$\{\operatorname{csci} 3|6907|$ Lecture I $\}$

Hoeteck Wee • hoeteck@gwu.edu

Today

- Overview of this course
- Course administration
- Two randomized algorithms

Randomization in Computer Science

- Algorithm Design
- Basic algorithmic problems, e.g. Primality (1977, 2002)
- Practical problems, e.g. load-balancing
- Cryptography
- Randomness provides secrecy, e.g. 4-digit pin random in $\{0000, \ldots, 9999\}$.
- Computational Models
- Random processes, e.g. natural selection \& mutation in biology
- Complex networks, e.g. social networks and the Internet

This Course

- Randomized algorithms
- Simplicity: Randomized min-cut, median-finding and 2-SAT
- Efficiency: Sublinear-time algorithms
- Average-Case "Goodness": Load balancing
- Tools and techniques for probabilistic analysis
- Tail bounds, e.g. Markov's inequality and Chernoff bounds
- Computational models
- Random graphs

Administration

- Basic Information
- Course webpage http://www.seas.gwu.edu/~hoeteck/s13
- Contacting me hoeteck@gwu.edu
- Webpage + email for disseminating information
- Textbook: Probability and Computing: ..., by Mitzenmacher \& Upfal
- Pre-requisites
- Strong background in basic probability; basic algorithms course

Course Evaluation

- Homework: ~ once every two weeks
- One programming assignment
- Final project
- Class attendance and participation

Polynomial Identity Testing

Identity Testing

Given two polynomials $p(x)$ and $q(x)$, decide whether $p \equiv q$ (that is, whether p is "identical" to q).

- "polynomials": coefficients are integers or field elements; degree $\leq d$
- " $p \equiv q$ ": coefficients for each monomial are the same, e.g.

$$
(x+1)(x-1) \equiv x^{2}-1
$$

- "given": (I) list of coefficients, or (2) as a formula, e.g. $\left((x-1)^{2}+1\right)^{3}+4 x$.

Polynomial Identity Testing

Identity Testing

Given two polynomials $p(x)$ and $q(x)$, decide whether $p \equiv q$ (that is, whether p is "identical" to q).

Identity Testing (special case)
Given a polynomial $p(x)$, decide whether $p \equiv 0$.

- To solve the general case, check whether $p(x)-q(x)$ is identical to 0 .

Polynomial Identity Testing

Identity Testing Algorithm

I. Pick a number r uniformly at random from $\{1,2, \ldots, 2 d\}$.
2. Evaluate $p(r)$. If the result is 0 , accept; else, reject.

- If $p(x) \equiv 0$, then algorithm always accepts.
- If $p(x) \not \equiv 0$, then algorithm accepts with probability $\leq \frac{1}{2}$.

Fact

A non-zero degree d polynomial has at most d roots.

Polynomial Identity Testing

Identity Testing Algorithm

I. Pick a number r uniformly at random from $\{1,2, \ldots, 2 d\}$.
2. Evaluate $p(r)$. If the result is 0 , accept; else, reject.

- If $p(x) \equiv 0$, then algorithm always accepts.
- If $p(x) \not \equiv 0$, then algorithm accepts with probability $\leq \frac{1}{2}$.

Question

How can we reduce the error (i.e. the probability of accepting $p(x) \not \equiv 0)$?

Polynomial Identity Testing

I. Try all r in $\{1,2, \ldots, d+1\}$.

- Always outputs correct answer.
- Problem: d may be as large as 2^{n}. e.g.

$$
\left(\left(\left(\left(x+\overleftarrow{1)^{2}}+1 \text { times } \longrightarrow\right)^{2}+1\right)^{2} \cdots+1\right)^{2}\right.
$$

2. Replace $2 d$ with $1000 d$.

- Reduces error to $1 / 1000$.
- Disadvantage: need to compute with large numbers.

3. Repeat k times, using different random values r

- Reduces error to $1 / 2^{k}$.
- Advantage: works in general for any randomized algorithm.

Minimum cut

Definitions

I. Cut: set of edges whose removal render the graph disconnected
2. Minimum cut: cut of the smallest size (size = \# edges in the cut)

- cut: $\{(1,2),(1,3),(1,4)\}$
- min-cut: $\{(1,4),(3,4)\}$ or $\{(1,2),(2,3)\}$

Easy Fact

\mid minimum cut $\mid \leq$ minimum degree of any node.

Minimum cut

Definitions

I. Cut: set of edges whose removal render the graph disconnected
2. Minimum cut: cut of the smallest size (size = \# edges in the cut)

Minimum Cut Problem

On input an undirected graph with n vertices, output a minimum cut.

Applications

- network reliability (nodes $=$ machines, edges $=$ connections)
- clustering webpages (nodes = webpages, edges $=$ hyperlinks)

Minimum cut

Definitions

I. Cut: set of edges whose removal render the graph disconnected
2. Minimum cut: cut of the smallest size (size = \# edges in the cut)

Minimum Cut Problem

On input an undirected graph with n vertices, output a minimum cut.

Algorithms

- "naive": compute $s-t$ minimum cut n^{2} times, total $O\left(m n^{3}\right)$ time.
- next: randomized algorithm based on edge contractions in $O\left(n^{4}\right)$ time.

Edge contraction

Operation Edge Contraction

Input: edge (u, v) in undirected graph
I. Merge vertices u and v.
2. Remove any self-loops and keep multi-edges.

remove $(2,3)$

remove $(1,2),(1,3) \quad$ left with $(1,4),(3,4)$

Randomized min-cut (Karger, 1993)

RandMinCut Algorithm

Input: undirected graph G.
I. Repeat: contract a random edge
2. Output the edges connecting the remaining two vertices.

- correctness?
- Each edge contraction reduces \# vertices by 1 .
- number of repetitions $=n-2$
- running time $=O\left(n^{2}\right)$

Analysis

Fact I

Let C be a cut. If we never contract an edge in C, then C remains a cut.

- proof: only contract edges, so \langle edges, vertices \rangle on left side of C stay on left side, and the same for right side.

Analysis

Fact I

Let C be a cut. If we never contract an edge in C, then C remains a cut.

- fix a min-cut C of size k
- intuition: \exists lots of edges, so we're unlikely to contract an edge in C
- goal: bound $\operatorname{Pr}\left[E_{i}\right]$ where E_{i} is " C survives the first i iterations".

Base case: $\operatorname{Pr}\left[E_{1}\right]$
I. degree of every vertex $\geq k$
2. \# edges $\geq n k / 2$
3. $\operatorname{Pr}\left[E_{1}\right]=1-\frac{k}{\# \text { edges }} \geq 1-\frac{k}{n k / 2}=\frac{n-2}{n}$

Analysis

Fact 2

Min-cut size never decreases.

- claim: Any cut C in the new graph is also a cut in the original graph.
- proof: Induction. Any "contracted edge" must lie on same side of C.

Analysis

FACT 2

Min-cut size never decreases.

Iterative step: $\operatorname{Pr}\left[E_{i+1} \mid E_{i}\right]$
I. By Fact 2 , min-cut size $\geq k$, so degree $\geq k$
2. $\#$ vertices $=n-i$
3. \# edges $\geq(n-i) k / 2$
4. $\operatorname{Pr}\left[E_{i+1} \mid E_{i}\right]=1-\frac{k}{\# \text { edges }} \geq 1-\frac{k}{(n-i) k / 2}=\frac{n-i-2}{n-i}$

Analysis

$$
\begin{aligned}
& \operatorname{Pr}[\operatorname{RandMinCut~outputs} C] \\
= & \operatorname{Pr}\left[E_{n-2}\right]=\operatorname{Pr}\left[E_{n-2} \mid E_{n-1}\right] \cdots \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \cdot \operatorname{Pr}\left[E_{1}\right] \\
\geq & \left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right)\left(\frac{n-5}{n-3}\right) \cdots\left(\frac{4}{6}\right)\left(\frac{3}{5}\right)\left(\frac{2}{4}\right)\left(\frac{1}{3}\right) \\
= & \frac{2}{n(n-1)}
\end{aligned}
$$

Question

How can we increase the probability of returning a min-cut?

- Repeat $\frac{n(n-1)}{2} \ln n$ times and output the smallest cut.
- $\operatorname{Pr}[$ fails to output $C] \leq\left(1-\frac{2}{n(n-1)}\right)^{\frac{n(n-1)}{2} \ln n} \leq \frac{1}{n}$

(Almost) the End

- Next week: review basic probability
- Homework i to be posted by Fri, due Jan 30 (Wed).

