$\{\operatorname{csci} 3|6907|$ Lecture 2 $\}$

Hoeteck Wee • hoeteck@gwu.edu

Announcements

- Homework I is out, due next Wed
feel free to discuss in groups
homework must be written up individually
- online form on course webpage (complete by Fri)

PART I	two distributions \& coupon-collecting

Random variables

- random experiment is a process that produces some uncertain outcome e.g. throwing a die or tossing coin
- use D to denote outcome of a die roll
D could take values $1,2,3,4,5,6$, all equally likely
- random variable is the outcome of a random experiment e.g. $\operatorname{Pr}[D=5]=1 / 6$ (we call " $D=5$ " an event)

Random variables

- throw a die twice and let D_{0} denote the sum
e.g. first roll 5 , second roll is 2 , then $D_{0}=7$.
- let D_{1} and D_{2} denote first and second die roll respectively
- fact i. random variables D_{1} and D_{2} are independent
- fact 2. $D_{0}=D_{1}+D_{2}$
(useful trick - decomposing a r.v. as sum of r.v.'s)

Expectation

Definition (expectation)

The expectation $\mathrm{E}[X]$ of a discrete random variable X is given by

$$
\sum_{i} i \operatorname{Pr}[X=i]
$$

- $\operatorname{example}$ i: $\mathrm{E}[D]=\frac{1}{6}(1+2+3+4+5+6)=3.5$
- example 2: toss a fair coin twice. Let Υ denote the number of heads.

$$
\operatorname{Pr}[\Upsilon=0]=1 / 4 . \quad \operatorname{Pr}[\Upsilon=1]=1 / 2 . \quad \operatorname{Pr}[\Upsilon=2]=1 / 4
$$

$$
\mathrm{E}[\gamma]=1
$$

- example 3: toss a fair coin ioo times. Let Z denote $\#$ of heads.

Expectation

Fact (linearity of expectations)

Given any finite collection of r.v. X_{1}, \ldots, X_{n}, we have

$$
\mathrm{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathrm{E}\left[X_{i}\right]
$$

- example 3: toss a fair coin ioo times. Let Z denote $\#$ of heads.
- define r.v. X_{i}

$$
X_{i}= \begin{cases}1 & \text { if } i \text { 'th toss comes up heads } \\ 0 & \text { otherwise }\end{cases}
$$

- what is $X_{1}+\cdots+X_{100}$? what is $\mathrm{E}\left[X_{1}\right]$?

Variance

Definition (variance)

The variance $\operatorname{Var}[X]$ of a random variable X is given by

$$
\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2} .
$$

Fact

Given any finite collection of independent r.v. X_{1}, \ldots, X_{n}, we have

$$
\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]
$$

Bernoulli and Binomial random variables

- Consider an experiment with success probability p; call Υ the r.v.:

$$
\Upsilon= \begin{cases}1 & \text { if the experiment succeeds } \\ 0 & \text { otherwise }\end{cases}
$$

Then, Υ is called a Bernoulli or indicator r.v.

- $\mathrm{E}[\Upsilon]=p \cdot 1+(1-p) \cdot 0=p$.
- $\operatorname{Var}[\Upsilon]=\mathrm{E}\left[\Upsilon^{2}\right]-(\mathrm{E}[\Upsilon])^{2}=p(1-p)$.

Bernoulli and Binomial random variables

- Consider an experiment with success probability p; call Υ the r.v.:

$$
\Upsilon= \begin{cases}1 & \text { if the experiment succeeds } \\ 0 & \text { otherwise }\end{cases}
$$

Then, Υ is called a Bernoulli or indicator r.v.

- Binomial r.v. $X-B(n, p)-$ denotes \# successes in n independent trials.

$$
\operatorname{Pr}[X=j]=\binom{n}{j} p^{j}(1-p)^{n-j}
$$

- Can write X as sum of indicator r.v. $\Upsilon_{1}+\Upsilon_{2}+\cdots+\Upsilon_{n}$
- $\mathrm{E}[X]=n p$ and $\operatorname{Var}[X]=n p(1-p)$.

Geometric random variable

- Perform a sequence of independent trials until the first success. example i. toss a fair coin until you get a head.
example 2. roll a die until you get a six.
How many tosses/rolls do you need?
- Geometric r.v. X with parameter p denotes \# trials until first success.

$$
\operatorname{Pr}[X=n]=(1-p)^{n-1} p
$$

- $\mathrm{E}[X]=\sum_{n=1}^{\infty} n(1-p)^{n-1} p=1 / p^{2} \cdot p=1 / p$

Coupon collector's problem

Coupon Collector's Problem

- Each box of cereals contains one of n different coupons.
- Coupon in each box is independently \& uniformly random.

How many boxes must we buy to obtain \geq one coupon of every type?

- e.g. collecting a coupon = passing a required course?
- need at least n boxes. expected number? (hint: decompose as sum)
- attempt \# I: Let Υ_{i} denote \# boxes until you get coupon of type i
- example: $1,1,2,1,3$

$$
\left(\Upsilon_{1}=1, \Upsilon_{2}=3, \Upsilon_{3}=5\right)
$$

Coupon collector's problem

Coupon Collector's Problem

- Each box of cereals contains one of n different coupons.
- Coupon in each box is independently \& uniformly random.

How many boxes must we buy to obtain \geq one coupon of every type?

- Let X_{i} be \# boxes to go from exactly $i-1$ different coupons to i.
- X_{i} is a geometric r.v. with parameter $p_{i}=\frac{n-(i-1)}{n}$.
- Total \# of boxes $X=X_{1}+X_{2}+\cdots+X_{n}$.
- $\mathrm{E}[X]=\sum_{i=1}^{n} \mathrm{E}\left[X_{i}\right]=\sum_{i=1}^{n} \frac{n}{n-i+1}=n \cdot \sum_{i=1}^{n} \frac{1}{i}=n(\ln n+\Theta(1))$
$($ fact. $1+1 / 2+1 / 3+\cdots+1 / n=\ln n+\Theta(1))$

PART 2	quicksort

Sorting

Sorting Problem

Input: a list of n distinct values x_{1}, \ldots, x_{n} from some domain
Goal: output a sorted list

- Total order on the domain.
- Complexity measure: \# of comparisons
- $\log (n!)=\Omega(n \log n)$ comparisons are necessary

Quicksort

Quicksort Algorithm

Input: A list $S=\left\{x_{1}, \ldots, x_{n}\right\}$
I. if $|S|=0$ or $|S|=1$, return S and halt.
2. Choose a random element x of S as pivot.
3. Let $S_{1}=\{y \in S \mid y<x\}$ and $S_{2}=\{y \in S \mid y>x\}$
4. Return the list QuickSort $\left(S_{1}\right), x, \operatorname{Quicksort}\left(S_{2}\right)$.

- Example: QuickSort(4, 3, 2, 1)
- Compute expectation of X, \# of comparisons.
- Call y_{1}, \ldots, y_{n} the sorted list.
- Fact: any pair $y_{i} \neq y_{j}$ is compared at most once (when/why?).

Analysis of Quicksort

I. Write $X=\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{i j}$ where $X_{i j}$ indicates y_{i} and y_{j} are compared.
2. Compute $\mathrm{E}\left[X_{i j}\right]$:

- Consider first element x in $S_{i j}=\left\{y_{i}, y_{i+1}, \ldots, y_{j}\right\}$ to be used as pivot.
- If x equals y_{i} or y_{j}, then $X_{i j}=1$.
- If $x \neq y_{i}, y_{j}$, then $X_{i j}=0$.
- $\operatorname{Pr}\left[X_{i j}=1\right]=\frac{2}{\left|S_{i j}\right|}=\frac{2}{j-i+1}$.

3.

$$
\begin{aligned}
\mathrm{E}[X] & =\sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{\left|S_{i j}\right|}=\sum_{i=1}^{n}\left(\frac{2}{2}+\frac{2}{3}+\cdots+\frac{2}{n-i+1}\right) \\
& \leq \sum_{i=1}^{n}\left(\frac{2}{2}+\frac{2}{3}+\cdots+\frac{2}{n}\right) \\
& =2 n \ln n+\Theta(n)
\end{aligned}
$$

