
{
CSCI 6331 · 4331

∣∣ Lecture 3
}

Cryptography

Hoeteck Wee · hoeteck@gwu.edu

http://tinyurl.com/cryptogw/

.

.

Announcements

▶ Evaluation:

10% In-Class/Piazza, 20% Final Presentation / Project

30% Homework, 40% Final (Apr 25)

.

Today

▶ Single Message Security

▶ Block Ciphers

▶ Security for Multiple Encryptions

.

Eavesdropping Security for Single Message

1. (message selection) A(1n) outputs m0,m1 of same length.

2. (key generation) generate key k

3. (challenge bit) random bit b← {0, 1}.

4. (challenge ciphertext) c← Enc(mb) given to A

5. A outputs b′ and wins if b′ = b

Q. What is A’s winning probability if it outputs random bit b′?

Q. What is A’s winning probability if it chooses m0 = m1?

NB. A chooses m0,m1 (chosen plaintext) and knows m0,m1.

.

Eavesdropping Security for Single Message

1. (message selection) A(1n) outputs m0,m1 of same length.

2. (key generation) generate key k

3. (challenge bit) random bit b← {0, 1}.

4. (challenge ciphertext) c← Enc(mb) given to A

5. A outputs b′ and wins if b′ = b

definition. (Gen,Enc,Dec) is (t, ϵ)-single-message indistinguishable if for all

adversaries A running in time t, winning probability bounded by 1/2 + ϵ

=⇒ e.g. ciphertext “hides” first bit of plaintext

last lecture. single-message indistinguishability by using PRG as one-time pad.

Q. typically, PRG has fixed-length output. How to encrypt longer messages?

.

Pseudorandom Functions (PRF)

Pseudorandom Functions (PRF) defined over (K,X,Y):

F : K×X→ Y (key × input→ output)

▶ “efficient” algorithm to evaluate F(k, x)

example. AES : {0, 1}128 × {0, 1}128 → {0, 1}128

intuition. gives us many one-time pads, F(k, 0),F(k, 1),F(k, 2),F(k, 3), . . .

1. (challenge bit) random bit b← {0, 1}.

2. (challenge function) if b = 1, f is truly random function from X to Y;

if b = 0, f is F(k, ·) for a random k

3. A gets f(0), f(1), f(2), . . .

4. A outputs b′ and wins if b′ = b

definition. F : K×X→ Y is (t, ϵ)-secure PRF if for all adversaries A running in

time t, winning probability bounded by 1/2 + ϵ

.

Pseudorandom Functions (PRF)

Pseudorandom Functions (PRF) defined over (K,X,Y):

F : K×X→ Y (key × input→ output)

▶ “efficient” algorithm to evaluate F(k, x)

example. AES : {0, 1}128 × {0, 1}128 → {0, 1}128

intuition. gives us many one-time pads, F(k, 0),F(k, 1),F(k, 2),F(k, 3), . . .

Deterministic Counter Mode. using PRF F : K× {0, 1}128 → {0, 1}128.

▶ break message m into 128-bit blocks (m0,m1,m2,m3,m4, . . .)

▶ Enck(m) outputs (m0 ⊕ F(k, 0),m1 ⊕ F(k, 1),m2 ⊕ F(k, 2), . . .)

▶ Deck(c0, c1, . . .) outputs (c0 ⊕ F(k, 0), c1 ⊕ F(k, 1), . . .)

.

Pseudorandom Permutations (PRP) aka Block Ciphers

Pseudorandom Functions (PRF) defined over (K,X,Y):

F : K×X→ Y (key × input→ output)

▶ “efficient” algorithm to evaluate F(k, x)

Pseudorandom Permutations (PRP) defined over (K,X):

E : K×X→ X (input = output = X)

▶ “efficient” algorithm to evaluate E(k, x)

▶ function E(k, ·) is one-to-one

▶ “efficient” inversion algorithm D(k, x)

example. AES : {0, 1}128 × {0, 1}128 → {0, 1}128;

DES : {0, 1}56 × {0, 1}64 → {0, 1}64

note. functionally, a PRP is also a PRF where X = Y and is efficiently invertible

.

Pseudorandom Permutations (PRP) aka Block Ciphers

Pseudorandom Permutations (PRP) defined over (K,X):

E : K×X→ X (input = output = X)

1. (challenge bit) random bit b← {0, 1}.

2. (challenge function) if b = 1, f is truly random permutation from X to X;

if b = 0, f is E(k, ·) for a random k

3. A gets f(0), f(1), f(2), . . .

4. A outputs b′ and wins if b′ = b

definition. F : K×X→ X is (t, ϵ)-secure PRP if for all adversaries A running in

time t, winning probability bounded by 1/2 + ϵ

AES Assumption. AES : {0, 1}128 × {0, 1}128 → {0, 1}128 is a (280, 2−40)-secure PRP

theorem. any secure PRP is also a secure PRF.

.

Electronic Code Book (ECB)

Electronic Code Book (ECB) Mode. using PRP E : K× {0, 1}128 → {0, 1}128.

▶ break message m into 128-bit blocks (m0,m1,m2,m3,m4, . . .)

▶ Enck(m) outputs (E(k,m0),E(k,m1),E(k,m2), . . .)

problem. if two message blocks are equal, then ciphertext blocks are equal.

solution. Don’t use ECB!

.

One-Time vs Many-Time Key

so far.. One key per message

▶ example application: encrypted email, new key for every message

next... One key for multiple messages

▶ example applications: file systems (same AES key, many files); IPsec (same AES key,

many packets)

▶ alternative viewpoint: many-time / reuseable key

▶ “multiple messages” different from “one message, multiple blocks”

Q. how to define security?

Q. how to build such schemes from block ciphers?

.

Eavesdropping Security for Multiple Messages

1. (message selection) A(1n) outputs (m1
0, . . . ,mt

0), (m1
1, . . . ,mt

1)

2. (key generation) generate key k

3. (challenge bit) random bit b← {0, 1}.

4. (challenge ciphertext) ci ← Enc(mi
b), i = 1, 2, . . . , t given to A

5. A outputs b′ and wins if b′ = b

definition. (Gen,Enc,Dec) is (t, ϵ)-multiple-message indistinguishable if for all

adversaries A running in time t, winning probability bounded by 1/2 + ϵ

example: shift cipher. messages are characters, k ∈ 0, 1, . . . , 25.

A outputs (’A’, ’B’), (’C’, ’D’) and suppose k = 3.

what is (c1, c2) if b = 0? and b = 1?

.

Eavesdropping Security for Multiple Messages

lemma. if Enc is deterministic, not two-message indistinguishable

proof. if two messages are equal, then ciphertexts are equal

corollary. given the same plaintext message twice, encryption algorithm must produce

different outputs

method. encryptor picks a random nonce (aka IV), changes from message to message

.

Cipher Block Chaining (CBC) Mode

CBC Mode. using PRP E : K× {0, 1}128 → {0, 1}128.

▶ break message m into 128-bit blocks (m0,m1,m2,m3,m4, . . .)

.

Random Counter Mode

Random Counter Mode. using PRF F : K× {0, 1}128 → {0, 1}128.

▶ break message m into 128-bit blocks (m0,m1,m2,m3,m4, . . .)

▶ Enck(m):

pick a random IV;

output (IV,m0 ⊕ F(k, IV),m1 ⊕ F(k, IV + 1),m2 ⊕ F(k, IV + 2), . . .)

▶ Deck(IV, c0, c1, . . .) outputs (c0 ⊕ F(k, IV), c1 ⊕ F(k, IV + 1), . . .)

▶ parallelizable (unlike CBC)

