
{
CSCI 6331 · 4331

∣∣ Lecture 6
}

Cryptography

Hoeteck Wee · hoeteck@gwu.edu

http://tinyurl.com/cryptogw/

.

.

Announcements

▶ Evaluation:

10% In-Class/Piazza, 20% Final Presentation / Project

30% Homework, 40% Final (Apr 25)

▶ Homework 3 is out

due Feb 29 (Wed) in class

.

Message Authentication Codes

setting.

▶ both users generate and share a secret key k in advance

— runs key generation algorithm k← Gen(1n)

▶ to send message m, sender computes a MAC tag t and sends (m, t)

— runs tag generation algorithm t← Mack(m)

▶ upon receiving (m, t), receiver verifies whether t is a valid tag on m

— runs verification algorithm Vrfy(m, t) ∈ {0, 1} (1 being valid)

syntax. message authentication code (MAC) is a triple of randomized algorithms

(Gen,Mac,Vrfy)

▶ correctness. for every key k output by Gen(1n), and every m ∈ {0, 1}∗, we have

Vrfyk(m,Mack(m)) = 1.

.

Message Authentication Codes

setting.

▶ both users generate and share a secret key k in advance

— runs key generation algorithm k← Gen(1n)

▶ to send message m, sender computes a MAC tag t and sends (m, t)

— runs tag generation algorithm t← Mack(m)

▶ upon receiving (m, t), receiver verifies whether t is a valid tag on m

— runs verification algorithm Vrfy(m, t) ∈ {0, 1} (1 being valid)

syntax. message authentication code (MAC) is a triple of randomized algorithms

(Gen,Mac,Vrfy)

▶ correctness. for every key k output by Gen(1n), and every m ∈ {0, 1}∗, we have

Vrfyk(m,Mack(m)) = 1.

.

Message Authentication Codes

Security Definition. hard to generate a valid tag on any “new” message that was not

previously sent – existentially unforgeable under adaptive chosen-message attack

1. Generate random key k using Gen(1n)

2. Adversary given 1n and oracle access to Mack(·), eventually outputs (m, t).
Let Q = set of queries

3. Wins if Vrfyk(m, t) = 1 and m /∈ Q.

definition. (t, ϵ)-secure if for all advesaries running in time t, winning probability

bounded by ϵ.

.

Message Authentication Codes

Security Definition. hard to generate a valid tag on any “new” message that was not

previously sent – existentially unforgeable under adaptive chosen-message attack

1. Generate random key k using Gen(1n)

2. Adversary given 1n and oracle access to Mack(·), eventually outputs (m, t).
Let Q = set of queries

3. Wins if Vrfyk(m, t) = 1 and m /∈ Q.

definition. (t, ϵ)-secure if for all advesaries running in time t, winning probability

bounded by ϵ.

.

Message Authentication Codes from PRFs

Security Definition. hard to generate a valid tag on any “new” message that was not

previously sent – existentially unforgeable under adaptive chosen-message attack

1. Gen : choose random k← K

2. Mack(m) : output tag F(k,m)

3. Vrfyk(m, t) : output 1 iff t = F(k,m)

▶ important distinction: fixed vs variable-length messages

▶ fixed: given MAC(“hello”), MAC(“world”), hard to compute MAC(“wello”);

however, computing MAC(“hello world”) may be easy.

Note. Above construction only works for “short” messages of a fixed length.

— solution 1: CBC-MAC (variant of CBC-mode encryption)

— solution 2: using collision-resistant hash functions

.

Message Authentication Codes from PRFs

Security Definition. hard to generate a valid tag on any “new” message that was not

previously sent – existentially unforgeable under adaptive chosen-message attack

1. Gen : choose random k← K

2. Mack(m) : output tag F(k,m)

3. Vrfyk(m, t) : output 1 iff t = F(k,m)

▶ important distinction: fixed vs variable-length messages

▶ fixed: given MAC(“hello”), MAC(“world”), hard to compute MAC(“wello”);

however, computing MAC(“hello world”) may be easy.

Note. Above construction only works for “short” messages of a fixed length.

— solution 1: CBC-MAC (variant of CBC-mode encryption)

— solution 2: using collision-resistant hash functions

.

Message Authentication Codes from PRFs

Security Definition. hard to generate a valid tag on any “new” message that was not

previously sent – existentially unforgeable under adaptive chosen-message attack

1. Gen : choose random k← K

2. Mack(m) : output tag F(k,m)

3. Vrfyk(m, t) : output 1 iff t = F(k,m)

▶ important distinction: fixed vs variable-length messages

▶ fixed: given MAC(“hello”), MAC(“world”), hard to compute MAC(“wello”);

however, computing MAC(“hello world”) may be easy.

Note. Above construction only works for “short” messages of a fixed length.

— solution 1: CBC-MAC (variant of CBC-mode encryption)

— solution 2: using collision-resistant hash functions

.

Message Authentication Codes from PRFs

Security Definition. hard to generate a valid tag on any “new” message that was not

previously sent – existentially unforgeable under adaptive chosen-message attack

1. Gen : choose random k← K

2. Mack(m) : output tag F(k,m)

3. Vrfyk(m, t) : output 1 iff t = F(k,m)

▶ important distinction: fixed vs variable-length messages

▶ fixed: given MAC(“hello”), MAC(“world”), hard to compute MAC(“wello”);

however, computing MAC(“hello world”) may be easy.

Note. Above construction only works for “short” messages of a fixed length.

— solution 1: CBC-MAC (variant of CBC-mode encryption)

— solution 2: using collision-resistant hash functions

.

Basic CBC-MAC

comparison with CBC-mode encryption.

— always use IV = 00 . . . 0 (or, no IV); CBC-mode encryption uses random IV.

— only output final block Cn; CBC-mode encryption outputs immediate blocks

— proof idea: show all inputs to PRF are distinct with high probability

— important distinction: many cryptography libraries provide a “CBC function”

.

Basic CBC-MAC

comparison with CBC-mode encryption.

— always use IV = 00 . . . 0 (or, no IV); CBC-mode encryption uses random IV.

— only output final block Cn; CBC-mode encryption outputs immediate blocks

— proof idea: show all inputs to PRF are distinct with high probability

— important distinction: many cryptography libraries provide a “CBC function”

.

Basic CBC-MAC

fixed-length. given tags for 5-letter words, hard to forge tag on new 5-letter word.

extension attack. given MAC(“hello”) = “aydmx”, forge MAC(“hello world”)?

— does getting MAC(“world”) help?

— how about getting MAC(“adymx”)?

.

Basic CBC-MAC

fixed-length. given tags for 5-letter words, hard to forge tag on new 5-letter word.

extension attack. given MAC(“hello”) = “aydmx”, forge MAC(“hello world”)?

— does getting MAC(“world”) help?

— how about getting MAC(“adymx”)?

.

Basic CBC-MAC

fixed-length. given tags for 5-letter words, hard to forge tag on new 5-letter word.

extension attack. given MAC(“hello”) = “aydmx”, forge MAC(“hello world”)?

— does getting MAC(“world”) help?

— how about getting MAC(“adymx”)?

.

“Extended” CBC-MAC

Handling variable-length messages.

▶ Method 1. Apply PRF to |m| to obtain k′. Compute basic CBC-MAC using k′.

– ensures different keys are used to authenticate messages of different lengths

▶ Method 2. Prepend message with |m|, encoded as n-bit string, compute basic

CBC-MAC on resulting message

– appending length to end of message is not secure.

▶ Method 3. choose two different keys (k1, k2) as MAC key. Let t := basic

CBC-MAC on m using k1; output tag t̂ = Fk2(t)

– advantage: can be used for streaming data with unknown length

.

“Extended” CBC-MAC

Handling variable-length messages.

▶ Method 1. Apply PRF to |m| to obtain k′. Compute basic CBC-MAC using k′.

– ensures different keys are used to authenticate messages of different lengths

▶ Method 2. Prepend message with |m|, encoded as n-bit string, compute basic

CBC-MAC on resulting message

– appending length to end of message is not secure.

▶ Method 3. choose two different keys (k1, k2) as MAC key. Let t := basic

CBC-MAC on m using k1; output tag t̂ = Fk2(t)

– advantage: can be used for streaming data with unknown length

.

“Extended” CBC-MAC

Handling variable-length messages.

▶ Method 1. Apply PRF to |m| to obtain k′. Compute basic CBC-MAC using k′.

– ensures different keys are used to authenticate messages of different lengths

▶ Method 2. Prepend message with |m|, encoded as n-bit string, compute basic

CBC-MAC on resulting message

– appending length to end of message is not secure.

▶ Method 3. choose two different keys (k1, k2) as MAC key. Let t := basic

CBC-MAC on m using k1; output tag t̂ = Fk2(t)

– advantage: can be used for streaming data with unknown length

.

Collision-Resistant Hash Functions

“hash functions” used in data structures, e.g. H : {0, 1}∗ → {0, 1}128

▶ take arbitrary-length strings and compress them into shorter strings

▶ given (name, record), store record in cell H(name)

▶ easy to store and look up record given name

▶ “good” hash function avoids collisions: x ̸= x′ but H(x) = H(x′)

▶ desirable to spread elements well in the tablecollision-resistant hash functions used in cryptography

▶ mandatory (for security purposes) to avoid collisions

▶ e.g. hash homework submission / individuals to unique fingerprint?

▶ examples: MD5 : {0, 1}∗ → {0, 1}128, SHA1 : {0, 1}∗ → {0, 1}160

▶ H is collison-resistant if it is infeasible to find collision in H

▶ only interested in H with input length > output length

▶ MAC for variable-length message — hash-then-MAC

.

Collision-Resistant Hash Functions

“hash functions” used in data structures, e.g. H : {0, 1}∗ → {0, 1}128

▶ take arbitrary-length strings and compress them into shorter strings

▶ given (name, record), store record in cell H(name)

▶ easy to store and look up record given name

▶ “good” hash function avoids collisions: x ̸= x′ but H(x) = H(x′)

▶ desirable to spread elements well in the tablecollision-resistant hash functions used in cryptography

▶ mandatory (for security purposes) to avoid collisions

▶ e.g. hash homework submission / individuals to unique fingerprint?

▶ examples: MD5 : {0, 1}∗ → {0, 1}128, SHA1 : {0, 1}∗ → {0, 1}160

▶ H is collison-resistant if it is infeasible to find collision in H

▶ only interested in H with input length > output length

▶ MAC for variable-length message — hash-then-MAC

.

Collision-Resistant Hash Functions

“hash functions” used in data structures, e.g. H : {0, 1}∗ → {0, 1}128

▶ take arbitrary-length strings and compress them into shorter strings

▶ given (name, record), store record in cell H(name)

▶ easy to store and look up record given name

▶ “good” hash function avoids collisions: x ̸= x′ but H(x) = H(x′)

▶ desirable to spread elements well in the table

collision-resistant hash functions used in cryptography

▶ mandatory (for security purposes) to avoid collisions

▶ e.g. hash homework submission / individuals to unique fingerprint?

▶ examples: MD5 : {0, 1}∗ → {0, 1}128, SHA1 : {0, 1}∗ → {0, 1}160

▶ H is collison-resistant if it is infeasible to find collision in H

▶ only interested in H with input length > output length

▶ MAC for variable-length message — hash-then-MAC

.

Collision-Resistant Hash Functions

“hash functions” used in data structures, e.g. H : {0, 1}∗ → {0, 1}128

▶ take arbitrary-length strings and compress them into shorter strings

▶ given (name, record), store record in cell H(name)

▶ easy to store and look up record given name

▶ “good” hash function avoids collisions: x ̸= x′ but H(x) = H(x′)

▶ desirable to spread elements well in the table

collision-resistant hash functions used in cryptography

▶ mandatory (for security purposes) to avoid collisions

▶ e.g. hash homework submission / individuals to unique fingerprint?

▶ examples: MD5 : {0, 1}∗ → {0, 1}128, SHA1 : {0, 1}∗ → {0, 1}160

▶ H is collison-resistant if it is infeasible to find collision in H

▶ only interested in H with input length > output length

▶ MAC for variable-length message — hash-then-MAC

.

Collision-Resistant Hash Functions

security definition. H is (t, ϵ)-collision-resistant if for all A running in time t,

probability A outputs a collision, i.e. x ̸= x′ but H(x) = H(x′) is < ϵ

▶ formally, family of hash functions Hs(·) indexed by key s

▶ hard to find collisions in Hs for a randomly-generated s, adversary sees s

▶ practice: key is initialization vector, e.g. h0 := 0x67452301 in MD5, etc.

generic “birthday” attack. on H : {0, 1}∗ → {0, 1}ℓ

▶ if there are > 366 people in the room, certainly two have same birthday

▶ claim. if there are > 23 people in the room, good chance two have same birthday

▶ brute force. try 2ℓ + 1 different inputs

▶ lemma. pick ≈ 2ℓ/2 random inputs, good chance of finding collision

▶ examples: MD5 : {0, 1}∗ → {0, 1}128 broken with 264 computations;

SHA1 : {0, 1}∗ → {0, 1}160 broken with 280 computations

.

Collision-Resistant Hash Functions

security definition. H is (t, ϵ)-collision-resistant if for all A running in time t,

probability A outputs a collision, i.e. x ̸= x′ but H(x) = H(x′) is < ϵ

▶ formally, family of hash functions Hs(·) indexed by key s

▶ hard to find collisions in Hs for a randomly-generated s, adversary sees s

▶ practice: key is initialization vector, e.g. h0 := 0x67452301 in MD5, etc.

generic “birthday” attack. on H : {0, 1}∗ → {0, 1}ℓ

▶ if there are > 366 people in the room, certainly two have same birthday

▶ claim. if there are > 23 people in the room, good chance two have same birthday

▶ brute force. try 2ℓ + 1 different inputs

▶ lemma. pick ≈ 2ℓ/2 random inputs, good chance of finding collision

▶ examples: MD5 : {0, 1}∗ → {0, 1}128 broken with 264 computations;

SHA1 : {0, 1}∗ → {0, 1}160 broken with 280 computations

.

Collision-Resistant Hash Functions

security definition. H is (t, ϵ)-collision-resistant if for all A running in time t,

probability A outputs a collision, i.e. x ̸= x′ but H(x) = H(x′) is < ϵ

▶ formally, family of hash functions Hs(·) indexed by key s

▶ hard to find collisions in Hs for a randomly-generated s, adversary sees s

▶ practice: key is initialization vector, e.g. h0 := 0x67452301 in MD5, etc.

generic “birthday” attack. on H : {0, 1}∗ → {0, 1}ℓ

▶ if there are > 366 people in the room, certainly two have same birthday

▶ claim. if there are > 23 people in the room, good chance two have same birthday

▶ brute force. try 2ℓ + 1 different inputs

▶ lemma. pick ≈ 2ℓ/2 random inputs, good chance of finding collision

▶ examples: MD5 : {0, 1}∗ → {0, 1}128 broken with 264 computations;

SHA1 : {0, 1}∗ → {0, 1}160 broken with 280 computations

.

Collision-Resistant Hash Functions

security definition. H is (t, ϵ)-collision-resistant if for all A running in time t,

probability A outputs a collision, i.e. x ̸= x′ but H(x) = H(x′) is < ϵ

▶ formally, family of hash functions Hs(·) indexed by key s

▶ hard to find collisions in Hs for a randomly-generated s, adversary sees s

▶ practice: key is initialization vector, e.g. h0 := 0x67452301 in MD5, etc.

generic “birthday” attack. on H : {0, 1}∗ → {0, 1}ℓ

▶ if there are > 366 people in the room, certainly two have same birthday

▶ claim. if there are > 23 people in the room, good chance two have same birthday

▶ brute force. try 2ℓ + 1 different inputs

▶ lemma. pick ≈ 2ℓ/2 random inputs, good chance of finding collision

▶ examples: MD5 : {0, 1}∗ → {0, 1}128 broken with 264 computations;

SHA1 : {0, 1}∗ → {0, 1}160 broken with 280 computations

.

Collision-Resistant Hash Functions

security definition. H is (t, ϵ)-collision-resistant if for all A running in time t,

probability A outputs a collision, i.e. x ̸= x′ but H(x) = H(x′) is < ϵ

▶ formally, family of hash functions Hs(·) indexed by key s

▶ hard to find collisions in Hs for a randomly-generated s, adversary sees s

▶ practice: key is initialization vector, e.g. h0 := 0x67452301 in MD5, etc.

generic “birthday” attack. on H : {0, 1}∗ → {0, 1}ℓ

▶ if there are > 366 people in the room, certainly two have same birthday

▶ claim. if there are > 23 people in the room, good chance two have same birthday

▶ brute force. try 2ℓ + 1 different inputs

▶ lemma. pick ≈ 2ℓ/2 random inputs, good chance of finding collision

▶ examples: MD5 : {0, 1}∗ → {0, 1}128 broken with 264 computations;

SHA1 : {0, 1}∗ → {0, 1}160 broken with 280 computations

.

Collision-Resistant Hash Functions

security definition. H is (t, ϵ)-collision-resistant if for all A running in time t,

probability A outputs a collision, i.e. x ̸= x′ but H(x) = H(x′) is < ϵ

▶ formally, family of hash functions Hs(·) indexed by key s

▶ hard to find collisions in Hs for a randomly-generated s, adversary sees s

▶ practice: key is initialization vector, e.g. h0 := 0x67452301 in MD5, etc.

generic “birthday” attack. on H : {0, 1}∗ → {0, 1}ℓ

▶ if there are > 366 people in the room, certainly two have same birthday

▶ claim. if there are > 23 people in the room, good chance two have same birthday

▶ brute force. try 2ℓ + 1 different inputs

▶ lemma. pick ≈ 2ℓ/2 random inputs, good chance of finding collision

▶ examples: MD5 : {0, 1}∗ → {0, 1}128 broken with 264 computations;

SHA1 : {0, 1}∗ → {0, 1}160 broken with 280 computations

.

Collision-Resistant Hash Functions

security definition. H is (t, ϵ)-collision-resistant if for all A running in time t,

probability A outputs a collision, i.e. x ̸= x′ but H(x) = H(x′) is < ϵ

▶ formally, family of hash functions Hs(·) indexed by key s

▶ hard to find collisions in Hs for a randomly-generated s, adversary sees s

▶ practice: key is initialization vector, e.g. h0 := 0x67452301 in MD5, etc.

generic “birthday” attack. on H : {0, 1}∗ → {0, 1}ℓ

▶ if there are > 366 people in the room, certainly two have same birthday

▶ claim. if there are > 23 people in the room, good chance two have same birthday

▶ brute force. try 2ℓ + 1 different inputs

▶ lemma. pick ≈ 2ℓ/2 random inputs, good chance of finding collision

▶ examples: MD5 : {0, 1}∗ → {0, 1}128 broken with 264 computations;

SHA1 : {0, 1}∗ → {0, 1}160 broken with 280 computations

.

Merkle-Damgård transform

Q. How to hash long messages starting from H : {0, 1}256 → {0, 1}128?

— intuition: if two strings x, x′ collide, then there must be distinct intermediate values

that collide

.

Merkle-Damgård transform

Q. How to hash long messages starting from H : {0, 1}256 → {0, 1}128?

— intuition: if two strings x, x′ collide, then there must be distinct intermediate values

that collide

