{ CSCI 6331 · 4331 | Lecture 8 }

Cryptography

Hoeteck Wee · hoeteck@gwu.edu

http://tinyurl.com/cryptogw/

Evaluation:

10% In-Class/Piazza, 20% Final Presentation / Project

30% Homework, 40% Final (Apr 25)

Homework 4 out tonight, due Mar 21 (Wed) in class

Review: Arithmetic mod Primes

- \blacktriangleright Let p be a prime
- Notation: $\mathbb{Z}_p = \{0, 1, 2, \dots, p-1\}$

 $\mathbb{Z}_{\mathrm{p}}^{*}=\text{invertible elements in }\mathbb{Z}_{\mathrm{p}}$

so
$$\mathbb{Z}_p^* = \{1,2,\ldots,p-q\}$$

• Facts:
$$\mathbb{Z}_p^*$$
 is cyclic, i.e.
can write $\mathbb{Z}_p^* = \{g^0, g^1, g^2, g^3, \dots, g^{p-2}\}$
g a generator

• Example. p = 5, then 2 is a generator.

Diffie-Hellman Key Exchange

Q. How to distribute/share secret keys over public channels?

Diffie-Hellman Key Exchange protocol (warm-up).

- 1. Alice picks prime p and generator g.
- 2. Alice chooses $x \leftarrow \mathbb{Z}_p$ and sends g^x to Bob.
- 3. Bob chooses $y \leftarrow \mathbb{Z}_p$ and sends g^y to Alice.
- 4. shared key is g^{xy} .

Q. How do Alice and Bob compute the shared key?

- Alice sees x and g^y
- Bob sees y and g^x

Diffie-Hellman Assumption. shared key looks "random" to a passive adversary

— work with a subgroup of Z_p^* of prime order

Public Key Encryption

Private vs Public Key Encryption

- private-key: same key to encrypt and to decrypt (symmetric)
- public-key: one key to encrypt, another to decrypt (asymmetric)

syntax. private-key encryption = three algorithms (Gen, Enc, Dec)

— key generation Gen – outputs a key pair (pk, sk)

(public key pk and secret key sk)

- encryption ${
 m Enc}$ input pk and a message m; output ciphertext $c={
 m Enc}_{pk}(m)$
- decryption Dec input sk and a ciphertext c; output plaintext $m = Dec_{sk}(c)$

correctness. $Dec_{sk}(Enc_{pk}(m)) = m$

security. as before, ciphertexts don't leak information about plaintext, even given multiple ciphertexts

Review: Arithmetic mod Composites

 $\blacktriangleright \ \ \, \text{Let} \ N = pq \ \, \text{where} \ \, p,q \ \, \text{are prime}$

• Notation:
$$\mathbb{Z}_{\mathrm{N}} = \{0, 1, 2, \dots, \mathrm{N}-1\}$$

 $\mathbb{Z}_N^* = \text{invertible elements in } \mathbb{Z}_N$

example: $N = 15 = 3 \cdot 5$, $\mathbb{Z}_N^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$

Facts:

$$\begin{split} &x\in\mathbb{Z}_N\text{ is in }\mathbb{Z}_N^*\iff \gcd(x,N)=1\\ &\text{number of elements in }\mathbb{Z}_N^*\text{ is }\phi(N)=(p-1)(q-1)\\ &\text{Euler's theorem: }\forall\ x\in\mathbb{Z}_N^*:x^{\phi(N)}=1\\ &\text{if }e\cdot d=1\pmod{\phi(N)}\text{, then }(x^e)^d=x\bmod N \end{split}$$

Algorithms:

Can add, mutiply, compute gcd, exponentiations and inverses mod ${
m N}$ efficiently

Trapdoor Permutations

Three algorithms (G, F, F^{-1}) :

- $\blacktriangleright~G$ outputs (pk,sk), pk defines a permutation $F(pk,\cdot):X\rightarrow X$
- $\blacktriangleright \ F(pk,x)$ evaluates the function at x
- $\blacktriangleright \ F^{-1}(sk,y)$ inverts the function at y using sk (the trapdoor)
- correctness: $F^{-1}(sk, F(pk, x)) = x$
- $\blacktriangleright\,$ security: given random pk,y, hard to compute pre-image of y

i.e. the function $F(pk,\cdot)$ is one-way without the trapdoor sk.

RSA Trapdoor Permutation

- first published, Scientific American, Aug 1977
- currently the "work horse" of Internet security:
- most Public Key Infrastructure (PKI) products
- SSL/TLS: certificates and key-exchange
- secure e-mail and file systems

RSA Trapdoor Permutation

algorithm G. \qquad outputs (N,e) as pk

— N = pq approx 1024 bits, p, q approx 512 bits

— e encryption exponent $gcd(e, \phi(N)) = 1$.

○ ○ Certificate Viewer:"mail.google.com"	Certificate Viewer:"mail.google.com"
Centificate Hierarchy	General Details
Bullin Object Token Verlsign Class 3 Public Primary Certification Authority Thaves SCC CA mail.google.com	Certificate Hierarchy Builtin Object Token Versigin Class 3 Public Primary Certification Authority Thates SCC CA mail google.com
Certificate Fields	Certificate Fields
Not After Subject Public Key Info Subject Public Key Agromm Subject's Ablic Key Agromm Centificate Basic Key Extended Key Usage Field Value Modater (1936 bits) Extended Key Usage Field Value	Not After Subject Public Key Info Subject Public Key Algorithm Subject Public Key V Extensions Certificate Babic Constraints Chi, Distribution Forkis Extended Key Usage Field Value
8f 7e 81 ce 87 24 25 10 12 54 33 9e an 3d 9b 8f 86 72 53 15 01 42 75 43 20 24 54 63 26 73 35 cr 97 79 76 76 95 25 cf 73 43 c7 45 56 16 14 45 20 64 15 21 59 76 25 25 cf 73 43 c7 45 56 16 16 14 52 06 15 21 59 76 23 25 16 15 16 15 16 15 10 12 23 e2 4c 4a 86 c2 4a 3f e1 b8 bf f7 3a b1 85 be 16 c5	1/07 10 10 10 20 24 24 20 10 25 24 20 25 25 24 24 25 25 24 4 bb 10 25 20 25 25 25 25 25 25 25 25 25 25 25 25 25
Export	Export
Close	Close

RSA Trapdoor Permutation

algorithm G. outputs (N, e) as pk

- N = pq approx 1024 bits, p, q approx 512 bits
- e encryption exponent $gcd(e, \phi(N)) = 1$.

algorithm F. $\mathsf{RSA}(x) = x^e \mod N$

—
$$\operatorname{F}$$
 maps $\mathbb{Z}_{\operatorname{N}}^{*}$ to $\mathbb{Z}_{\operatorname{N}}^{*}$

trapdoor. d "decryption exponent"

$$- de = 1 \mod \phi(N)$$

algorithm F^{-1} . $\mathsf{RSA}^{-1}(y) = y^d \mod N$

-
$$\mathsf{RSA}(x)^d = (x^e)^d = x^{ed} = x^{k\phi(N)+1} = (x^{\phi(N)})^k \cdot x = x$$

example. N = 35 and e = 5.

- trapdoor $d = 5 (5 \cdot 5 = 25 = 1 \mod 24)$

- RSA(2) = 32 and $32^5 = 2 \mod 35$

Textbook RSA Encryption.

- Public key: (N, e) Encrypt: $C = M^e \mod N$
- Secret key: d Decrypt: $C^d = M \mod N$

Completely insecure cryptosystem!

Does not satisfy basic definition of security

Given two ciphertexts, can tell if they are encryptions of same message.

Many attacks exist.

RSA in Practice.

- Pre-process message before applying RSA permutation
- e.g. PKCSI mode 2: 02||random pad||FF||M

Attack on PKCS1 in SSL

- \blacktriangleright web server publishes RSA public key (N,e) and decrypts using e
- > attacker can test if plaintext starts with 02 (16 bits)
- ▶ learn 16 bits of plaintext using $\approx 2^{16} = 65536$ queries learn 512 bits using $\approx 32 \times 65536 \ll 2^{512}$ queries

PKCSI V2.0 uses RSA-OAEP, new pre-processing function

```
OAEP-decrypt(C) {
    error = 0;
    if ( RSA-1(C) > 2n-1 )
      { error =1; goto exit; }
      ....
    if ( pad(OAEP-1(RSA-1(C))) != "01000" )
      { error = 1; goto exit; }
}
```

problem. timing information leaks type of error

- adversary can decrypt any ciphertext!
- easy to measure response time in many applications

lesson. don't implement RSA-OAEP yourself...

RSA Optimizations

- $\blacktriangleright\,$ To speed up RSA encryption (and signature verification), use small e $C=M^e \bmod N$
- minimal value: $e = 3 \text{ gcd}(e, \phi(N)) = 1$
- recommended value: $e = 65537 = 2^{16} + 1$

encryption: $17 \mod \text{ultiplications}$

Q. Speed up RSA decryption with small d?

- ▶ Wiener's attack: if $d \le N^{0.25}/3$, easy to find d from (N, e)
- \blacktriangleright Practice: use small e and large d
- fast encryption / slow decryption

More Implementation Attacks

Fiming attack. (Kocher 97)

 \blacktriangleright time it takes to compute $C^d \bmod N$ can expose d

Power attack. (Kocher 99)

 \blacktriangleright power consumption of smart card while computing $C^d \mod N$ can expose d

Faults attack. (BDL 97)

- computer error can expose d
- OpenSSL defense: check output. 5% slowdown

RSA Key Lengths

- security of public key cryptosystem should be comparable to security of block cipher.
- cipher key-size: 64 bits modular size 512 bits
- cipher key-size: 80 bits modular size 1024 bits
- cipher key-size: 256 bits modular size 15360 bits
- Elliptic Curve Cryptography avoids large modulus