
{
CSCI 6331 · 4331

∣∣ Lecture 7
}

Cryptography

Hoeteck Wee · hoeteck@gwu.edu

http://tinyurl.com/cryptogw/

.

.

Announcements

▶ Evaluation:

10% In-Class/Piazza, 20% Final Presentation / Project

30% Homework, 40% Final (Apr 25)

▶ Homework 4?

.

“Secure Channels”

Q. How to guarantee both privacy and message integrity?

▶ SSL: protect passwords, credit card numbers between Web clients and servers

▶ IPSec: secure channel between two IP entities for protecting information at

network layer

▶ SSH: remote logins

.

“Secure Channels”

Q. How to guarantee both privacy and message integrity?

Idea. Use encryption + MAC

▶ encryption: privacy

▶ MAC: message integrity (data origin authentication and data integrity)

Basic Principle. different security goals should always use independent keys

▶ k1 encryption key, k2 MAC key

Case study. EMV for credit and debit card payments

▶ a single key-pair is used for both signature and encryption

▶ Degabriele et al. 2012: theoretical attack for completing an offline transaction

without knowing the cardholder’s PIN

.

“Secure Channels”

▶ k1 encryption key, k2 MAC key

Encrypt and Authenticate. E&A in SSH:

— c← Enck1(m); t← Mack2(m); send c||t

— decrypt c to get m; verify tag t on m

Authenticate then Encrypt. AtE in SSL

— t← Mack2(m); c← Enck1(m||t); send c

— decrypt c to get m, t; verify tag t on m

Encrypt then Authenticate. EtA in IPsec

— c← Enck1(m); t← Mack2(c); send c||t

— verify tag t on c; decrypt c

.

“Secure Channels”

Encrypt and Authenticate. E&A in SSH:

— c← Enck1(m); t← Mack2(m); send c||t

— decrypt c to get m; verify tag t on m

Q. integrity?

Q. privacy?

.

“Secure Channels”

Authenticate then Encrypt. AtE in SSL

— t← Mack2(m); c← Enck1(m||t); send c

— decrypt c to get m, t; verify tag t on m

Q. integrity?

Q. privacy?

— may break privacy if adversary can find out whether a given ciphertext is valid!

▶ idea: start flipping bits in the ciphertext

▶ e.g. by interacting with an on-line entity & observing network messages that it

produces

▶ error messages indicating that decryption failed? c.f. encrypted email, acks in

protocols

.

“Secure Channels”

Encrypt then Authenticate. EtA in IPsec

— c← Enck1(m); t← Mack2(c); send c||t

— verify tag t on c; decrypt c

Q. integrity?

Q. privacy?

— achieves privacy even if adversary can find out whether a given ciphertext is valid!

.

Deploying Private-Key Cryptography

Setting. Large organization with U users

▶ all pairs of employees must be able to communicate securely

▶ every pair shares a key – need ≈ U2 keys altogether

Q. How to distribute the keys? How to manage many secret keys?

Key Distribution Center (KDC). trusted entity, e.g. IT manager, as intermediary

▶ each employee shares a single key with KDC, generated on first day

▶ when Alice wants to communicate with Bob, KDC generates a one-time session key

sends to Alice encrypted under Alice’s key, and to Bob encrypted under Bob’s key

Properties.

+ each employee stores one key, e.g. on smartcard

+ when employee X joins/leaves, all updates limited to X and KDC

− KDC single point of failure (c.f. security breaches or hardware failure)

.

Key Distribution Protocol

First Attempt.

1. Alice→ KDC: “I wanted to talk to Bob”

2. KDC→ Alice: EncKAlice(k)

3. KDC→ Bob: “use this key to talk to Alice”, EncKBob(k)

▶ problem. KDC will “hang” indefinitely if Bob is not online

General template.

1. Alice→ KDC: “I wanted to talk to Bob”

2. KDC→ Alice: EncKAlice(k), EncKBob(k)

3. Alice→ Bob: “Let’s talk”, EncKBob(k)

▶ note. use encrypt then authenticate

.

Review: Arithmetic mod Composites

▶ Let N = pq where p, q are prime

▶ Notation: ZN = {0, 1, 2, . . . ,N− 1}

Z∗
N = invertible elements in ZN

example: N = 15 = 3 · 5, Z∗
N = {1, 2, 4, 7, 8, 11, 13, 14}

▶ Facts:

x ∈ ZN is in Z∗
N ⇐⇒ gcd(x,N) = 1

number of elements in Z∗
N is ϕ(N) = (p− 1)(q− 1)

Euler’s theorem: ∀ x ∈ Z∗
N : xϕ(N) = 1

if e · d = 1 (mod ϕ(N)), then (xe)d = x mod N

▶ Algorithms:

Can add, mutiple, compute gcd, exponentiations and inverses mod N efficiently

.

Trapdoor Permutations

Three algorithms (G,F,F−1):

▶ G outputs (pk, sk), pk defines a permutation F(pk, ·) : X→ X

▶ F(pk, x) evaluates the function at x

▶ F−1(sk, y) inverts the function at y using sk (the trapdoor)

▶ security: given random pk, y, hard to compute pre-image of y

RSA trapdoor permutation (1977).

▶ G: outputs (N, e) as pk, where N = pq approx 1024 bits, p, q approx 512 bits

e encryption exponent gcd(e, ϕ(N)) = 1.

▶ F: RSA(x) = xe mod N

▶ F−1: trapdoor d such that de = 1 (mod ϕN)

on input y, output yd mod N

