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Announcements




setting.
both users generate and share a secret key k in advance
runs key generation algorithm k <— Gen(1")
to send message m, sender computes 2 MAC tag t and sends (m, t)
runs tag generation algorithm t <— Macy (m)
upon receiving (m, t), receiver verifies whether t is a valid tag on m

runs verification algorithm Vrfy(m, t) € {0,1} (1 being valid )
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setting.
both users generate and share a secret key k in advance
runs key generation algorithm k <— Gen(1")
to send message m, sender computes 2 MAC tag t and sends (m, t)
runs tag generation algorithm t <— Macy (m)
upon receiving (m, t), receiver verifies whether t is a valid tag on m

runs verification algorithm Vrfy(m, t) € {0,1} (1 being valid )
syntax. message authentication code (MAC) is a triple of randomized algorithms

(Gen, Mac, Vrfy)

correctness. for every key k output by Gen(1™), and every m € {0, 1}*, we have
Vrfy, (m, Mack (m)) = 1.
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Message Authentication Codes




Security Definition. hard to generate a valid tag on any “new” message that was not

previously sent — existentially unforgeable under adaptive chosen-message attack

Generate random key k using Gen (1)

Adversary given 1 and oracle access to Mack(+), eventually outputs (m, t).

Let Q = set of queries

Wins if Vrfy, (m,t) = 1and m ¢ Q.

definition. (t, €)-secure if for all advesaries running in time t, winning probability

bounded by €.
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Security Definition. hard to generate a valid tag on any “new” message that was not

previously sent — existentially unforgeable under adaptive chosen-message attack

Gen : choose random k +— K
Mack (m) : output tag F(k, m)
Vrfy, (m,t) : output 1 iff t = F(k, m)

important distinction: fixed vs variable-length messages

fixed: given MAC(*hello”), MAC(“world”), hard to compute MAC(*“wello”);

however, computing MAC(“hello world”) may be easy.
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comparison with CBC-mode encryption.

always use IV = 00. .. 0 (or; no IV); CBC-mode encryption uses random I'V.
only output final block C,,; CBC-mode encryption outputs immediate blocks

proof idea: show all inputs to PRF are distinct with high probability
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comparison with CBC-mode encryption.

always use IV = 00. .. 0 (or; no IV); CBC-mode encryption uses random I'V.
only output final block C,,; CBC-mode encryption outputs immediate blocks
proof idea: show all inputs to PRF are distinct with high probability

important distinction: many cryptography libraries provide a “CBC function”
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fixed-length. given tags for 5-letter words, hard to forge tag on new 5-letter word.
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fixed-length. given tags for 5-letter words, hard to forge tag on new 5-letter word.

extension attack. given MAC(“hello”) = “aydmx”, forge MAC(*“hello world”)?

does getting MAC(“world”) help?
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fixed-length. given tags for 5-letter words, hard to forge tag on new 5-letter word.

extension attack. given MAC(“hello”) = “aydmx”, forge MAC(*“hello world”)?
does getting MAC(“world”) help?

how about getting MAC(“adymx”)?
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Handling variable-length messages.
Method |. Apply PRF to |m]| to obtain k’. Compute basic CBC-MAC using k'.

ensures different keys are used to authenticate messages of different lengths
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Method 2. Prepend message with |m|, encoded as n-bit string, compute basic

CBC-MAC on resulting message

appending length to end of message is not secure.
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Handling variable-length messages.

Method |. Apply PRF to |m]| to obtain k’. Compute basic CBC-MAC using k'.

ensures different keys are used to authenticate messages of different lengths

Method 2. Prepend message with |m|, encoded as n-bit string, compute basic

CBC-MAC on resulting message

appending length to end of message is not secure.

Method 3. choose two different keys (k1,k2) as MAC key. Let t := basic
CBC-MAC on m using k1; output tag t = Fi, (t)

advantage: can be used for streaming data with unknown length
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“hash functions” used in data structures, e.g. H : {0,1}* — {0,1}'%®

take arbitrary-length strings and compress them into shorter strings
given (name, record), store record in cell H(name)

easy to store and look up record given name
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“hash functions” used in data structures, e.g. H : {0,1}* — {0,1}'%®

take arbitrary-length strings and compress them into shorter strings
given (name, record), store record in cell H(name)
easy to store and look up record given name

“good” hash function avoids collisions: x # x’ but H(x) = H(x')

collision-resistant hash functions used in cryptography
mandatory (for security purposes) to avoid collisions
e.g. hash homework submission / individuals to unique fingerprint?
examples: MD5 : {0,1}* — {0, 1}'?%, SHA1 : {0,1}* — {0,1}'%
H is collison-resistant if it is infeasible to find collision in H
only interested in H with input length > output length

MAC for variable-length message — hash-then-MAC



Collision-Resistant Hash Functions




security definition. H is (t, €)-collision-resistant if for all A running in time t,

probability A outputs a collision, i.e. x # x’ but H(x) = H(x') is < €
formally, family of hash functions H*(-) indexed by key s

hard to find collisions in H® for a randomly-generated s, adversary sees s

«F»



security definition. H is (t, €)-collision-resistant if for all A running in time t,

probability A outputs a collision, i.e. x # x’ but H(x) = H(x') is < €
formally, family of hash functions H*(-) indexed by key s

hard to find collisions in H® for a randomly-generated s, adversary sees s

practice: key is initialization vector, e.g. h®@ := 0x67452301 in MD5, etc.

«F»



security definition. H is (t, €)-collision-resistant if for all A running in time t,

probability A outputs a collision, i.e. x # x’ but H(x) = H(x') is < €
formally, family of hash functions H*(-) indexed by key s

hard to find collisions in H® for a randomly-generated s, adversary sees s

practice: key is initialization vector, e.g. h®@ := 0x67452301 in MD5, etc.

generic “birthday” attack. on H : {0, 1}* — {0, 1}*

if there are > 366 people in the room, certainly two have same birthday

«F»



security definition. H is (t, €)-collision-resistant if for all A running in time t,
probability A outputs a collision, i.e. x # x’ but H(x) = H(x') is < €
formally, family of hash functions H*(-) indexed by key s
hard to find collisions in H® for a randomly-generated s, adversary sees s

practice: key is initialization vector, e.g. h®@ := 0x67452301 in MD5, etc.

generic “birthday” attack. on H : {0, 1}* — {0, 1}*
if there are > 366 people in the room, certainly two have same birthday

claim. if there are > 23 people in the room, good chance two have same birthday

«F»



security definition. H is (t, €)-collision-resistant if for all A running in time t,

probability A outputs a collision, i.e. x # x’ but H(x) = H(x') is < €
formally, family of hash functions H*(-) indexed by key s
hard to find collisions in H® for a randomly-generated s, adversary sees s

practice: key is initialization vector, e.g. h®@ := 0x67452301 in MD5, etc.

generic “birthday” attack. on H : {0, 1}* — {0, 1}*
if there are > 366 people in the room, certainly two have same birthday
claim. if there are > 23 people in the room, good chance two have same birthday
brute force. try 2¢ + 1 different inputs

lemma. pick ~ 2¢/2 random inputs, good chance of finding collision

«F»



security definition. H is (t, €)-collision-resistant if for all A running in time t,

probability A outputs a collision, i.e. x # x’ but H(x) = H(x') is < €
formally, family of hash functions H*(-) indexed by key s
hard to find collisions in H® for a randomly-generated s, adversary sees s

practice: key is initialization vector, e.g. h®@ := 0x67452301 in MD5, etc.

generic “birthday” attack. on H : {0, 1}* — {0, 1}*
if there are > 366 people in the room, certainly two have same birthday
claim. if there are > 23 people in the room, good chance two have same birthday
brute force. try 2¢ + 1 different inputs
lemma. pick ~ 2¢/2 random inputs, good chance of finding collision
examples: MD5 : {0,1}* — {0, 1}'2® broken with 2°* computations;

SHA1 : {0, 1}* — {0, 1}'° broken with 2% computations
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Q. How to hash long messages starting from H : {0, 1}°° — {0,1}'%%2
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Q. How to hash long messages starting from H : {0, 1}°° — {0,1}'%%2

intuition: if two strings x, x’ collide, then there must be distinct intermediate values

that collide
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