$\{$ csci $316907 \mid$ Lecture 4$\}$

Hoeteck Wee • hoeteck@gwu.edu

Announcements

- Homework 2 is out, due next Wed feel free to discuss in groups
homework must be written up individually

PART I	tail bounds

Tail bounds, III

Chernoff Bounds

Let X_{1}, \ldots, X_{n} be independent r.v.'s assuming values in $\{0,1\}$. Let $X=X_{1}+X_{2}+\cdots+X_{n}$ and $\mu=\mathrm{E}[X]$. Then,
I. For all $0<\delta<1$,

$$
\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 e^{-\mu \delta^{2} / 3}
$$

- proof idea. apply Markov's to non-negative r.v. $e^{t X}$.

$$
\mathrm{E}\left[e^{t X}\right]=\prod_{i=1}^{n} \mathrm{E}\left[e^{t X_{i}}\right]
$$

- EXAMPLE. toss n fair coins...

Chernoff Bounds

Let X_{1}, \ldots, X_{n} be independent r.v.'s assuming values in $\{0,1\}$. Let $X=X_{1}+X_{2}+\cdots+X_{n}$ and $\mu=\mathrm{E}[X]$. Then,
I. For all $0<\delta<1$,

$$
\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 e^{-\mu \delta^{2} / 3}
$$

2. For all $0<\delta<1$,

$$
\operatorname{Pr}[X \leq(1-\delta) \mu] \leq e^{-\mu \delta^{2} / 2}
$$

3. For all $\delta>0$,

$$
\operatorname{Pr}[X \geq(1+\delta) \mu] \leq e^{-\frac{\mu \delta^{2}}{2+\delta}}
$$

Comparison of tail bounds

- Generality: Markov's \gg Chebyshev's \gg Chernoff (non-negative \cdot bounded variance \cdot independence)
- "Error": Markov's \ll Chebyshev's \ll Chernoff (constant $\cdot 1 /$ poly \cdot exponential)
- "deviation": Markov’s \ll Chebyshev's = Chernoff (one-sided \cdot two-sided \cdot two-sided)

PART 2	birthday paradox \& balls-and-bins

Birthday "Paradox"

Question. What is the probability that amongst 30 people in a room, two share the same birthday? model. Everyone's birthday is independently and uniformly chosen at random amongst 365 days.
analysis. $\operatorname{Pr}[$ all birthdays are distinct] is

$$
\left(1-\frac{1}{365}\right) \cdot\left(1-\frac{2}{365}\right) \cdot\left(1-\frac{3}{365}\right) \cdots\left(1-\frac{29}{365}\right) \approx 0.2937
$$

more generally... For m people and n "birthdays", it's

$$
\begin{aligned}
& \left(1-\frac{1}{n}\right) \cdot\left(1-\frac{2}{n}\right) \cdot\left(1-\frac{3}{n}\right) \cdots\left(1-\frac{m-1}{n}\right) \\
\approx & \prod_{j=1}^{m-1} e^{-j / n}=e^{-m(m-1) / 2 n} \approx e^{-m^{2} / 2 n}
\end{aligned}
$$

\Rightarrow constant prob of "collision" whenever $m \gtrsim \sqrt{2 n \ln 2}$

Interlude: Union Bound

Chernoff Bound

For any events E_{1}, E_{2} not necessarily independent,

$$
\operatorname{Pr}\left[E_{1} \cup E_{2}\right] \leq \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]
$$

- example. two types of errors: first w.p. ≤ 0.1, second w.p. ≤ 0.2.
- Question. $\operatorname{Pr}[$ no errors $] \geq$... ?
- Generalization.

$$
\operatorname{Pr}\left[E_{1} \cup E_{2} \cup E_{3} \cdots\right] \leq \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]+\operatorname{Pr}\left[E_{3}\right]+\cdots
$$

Balls-and-Bins Model

- m balls thrown into n bins
- location of each ball independent and random
- Example: job scheduling
- balls = tasks, bins = processors
- Quantities of interest
- average load = expected number of balls in each bin
- maximum load = number of balls in fullest bin
- number of empty bins (= number of idle processors)
- L_{i} be r.v. for \# balls in Bin i
- $L_{i} \sim B\left(m, \frac{1}{n}\right)$, so $\mathrm{E}\left[L_{i}\right]=\frac{m}{n}, \operatorname{Var}\left[L_{i}\right]=\frac{m}{n}\left(1-\frac{1}{n}\right)$

Average/Maximum Load

Chernoff Bound

Let X_{1}, \ldots, X_{n} be independent $\{0,1\}$-r.v.'s. Let $X=X_{1}+\cdots+X_{n}$ and $\mu=\mathrm{E}[X]$. Then, for all $\delta>0, \operatorname{Pr}[X \geq(1+\delta) \mu] \leq e^{-\frac{\mu \delta^{2}}{2+\delta}}$

- APPLICATION. bounding $\operatorname{Pr}\left[L_{i} \geq 2 \ln n+1\right]$ for $m=n$
- set $\mu=1, \delta=2 \ln n$, so $\frac{\mu \delta^{2}}{2+\delta} \geq 2 \ln n$

$$
\Rightarrow \operatorname{Pr}\left[L_{i} \geq 2 \ln n+1\right] \leq e^{-2 \ln n}=\frac{1}{n^{2}}
$$

- By union bound, $\operatorname{Pr}\left[\bigvee_{i=1}^{n}\left(L_{i} \geq 2 \ln n+1\right)\right] \leq \frac{1}{n}$
- Hence, $\operatorname{Pr}[$ maximum load $\leq 2 \ln n+1] \geq 1-\frac{1}{n}$.
- e.g. $n=1$ million, max load is at most 30 w.h.p.

Maximum Load for $m=n$

- BETTER ANALYSIS.

$$
\begin{aligned}
\operatorname{Pr}\left[L_{i} \geq k\right] & =\operatorname{Pr}[\exists \text { subset of } k \text { balls all of which fall into bin } i] \\
& \leq\binom{ n}{k} \cdot(1 / n)^{k} \\
& \leq(n e / k)^{k} \cdot(1 / n)^{k}=(e / k)^{k} \\
& \leq 1 / n^{2} \quad \text { for } k \geq \frac{3 \ln n}{\ln \ln n}
\end{aligned}
$$

- BETTER BOUND.
- obtain a bound of $O\left(\frac{\log n}{\log \log n}\right)$ instead of $O(\log n)$ for the maximum load.
- e.g. $n=1$ million, max load is at most 16 w.h.p.

Empty Bins

- Let X be random variable for \# empty bins.
- Let X_{i} be r.v. indicating whether $\operatorname{Bin} i$ is empty.
- $\operatorname{Pr}\left[X_{i}=1\right]=\left(1-\frac{1}{n}\right)^{m}$ and $\mathrm{E}[X]=n\left(1-\frac{1}{n}\right)^{m}$.
- note. X_{i} and X_{j} are not independent, e.g.

$$
\operatorname{Pr}\left[X_{i}=1 \wedge X_{j}=1\right]=\left(1-\frac{2}{n}\right)^{m} \neq \operatorname{Pr}\left[X_{i}=1\right] \cdot \operatorname{Pr}\left[X_{j}=1\right]
$$

Empty Bins: Variance

- Recall $\operatorname{Var}[X]=\mathrm{E}\left[X^{2}\right]-\mathrm{E}[X]^{2}$
- $\mathrm{E}\left[X^{2}\right]=\mathrm{E}\left[\left(X_{1}+\cdots+X_{n}\right)^{2}\right]=\sum_{i=1}^{n} \mathrm{E}\left[X_{i}^{2}\right]+\sum_{i \neq j} \mathrm{E}\left[X_{i} X_{j}\right]$
- If $X_{i} \in\{0,1\}$, then $\mathrm{E}\left[X_{i}^{2}\right]=\mathrm{E}\left[X_{i}\right]$
- Computing E $\left[X_{i} X_{j}\right]$
- $\mathrm{E}\left[X_{i} X_{j}\right]=\operatorname{Pr}\left[X_{i} X_{j}=1\right]=\operatorname{Pr}\left[X_{i}=1 \wedge X_{j}=1\right]=\left(1-\frac{2}{n}\right)^{m}$
- Computing $\operatorname{Var}[X]$
- $\mathrm{E}\left[X^{2}\right]=n\left(1-\frac{1}{n}\right)^{m}+n(n-1)\left(1-\frac{2}{n}\right)^{m}$
- $\operatorname{Var}[X]=n\left(1-\frac{1}{n}\right)^{m}+n(n-1)\left(1-\frac{2}{n}\right)^{m}-n^{2}\left(1-\frac{1}{n}\right)^{2 m}$

$$
\begin{array}{l|l}
\text { PART } 4 & \text { random graphs }
\end{array}
$$

Random Graphs

- Random graph model $\mathcal{G}_{n, p}$
- Distribution over undirected graphs on n vertices
- Every edge occurs with probability p
- Graph with given set of m edges has probability

$$
p^{m}(1-p)^{\binom{n}{2}-m}
$$

- Basic properties
- Expected number of edges is $p\binom{n}{2}$
- Each vertex has expected degree $p(n-1)$

Threshold behavior for triangles

- NEXT WEEK: show that for random graph model $\mathcal{G}_{n, p}$:

$$
\operatorname{Pr}[G \text { contains a triangle }] \xrightarrow{n \rightarrow \infty} \begin{cases}1 & \text { if } p=\omega\left(\frac{1}{n}\right) \\ 0 & \text { if } p=o\left(\frac{1}{n}\right)\end{cases}
$$

- If p grows faster than $\frac{1}{n}$, almost every graph contains a triangle
- If p grows slower than $\frac{1}{n}$, almost no graph contains a triangle
- threshold behavior: holds for many properties, e.g. "is connected", "contains a clique of size 4", with difference choices of " $\frac{1}{n}$ "

