
{
csci 3|6907

∣∣ Lecture 1
}

Hoeteck Wee · hoeteck@gwu.edu

Today

▶ Overview of this course

▶ Course administration

▶ Two randomized algorithms

Randomization in Computer Science

▶ Algorithm Design

▶ Basic algorithmic problems, e.g. Primality (1977, 2002)
▶ Practical problems, e.g. load-balancing

▶ Cryptography

▶ Randomness provides secrecy, e.g. 4-digit pin random in
{0000, . . . , 9999}.

▶ Computational Models

▶ Random processes, e.g. natural selection & mutation in biology
▶ Complex networks, e.g. social networks and the Internet

This Course

▶ Randomized algorithms

▶ Simplicity: Randomized min-cut, median-finding and 2-SAT
▶ Efficiency: Sublinear-time algorithms
▶ Average-Case “Goodness”: Load balancing

▶ Tools and techniques for probabilistic analysis

▶ Tail bounds, e.g. Markov’s inequality and Chernoff bounds

▶ Computational models

▶ Random graphs

Administration

▶ Basic Information
▶ Course webpage http://www.seas.gwu.edu/~hoeteck/s13

▶ Contacting me hoeteck@gwu.edu

▶ Webpage + email for disseminating information
▶ Textbook: Probability and Computing: ..., by Mitzenmacher & Upfal

▶ Pre-requisites
▶ Strong background in basic probability; basic algorithms course

http://www.seas.gwu.edu/~hoeteck/s13

Course Evaluation

▶ Homework: ∼ once every two weeks

▶ One programming assignment

▶ Final project

▶ Class attendance and participation

Polynomial Identity Testing

.
Identity Testing..

.

Given two polynomials p(x) and q(x), decide whether p ≡ q (that is,
whether p is “identical” to q).

▶ “polynomials”: coefficients are integers or field elements; degree ≤ d

▶ “p ≡ q”: coefficients for each monomial are the same, e.g.
(x+ 1)(x− 1) ≡ x2 − 1

▶ “given”: (1) list of coefficients, or (2) as a formula, e.g.
((x− 1)2 + 1)3 + 4x.

Polynomial Identity Testing

.
Identity Testing..

.

Given two polynomials p(x) and q(x), decide whether p ≡ q (that is,
whether p is “identical” to q).

.
Identity Testing (special case)
..

.
Given a polynomial p(x), decide whether p ≡ 0.

▶ To solve the general case, check whether p(x)− q(x) is identical to 0.

Polynomial Identity Testing

.
Identity Testing Algorithm
..

.

1. Pick a number r uniformly at random from {1, 2, . . . , 2d}.

2. Evaluate p(r). If the result is 0, accept; else, reject.

▶ If p(x) ≡ 0, then algorithm always accepts.

▶ If p(x) ̸≡ 0, then algorithm accepts with probability ≤ 1
2.

.
Fact..

.
A non-zero degree d polynomial has at most d roots.

Polynomial Identity Testing

.
Identity Testing Algorithm
..

.

1. Pick a number r uniformly at random from {1, 2, . . . , 2d}.

2. Evaluate p(r). If the result is 0, accept; else, reject.

▶ If p(x) ≡ 0, then algorithm always accepts.

▶ If p(x) ̸≡ 0, then algorithm accepts with probability ≤ 1
2.

.
Question..

.
How can we reduce the error (i.e. the probability of accepting p(x) ̸≡ 0)?

Polynomial Identity Testing

1. Try all r in {1, 2, . . . , d+ 1}.

▶ Always outputs correct answer.
▶ Problem: d may be as large as 2n. e.g.

←− n times −→
((((x+ 1)2 + 1)2 + 1)2 · · ·+ 1)2

2. Replace 2d with 1000d.

▶ Reduces error to 1/1000.
▶ Disadvantage: need to compute with large numbers.

3. Repeat k times, using different random values r

▶ Reduces error to 1/2k.
▶ Advantage: works in general for any randomized algorithm.

Minimum cut

.
Definitions..

.

1. Cut: set of edges whose removal render the graph disconnected

2. Minimum cut: cut of the smallest size (size = # edges in the cut)

@
@

@
@

@
@

b b

bb1 2

4 3

▶ cut: {(1, 2), (1, 3), (1, 4)}

▶ min-cut: {(1, 4), (3, 4)} or {(1, 2), (2, 3)}

.
Easy Fact
..

.
| minimum cut | ≤ minimum degree of any node.

Minimum cut

.
Definitions..

.

1. Cut: set of edges whose removal render the graph disconnected

2. Minimum cut: cut of the smallest size (size = # edges in the cut)

.
Minimum Cut Problem..

.
On input an undirected graph with n vertices, output a minimum cut.

Applications

▶ network reliability (nodes = machines, edges = connections)

▶ clustering webpages (nodes = webpages, edges = hyperlinks)

Minimum cut

.
Definitions..

.

1. Cut: set of edges whose removal render the graph disconnected

2. Minimum cut: cut of the smallest size (size = # edges in the cut)

.
Minimum Cut Problem..

.
On input an undirected graph with n vertices, output a minimum cut.

Algorithms

▶ “naive”: compute s-t minimum cut n2 times, total O(mn3) time.

▶ next: randomized algorithm based on edge contractions in O(n4)
time.

Edge contraction

.
Operation Edge Contraction
..

.

Input: edge (u, v) in undirected graph

1. Merge vertices u and v.

2. Remove any self-loops and keep multi-edges.

@
@

@
@

@
@

b b

bb1 2

4 3
�
�

�
�
�
�

b

bb1

4

2,3

b

b1,2,3

4

remove (2, 3) remove (1, 2), (1, 3) left with (1, 4), (3, 4)

Randomized min-cut (Karger, 1993)

.
RandMinCut Algorithm
..

.

Input: undirected graph G.

1. Repeat: contract a random edge

2. Output the edges connecting the remaining two vertices.

▶ correctness?

▶ Each edge contraction reduces # vertices by 1.

▶ number of repetitions = n− 2

▶ running time = O(n2)

Analysis

.
Fact 1..

.
Let C be a cut. If we never contract an edge in C, then C remains a cut.

▶ proof: only contract edges, so ⟨ edges, vertices ⟩ on left side of C
stay on left side, and the same for right side.

Analysis

.
Fact 1..

.
Let C be a cut. If we never contract an edge in C, then C remains a cut.

▶ fix a min-cut C of size k

▶ intuition: ∃ lots of edges, so we’re unlikely to contract an edge in C

▶ goal: bound Pr[Ei] where Ei is “C survives the first i iterations”.

Base case: Pr[E1]

1. degree of every vertex ≥ k

2. # edges ≥ nk/2

3. Pr[E1] = 1− k
edges ≥ 1− k

nk/2 = n−2
n

Analysis

.
Fact 2..

.
Min-cut size never decreases.

▶ claim: Any cut C in the new graph is also a cut in the original graph.

▶ proof: Induction. Any “contracted edge” must lie on same side of C.

Analysis

.
Fact 2..

.
Min-cut size never decreases.

Iterative step: Pr[Ei+1 | Ei]

1. By Fact 2, min-cut size ≥ k, so degree ≥ k

2. # vertices = n− i

3. # edges ≥ (n− i)k/2

4. Pr[Ei+1 | Ei] = 1− k
edges ≥ 1− k

(n−i)k/2 = n−i−2
n−i

Analysis

Pr[RandMinCut outputs C]

= Pr[En−2] = Pr[En−2 | En−1] · · ·Pr[E2 | E1] · Pr[E1]

≥ (n−2
n)(n−3

n−1)(
n−4
n−2)(

n−5
n−3) · · · (

4
6)(

3
5)(

2
4)(

1
3)

= 2
n(n−1)

.
Question..

.
How can we increase the probability of returning a min-cut?

▶ Repeat n(n−1)
2 ln n times and output the smallest cut.

▶ Pr[fails to output C] ≤
(
1− 2

n(n−1)

) n(n−1)
2 ln n

≤ 1
n

(Almost) the End

▶ Next week: review basic probability

▶ Homework 1 to be posted by Fri, due Jan 30 (Wed).

