
{
csci 3|6907

∣∣ Lecture 3
}

Hoeteck Wee · hoeteck@gwu.edu

Announcements

▶ Homework 2 to be out by Fri

▶ online form on course webpage

part 1 | tail bounds

the case against expectation

question. How early should I arrive at the airport?

statistic. The expected security wait time is 30 mins.

▶ perhaps... 50% : wait is 5 mins, 50% : wait is 55 mins
▶ more meaningful: 99% : wait ≤ 35 mins

interpretation: if I arrive at airport 45 mins early, I’ll
miss one flight in every 100 flights I take.

philosophy.
“ If you’ve never missed a flight, you’re spending too much
time in airports. ”
tail bounds.
“with high prob., a r.v. X assumes values close to E[X].”

Tail bounds, I

.
Markov’s Inequality
..

.

Let X be a non-negative r.v. Then, for all a > 0,

Pr[X ≥ a] ≤ E[X]/a

▶ example: E[wait] = 30mins =⇒ Pr[wait ≥ 5 hrs] ≤ 30
5·60 = 0.1

▶ proof: E[X] =

∞∑
i=0

iPr[X = i]

=
∑

0≤i<a

iPr[X = i] +
∑
i≥a

iPr[X = i]

≥ 0 +
∑
i≥a

aPr[X = i] = a · Pr[X ≥ a]

Tail bounds, II

.
Chebyshev’s Inequality
..

.
For any a > 0,

Pr
[∣∣X− E[X]

∣∣ ≥ a
]
≤ Var[X]/a2

▶ example: suppose Var[wait] = 5mins2. Then,

Pr[|wait − 30| ≥ 10] ≤ 5

102
= 0.05

=⇒ 95%: wait between 20 and 40 mins

▶ proof: apply Markov’s to the non-negative r.v. Y = (X− E[X])2

Pr[Y ≥ a2] ≤ E[Y]/a2 = Var[X]/a2

▶ corollary: Pr[X ≥ E[X] + a] ≤ Var[X]/a2

Example: coin flips

▶ X : # heads in a sequence of n independent flips of an unbiased coin.

▶ X ∼ B(n, 1
2), so E[X] = n

2 and Var[X] = n
4.

▶ By Markov’s, Pr[X ≥ 3n
4] ≤

2
3

n = 200: 33% chance # heads less than 150

▶ By Chebyshev’s, Pr[|X− n
2 | ≥

n
4] ≤

n
4/(

n
4)

2 = 4
n .

n = 200: 98% chance # heads between 50 and 150

▶ In fact, can replace 4
n with 2−Ω(n)!

n = 200: 99.95% chance # heads between 50 and 150

exploit full independence, c.f. Chernoff bound next week

Comparison of tail bounds

▶ generality: Markov’s ≫ Chebyshev’s
(non-negative · bounded variance)

▶ “error”: Markov’s ≪ Chebyshev’s
(constant · 1/poly)

▶ “deviation”: Markov’s ≪ Chebyshev’s
(one-sided · two-sided)

part 2 | randomized median finding

Median Finding

.
Median Finding Problem..

.

Input: a set S of n values from some totally ordered universe
Goal: output the median element m of S

▶ what’s known: “easier” than sorting – there is a deterministic
linear-time algorithm.

▶ today: a simple randomized O(n) time algorithm

▶ warm-up: approximate median finding in O(n) time

goal: output x s.t. | rankS(x)− n/2| ≤ δn

(e.g. δ = 0.1 or δ = 1√
n)

note: allow algorithm to err with small probability

Approximate Median Finding

.
Approx Median Finding Problem..

.

Input: a set S of n values from some totally ordered universe
Goal: output x in S such that | rankS(x)− n/2| ≤ δn

..
too small (12 − δ)n

.
good

.
too big (12 − δ)n

. S

▶ idea. pick a small random subset R of S

.. (12 − δ)|R|... (12 − δ)|R|. median(R)?. median(R) is good

..... median(R) is good

..... median(R) is too small

..... median(R) is too big

Approximate Median Finding

.
Approx Median Finding Problem..

.

Input: a set S of n values from some totally ordered universe
Goal: output x in S such that | rankS(x)− n/2| ≤ δn

..
too small (12 − δ)n

.
good

.
too big (12 − δ)n

. S

▶ idea. pick a small random subset R of S, where |R| ≤ n/ log n

▶ hope. with prob ≈ 1, median element in R is good

▶ question. how to find median element in R?

▶ running time. sort in O(|R| log |R|) = O(n) time

Approximate Median Finding

.
Approx Median Finding Algorithm
..

.

Input: A list S of n distinct values

1. Pick a random subset R in S with replacement where |R| ≤ n/ log n.

2. Sort R and output median element x in R.

..
too small (12 − δ)n

.
good

.
too big (12 − δ)n

▶ hope. show Pr[x is good] is big.

▶ fact. Pr[x is good] + Pr[x is too small] + Pr[x is too big] = 1.

▶ goal. show Pr[x is too small] is small.

▶ let X be r.v. for # elements in R that are too small

▶ fact. x is too small ⇔ X ≥ |R|/2.

Approximate Median Finding

.
Approx Median Finding Algorithm
..

.

Input: A list S of n distinct values

1. Pick a random subset R in S with replacement where |R| ≤ n/ log n.

2. Sort R and output median element x in R.

.. (12 − δ)|R|... (12 − δ)|R|. median(R) is good

.. X... E[X] =

▶ let X be r.v. for # elements in R that are too small

▶ fact. x is too small ⇔ X ≥ |R|/2.

Approximate Median Finding

.
Approx Median Finding Algorithm
..

.

Input: A list S of n distinct values

1. Pick a random subset R in S with replacement where |R| ≤ n/ log n.

2. Sort R and output median element x in R.

.. (12 − δ)|R|... (12 − δ)|R|. median(R) is good

.. X... E[X] = (12 − δ)|R|

▶ goal. show Pr[X ≥ |R|/2] is small.

▶ fact. X ∼ B(|R|, 1
2 − δ)

▶ E[X] = (12 − δ)|R| and Var[X] ≤ 1
4 |R|.

▶ Chebyshev’s ⇒ Pr[X ≥ E[X] + δ|R|] ≤ Var[X]/(δ|R|)2 ≤ 1/(4δ2|R|)

Approximate Median Finding

.
Approx Median Finding Algorithm
..

.

Input: A list S of n distinct values

1. Pick a random subset R in S with replacement where |R| ≤ n/ log n.

2. Sort R and output median element x in R.

theorem. Pr[| rankS(x)− n/2| ≤ δn] ≥ 1− 1/(2δ2|R|)

question. how to choose |R| to achieve correctness prob ≥ 0.9?

set 1/(2δ2|R|) ≤ 0.1 ⇒ |R| ≥ 5/δ2

Randomized Median Finding

.
RandMedian Algorithm
..

.

Input: A list S of n distinct values

1. Find ℓ from S such that rankS(ℓ) ≈ n/2− 2n3/4.

2. Find u from S such that rankS(u) ≈ n/2 + 2n3/4.

3. By comparing with each value in S, compute
C = {y ∈ S | ℓ ≤ y ≤ u};

4. Sort C and output (12n− rankS(ℓ) + 1)’th smallest element in C.

▶ example: n = 10, 001, rankS(ℓ) = 3101, rankS(u) = 7100

▶ sort C where |C| = 4000, output element in C with rank 1900

Randomized Median Finding

.
RandMedian Algorithm
..

.

Input: A list S of n distinct values

1. Find ℓ from S such that rankS(ℓ) ≈ n/2− 2n3/4.

2. Find u from S such that rankS(u) ≈ n/2 + 2n3/4.

3. By comparing with each value in S, compute
C = {y ∈ S | ℓ ≤ y ≤ u};

4. Sort C and output (12n− rankS(ℓ) + 1)’th smallest element in C.

▶ correctness: rankS(output) = rankC(output) + (rankS(ℓ)− 1).

▶ fact: |C| ≈ 4n3/4, can sort in O(n) time.

▶ goal: implement steps 1, 2 in O(n) time.

Randomized Median Finding

.
RandMedian Subroutine..

.

1. Sample ℓ from S such that rankS(ℓ)/n ∈ [12 − 2δ, 1
2];

1.1 Pick a random subset R of n3/4 elements in S with replacement.
1.2 Output the element x in R whose rank is (1

2
− δ)|R|.

