
{
CSCI 6331 · 4331

∣∣ Lecture 8
}

Cryptography

Hoeteck Wee · hoeteck@gwu.edu

http://tinyurl.com/cryptogw/

.

.

Announcements

▶ Evaluation:

10% In-Class/Piazza, 20% Final Presentation / Project

30% Homework, 40% Final (Apr 25)

▶ Homework 4 out tonight, due Mar 21 (Wed) in class

.

Review: Arithmetic mod Primes

▶ Let p be a prime

▶ Notation: Zp = {0, 1, 2, . . . , p− 1}

Z∗
p = invertible elements in Zp

so Z∗
p = {1, 2, . . . , p− q}

▶ Facts: Z∗
p is cyclic, i.e.

can write Z∗
p = {g0, g1, g2, g3, . . . , gp−2}

g a generator

▶ Example. p = 5, then 2 is a generator.

.

Diffie-Hellman Key Exchange

Q. How to distribute/share secret keys over public channels?

Diffie-Hellman Key Exchange protocol (warm-up).

1. Alice picks prime p and generator g.

2. Alice chooses x← Zp and sends gx to Bob.

3. Bob chooses y← Zp and sends gy to Alice.

4. shared key is gxy.

Q. How do Alice and Bob compute the shared key?

— Alice sees x and gy

— Bob sees y and gx

Diffie-Hellman Assumption. shared key looks “random” to a passive adversary

— work with a subgroup of Z∗
p of prime order

.

Public Key Encryption

Private vs Public Key Encryption

— private-key: same key to encrypt and to decrypt (symmetric)

— public-key: one key to encrypt, another to decrypt (asymmetric)

syntax. private-key encryption = three algorithms (Gen,Enc,Dec)

— key generation Gen – outputs a key pair (pk, sk)

(public key pk and secret key sk)

— encryption Enc – input pk and a message m; output ciphertext c = Encpk(m)

— decryption Dec – input sk and a ciphertext c; output plaintext m = Decsk(c)

correctness. Decsk(Encpk(m)) = m

security. as before, ciphertexts don’t leak information about plaintext, even given

multiple ciphertexts

.

Review: Arithmetic mod Composites

▶ Let N = pq where p, q are prime

▶ Notation: ZN = {0, 1, 2, . . . ,N− 1}

Z∗
N = invertible elements in ZN

example: N = 15 = 3 · 5, Z∗
N = {1, 2, 4, 7, 8, 11, 13, 14}

▶ Facts:

x ∈ ZN is in Z∗
N ⇐⇒ gcd(x,N) = 1

number of elements in Z∗
N is ϕ(N) = (p− 1)(q− 1)

Euler’s theorem: ∀ x ∈ Z∗
N : xϕ(N) = 1

if e · d = 1 (mod ϕ(N)), then (xe)d = x mod N

▶ Algorithms:

Can add, mutiply, compute gcd, exponentiations and inverses mod N efficiently

.

Trapdoor Permutations

Three algorithms (G,F,F−1):

▶ G outputs (pk, sk), pk defines a permutation F(pk, ·) : X→ X

▶ F(pk, x) evaluates the function at x

▶ F−1(sk, y) inverts the function at y using sk (the trapdoor)

▶ correctness: F−1(sk, F(pk, x)) = x

▶ security: given random pk, y, hard to compute pre-image of y

i.e. the function F(pk, ·) is one-way without the trapdoor sk.

.

RSA Trapdoor Permutation

▶ first published, Scientific American, Aug 1977

▶ currently the “work horse” of Internet security:

— most Public Key Infrastructure (PKI) products

— SSL/TLS: certificates and key-exchange

— secure e-mail and file systems

.

RSA Trapdoor Permutation

algorithm G. outputs (N, e) as pk

— N = pq approx 1024 bits, p, q approx 512 bits

— e encryption exponent gcd(e, ϕ(N)) = 1.

.

RSA Trapdoor Permutation

algorithm G. outputs (N, e) as pk

— N = pq approx 1024 bits, p, q approx 512 bits

— e encryption exponent gcd(e, ϕ(N)) = 1.

algorithm F. RSA(x) = xe mod N

— F maps Z∗
N to Z∗

N

trapdoor. d “decryption exponent”

— de = 1 mod ϕ(N)

▶algorithm F−1. RSA−1(y) = yd mod N

— RSA(x)d = (xe)d = xed = xkϕ(N)+1 = (xϕ(N))k · x = x

▶example. N = 35 and e = 5.

— trapdoor d = 5 (5 · 5 = 25 = 1 mod 24)

— RSA(2) = 32 and 325 = 2 mod 35

.

Textbook RSA is insecure

Textbook RSA Encryption.

— Public key: (N, e) Encrypt: C = Me mod N

— Secret key: d Decrypt: Cd = M mod N

Completely insecure cryptosystem!

▶ Does not satisfy basic definition of security

Given two ciphertexts, can tell if they are encryptions of same message.

▶ Many attacks exist.

RSA in Practice.

▶ Pre-process message before applying RSA permutation

▶ e.g. PKCS1 mode 2: 02||random pad||FF||M

.

Attack on PKCS1 in SSL

▶ web server publishes RSA public key (N, e) and decrypts using e

▶ attacker can test if plaintext starts with 02 (16 bits)

▶ learn 16 bits of plaintext using ≈ 216 = 65536 queries

learn 512 bits using ≈ 32× 65536≪ 2512 queries

PKCS1 V2.0 uses RSA-OAEP, new pre-processing function

.

Implementation Attacks on RSA OAEP

OAEP-decrypt(C) {

error = 0;

if (RSA-1(C) > 2n-1)

{ error =1; goto exit; }

....

if (pad(OAEP-1(RSA-1(C))) != “01000”)

{ error = 1; goto exit; }

}

problem. timing information leaks type of error

▶ adversary can decrypt any ciphertext!

▶ easy to measure response time in many applications

lesson. don’t implement RSA-OAEP yourself...

.

RSA Optimizations

▶ To speed up RSA encryption (and signature verification), use small e

C = Me mod N

▶ minimal value: e = 3 gcd(e, ϕ(N)) = 1

▶ recommended value: e = 65537 = 216 + 1

encryption: 17 modular multiplications

Q. Speed up RSA decryption with small d?

▶ Wiener’s attack: if d ≤ N0.25/3, easy to find d from (N, e)

▶ Practice: use small e and large d

— fast encryption / slow decryption

.

More Implementation Attacks

▶Timing attack. (Kocher 97)

▶ time it takes to compute Cd mod N can expose d

▶Power attack. (Kocher 99)

▶ power consumption of smart card while computing Cd mod N can expose d

▶Faults attack. (BDL 97)

▶ computer error can expose d

▶ OpenSSL defense: check output. 5% slowdown

.

RSA Key Lengths

▶ security of public key cryptosystem should be comparable to security of block

cipher.

— cipher key-size: 64 bits modular size 512 bits

— cipher key-size: 80 bits modular size 1024 bits

— cipher key-size: 256 bits modular size 15360 bits

▶ Elliptic Curve Cryptography avoids large modulus

