{ csci 316907 ‘ Lecture 1 }

Hoeteck Wee - hoeteck@gwu.edu

» Overview of this course

» Course administration

» Two randomized algorithms

Randomization in Computer Science

» Algorithm Design
» Basic algorithmic problems, e.g. PRIMALITY (1977, 2002)
» Practical problems, e.g. load-balancing
» Cryptography
» Randomness provides secrecy, e.g. 4-digit PIN random in
{0000,, 9999}
» Computational Models

» Random processes, e.g. natural selection & mutation in biology

» Complex networks, e.g. social networks and the Internet

This Course

» Randomized algorithms
» Simplicity: Randomized min-cut, median-finding and 2-SAT
» Efficiency: Sublinear-time algorithms
» Average-Case “Goodness”: Load balancing

» Tools and techniques for probabilistic analysis

» Tail bounds, e.g. Markov’s inequality and Chernoft bounds

» Computational models

» Random graphs

Administration

» Basic Information

» Course webpage http://www.seas.gwu.edu/~hoeteck/s13
» Contacting me hoeteck@gwu.edu
» Webpage + email for disseminating information

» Textbook: Probability and Computing: ..., by Mitzenmacher & Upfal

> Pre-requisites

» Strong background in basic probability; basic algorithms course

http://www.seas.gwu.edu/~hoeteck/s13

Course Evaluation

v

Homework: ~ once every two weeks

» One programming assignment

v

Final project

v

Class attendance and participation

Polynomial Identity Testing

IpENTITY TESTING

Given two polynomials p(x) and ¢(x), decide whether p = ¢ (that is,
whether p is “identical” to ¢).

> “polynomials”: coefficients are integers or field elements; degree < &

> “p = ¢”: coefficients for each monomial are the same, e.g.
(x+1)x—-1)=x*—-1

» “given”: (1) list of coeflicients, or (2) as a formula, e.g.

((x —1)% 4+ 1)3 + 4x.

Polynomial Identity Testing

IpENTITY TESTING

Given two polynomials p(x) and ¢(x), decide whether p = ¢ (that is,
whether p is “identical” to ¢).

IDENTITY TESTING (special case)

Given a polynomial p(x), decide whether p = 0.

» To solve the general case, check whether p(x) — ¢(x) is identical to 0.

Polynomial Identity Testing

IDENTITY TESTING Algorithm

I. Pick a number 7 uniformly at random from {1, 2, ..., 2d}.

2. Evaluate p(r). If the result is 0, accept; else, reject.

» If p(x) = 0, then algorithm always accepts.
» If p(x) # 0, then algorithm accepts with probability < 3.

A non-zero degree d polynomial has at most 4 roots.

Polynomial Identity Testing

IDENTITY TESTING Algorithm

I. Pick a number 7 uniformly at random from {1, 2, ..., 2d}.

2. Evaluate p(r). If the result is 0, accept; else, reject.

» If p(x) = 0, then algorithm always accepts.
» If p(x) # 0, then algorithm accepts with probability < 3.

How can we reduce the error (i.e. the probability of accepting p(x) % 0)?

Polynomial Identity Testing

I. Tryallrin {1,2,...,d+ 1}.

4 Always outputs correct answer.

> Problem: 4 may be as large as 2. e.g.

<— n times —
(e +1)*+1)° +1)%--- +1)°
2. Replace 2d with 10004.
> Reduces error to 1/1000.
» Disadvantage: need to compute with large numbers.
3. Repeat £ times, using different random values

» Reduces error to 1/2.

> Advantage: works in general for any randomized algorithm.

Minimum cut

I. Cut: set of edges whose removal render the graph disconnected

2. Minimum cut: cut of the smallest size (size = # edges in the cut)

» cut: {(1,2),(1,3),(1,4)}
» min-cut: {(1,4),(3,4)} or {(1,2),(2,3)}

4 3

| minimum cut | < minimum degree of any node.

Minimum cut

I. Cut: set of edges whose removal render the graph disconnected

2. Minimum cut: cut of the smallest size (size = # edges in the cut)

Minimum Cut Problem

On input an undirected graph with 7 vertices, output a minimum cut.

APPLICATIONS
» network reliability (nodes = machines, edges = connections)

> clustering webpages (nodes = webpages, edges = hyperlinks)

Minimum cut

I. Cut: set of edges whose removal render the graph disconnected

2. Minimum cut: cut of the smallest size (size = # edges in the cut)

Minimum Cut Problem

On input an undirected graph with 7 vertices, output a minimum cut.

ALGORITHMS
> “naive”: _ fnd 2 s 10 3\ +3
naive”: compute s-# minimum cut #* times, total O(mn*) time.

» next: randomized algorithm based on edge contractions in O(n*)

time.

Edge contraction

Operation EDGE CONTRACTION

Input: edge (#,v) in undirected graph
I. Merge vertices and v.

2. Remove any self-loops and keep multi-edges.

4 3 4 4

remove (2, 3) remove (1,2),(1,3) left with (1,4), (3,4)

Randomized min-cut (Karger, 1993)

RanpMinCut Algorithm

Input: undirected graph G.

. Repeat: contract a random edge

g

Output the edges connecting the remaining two vertices.

> correctness?

v

Each edge contraction reduces # vertices by 1.

v

number of repetitions =7 — 2

» running time = O(n?)

Analysis

Fact 1

Let C be a cut. If we never contract an edge in C, then C remains a cut.

» PROOF: only contract edges, so (edges, vertices) on left side of C

stay on left side, and the same for right side.

Analysis

Fact 1

Let C be a cut. If we never contract an edge in C, then C remains a cut.

» fix a min-cut C of size £
» INTUITION: Jlots of edges, so we're unlikely to contract an edge in C

» GoaL: bound Pr[E;] where E; is “C survives the first 7 iterations”.

Base case: Pr[E;]
I. degree of every vertex > k&

2. # edges > nk/2

n—2

_k
edges —

Analysis

Facr 2

Min-cut size never decreases.

» craim: Any cut C in the new graph is also a cut in the original graph.

» PROOF: Induction. Any “contracted edge” must lie on same side of C.

Analysis

Facr 2

Min-cut size never decreases.

Iterative step: Pr[E; 11 | E/]
I. By Fact 2, min-cut size > &, so degree > £
2. # vertices=n —1i
3. #edges > (n—i)k/2
4. Pr[E;y;1 |E] =1

n—i—2

£
21— (n—i)k/2 — n—i

k
edges —

Analysis

Pr[RanoMiINCurt outputs C|

PI'[E,,_Q] = PI‘[E,,_Q | En—l] e PI‘[EQ | El} . PI‘[El}
(5 EEE)E) -) AG)G)

_2
n(n—1)

Y

How can we increase the probability of returning a min-cut?

(

» Repeat * U In# times and output the smallest cut.

Mlnn

» Prlfails to output C] < (1 - ,,(,,27_1)> <

=

(Almost) the End

> Next week: review basic probability

» Homework 1 to be posted by Fri, due Jan 30 (Wed).

