = 1 \land X_j = 1] = (1 \frac{2}{n})^m$
- ► Computing Var[X]
 - $E[X^2] = n(1 \frac{1}{n})^m + n(n-1)(1 \frac{2}{n})^m$
 - ► Var[X] = $n(1 \frac{1}{n})^m + n(n-1)(1 \frac{2}{n})^m n^2(1 \frac{1}{n})^{2m}$

PART 4 | random graphs

Random Graphs

- ▶ Random graph model $G_{n,p}$
 - Distribution over undirected graphs on *n* vertices
 - Every edge occurs with probability *p*
 - Graph with given set of *m* edges has probability

$$p^m(1-p)^{\binom{n}{2}-m}$$

- Basic properties
 - Expected number of edges is pⁿ₂
 - Each vertex has expected degree p(n-1)

Threshold behavior for triangles

▶ NEXT WEEK: show that for random graph model $G_{n,p}$:

$$\Pr[G \text{ contains a triangle}] \xrightarrow{n \to \infty} \begin{cases} 1 & \text{if } p = \omega(\frac{1}{n}) \\ 0 & \text{if } p = o(\frac{1}{n}) \end{cases}$$

- If p grows faster than $\frac{1}{n}$, almost every graph contains a triangle
- If p grows slower than $\frac{1}{n}$, almost no graph contains a triangle
- THRESHOLD BEHAVIOR: holds for many properties, e.g. "is connected", "contains a clique of size 4", with difference choices of "1" n"