{ CSCI 6331 - 4331 | Lecture 6 }

Cryptography

Hoeteck Wee - hoeteck@gwu.edu

http://tinyurl.com/cryptogw/

<«

Announcements

setting.
both users generate and share a secret key k in advance
runs key generation algorithm k <— Gen(1")
to send message m, sender computes 2 MAC tag t and sends (m, t)
runs tag generation algorithm t <— Macy (m)
upon receiving (m, t), receiver verifies whether t is a valid tag on m

runs verification algorithm Vrfy(m, t) € {0,1} (1 being valid)

«F»

setting.
both users generate and share a secret key k in advance
runs key generation algorithm k <— Gen(1")
to send message m, sender computes 2 MAC tag t and sends (m, t)
runs tag generation algorithm t <— Macy (m)
upon receiving (m, t), receiver verifies whether t is a valid tag on m

runs verification algorithm Vrfy(m, t) € {0,1} (1 being valid)
syntax. message authentication code (MAC) is a triple of randomized algorithms

(Gen, Mac, Vrfy)

correctness. for every key k output by Gen(1™), and every m € {0, 1}*, we have
Vrfy, (m, Mack (m)) = 1.

«F»

Message Authentication Codes

Security Definition. hard to generate a valid tag on any “new” message that was not

previously sent — existentially unforgeable under adaptive chosen-message attack

Generate random key k using Gen (1)

Adversary given 1 and oracle access to Mack(+), eventually outputs (m, t).

Let Q = set of queries

Wins if Vrfy, (m,t) = 1and m ¢ Q.

definition. (t, €)-secure if for all advesaries running in time t, winning probability

bounded by €.

«F»

Security Definition. hard to generate a valid tag on any “new” message that was not

previously sent — existentially unforgeable under adaptive chosen-message attack

Gen : choose random k +— K
Mack (m) : output tag F(k, m)
Vrfy, (m,t) : output 1 iff t = F(k, m)

important distinction: fixed vs variable-length messages

fixed: given MAC(*hello”), MAC(“world”), hard to compute MAC(*“wello”);

however, computing MAC(“hello world”) may be easy.

«F»

Security Definition. hard to generate a valid tag on any “new” message that was not

previously sent — existentially unforgeable under adaptive chosen-message attack

Gen : choose random k +— K
Mack (m) : output tag F(k, m)
Vrfy, (m,t) : output 1 iff t = F(k, m)

important distinction: fixed vs variable-length messages

fixed: given MAC(*hello”), MAC(“world”), hard to compute MAC(*“wello”);

however, computing MAC(“hello world”) may be easy.

Note. Above construction only works for “short” messages of a fixed length.

«F»

Security Definition. hard to generate a valid tag on any “new” message that was not

previously sent — existentially unforgeable under adaptive chosen-message attack

Gen : choose random k +— K
Mack (m) : output tag F(k, m)
Vrfy, (m,t) : output 1 iff t = F(k, m)

important distinction: fixed vs variable-length messages

fixed: given MAC(*hello”), MAC(“world”), hard to compute MAC(*“wello”);

however, computing MAC(“hello world”) may be easy.

Note. Above construction only works for “short” messages of a fixed length.
solution |: CBC-MAC (variant of CBC-mode encryption)

solution 2: using collision-resistant hash functions

«F»

Security Definition. hard to generate a valid tag on any “new” message that was not

previously sent — existentially unforgeable under adaptive chosen-message attack

Gen : choose random k +— K
Mack (m) : output tag F(k, m)
Vrfy, (m,t) : output 1 iff t = F(k, m)

important distinction: fixed vs variable-length messages

fixed: given MAC(*hello”), MAC(“world”), hard to compute MAC(*“wello”);

however, computing MAC(“hello world”) may be easy.

Note. Above construction only works for “short” messages of a fixed length.
solution |: CBC-MAC (variant of CBC-mode encryption)

solution 2: using collision-resistant hash functions

«F»

comparison with CBC-mode encryption.

always use IV = 00. .. 0 (or; no IV); CBC-mode encryption uses random I'V.
only output final block C,,; CBC-mode encryption outputs immediate blocks

proof idea: show all inputs to PRF are distinct with high probability

«F >

comparison with CBC-mode encryption.

always use IV = 00. .. 0 (or; no IV); CBC-mode encryption uses random I'V.
only output final block C,,; CBC-mode encryption outputs immediate blocks
proof idea: show all inputs to PRF are distinct with high probability

important distinction: many cryptography libraries provide a “CBC function”

«F»

fixed-length. given tags for 5-letter words, hard to forge tag on new 5-letter word.

«F»

fixed-length. given tags for 5-letter words, hard to forge tag on new 5-letter word.

extension attack. given MAC(“hello”) = “aydmx”, forge MAC(*“hello world”)?

does getting MAC(“world”) help?

«F»

fixed-length. given tags for 5-letter words, hard to forge tag on new 5-letter word.

extension attack. given MAC(“hello”) = “aydmx”, forge MAC(*“hello world”)?
does getting MAC(“world”) help?

how about getting MAC(“adymx”)?

«F»

Handling variable-length messages.
Method |. Apply PRF to |m]| to obtain k’. Compute basic CBC-MAC using k'.

ensures different keys are used to authenticate messages of different lengths

«F >

Handling variable-length messages.

Method |. Apply PRF to |m]| to obtain k’. Compute basic CBC-MAC using k'.

ensures different keys are used to authenticate messages of different lengths

Method 2. Prepend message with |m|, encoded as n-bit string, compute basic

CBC-MAC on resulting message

appending length to end of message is not secure.

«F»

Handling variable-length messages.

Method |. Apply PRF to |m]| to obtain k’. Compute basic CBC-MAC using k'.

ensures different keys are used to authenticate messages of different lengths

Method 2. Prepend message with |m|, encoded as n-bit string, compute basic

CBC-MAC on resulting message

appending length to end of message is not secure.

Method 3. choose two different keys (k1,k2) as MAC key. Let t := basic
CBC-MAC on m using k1; output tag t = Fi, (t)

advantage: can be used for streaming data with unknown length

«F»

“hash functions” used in data structures, e.g. H : {0,1}* — {0,1}'%®

take arbitrary-length strings and compress them into shorter strings
given (name, record), store record in cell H(name)

easy to store and look up record given name

«F»

“hash functions” used in data structures, e.g. H : {0,1}* — {0,1}'%®

take arbitrary-length strings and compress them into shorter strings
given (name, record), store record in cell H(name)
easy to store and look up record given name

“good” hash function avoids collisions: x # x’ but H(x) = H(x')

«F»

“hash functions” used in data structures, e.g. H : {0,1}* — {0,1}'%®

take arbitrary-length strings and compress them into shorter strings
given (name, record), store record in cell H(name)
easy to store and look up record given name

“good” hash function avoids collisions: x # x’ but H(x) = H(x')

collision-resistant hash functions used in cryptography
mandatory (for security purposes) to avoid collisions
e.g. hash homework submission / individuals to unique fingerprint?

examples: MD5 : {0,1}* — {0, 1}'?%, SHA1 : {0,1}* — {0,1}'%

“hash functions” used in data structures, e.g. H : {0,1}* — {0,1}'%®

take arbitrary-length strings and compress them into shorter strings
given (name, record), store record in cell H(name)
easy to store and look up record given name

“good” hash function avoids collisions: x # x’ but H(x) = H(x')

collision-resistant hash functions used in cryptography
mandatory (for security purposes) to avoid collisions
e.g. hash homework submission / individuals to unique fingerprint?
examples: MD5 : {0,1}* — {0, 1}'?%, SHA1 : {0,1}* — {0,1}'%
H is collison-resistant if it is infeasible to find collision in H
only interested in H with input length > output length

MAC for variable-length message — hash-then-MAC

Collision-Resistant Hash Functions

security definition. H is (t, €)-collision-resistant if for all A running in time t,

probability A outputs a collision, i.e. x # x’ but H(x) = H(x') is < €
formally, family of hash functions H*(-) indexed by key s

hard to find collisions in H® for a randomly-generated s, adversary sees s

«F»

security definition. H is (t, €)-collision-resistant if for all A running in time t,

probability A outputs a collision, i.e. x # x’ but H(x) = H(x') is < €
formally, family of hash functions H*(-) indexed by key s

hard to find collisions in H® for a randomly-generated s, adversary sees s

practice: key is initialization vector, e.g. h®@ := 0x67452301 in MD5, etc.

«F»

security definition. H is (t, €)-collision-resistant if for all A running in time t,

probability A outputs a collision, i.e. x # x’ but H(x) = H(x') is < €
formally, family of hash functions H*(-) indexed by key s

hard to find collisions in H® for a randomly-generated s, adversary sees s

practice: key is initialization vector, e.g. h®@ := 0x67452301 in MD5, etc.

generic “birthday” attack. on H : {0, 1}* — {0, 1}*

if there are > 366 people in the room, certainly two have same birthday

«F»

security definition. H is (t, €)-collision-resistant if for all A running in time t,
probability A outputs a collision, i.e. x # x’ but H(x) = H(x') is < €
formally, family of hash functions H*(-) indexed by key s
hard to find collisions in H® for a randomly-generated s, adversary sees s

practice: key is initialization vector, e.g. h®@ := 0x67452301 in MD5, etc.

generic “birthday” attack. on H : {0, 1}* — {0, 1}*
if there are > 366 people in the room, certainly two have same birthday

claim. if there are > 23 people in the room, good chance two have same birthday

«F»

security definition. H is (t, €)-collision-resistant if for all A running in time t,

probability A outputs a collision, i.e. x # x’ but H(x) = H(x') is < €
formally, family of hash functions H*(-) indexed by key s
hard to find collisions in H® for a randomly-generated s, adversary sees s

practice: key is initialization vector, e.g. h®@ := 0x67452301 in MD5, etc.

generic “birthday” attack. on H : {0, 1}* — {0, 1}*
if there are > 366 people in the room, certainly two have same birthday
claim. if there are > 23 people in the room, good chance two have same birthday
brute force. try 2¢ + 1 different inputs

lemma. pick ~ 2¢/2 random inputs, good chance of finding collision

«F»

security definition. H is (t, €)-collision-resistant if for all A running in time t,

probability A outputs a collision, i.e. x # x’ but H(x) = H(x') is < €
formally, family of hash functions H*(-) indexed by key s
hard to find collisions in H® for a randomly-generated s, adversary sees s

practice: key is initialization vector, e.g. h®@ := 0x67452301 in MD5, etc.

generic “birthday” attack. on H : {0, 1}* — {0, 1}*
if there are > 366 people in the room, certainly two have same birthday
claim. if there are > 23 people in the room, good chance two have same birthday
brute force. try 2¢ + 1 different inputs
lemma. pick ~ 2¢/2 random inputs, good chance of finding collision
examples: MD5 : {0,1}* — {0, 1}'2® broken with 2°* computations;

SHA1 : {0, 1}* — {0, 1}'° broken with 2% computations

«F»

Q. How to hash long messages starting from H : {0, 1}°° — {0,1}'%%2

«F»

Q. How to hash long messages starting from H : {0, 1}°° — {0,1}'%%2

intuition: if two strings x, x’ collide, then there must be distinct intermediate values

that collide

«F»

