
{
CSCI 6331 · 4331

∣∣ Lecture 1
}

Cryptography

Hoeteck Wee · hoeteck@gwu.edu

http://tinyurl.com/cryptogw/

.

Q. How often do you use cryptography?

A. Whenever you use the Internet, cell-phone, type https://, ...

▶ WEP/WPA algorithms for encrypting wifi traffic

(between mobile station and access point)

▶ SSL/TLS algorithms to prevent eavesdropping and tampering

(e.g. between web/email server and client)

▶ A3/A8 algorithms used in GSM cell phones

.

.

Course Objectives

1. reasoning about security of cryptographic constructions

▶ “Is blah secure?”
▶ “What does it mean to be secure?”

2. applying this knowledge to real-world applications

▶ why every engineer should know some crypto

Topics.

▶ basic symmetric-key encryption (one-time pads, block ciphers, ...)

▶ public-key cryptography (encryption, digital signatures, authentication)

▶ real world crypto (SSL/TLS, IPsec, ...)

.

Administration

▶ Assessment.

▶ Homeworks, In-class exercises, Programming assignments, Final projects, Examinations,

Presentations, Participation [details to be announced]
▶ Homework 1 due Tues Jan 31 (no late submissions)

▶ Course Website.

▶ Main site: http://tinyurl.com/cryptogw/
▶ Homeworks, discussions, etc: Piazza

▶ Prerequisites.

▶ discrete math, probability, algorithms, proofs

▶ Lecture Time.

▶ 5.55 - 8.25 pm? (instead of 6.10 - 8.40 pm) [take a vote]

.

Private-Key Encryption

classic problem. secret communication between two parties

▶ attack model: eavesdropping adversary over a public channel (no tampering)

▶ goal: exchange message while hiding from adversary

private-key. share secret information in advance (a.k.a. symmetric-key)

▶ both parties know secret key k

▶ adversary does not know k

▶ question: where does k come from?

.

Private-Key Encryption

classic problem. secret communication between two parties

▶ attack model: eavesdropping adversary over a public channel

▶ goal: exchange message while hiding from adversary

syntax. private-key encryption = three algorithms (Gen,Enc,Dec)
▶ key generation Gen – probabilistic algorithm outputs a key k
▶ encryption Enc – input key k and a message m; output ciphertext c = Enck(m)

▶ deryption Dec – input key k and a ciphertext c; output plaintext m = Deck(c)

▶ correctness: for all keys k and all messages m, Deck(Enck(m)) = m

▶ notation: key space K, message/plaintext space M and ciphertext space C

observation. must hide k from adversary (why?)

▶ question: do we need to hide the algorithm Dec?

.

Adversarial Model

Kerckhoffs’ Principle (1883). encryption scheme is public, only the key k is secret

▶ i.e. security should rely solely on the secrecy of the key

▶ reason #1: easier to maintain secrecy of keys than of algorithms

(keys are shorter and easier to store; cannot reverse-engineer)

▶ reason #2: easier to change/refresh keys than algorithms/software

(in case of key exposure; regular updates good security practice)

▶ reason #3: easier for many people to share same algorithm/software (than keys)

Modern Interpretation. advocating “open cryptographic design”

▶ public scrutiny, flaws are detected by “ethical hackers”/academics

▶ enables establishment of standards e.g. DES, AES, SSL

▶ failure of “security via obscurity”, e.g. Intel’s HDCP, GSM A5/1.

.

Adversarial Model

Question. What does the adversary know?

▶ knows all algorithms Gen,Enc,Dec and message space M

▶ e.g. M = “attack on J×n 1× at ×× : ××”.

Question. What are the capabilities of the adversary?

▶ cipertext-only attack: adversary observes a single ciphertext

▶ known-plaintext attack: adversary learns multiple plaintext-ciphertext pairs

▶ chosen-plaintext attack: adversary obtains encryption of plaintexts of its choice

▶ chosen-ciphertext attack: adversary obtains decryptions of ciphertexts of its choice

Next. Review historical ciphers, then formalize security.

.

Caesar Cipher

Caesar Cipher. a shift cipher

▶ Gen outputs k ∈ {0, 1, 2, . . . , 24, 25} (chosen at random)

▶ Example: k = 3. To encrypt, replace A by D, B by E, C by F, ...

▶ Plaintext: ATTACK AT DAWN

▶ Ciphertext: DWWDFN DW GDZQ

Observation. Follows Kerckhoffs’ Principle, but not a good cipher

▶ susceptible to brute force attack: test all possible keys to decrypt

▶ Caesar Cipher: |K| = 26— need a larger key space

▶ How large? |K| ≥ 280

.

Substitution Cipher

Substitution Cipher.

▶ k is a look-up table: A → Y, B → A, C → H, D → P, ...

(permutation on the alphabet)

▶ Plaintext: ATTACK AT DAWN

▶ Ciphertext: YEEYHT YE PYDL

Observation. Follows Kerckhoffs’ Principle, but still not a good cipher

▶ What is |K|? |K| = 26≈ 295

▶ Susceptible to frequency analysis

▶ Known letter distribution in English e.g. Pr[E] = 0.13; pairs of letters th vs jj

▶ Exploit the fact that mapping of plaintext letters to ciphertext letters is fixed.

▶ Challenge: decrypt QEFP FP QEB CFOPQ QBUQ

.

Perfect Cipher: Definition

Question. What type of security would we like in a perfect cipher?

Attempt. “Given the ciphertext, the adversary has no idea what the plaintext is”

▶ Impossible since the adversary might have a-prior information.
▶ e.g. M = “attack on J×n 1× at ×× : ××”.

Principle. “What happens in the ideal world?”

▶ ideal world = adversary sees nothing (i.e., no ciphertext)
▶ already knows some information about plaintext as revealed by M, e.g. |M| = 1.

Definition. a perfect cipher / perfect secrecy

▶ “ciphertext does not add information about the plaintext”
▶ Pr[plaintext = P | ciphertext = C] = Pr[plaintext = P]

Notes.

▶ Probability is taken over choices of the key, the plaintext and the ciphertext
▶ Check: does this hold for substitution cipher?

suppose M = all possible 2-letter combinations, equally likely

.

Perfect Cipher: Construction

One-Time Pad. one-bit messages

▶ M = {0, 1},K = {0, 1}

▶ Gen outputs a random bit k, i.e. Pr[k = 0] = Pr[k = 1] = 1/2.

▶ Enck(m) = k ⊕ m

▶ What is Deck(c)? Deck(c) = k ⊕ m

Question. Is this secure?

▶ Suppose Pr[m = 1] = 0.8. What is Pr[m = 1 | ciphertext = 1]?

.

Perfect Cipher: Construction

One-Time Pad. ℓ-bit messages

▶ M = {0, 1}ℓ,K = {0, 1}ℓ

▶ Gen outputs a random ℓ-bit string k

▶ Enck(m) = k ⊕ m (bit-wise XOR)

Shannon.

▶ One-Time Pad is a perfect cipher

▶ Disadvantage #1: needs a long key (in fact, necessary)

▶ Proof: ciphertext c can be an encryption of any plaintext m
thus different key for each m

▶ Disadvantage #2: cannot reuse key

