{ CSCl 6331 - 4331 | Lecture 2 }

Cryptography

Hoeteck Wee - hoeteck@gwu.edu

http://tinyurl.com/cryptogw/

<«

Announcements

Vignere Cipher.
Key space = strings of letters, e.g. SECRET
Generate a pad by repeating the key, use as one-time pad (A=0,...):

THIS IS THE PLAINTEXT TO BE ENCRYPTED
SECR ET SEC RETSECRET SE CR ETSECRETS
LLKJ ML LLG GPTARVVBM LS DV IGUVAGXXV

Cipertext-Only Attack. (assuming English language)
Guess the key length, e.g. 6. What happens every 6’th letter? (shift cipher)

Chosen-Plaintext Attack. (adversary obtains encryption of plaintexts of its choice)

Which plaintext?

«F»

Goal. Protect secrecy of communication

Trust Model. Three entities, sender, receiver. Public channel, no tampering.
Who is the adversary? Eavesdroper.

Powers? Cipertext-only attacks. (adversary observes a single ciphertext)

What constitutes a break? Learns more about plaintext after seeing ciphertext.

example: substitution cipher. Ciphertext A A reveals both letters are the same.

«F»

Criterion. a perfect cipher / perfect secrecy
for all my, ma € M, for all ciphertexts c,
fl’(r[Enck(ml) =@ = Il’(r[Enck(mQ) =]

Idea. Regardless of plaintext, adversary sees same distribution of ciphertexts

One-Time Pad. example of perfect cipher
M =K =C = {0,1}% GCen outputs a random £-bit string k

Enck(m) = k @ m (bit-wise XOR)

QI. What is Pry[Enci (0°) = 0°]2 A. equals Pri [k = 0°] = 1/2°
Q2. take any m, ¢ € {0, 1}*. What is Pry[Enci(m) = c]?
A. equals Pri[k = m @ ¢] = 1/2°

«F»

Criterion. a perfect cipher / perfect secrecy

for all my, ma € M, for all ciphertexts c,

]?l’(r[Enck(ml) =@ = l:l’(r[Enck(mz) =]

Idea. Regardless of plaintext, adversary sees same distribution of ciphertexts
One-Time Pad. example of perfect cipher

M =K =C = {0,1}% Cen outputs a random £-bit string k

Enck(m) = k @ m (bit-wise XOR)
Theorem. For a perfect cipher, the number of keys is at least the size of message space

Corollary. Key length of one-time pad is optimal.

In practice, we want to encrypt gigabytes of data.

— need gigabyte-long key for perfect secrecy! (hard to store)

«F»

Computational Security. “practically unbreakable” (vs impossible to break)
— e.g. takes fastest available supercomputer > 200 years to break
security against all efficient adversaries running in feasible amount of time
2—80

adversary’s success probability is tiny, e.g. <

Note. not enough to defeat a set of statistical tests, e.g. frequency analysis

More formally.. a scheme is (t, €)-secure if every adversary running for time at most t

succeeds in breaking the scheme with probability at most €
practice: t = 250 CPU cycles, e = 278 (2%° cycles ~ 35 years on 1 GHz PC)
Q. What happens in 20 years with 200 GHz computers?

theory: t = polynomial-time algorithms,

€ = negligible, i. e. smaller than any inverse polynomial

«F»

Perfect Secrecy.

for all mq, ms € M, for all ciphertexts c,

Pr[Enck(ml) =@ = Pr[Enck(mz) c|

Idea. Regardless of plaintext, adversary sees same distribution of ciphertexts
Computational Secrecy. (t, €)-hard to distinguish encryptions of m; vs mo.

for all mq, ms € M, for all adversaries A running in time t:

| Pr[A(Enci(m1)) = 1] — Pr[A(Enck(mz)) = 1]| <
Note. implied by perfect secrecy

Q. How to construct ciphers with short keys achieving computational secrecy?

— new tool: pseudorandom generator

Pseudorandom Generator (PRG). generates strings that “look random”
G :{0,1}* — {0,1}™ where k < m and G efficiently computable
(t, €)-hard to distinguish output of G from truly random string
for all adversaries A running in time t:

| Pr [A(G(s)=1]- P

T
s<{0,1}k us+{0,1}™

A(w) =1]| <€

example: k = 80, m = 128, ¢ = 0.1; A outputs the majority of bits.

Q. What is Prg,_ (g 1380[A(G(s)) = 1]

«F»

Pseudorandom Generator (PRG). generates strings that “look random”
G : {0,1}* — {0,1}™ where k < m and G efficiently computable

(t, €)-hard to distinguish output of G from truly random string

Using PRG for encryption. use output of PRG as a one-time pad
M ={0,1}™ K = {0,1}*,C C {0,1}™"
Gen outputs a random k-bit string s

Encs(m) = G(s) @m (What is Decs(c)?)

Claim. If G is (t, €)-secure, then the cipher is (t, €)-secure too.

Proof by reduction: if we can break security of encryption (distinguish encryptions

of m; and my2), then we can break security of PRG (distinguish from random)

«F»

Pseudorandom Generator (PRG). generates strings that “look random”
G : {0,1}* — {0,1}™ where k < m and G efficiently computable

(t, €)-hard to distinguish output of G from truly random string

Using PRG for encryption. use output of PRG as a one-time pad
M ={0,1}™ K = {0,1}*,C C {0,1}™"
Gen outputs a random k-bit string s

Encs(m) = G(s) @m (What is Decs(c)?)

Claim. If G is (t, €)-secure, then the cipher is (t, €)-secure too.

Proof by reduction: if we can break security of encryption (distinguish encryptions

of m; and my2), then we can break security of PRG (distinguish from random)

«F»

Pseudorandom Generator (PRG). generates strings that “look random”
G : {0,1}* — {0,1}™ where k < m and G efficiently computable

(t, €)-hard to distinguish output of G from truly random string

Using PRG for encryption. use output of PRG as a one-time pad
M ={0,1}™ K = {0,1}*,C C {0,1}™"
Gen outputs a random k-bit string s

Encs(m) = G(s) @m (What is Decs(c)?)

Claim. If G is (t, €)-secure, then the cipher is (t, €)-secure too.

Proof by reduction: if we can break security of encryption (distinguish encryptions

of m; and my2), then we can break security of PRG (distinguish from random)

«F»

Using PRG for encryption. use output of PRG as a one-time pad
M ={0,1}™,K = {0,1}*,C C {0,1}"
Gen outputs a random k-bit string s

Encs(m) = G(s) & m; Decs(c) = ¢ ® G(s)

Claim. If G is (t, €)-secure, then the cipher is (t, €)-secure too.

if G(s) “looks like” random, then Enci(m1) “looks like” Ency(m2)
Consider the four distributions:

encrypt m; with pseudorandom one-time pad G(s)

encrypt mj with truly random one-time pad

encrypt mo with truly random one-time pad

encrypt mo with pseudorandom one-time pad G(s)

«F»

Pseudorandom Generators in Practice
heuristic design
very efficient
specific input/key lengths and output lengths

Q. can we extend the output length?

Stream ciphers meant to implement a PRG
examples: A5, RC4, SEAL
intended for encryption in the same way as OTP

single functions, require synchronization

«F»

Block Ciphers

