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Announcements

▶ Homework 2 is out, due next Wed

feel free to discuss in groups

homework must be written up individually



part 1 | tail bounds



Tail bounds, III

.
Chernoff Bounds..

.

Let X1, . . . ,Xn be independent r.v.’s assuming values in {0, 1}. Let
X = X1 +X2 + · · ·+Xn and µ = E[X]. Then,

1. For all 0 < δ < 1,

Pr[|X− µ| ≥ δµ] ≤ 2e−µδ2/3

▶ proof idea. apply Markov’s to non-negative r.v. etX.

E[etX] =
n∏

i=1

E[etXi ]

▶ example. toss n fair coins...



.
Chernoff Bounds..

.

Let X1, . . . ,Xn be independent r.v.’s assuming values in {0, 1}. Let
X = X1 +X2 + · · ·+Xn and µ = E[X]. Then,

1. For all 0 < δ < 1,

Pr[|X− µ| ≥ δµ] ≤ 2e−µδ2/3

2. For all 0 < δ < 1,

Pr[X ≤ (1− δ)µ] ≤ e−µδ2/2

3. For all δ > 0,
Pr[X ≥ (1 + δ)µ] ≤ e−

µδ2

2+δ



Comparison of tail bounds

▶ generality: Markov’s ≫ Chebyshev’s ≫ Chernoff
(non-negative · bounded variance · independence)

▶ “error”: Markov’s ≪ Chebyshev’s ≪ Chernoff
(constant · 1/poly · exponential)

▶ “deviation”: Markov’s ≪ Chebyshev’s = Chernoff
(one-sided · two-sided · two-sided)



part 2 | birthday paradox & balls-and-bins



Birthday “Paradox”

question. What is the probability that amongst
30 people in a room, two share the same birthday?

model. Everyone’s birthday is independently and
uniformly chosen at random amongst 365 days.

analysis. Pr[all birthdays are distinct] is
(1− 1

365 ) · (1−
2

365 ) · (1−
3

365 ) · · · (1−
29
365 ) ≈ 0.2937

more generally... For m people and n “birthdays”, it’s

(1− 1
n ) · (1−

2
n ) · (1−

3
n ) · · · (1−

m−1
n )

≈
∏m−1

j=1
e−j/n = e−m(m−1)/2n ≈ e−m2/2n

⇒ constant prob of “collision” whenever m ≳
√
2n ln 2



Interlude: Union Bound

.
Chernoff Bound..

.

For any events E1,E2 not necessarily independent,

Pr[E1 ∪ E2] ≤ Pr[E1] + Pr[E2]

▶ example. two types of errors: first w.p. ≤ 0.1, second w.p. ≤ 0.2.

▶ question. Pr[no errors] ≥ ... ?

▶ generalization.
Pr[E1 ∪ E2 ∪ E3 · · · ] ≤ Pr[E1] + Pr[E2] + Pr[E3] + · · ·



Balls-and-Bins Model

▶ m balls thrown into n bins
▶ location of each ball independent and random

▶ Example: job scheduling
▶ balls = tasks, bins = processors

▶ Quantities of interest
▶ average load = expected number of balls in each bin
▶ maximum load = number of balls in fullest bin
▶ number of empty bins (= number of idle processors)

▶ Li be r.v. for # balls in Bin i
▶ Li ∼ B(m, 1

n ), so E[Li] =
m
n ,Var[Li] =

m
n (1−

1
n )



Average/Maximum Load

.
Chernoff Bound..

.

Let X1, . . . ,Xn be independent {0, 1}-r.v.’s. Let X = X1 + · · ·+ Xn and µ = E[X].

Then, for all δ > 0, Pr[X ≥ (1 + δ)µ] ≤ e−
µδ2

2+δ

▶ application. bounding Pr[Li ≥ 2 ln n+ 1] for m = n
▶ set µ = 1, δ = 2 ln n, so µδ2

2+δ
≥ 2 ln n

⇒ Pr[Li ≥ 2 ln n+ 1] ≤ e−2 ln n = 1
n2

▶ By union bound, Pr[
∨n

i=1(Li ≥ 2 ln n+ 1)] ≤ 1
n

▶ Hence, Pr[maximum load ≤ 2 ln n+ 1] ≥ 1− 1
n .

▶ e.g. n = 1 million, max load is at most 30 w.h.p.



Maximum Load for m = n

▶ better analysis.

Pr[Li ≥ k] = Pr[∃ subset of k balls all of which fall into bin i]

≤

(
n
k

)
· (1/n)k

≤ (ne/k)k · (1/n)k = (e/k)k

≤ 1/n2 for k ≥ 3 ln n
ln ln n

▶ better bound.
▶ obtain a bound of O( log n

log log n ) instead of O(log n) for the maximum load.
▶ e.g. n = 1 million, max load is at most 16 w.h.p.



Empty Bins

▶ Let X be random variable for # empty bins.

▶ Let Xi be r.v. indicating whether Bin i is empty.

▶ Pr[Xi = 1] = (1− 1
n )

m and E[X] = n(1− 1
n )

m.

▶ note. Xi and Xj are not independent, e.g.
Pr[Xi = 1 ∧Xj = 1] = (1− 2

n )
m ̸= Pr[Xi = 1] · Pr[Xj = 1]



Empty Bins: Variance

▶ Recall Var[X] = E[X2]− E[X]2

▶ E[X2] = E[(X1 + · · ·+ Xn)
2] =

∑n
i=1 E[X2

i ] +
∑

i ̸=j E[XiXj]

▶ If Xi ∈ {0, 1}, then E[X2
i ] = E[Xi]

▶ Computing E[XiXj]

▶ E[XiXj] = Pr[XiXj = 1] = Pr[Xi = 1 ∧ Xj = 1] = (1− 2
n )

m

▶ Computing Var[X]
▶ E[X2] = n(1− 1

n )
m + n(n− 1)(1− 2

n )
m

▶ Var[X] = n(1− 1
n )

m + n(n− 1)(1− 2
n )

m − n2(1− 1
n )

2m



part 4 | random graphs



Random Graphs

▶ Random graph model Gn,p

▶ Distribution over undirected graphs on n vertices
▶ Every edge occurs with probability p
▶ Graph with given set of m edges has probability

pm(1− p)(
n
2)−m

▶ Basic properties
▶ Expected number of edges is p

(n
2

)
▶ Each vertex has expected degree p(n− 1)



Threshold behavior for triangles

▶ next week: show that for random graph model Gn,p:

Pr[G contains a triangle] n→∞−→

1 if p = ω( 1n )

0 if p = o( 1n )

▶ If p grows faster than 1
n , almost every graph contains a triangle

▶ If p grows slower than 1
n , almost no graph contains a triangle

▶ threshold behavior: holds for many properties, e.g. “is
connected”, “contains a clique of size 4”, with difference choices of
“ 1
n ”


