$\{\operatorname{csci} 3|6907|$ Lecture 3$\}$

Hoeteck Wee • hoeteck@gwu.edu

Announcements

- Homework 2 to be out by Fri
- online form on course webpage

PART I	tail bounds

the case against expectation

Question. How early should I arrive at the airport?
statistic. The expected security wait time is 30 mins.

- perhaps... 50% : wait is $5 \mathrm{mins}, 50 \%$: wait is 55 mins
- more meaningful: 99% : wait $\leq 35 \mathrm{mins}$ interpretation: if I arrive at airport 45 mins early, I'll miss one flight in every roo flights I take.

PHILOSOPHY.
" If you've never missed a flight, you're spending too much time in airports. "

TAIL BOUNDS.
"with high prob., a r.v. X assumes values close to $\mathrm{E}[X]$."

Tail bounds, I

Markov's Inequality

Let X be a non-negative r.v. Then, for all $a>0$,

$$
\operatorname{Pr}[X \geq a] \leq \mathrm{E}[X] / a
$$

- example: $\mathrm{E}[$ wait $]=30 \mathrm{mins} \Rightarrow \operatorname{Pr}[$ wait $\geq 5 \mathrm{hrs}] \leq \frac{30}{5.60}=0.1$
- proof:

$$
\begin{aligned}
\mathrm{E}[X] & =\sum_{i=0}^{\infty} i \operatorname{Pr}[X=i] \\
& =\sum_{0 \leq i<a} i \operatorname{Pr}[X=i]+\sum_{i \geq a} i \operatorname{Pr}[X=i] \\
& \geq 0+\sum_{i \geq a} a \operatorname{Pr}[X=i]=a \cdot \operatorname{Pr}[X \geq a]
\end{aligned}
$$

Tail bounds, II

Chebyshev's Inequality
For any $a>0$,

$$
\operatorname{Pr}[|X-\mathrm{E}[X]| \geq a] \leq \operatorname{Var}[X] / a^{2}
$$

- example: suppose $\operatorname{Var}[$ wait $]=5$ mins 2. Then,

$$
\begin{aligned}
& \operatorname{Pr}[\mid \text { wait }-30 \mid \geq 10] \leq \frac{5}{10^{2}}=0.05 \\
\Rightarrow \quad & 95 \%: \text { wait between } 20 \text { and } 40 \mathrm{mins}
\end{aligned}
$$

- proof: apply Markov's to the non-negative r.v. $\Upsilon=(X-\mathrm{E}[X])^{2}$

$$
\operatorname{Pr}\left[\gamma \geq a^{2}\right] \leq \mathrm{E}[Y] / a^{2}=\operatorname{Var}[X] / a^{2}
$$

- corollary: $\operatorname{Pr}[X \geq E[X]+a] \leq \operatorname{Var}[X] / a^{2}$

Example: coin flips

- X: \# heads in a sequence of n independent flips of an unbiased coin.
- $X \sim B\left(n, \frac{1}{2}\right)$, so $\mathrm{E}[X]=\frac{n}{2}$ and $\operatorname{Var}[X]=\frac{n}{4}$.
- By Markov's, $\operatorname{Pr}\left[X \geq \frac{3 n}{4}\right] \leq \frac{2}{3}$
$n=200: 33 \%$ chance \# heads less than 150
- By Chebyshev's, $\operatorname{Pr}\left[\left|X-\frac{n}{2}\right| \geq \frac{n}{4}\right] \leq \frac{n}{4} /\left(\frac{n}{4}\right)^{2}=\frac{4}{n}$. $n=200: 98 \%$ chance \# heads between 50 and 150
- In fact, can replace $\frac{4}{n}$ with $2^{-\Omega(n)}$!
$n=200: 99.95 \%$ chance \# heads between 50 and 150 exploit full independence, c.f. Chernoff bound next week

Comparison of tail bounds

- Generality: Markov's \gg Chebyshev's

$$
\text { (non-negative } \cdot \text { bounded variance) }
$$

- "Error": Markov's < Chebyshev's
(constant $\cdot 1 /$ poly)
- "deviation": Markov’s << Chebyshev's

$$
\text { (one-sided } \cdot \text { two-sided })
$$

PART $2 \mid r$

Median Finding

Median Finding Problem

Input: a set S of n values from some totally ordered universe Goal: output the median element m of S

- What's KNOwn: "easier" than sorting - there is a deterministic linear-time algorithm.
- TODAY: a simple randomized $O(n)$ time algorithm
- WARM-UP: approximate median finding in $O(n)$ time GOAL: output x s.t. $\left|\operatorname{rank}_{S}(x)-n / 2\right| \leq \delta n$

$$
\text { (e.g. } \delta=0.1 \text { or } \delta=\frac{1}{\sqrt{n}} \text {) }
$$

NOTE: allow algorithm to err with small probability

Approximate Median Finding

Approx Median Finding Problem

Input: a set S of n values from some totally ordered universe
Goal: output x in S such that $\left|\operatorname{rank}_{S}(x)-n / 2\right| \leq \delta n$

- idea. pick a small random subset R of S

meatimadi(ian) (iR good $\operatorname{median}(R)$ is good
median (R) is too small
$\operatorname{median}(R)$ is too big

Approximate Median Finding

Approx Median Finding Problem

Input: a set S of n values from some totally ordered universe
Goal: output x in S such that $\left|\operatorname{rank}_{S}(x)-n / 2\right| \leq \delta n$

- idea. pick a small random subset R of S, where $|R| \leq n / \log n$
- hope. with prob ≈ 1, median element in R is good
- question. how to find median element in R ?
- running time. sort in $O(|R| \log |R|)=O(n)$ time

Approximate Median Finding

Approx Median Finding Algorithm

Input: A list S of n distinct values
I. Pick a random subset R in S with replacement where $|R| \leq n / \log n$.
2. Sort R and output median element x in R.
too small $\left(\frac{1}{2}-\delta\right) n \quad$ good \quad too big $\left(\frac{1}{2}-\delta\right) n$

- hope. show $\operatorname{Pr}[x$ is good $]$ is big.
- fact. $\operatorname{Pr}[x$ is good $]+\operatorname{Pr}[x$ is too small $]+\operatorname{Pr}[x$ is too big $]=1$.
- Goal. show $\operatorname{Pr}[x$ is too small $]$ is small.
- let X be r.v. for $\#$ elements in R that are too small
- FACt. x is too small $\Leftrightarrow X \geq|R| / 2$.

Approximate Median Finding

Approx Median Finding Algorithm

Input: A list S of n distinct values
I. Pick a random subset R in S with replacement where $|R| \leq n / \log n$.
2. Sort R and output median element x in R.

$\left(\frac{1}{2}-\delta\right)\|R\|$	\vdots	$\left(\frac{1}{2}-\delta\right)\|R\|$
X	\vdots	

$$
\begin{aligned}
& \operatorname{median}(R) \text { is good } \\
& \qquad \mathrm{E}[X]=
\end{aligned}
$$

- let X be r.v. for \# elements in R that are too small
- FACT. x is too small $\Leftrightarrow X \geq|R| / 2$.

Approximate Median Finding

Approx Median Finding Algorithm

Input: A list S of n distinct values
I. Pick a random subset R in S with replacement where $|R| \leq n / \log n$.
2. Sort R and output median element x in R.

$\left(\frac{1}{2}-\delta\right)\|R\|$	\vdots	$\left(\frac{1}{2}-\delta\right)\|R\|$
X	\vdots	

$$
\begin{aligned}
& \operatorname{median}(R) \text { is good } \\
& \mathrm{E}[X]=\left(\frac{1}{2}-\delta\right)|R|
\end{aligned}
$$

- goal. show $\operatorname{Pr}[X \geq|R| / 2]$ is small.
- $\operatorname{FACT} . ~ X \sim B\left(|R|, \frac{1}{2}-\delta\right)$
- $\mathrm{E}[X]=\left(\frac{1}{2}-\delta\right)|R|$ and $\operatorname{Var}[X] \leq \frac{1}{4}|R|$.
- Chebyshev's $\Rightarrow \operatorname{Pr}[X \geq E[X]+\delta|R|] \leq \operatorname{Var}[X] /(\delta|R|)^{2} \leq 1 /\left(4 \delta^{2}|R|\right)$

Approximate Median Finding

Approx Median Finding Algorithm

Input: A list S of n distinct values
I. Pick a random subset R in S with replacement where $|R| \leq n / \log n$.
2. Sort R and output median element x in R.

THEOREM. $\operatorname{Pr}\left[\left|\operatorname{rank}_{S}(x)-n / 2\right| \leq \delta n\right] \geq 1-1 /\left(2 \delta^{2}|R|\right)$ QUestion. how to choose $|R|$ to achieve correctness prob ≥ 0.9 ? set $1 /\left(2 \delta^{2}|R|\right) \leq 0.1 \Rightarrow|R| \geq 5 / \delta^{2}$

Randomized Median Finding

RandMedian Algorithm

Input: A list S of n distinct values
I. Find ℓ from S such that $\operatorname{rank}_{S}(\ell) \approx n / 2-2 n^{3 / 4}$.
2. Find u from S such that $\operatorname{rank}_{S}(u) \approx n / 2+2 n^{3 / 4}$.
3. By comparing with each value in S, compute

$$
C=\{y \in S \mid \ell \leq y \leq u\} ;
$$

4. Sort C and output $\left(\frac{1}{2} n-\operatorname{rank}_{S}(\ell)+1\right)$ 'th smallest element in C.

- eXAMPLE: $n=10,001, \operatorname{rank}_{s}(\ell)=3101, \operatorname{rank}_{S}(u)=7100$
- sort C where $|C|=4000$, output element in C with rank 1900

Randomized Median Finding

RandMedian Algorithm

Input: A list S of n distinct values
I. Find ℓ from S such that $\operatorname{rank}_{S}(\ell) \approx n / 2-2 n^{3 / 4}$.
2. Find u from S such that $\operatorname{rank}_{S}(u) \approx n / 2+2 n^{3 / 4}$.
3. By comparing with each value in S, compute

$$
C=\{y \in S \mid \ell \leq y \leq u\} ;
$$

4. Sort C and output $\left(\frac{1}{2} n-\operatorname{rank}_{S}(\ell)+1\right)$ 'th smallest element in C.

- $\operatorname{Correctness:~} \operatorname{rank}_{S}($ output $)=\operatorname{rank}_{C}($ output $)+\left(\operatorname{rank}_{S}(\ell)-1\right)$.
- FACT: $|C| \approx 4 n^{3 / 4}$, can sort in $O(n)$ time.
- goal: implement steps $\mathrm{I}, 2$ in $O(n)$ time.

Randomized Median Finding

RandMedian Subroutine

I. Sample ℓ from S such that $\operatorname{rank}_{S}(\ell) / n \in\left[\frac{1}{2}-2 \delta, \frac{1}{2}\right]$;
I.I Pick a random subset R of $n^{3 / 4}$ elements in S with replacement.
1.2 Output the element x in R whose rank is $\left(\frac{1}{2}-\delta\right)|R|$.

