
{
CSCI 6331 · 4331

∣∣ Lecture 2
}

Cryptography

Hoeteck Wee · hoeteck@gwu.edu

http://tinyurl.com/cryptogw/

.

.

Announcements

▶ Sign up for Piazza (participation affects final grade)

▶ Homework 1 is up (updated today, added new question)

.

Vigenère Cipher

Vignère Cipher.

▶ Key space = strings of letters, e.g. SECRET

▶ Generate a pad by repeating the key, use as one-time pad (A=0,...):

THIS IS THE PLAINTEXT TO BE ENCRYPTED

SECR ET SEC RETSECRET SE CR ETSECRETS

LLKJ ML LLG GPTARVVBM LS DV IGUVAGXXV

Cipertext-Only Attack. (assuming English language)

▶ Guess the key length, e.g. 6. What happens every 6’th letter? (shift cipher)

Chosen-Plaintext Attack. (adversary obtains encryption of plaintexts of its choice)

▶ Which plaintext?

.

Perfectly Secure Encryption

Goal. Protect secrecy of communication

Trust Model. Three entities, sender, receiver. Public channel, no tampering.

Who is the adversary? Eavesdroper.

Powers? Cipertext-only attacks. (adversary observes a single ciphertext)

What constitutes a break? Learns more about plaintext after seeing ciphertext.

▶ example: substitution cipher. Ciphertext A A reveals both letters are the same.

.

Perfectly Secure Encryption

Criterion. a perfect cipher / perfect secrecy

▶ for all m1,m2 ∈ M, for all ciphertexts c,

Pr
k
[Enck(m1) = c] = Pr

k
[Enck(m2) = c]

▶ Idea. Regardless of plaintext, adversary sees same distribution of ciphertexts

One-Time Pad. example of perfect cipher

▶ M = K = C = {0, 1}ℓ; Gen outputs a random ℓ-bit string k

▶ Enck(m) = k ⊕ m (bit-wise XOR)

Q1. What is Prk[Enck(0
ℓ) = 0ℓ]? A. equals Prk[k = 0ℓ] = 1/2ℓ

Q2. take any m, c ∈ {0, 1}ℓ. What is Prk[Enck(m) = c]?

A. equals Prk[k = m ⊕ c] = 1/2ℓ

.

Perfectly Secure Encryption

Criterion. a perfect cipher / perfect secrecy

▶ for all m1,m2 ∈ M, for all ciphertexts c,

Pr
k
[Enck(m1) = c] = Pr

k
[Enck(m2) = c]

▶ Idea. Regardless of plaintext, adversary sees same distribution of ciphertexts

One-Time Pad. example of perfect cipher

▶ M = K = C = {0, 1}ℓ; Gen outputs a random ℓ-bit string k

▶ Enck(m) = k ⊕ m (bit-wise XOR)

Theorem. For a perfect cipher, the number of keys is at least the size of message space

▶ Corollary. Key length of one-time pad is optimal.

▶ In practice, we want to encrypt gigabytes of data.

=⇒ need gigabyte-long key for perfect secrecy! (hard to store)

.

Computational Security

Computational Security. “practically unbreakable” (vs impossible to break)

— e.g. takes fastest available supercomputer > 200 years to break

▶ security against all efficient adversaries running in feasible amount of time

▶ adversary’s success probability is tiny, e.g. < 2−80

▶ Note. not enough to defeat a set of statistical tests, e.g. frequency analysis

More formally.. a scheme is (t, ϵ)-secure if every adversary running for time at most t
succeeds in breaking the scheme with probability at most ϵ

▶ practice: t = 280 CPU cycles, ϵ = 2−80 (260 cycles ∼ 35 years on 1 GHz PC)

Q. What happens in 20 years with 200 GHz computers?

▶ theory: t = polynomial-time algorithms,

ϵ = negligible, i. e. smaller than any inverse polynomial

.

Computational Secrecy

Perfect Secrecy.

▶ for all m1,m2 ∈ M, for all ciphertexts c,

Pr
k
[Enck(m1) = c] = Pr

k
[Enck(m2) = c]

▶ Idea. Regardless of plaintext, adversary sees same distribution of ciphertexts

Computational Secrecy. (t, ϵ)-hard to distinguish encryptions of m1 vs m2.

▶ for all m1,m2 ∈ M, for all adversaries A running in time t:

| Pr
k
[A(Enck(m1)) = 1]− Pr

k
[A(Enck(m2)) = 1] | < ϵ

▶ Note. implied by perfect secrecy

Q. How to construct ciphers with short keys achieving computational secrecy?

— new tool: pseudorandom generator

.

Computational Secrecy: Pseudorandomness

Pseudorandom Generator (PRG). generates strings that “look random”

▶ G : {0, 1}k → {0, 1}m where k < m and G efficiently computable

▶ (t, ϵ)-hard to distinguish output of G from truly random string

▶ for all adversaries A running in time t:

| Pr
s←{0,1}k

[A(G(s)) = 1]− Pr
u←{0,1}m

[A(u) = 1] | < ϵ

▶ example: k = 80,m = 128, ϵ = 0.1; A outputs the majority of bits.

Q. What is Prs←{0,1}80 [A(G(s)) = 1]?

.

Computational Secrecy: Encryption with PRG

Pseudorandom Generator (PRG). generates strings that “look random”

▶ G : {0, 1}k → {0, 1}m where k < m and G efficiently computable

▶ (t, ϵ)-hard to distinguish output of G from truly random string

Using PRG for encryption. use output of PRG as a one-time pad

▶ M = {0, 1}m,K = {0, 1}k, C ⊂ {0, 1}m

▶ Gen outputs a random k-bit string s

▶ Encs(m) = G(s)⊕ m (What is Decs(c)?)

Claim. If G is (t, ϵ)-secure, then the cipher is (t, ϵ)-secure too.

▶ Proof by reduction: if we can break security of encryption (distinguish encryptions

of m1 and m2), then we can break security of PRG (distinguish from random)

.

Computational Secrecy: Encryption with PRG

Pseudorandom Generator (PRG). generates strings that “look random”

▶ G : {0, 1}k → {0, 1}m where k < m and G efficiently computable

▶ (t, ϵ)-hard to distinguish output of G from truly random string

Using PRG for encryption. use output of PRG as a one-time pad

▶ M = {0, 1}m,K = {0, 1}k, C ⊂ {0, 1}m

▶ Gen outputs a random k-bit string s

▶ Encs(m) = G(s)⊕ m (What is Decs(c)?)

Claim. If G is (t, ϵ)-secure, then the cipher is (t, ϵ)-secure too.

▶ Proof by reduction: if we can break security of encryption (distinguish encryptions

of m1 and m2), then we can break security of PRG (distinguish from random)

.

Computational Secrecy: Encryption with PRG

Pseudorandom Generator (PRG). generates strings that “look random”

▶ G : {0, 1}k → {0, 1}m where k < m and G efficiently computable

▶ (t, ϵ)-hard to distinguish output of G from truly random string

Using PRG for encryption. use output of PRG as a one-time pad

▶ M = {0, 1}m,K = {0, 1}k, C ⊂ {0, 1}m

▶ Gen outputs a random k-bit string s

▶ Encs(m) = G(s)⊕ m (What is Decs(c)?)

Claim. If G is (t, ϵ)-secure, then the cipher is (t, ϵ)-secure too.

▶ Proof by reduction: if we can break security of encryption (distinguish encryptions

of m1 and m2), then we can break security of PRG (distinguish from random)

.

Computational Secrecy: Encryption with PRG

Using PRG for encryption. use output of PRG as a one-time pad

▶ M = {0, 1}m,K = {0, 1}k, C ⊂ {0, 1}m

▶ Gen outputs a random k-bit string s

▶ Encs(m) = G(s)⊕ m; Decs(c) = c ⊕ G(s)

Claim. If G is (t, ϵ)-secure, then the cipher is (t, ϵ)-secure too.

▶ if G(s) “looks like” random, then Enck(m1) “looks like” Enck(m2)

▶ Consider the four distributions:

1. encrypt m1 with pseudorandom one-time pad G(s)
2. encrypt m1 with truly random one-time pad

3. encrypt m2 with truly random one-time pad

4. encrypt m2 with pseudorandom one-time pad G(s)

.

PRG in Practice

Pseudorandom Generators in Practice

▶ heuristic design

▶ very efficient

▶ specific input/key lengths and output lengths

Q. can we extend the output length?

Stream ciphers meant to implement a PRG

▶ examples: A5, RC4, SEAL

▶ intended for encryption in the same way as OTP

▶ single functions, require synchronization

.

Block Ciphers

Block Ciphers. family of functions K × X → X

▶ AES: K = X = {0, 1}128

▶ DES: X = {0, 1}64,K = {0, 1}56

▶ 3DES: X = {0, 1}64,K = {0, 1}168

