{ CSCl 6331 - 4331 | Lecture 2 }

Cryptography

Hoeteck Wee - hoeteck@gwu.edu

http://tinyurl.com/cryptogw/

<«



Announcements




Vignere Cipher.
Key space = strings of letters, e.g. SECRET
Generate a pad by repeating the key, use as one-time pad (A=0,...):

THIS IS THE PLAINTEXT TO BE ENCRYPTED
SECR ET SEC RETSECRET SE CR ETSECRETS
LLKJ ML LLG GPTARVVBM LS DV IGUVAGXXV

Cipertext-Only Attack. (assuming English language)
Guess the key length, e.g. 6. What happens every 6’th letter? (shift cipher)

Chosen-Plaintext Attack. (adversary obtains encryption of plaintexts of its choice)

Which plaintext?
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Goal. Protect secrecy of communication

Trust Model. Three entities, sender, receiver. Public channel, no tampering.
Who is the adversary? Eavesdroper.

Powers? Cipertext-only attacks. (adversary observes a single ciphertext)

What constitutes a break? Learns more about plaintext after seeing ciphertext.

example: substitution cipher. Ciphertext A A reveals both letters are the same.
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Criterion. a perfect cipher / perfect secrecy
for all my, ma € M, for all ciphertexts c,
fl’(r[Enck(ml) =@ = Il’(r[Enck(mQ) =]

Idea. Regardless of plaintext, adversary sees same distribution of ciphertexts

One-Time Pad. example of perfect cipher
M =K =C = {0,1}% GCen outputs a random £-bit string k

Enck(m) = k @ m (bit-wise XOR)

QI. What is Pry[Enci (0°) = 0°]2 A. equals Pri [k = 0°] = 1/2°
Q2. take any m, ¢ € {0, 1}*. What is Pry[Enci(m) = c]?
A. equals Pri[k = m @ ¢] = 1/2°
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Criterion. a perfect cipher / perfect secrecy

for all my, ma € M, for all ciphertexts c,

]?l’(r[Enck(ml) =@ = l:l’(r[Enck(mz) =]

Idea. Regardless of plaintext, adversary sees same distribution of ciphertexts
One-Time Pad. example of perfect cipher

M =K =C = {0,1}% Cen outputs a random £-bit string k

Enck(m) = k @ m (bit-wise XOR)
Theorem. For a perfect cipher, the number of keys is at least the size of message space

Corollary. Key length of one-time pad is optimal.

In practice, we want to encrypt gigabytes of data.

— need gigabyte-long key for perfect secrecy! ( hard to store )
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Computational Security. “practically unbreakable” ( vs impossible to break )
— e.g. takes fastest available supercomputer > 200 years to break
security against all efficient adversaries running in feasible amount of time
2—80

adversary’s success probability is tiny, e.g. <

Note. not enough to defeat a set of statistical tests, e.g. frequency analysis

More formally.. a scheme is (t, €)-secure if every adversary running for time at most t

succeeds in breaking the scheme with probability at most €
practice: t = 250 CPU cycles, e = 278 (2%° cycles ~ 35 years on 1 GHz PC )
Q. What happens in 20 years with 200 GHz computers?

theory: t = polynomial-time algorithms,

€ = negligible, i. e. smaller than any inverse polynomial
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Perfect Secrecy.

for all mq, ms € M, for all ciphertexts c,

Pr[Enck(ml) =@ = Pr[Enck(mz) c|

Idea. Regardless of plaintext, adversary sees same distribution of ciphertexts
Computational Secrecy. (t, €)-hard to distinguish encryptions of m; vs mo.

for all mq, ms € M, for all adversaries A running in time t:

| Pr[A(Enci(m1)) = 1] — Pr[A(Enck(mz)) = 1]| <
Note. implied by perfect secrecy

Q. How to construct ciphers with short keys achieving computational secrecy?

— new tool: pseudorandom generator



Pseudorandom Generator (PRG). generates strings that “look random”
G :{0,1}* — {0,1}™ where k < m and G efficiently computable
(t, €)-hard to distinguish output of G from truly random string
for all adversaries A running in time t:

| Pr [A(G(s)=1]- P

T
s<{0,1}k us+{0,1}™

A(w) =1]| <€

example: k = 80, m = 128, ¢ = 0.1; A outputs the majority of bits.

Q. What is Prg,_ (g 1380[A(G(s)) = 1]
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Pseudorandom Generator (PRG). generates strings that “look random”
G : {0,1}* — {0,1}™ where k < m and G efficiently computable

(t, €)-hard to distinguish output of G from truly random string

Using PRG for encryption. use output of PRG as a one-time pad
M ={0,1}™ K = {0,1}*,C C {0,1}™"
Gen outputs a random k-bit string s

Encs(m) = G(s) @m (What is Decs(c)? )

Claim. If G is (t, €)-secure, then the cipher is (t, €)-secure too.

Proof by reduction: if we can break security of encryption (distinguish encryptions

of m; and my2), then we can break security of PRG (distinguish from random)
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Using PRG for encryption. use output of PRG as a one-time pad
M ={0,1}™,K = {0,1}*,C C {0,1}"
Gen outputs a random k-bit string s

Encs(m) = G(s) & m; Decs(c) = ¢ ® G(s)

Claim. If G is (t, €)-secure, then the cipher is (t, €)-secure too.

if G(s) “looks like” random, then Enci(m1) “looks like” Ency(m2)
Consider the four distributions:

encrypt m; with pseudorandom one-time pad G(s)

encrypt mj with truly random one-time pad

encrypt mo with truly random one-time pad

encrypt mo with pseudorandom one-time pad G(s)
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Pseudorandom Generators in Practice
heuristic design
very efficient
specific input/key lengths and output lengths

Q. can we extend the output length?

Stream ciphers meant to implement a PRG
examples: A5, RC4, SEAL
intended for encryption in the same way as OTP

single functions, require synchronization
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Block Ciphers



