
On Pseudoentropy versus Compressibility

Hoeteck Wee∗

Computer Science Division
University of California, Berkeley

hoeteck@cs.berkeley.edu

Abstract

A source is compressible if we can efficiently com-
pute short descriptions of strings in the support and
efficiently recover the strings from the descriptions. A
source has high pseudo-entropy if it is computation-
ally distinguishable from a source of high entropy. In
this paper, we present a technique for proving lower
bounds on compressibility in an oracle setting, which
yields the following results:

1. We exhibit oracles relative to which there exists
samplable sources over {0, 1}n of low pseudoen-
tropy (say n/2) that cannot be compressed to
length less than n − ω(log n) by polynomial size
circuits. This matches the upper bounds in [4, 9],
and provides an oracle separation between com-
pressibility and pseudoentropy, thereby partially
addressing an open problem posed in [6].

2. We also provide a separation between 1/s-
metric-type pseudoentropy and 1/s-Yao-type
pseudoentropy - which are two computa-
tional analogues of entropy introduced in [1] -
for the class of oracle circuits of size s (s poly-
nomially bounded). This is the first known sep-
aration result for metric-type and Yao-type
pseudoentropy.

3. In the random oracle model, we show that there
exists incompressible functions as defined in [3]
where any substantial compression of the out-
put of the function must reveal something about
the seed. This yields the first known practical re-
alization of incompressible functions, under the
assumption that random oracles may be realized
using cryptographic hash functions.

∗ Work supported by NSF grant CCR 9984703 and a US-
Israel Binational Science Foundation grant.

Finally, we show that computational assumptions
are needed to separate compressibility and pseudoen-
tropy for samplable sources. In particular, if one-way
functions do not exist, then any samplable flat source
of entropy k can be compressed by circuits to length
k + O(log n); furthermore, any such source has 1/2-
Yao-type pseudoentropy k + O(log n).

1. Introduction

A systematic study of data compression from a
computational stand-point was initiated in [4] and
extended more recently in [9]. In both papers and
our present work, the focus is on compression that
can be achieved using efficient1 compression and de-
compression algorithms. With unbounded compu-
tational power, we know from information theory
[2] that the entropy H(X) of a source X is both
an upper and lower bound on the size of the com-
pression (to within an additive log n term). If we
are limited to efficient algorithms, then a source of
pseudoentropy k cannot be compressed to length
k − ω(log n), where a source is said to have pseu-
doentropy at least k if it is computationally indis-
tinguishable from some distribution having entropy
at least k.

Is pseudoentropy indeed the right lower bound on
the size of the compression for samplable sources?
This was posed by Impagliazzo as an open prob-
lem [6] in a talk (the case of general sources was
partially addressed in [4]). Our work in this paper

1 The notion of efficiency in [4] and [9] are algorithms that
can be implemented using probabilistic polynomial-time
machines, whereas in this paper, we are concerned with
polynomial size circuits. As we are concerned with lower
bounds, this yields stronger results.

was motivated by this problem, and a key techni-
cal contribution of this paper is that the answer is
no in an oracle setting. More specifically, we exhibit
an oracle under which there samplable distributions
over {0, 1}n of very low entropy and pseudoentropy
(say n/2) that cannot be compressed to less than
n− ω(log n) bits.

1.1. Previous Work

We know2 that the output of a pseudoran-
dom generator in {0, 1}n cannot be efficiently
compressed to length less than n − O(1); other-
wise, the compression and decompression algo-
rithms will constitute a distinguisher from the
uniform distribution over {0, 1}n. [4, 9] explic-
itly impose the constraint that the source is not
pseudorandom by requiring that there is an ef-
ficient membership test for its support, and in
this setting, present a universal compression al-
gorithm that compresses any source with en-
tropy at most n − O(log n) to a source with ex-
pected length n− θ(log n).

Goldberg and Sipser [4] present an oracle rela-
tive to which the n− θ(log n) bound cannot be im-
proved. Under this oracle, there exists a source over
{0, 1}n with an efficient membership test and en-
tropy much less than n/2 but cannot be compressed
by any probabilistic polynomial time machine with
more than O(log n) savings in length. The source
they constructed comprises exactly one string sn

of length n for each n, namely that which is Kol-
mogorov random, and the oracle is a membership
test for such strings.

Dwork, Lotspiech and Naor [3] present another
approach to bypassing the impossibility of com-
pressing pseudorandom sources which is motivated
by a cryptographic application. There, the compres-
sion algorithm is given the seed to the pseudoran-
dom output but is required to output a compressed
string that reveals no information about the seed.
The Blum-Micali-Yao generator based on a one-way
permutation g is not incompressible with this defini-
tion, because its output can be efficiently recovered
from g(s) and its hardcore bit, and yet this infor-
mation does not reveal the seed s.

In a more recent paper, Barak, Shaltiel and
Wigderson [1] studied several notions of compu-
tational min-entropy: HILL-type pseudoentropy,

2 In [4], this observation is attributed to L. Levin.

which is essentially what is referred to as pseudoen-
tropy herein, metric-type pseudoentropy, which is
similar to HILL-type pseudoentropy but with a re-
versal of quantifiers, and Yao-type pseudoentropy,
which is similar to compressibility, except it cap-
tures some worst-case behavior instead of an
average-case behavior. They proved equivalence of
HILL-type and metric-type pseudoentropy for cir-
cuits, and of all three types of pseudoentropy for cir-
cuits with an NP-oracle. In addition, they proved
a separation of HILL-type and metric-type pseu-
doentropy for bounded-width read-once oblivi-
ous branching programs. An open problem posed
in the paper is whether Yao-type pseudoen-
tropy is equivalent to metric-type pseudoentropy
for polynomial-sized circuits.

1.2. Our Contributions

1.2.1. Separating Pseudoentropy and Com-
pressibility We prove a stronger version of the
lower bound in Goldberg and Sipser [4] by present-
ing an oracle relative to which there exists samplable
sources over {0, 1}n of low pseudoentropy that can-
not be compressed to length less than n−ω(log n) by
polynomial size circuits. Note that the source used
in [4] is not samplable (uniformly, that is; other-
wise, we can compress each string s of length n to n
and decompress using the sampling algorithm), and
can be optimally compressed by non-uniform cir-
cuits. Furthermore, our bounds hold for an average-
case setting rather than a worst-case setting, and
we also provide a separation result for a meaningful
range of pseudoentropy. It also follows from our re-
sults that there is no black-box reduction from com-
pression and decompression algorithms (with out-
put length close to pseudoentropy) to sampling and
membership tests.

1.2.2. Separating Metric-Type and Yao-
Type Pseudoentropy A simple extension of
the previous result also yields an oracle sepa-
ration between metric-type and Yao-type pseu-
doentropy for polynomial size circuits. In partic-
ular, we exhibit an oracle under which there ex-
ists a samplable source with 1/s-metric-type
pseudoentropy O(log s) and 1/s-Yao-type pseu-
doentropy n − O(log s) for oracle circuits of size
s.

1.2.3. An Incompressible Function We apply
the same techniques to prove the existence of in-

2

compressible functions as defined in [3] in the ran-
dom oracle model. An incompressible function is
one in which any substantial compression of its out-
put must reveal something about its input. Further-
more, our proof yields a simple and practical con-
struction of incompressible functions, under the as-
sumption that random oracles may be realized us-
ing cryptographic hash functions.

1.2.4. Necessity of One-Way Functions Fi-
nally, we prove that we cannot expect an uncon-
ditional separation result between pseudoentropy
and compressibility or between metric-type and
Yao-type pseudoentropy for samplable sources us-
ing polynomial-sized circuits. In particular, we show
that if one-way functions do not exist, then any sam-
plable flat source of entropy k can be compressed by
circuits to length k+O(log n), and has 1/2-Yao-type
pseudoentropy k + O(log n).

2. Preliminaries

2.1. Basic notations

For a finite set S, we write x ∈R S to say that
x is distributed uniformly over the set S. We use
Un to denote the uniform distribution over the set
{0, 1}n, and neg(n) to denote a function that is of
the form n−ω(1). The support Sup(X) of a distri-
bution X is the set {x|Pr[X = x] > 0}, and H(X)
denotes the (Shannon) entropy of X.

2.2. Basic definitions

Here, we review some definitions and observa-
tions, most of which have previously appeared in
[2, 4, 9].

Definition 2.1. A distribution X on {0, 1}n has s-
pseudoentropy k if there is a distribution D on {0, 1}n

of entropy3 k such that every circuit of size s distin-
guishes X from D with neg(s). We say X on {0, 1}n

has pseudoentropy k ifX has s-pseudoentropy at least
k for all s = poly(n).

It is clear that (Shannon) entropy is a lower
bound for s-pseudoentropy.

3 min-entropy is more commonly used in the definition of
pseudoentropy. However, we are interested in proving an
upper bound on the pseudoentropy in this setting, so using
Shannonentropy (which is alwaysat least themin-entropy)
in the definition constitutes a stronger result.

Definition 2.2. A source Xn over {0, 1}n is sam-
plable if there is a (uniform) polynomial-time algo-
rithm S such that S(1n) is distributed according to
Xn.

Definition 2.3. [9] Let Xn be a flat source over
{0, 1}n, that is, every element in its support Sup(X)
occurs with the same probability. We say that Xn is
a source with membership oracle if there is a (uni-
form) polynomial-time algorithm T such that T such
that T (z) = 1 ⇔ z ∈ Sup(Xn).

Lemma 2.4. Let Xn be a flat source over {0, 1}n

with membership oracle and H(Xn) ≤ k. Then, Xn

has s-pseudoentropy atmost k+neg(s), for s = Ω(n).

Proof. Consider the test A that accepts an input
x ∈ {0, 1}n iff the membership oracle accepts x.
Note that A accepts Xn with probability 1. Let D
be a source on {0, 1}n of maximum entropy such
that no polynomial size circuit can distinguish Xn

from D with non-negligible advantage (in s). In par-
ticular, A distinguishes Xn from D with advan-
tage at most ε = neg(s). Then, at least 1 − ε frac-
tion of Sup(D) lies in Sup(Xn). Hence, H(D) ≤
H(Xn) + εn ≤ k + neg(s). It follows that Xn has
pseudoentropy at most k + neg(s).

2.3. Basics of Compression

Definition 2.5. [9] For functions4 Enc : Σ∗ → Σ∗

and Dec : Σ∗ → Σ∗, we say (Enc,Dec) compresses
source X to length m if

1. For all x ∈ Sup(X), Dec(Enc(x)) = x, and

2. E[|Enc(X)|] ≤ m.

If in addition we have Enc : Σ∗ → Σm and in partic-
ular, |Enc(x)| = m for all x ∈ Sup(X), we say that
(Enc,Dec) compresses source X to length exactly m.

Definition 2.6. [9] We say source X is compress-
ible to length (exactly) m if there exists functions Enc
and Dec such that (Enc,Dec) compresses X to length
(exactly) m.

Proposition 2.7. [9] A source Xn is not compress-
ible to length less than H(Xn)− dlog(n + 2)e.

For efficient compression and decompression al-
gorithms, we have the following upper bound that

4 The functionsEnc andDec are also referred to as the encod-
ing and decoding functions respectively, hence the choice
of notation.

3

can be achieved either using arithmetic coding [4]
or condensers [9]:

Proposition 2.8. [4, 9] Any source over {0, 1}n

with membership oracle can be compressed to length
n− θ(log n) in polynomial time if H(Xn) < n− (3 +
δ) log n.

The following lemma establishes (in some sense)
pseudoentropy as the computational analogue of en-
tropy as a measure of compressibility.

Lemma 2.9. Let Xn be a source with 2s-
pseudoentropy k. Then, Xn cannot be compressed to
length less than k − dlog(n + 2)e − O(1) by any cir-
cuits (Enc,Dec) of size s.

Proof. (sketch) Let D be a source of entropy k
such that Xn is computationally indistinguish-
able from D, and suppose on the contrary that we
have circuits (Enc,Dec) of size s that compresses
Xn to length less than k − dlog(n + 2)e − O(1).
It follows from the computational indistinguisha-
bility property that Pr[Dec(Enc(D)) = D] ≥
Pr[Dec(Enc(Xn)) = Xn] − neg(s), and that
E[|Enc(D)|] ≤ E[|Enc(Xn)|] + neg(s). From Prop
2.11 below, we may modify (Enc,Dec) to yield cir-
cuits of size 2s + O(1) that compress D to length
k − dlog(n + 2)e − O(1), a contradiction to Prop
2.7.

2.3.1. Average-Case Results (from compres-
sion somewhere to compression everywhere)
Consider the following weaker definition of com-
pressibility, where we only require that we obtain
short outputs only on some fraction of the input:

Definition 2.10. For functions Enc : Σ∗ → Σ∗ and
Dec : Σ∗ → Σ∗, we say (Enc,Dec) α-somewhere com-
presses source X to length m if there exists W ⊆
Sup(X) of density at least α (that is, Prx←X [x ∈
W] ≥ α) satisfying

1. For all x ∈ W , Dec(Enc(x)) = x, and

2. E[|Enc(X|W)|] ≤ m, where X|W is the distri-
bution on strings x drawn according to X condi-
tioned upon x ∈ W .

Furthermore, we say source X is α-somewhere com-
pressible to length m if there exists functions Enc and
Dec such that (Enc,Dec) α-somewhere compresses X
to lengthm. If in additionwe haveEnc : Σ∗ → Σm, we
say that (Enc,Dec) α-somewhere compresses source
X to length exactly m, and that X is α-somewhere
compressible to length exactly m.

Proposition 2.11. Let X be a source over {0, 1}n,
and suppose (Enc,Dec) α-somewhere compresses
source X to length m. Then, X is compressible to
length m′ = αm + (1− α)n + 1 by functions of simi-
lar computational complexity to (Enc,Dec).

Proof. Consider (Enc′,Dec′) given by:

Enc′(x) =


0Enc(x) if |Enc(x)| < n and

Dec(Enc(x)) = x

1x otherwise

The result follows readily. Note that the transfor-
mation does not require an explicit specification of
W .

In particular, if there exists circuits (Enc,Dec) of
size s that α-compresses X to length n−ω(log n) for
some constant 0 < α < 1, then X is compressible
to length n− ω(log n) by circuits of size 2s + O(1).

2.3.2. Non-Uniform Compression Con-
sider (Enc,Dec) functions that may be imple-
mented by a family of circuits {(Encn,Decn)}.
In order to have a meaningful definition of com-
pression in the non-uniform setting, we make
use of the observation (made in [9]) that for a
source Xn with support in {0, 1}n, we may as-
sume and also stipulate that |Encn(x)| ≤ n+1 for all
x ∈ Sup(Xn). Therefore, Decn may be seen as tak-
ing inputs of length dlog(n + 1)e+ n + 1, where the
first dlog(n + 1)e bits (prefixed with zeroes) spec-
ify the length of the “actual” input x.

Proposition 2.12. (Levin) If non-uniform one-way
functions exist, then there exist polynomial-time sam-
plable sources Xn of entropy at most nε that cannot be
compressed to length n−O(1) by any polynomial size
circuits (Enc,Dec).

Proof. (sketch) If non-uniform one-way functions
exist, then there exists a pseudorandom generator
G : {0, 1}nε → {0, 1}n that is secure against poly-
nomial size circuits. Take Xn = G(Unε).

2.4. Computational Analogues of
(Min)Entropy

Definition 2.13. A source Xn over {0, 1}n has
(statistical) min-entropy at least k, denoted by
H∞(Xn) ≥ k if for every x ∈ {0, 1}n, Pr[Xn =
x] ≤ 2−k.

4

The following definitions are from [1], specialized
to the class of circuits and random variables over
{0, 1}n.

Definition 2.14. [1] LetXn be a source over {0, 1}n,
and let ε ≥ 0. We say that Xn has ε-HILL-type pseu-
doentropy at least m, denoted by HHILL

ε (Xn) ≥ m,
if there exists a source Y over {0, 1}n with (statisti-
cal) min-entropy at least m such that for every test
T : {0, 1}n → {0, 1} that is computable by a cir-
cuit of size at most s, | Pr[T (Xn) = 1]−Pr[T (Y) =
1] |< ε.

Definition 2.15. [1] LetXn be a source over {0, 1}n,
and let ε ≥ 0. We say that Xn has ε-metric-type pseu-
doentropy at least m, denoted by HMetric

ε (Xn) ≥
m, if for every test T : {0, 1}n → {0, 1} that is
computable by a circuit of size at most s, there
exists a source Y over {0, 1}n which has (statisti-
cal) min-entropy at least m such that | Pr[T (Xn) =
1]− Pr[T (Y) = 1] |< ε.

Definition 2.16. [1] Let Xn be a source over {0, 1}n,
and let ε ≥ 0. We say that Xn has ε-Yao-type pseu-
doentropy5 at least m, denoted by HYao

ε (Xn) ≥ m,
if for every ` < m, Xn is not (2`−m + ε)-somewhere
compressible to length exactly `.

3. An Incompressible Samplable
Source with Low Pseudoentropy

Let us fix k, n and study for which d there ex-
ists flat sources in {0, 1}n of entropy k that is not
compressible by circuits of size s to length n − d.
We may think of k, d, s as functions of n. In addi-
tion, let N = 2n,K = 2k, D = 2d.

Let F be the set of injective functions f :
{0, 1}k → {0, 1}n. For each such f ∈ F , we have a
flat source f(Uk) in {0, 1}n, and we define an sam-
pling oracle OS

f , a membership oracle OM
f and an

oracle Of that combines both sampling and mem-

5 One way to interprete Yao-type pseudoentropy is to re-
gard it as a worst-case measure of incompressibility, the
way min-entropy can be regarded as a worst-case measure
of Shannon entropy. A source has low min-entropy if there
is some element in the support with low probability. Sim-
ilarly, a source has low Yao-type pseudoentropy if there is
some subset that can be almost optimally compressed (in
the sense of Definition 2.5).

bership functionalities as follows:

OS
f (x) = f(x)

OM
f (x) =

{
1 x ∈ f({0, 1}n)
0 x /∈ f({0, 1}n)

Of (b, x) =

{
OS

f (x) if b = 0
OM

f (x) if b = 1

In the rest of the section, whenever we refer
to oracle circuits (and in particular oracle circuits
(Enc,Dec) for some source f(Uk)), we always mean
oracle access to Of , where the specific function f
will be clear from context.

3.1. Main Result

Theorem 3.1. For any k satisfying 6 log s+O(1) <
k < n, there exists (injective) functions f : {0, 1}k →
{0, 1}n such that given oracle access toOf ,

1. f(Uk) is samplable and has entropy k and s-
pseudoentropy k + neg(n).

2. f(Uk) cannot be compressed to length less than
n − 2 log s − log n − O(1) by oracle circuits of
size s. In addition, f(Uk) cannot be α-somewhere
compressed to length less than n−θ(log s) by ora-
cle circuits of size s, for any constant 0 < α < 1.

The following corollary follows readily:

Corollary 3.2. For any k satisfying ω(log n) < k <
n, there exists an oracle relative to which there exists a
samplable source X with entropy k and pseudoentropy
k + neg(n), but cannot be compressed to length n −
ω(log n) by polynomial size circuits.

3.1.1. A Remark on Optimality Note that this
lower bound in Corollary 3.2 matches the upper
bound in Prop 2.8.

[8] also pointed out a simpler construction of
compression and decompression functions that com-
presses the source f(Uk) to length n− log s + O(1)
for k < n−2 log s, which matches the lower bound in
Theorem 3.1 (up to constant multiples of log s). Fix
a family of linear pairwise independent hash func-
tions H = {h : {0, 1}n → {0, 1}n−log s} (for in-
stance, using linear functions over finite fields or
Toeplitz matrices). Pick a random h ∈ H, which is
injective on at least a fraction 1 − 1/n of the ele-
ments of f({0, 1}k) with constant probability (the
analysis is similar to that for Theorem 6.3). Fix one
such function hn, and encode x ∈ {0, 1}n as h(x)

5

and decode y by enumerating over the pre-images
of h−1(y) (since h is linear, the subspace h−1(y) is
efficiently computable) and taking the unique pre-
image that is accepted by the membership oracle.
This yields compression and decompression circuits
of size O(n2 + ns) that (1 − 1/n)-somewhere com-
presses f(Uk) to length n−log s, which can be trans-
formed into compression and decompression circuits
of size O(n2 + ns) that compresses f(Uk) to length
n− log s + O(1).

In addition, note that we cannot extend to the re-
sult to k < log s, since in O(s) time, we can query
OS

f on all of {0, 1}k in that case, and compress f(Uk)
to length exactly dke.

3.2. Main Idea

Let compf be the set of functions f ∈ F for which
there exists oracle circuits (Enc,Dec) of size s such
that given oracle access to Of compresses f(Uk) to
length n − d. For each such f and the correspond-
ing (Enc,Dec) circuits, we define

invertf = {x | on input Enc(f(x)),
Dec queries OS

f on x}
forgef = {x | on input Enc(f(x)),

Dec does not query OS
f on x}

Clearly, invertf and forgef form a partition of
{0, 1}k. In addition, we define

invertible =
{
f ∈ compf : |invertf | > 1

n · 2
k
}

forgeable =
{
f ∈ compf : |forgef | ≥

(
1− 1

n

)
2k

}
Observe that compf = invertible ∪ forgeable6. For
functions f in invertible, there exists small circuits
that invert f on invertf by running Enc and then
monitoring the oracle queries that Dec makes toOS

f .
Hence, invertible is small because a random func-
tion is non-uniformly one-way with high probabil-
ity [5]. Similarly, for functions f in forgeable, the cir-
cuit Dec computes (“forges”) f on x ∈ forgef with-
out querying OS

f on x. This cannot happen too of-
ten unless Enc(f(x)) is “long”.

To formalize this intuition, we use techniques
from [5] based on a reconstruction paradigm to
prove upper bounds for |invertible| and |forgeable|

6 Note that this is not a partition; it could be the case that
for a fixed f can be compressed with two different pairs of
circuits, and in one case, it falls into invertible and the other
into forgeable.

by arguing that functions in invertible and forgeable
have short descriptions. This yields the desired up-
per bound on |compf|, from which theorem 3.1 fol-
lows.

3.3. Proof of theorem 3.1

3.3.1. invertible is small

Lemma 3.3. Take any f ∈ invertible, and let
(Enc,Dec) be oracle circuits of size s that com-
press f(Uk) to length n − d, and also satisfy
|invertf | > 1

n2k. Then, there exists an oracle cir-
cuitA of size s′ = 2s + sn such that

Pr
x∈Uk

[AOf (f(x)) = x] >
1
n

Proof. Consider the following circuit A that on in-
put y ∈ {0, 1}n:

1. Compute z = Enc(y).

2. Simulate Dec on input z and monitor the
queries Dec makes to OS

f . When the sim-
ulation is completed with output Dec(z),
output the query x to OS

f where the an-
swer is y. If there is no such query, output
0.

It is easy to see that for all x ∈ invertf , A(f(x)) =
x, from which the result follows.

Lemma 3.4. Take any f ∈ invertible, and let A be
the circuit constructed in lemma 3.3. Then, f can be
described using

log
(
N
b

)
+ log

(
K
b

)
+ log

((
N−b
K−b

)
(K − b)!

)
bits, givenA, where b = K

s′n .

Proof. Recall that for all x ∈ invertf , A(f(x)) = x.
WLOG, assume that for all such x, A makes dis-
tinct queries to OS

f , and always queries OS
f on x be-

fore it outputs x. We claim that there exists a sub-
set T of f(invertf) of size b (by construction), such
that we can describe f (in a information-theoretic
sense) given:

f−1(T), T, f |{0,1}k−f−1(T)

Greedy-Construct-T

6

1. Initially, T is empty and all elements of
f(invertf) are candidates for being an element
of T . Remove the lexicographically smallest el-
ement y = f(x) in f(invertf), and put y in
T .

2. Simulate A on y, and halt the simulation imme-
diately after A queries OS

f on x. Let x1, . . . , xq

be the queries A makes to OS
f (in the order the

queries are made), where xq = x and q ≤ s′.

3. Remove f(x1), . . . , f(xq−1) from f(invertf)
(note that some of these values may have al-
ready been removed in previous iterations).
Then, all the elements x1, . . . , xq−1 that were
not already added to T will never be added to
T .

4. Remove the lexicographically smallest of the re-
maining elements in f(invertf), say y = f(x),
put y in T , and return to step (2).

Recover-f

1. To reconstruct the values of f on f−1(T),
start with a look-up table for f on values in
{0, 1}k−f−1(T), and go through the strings in
T in lexicographic order.

2. Pick the lexicographically smallest element y
from T and simulate A on y (we will explain
why we can simulate oracle responses in the
next 2 steps). Halt immediately after A makes
a query x to OS

f , for which the answer is not in
the look-up table for f .

3. We are given T and f |{0,1}k−f−1(T), so we know
all of f({0, 1}k) and can therefore answer all
queries to OM

f .

4. Consider any query x′ A makes to OS
f that

precedes the last query x. By construction, ei-
ther x′ /∈ f−1(T), or f(x′) precedes f(x) lex-
icographically in T (in this case, we will have
added (x′, f(x′)) to the look-up table in a pre-
vious iteration, as done in step (5)). In either
case, the look-up table has the answer, so we
can simply retrieve the answer.

5. Once the simulation halts, we know the value
x = f−1(y). Add (x, y) to the look-up table for
f .

6. Remove y from T , and return to step (2), choos-
ing the lexicographically smallest of the re-
maining elements in T .

In each step of Greedy-Construct-T, we add
one element to T and remove at most s′ elements
from f(invertf). Since f(invertf) has initially K/n
elements, in the end T has at least K/s′n elements.

Lemma 3.5. If k > 6 log s + O(1),

|invertible| < 2−(s+1)
(
N
K

)
K!

Proof. We can describe an oracle circuit of size s′ us-
ing s′(n+k) log s′ bits, so any function f ∈ invertible
can be described using

log
(
N
b

)
+ log

(
K
b

)
+ log

(
N−b
K−b

)
(K − b)!

+s′(n + k) log s′

bits. It follows that

|invertible|(
N
K

)
K!

≤
(
N
b

)(
K
b

)(
N−b
K−b

)
(K − b)!2s′(n+k) log s′(
N
K

)
·K!

=

(
K
b

)
b!

· 2s′(n+k) log s′ <

(
e2K

b2

)b

· 2K/s2

≤
(

2e2s4

K

)K/s2

< 2−(s+1)

3.3.2. forgeable is small

Lemma 3.6. Take any f ∈ forgeable, and let
(Enc,Dec) be oracle circuits of size s that com-
press f(Uk) to length n − d, and also satisfy
|forgef | ≥ (1 − 1

n)2k. Then, f can be described us-
ing

a
(

n
n−1 · (n− d) + log n + 1

)
+ log

(
K
a

)
+ log

(
N−a
K−a

)
(K − a)! + a log s

bits, given Dec, where a = (1− 1
n)K/s.

Proof. WLOG, assume that Dec makes distinct
queries to OS

f and distinct queries to OM
f . Now, re-

call that for all x ∈ forgef , Dec on input Enc(f(x))
never queries OS

f on x. We may also assume that for
all such x, Dec on input Enc(f(x)) always queries
OM

f on f(x) before it outputs f(x). Note that f(x)
may not necessarily be the last query Dec makes to
OM

f .
We claim that there exists a subset W of forgef

of size a, such that we can describe f given:

Enc(f(W)),W, f |{0,1}k−W

in addition to {az ∈ [s] | z ∈ Enc(f(W))} of mem-
bership advice strings and where Enc(f(W)) is rep-
resented as an ordered set where the ordering is that

7

induced by the lexicographic ordering on W . Fur-
thermore, W satisfies

Ex∈W

[
|Enc(f(x))|

]
≤ n

n−1 · (n− d)

Therefore, we can describe the ordered set
Enc(f(W)) using a

(
n

n−1 · (n− d) + log n + 1
)

by
concatenating the values of |Enc(f(w))|Enc(f(w))
as w runs through W in lexicographic order-
ing. Note that we should write |Enc(f(w))| ∈
{0, 1}dlog(n+2)e in binary with leading 0’s, so that
|Enc(f(w))|Enc(f(w)) yields a prefix-free encod-
ing of f(w).

Greedy-Construct-W

1. Initially, W is empty and all elements of forgef

are candidates for being an element of W . Re-
move the lexicographically smallest7 element
z = Enc(f(x)) in Enc(f(forgef)), and put x in
W .

2. Simulate Dec on z, and halt the simulation im-
mediately after Dec queries OM

f on f(x). Let
x1, . . . , xq be the queries Dec makes to OS

f ; and
let y′1, . . . , y

′
r be the queries Dec makes to OM

f .
Set az = r, so that the az-th query that Dec
makes to OM

f is f(x) (since the simulation is
halted after that).

3. Remove Enc(f(x1)), . . . ,Enc(f(xq)) and
Enc(y′1), . . . ,Enc(y′r−1) from Enc(f(forgef))
(ignoring those values that are not in
Enc(f(forgef))). In addition, we continue
to remove the lexicographically smallest el-
ement in Enc(f(forgef)) until we have re-
moved exactly s − 1 elements in all of step
3.

4. Remove the lexicographically smallest of the re-
maining elements in Enc(f(forgef)), say z =
Enc(f(x)), put x in W , and return to step (2).

Recover-f

1. To reconstruct the values of f on W , start with
a look-up table for f on values in {0, 1}k −W ,
and go through the strings in Enc(f(W)) in lex-
icographic order.

2. Pick the lexicographically smallest element z =
Enc(f(x)) from Enc(f(W)) and simulate Dec

7 In the lexicographic ordering on Enc(f({0, 1}k)), shorter
strings always have precedence over longer strings.

on z. Halt immediately when Dec makes the
az-th query to OM

f , which by construction is
the value f(x).

3. By construction, whenever Dec makes a query
x′ to OS

f , either x′ /∈ W , or Enc(f(x′)) precedes
z lexicographically in Enc(f(W)) (in this case,
we will have added (x′, f(x′)) to the look-up ta-
ble in a previous iteration, as done in step (5)).
In either case, the look-up table has the an-
swer, so we can simply retrieve the answer.

4. Consider any of the first az − 1 queries that
Dec makes to OM

f , say y′. If y′ ∈ f({0, 1}k),
say y′ = f(x′), then by construction, either
x′ /∈ W , or Enc(f(x′)) precedes z lexicographi-
cally in Enc(f(W)). In either case, the look-up
table has the entry (x′, y′). If y /∈ f({0, 1}k),
we will not find y′ in the look-up table. There-
fore, we can answer the query in the simulation
by responding with a “yes” if y′ in the look-up
table, and “no” otherwise.

5. Once the simulation halts, we know the value
f(x). In addition, we can use the ordering on
Enc(f(W)) to figure out x, and add (x, f(x)) to
the look-up for f . More specifically, if f(x) is
the ith element of Enc(f(W)) (in the induced
ordering), then x is the ith element of W (in
lexicographic ordering).

6. Remove z from Enc(f(W)), and return to step
(2), choosing the lexicographically smallest of
the remaining elements in Enc(f(W)).

In each step of Greedy-Construct-W, we add
one element z to W and remove s−1 elements (other
than z) from Enc(f(forgef)). Since Enc(f(forgef))
has initially (1 − 1

n)K elements, in the end W has
at least (1− 1

n)K/s elements. Furthermore, those el-
ements we remove succeed z in lexicographic order,
and must have length at least |z|. It follows that

Ex∈W

[
|Enc(f(x))|

]
≤ Ex∈forgef

[
|Enc(f(x))|

]
≤ n

n− 1
· (n− d)

Lemma 3.7. If k > 6 log s + O(1) and d > 2 log s +
log n + O(1),

|forgeable| < 2−(s+1)
(
N
K

)
K!

Proof. Again, we can describe Dec using s(n +
k) log s bits, so any function f ∈ forgeable can be

8

described using

a
(

n
n−1 · (n− d) + log n + 1

)
+ log

(
K
a

)
+ log

(
N−a
K−a

)
(K − a)! + a log s + s(n + k) log s

bits. It follows that

|forgeable|(
N
K

)
K!

≤
2a(n−d+log n+2)

(
K
a

)(
N−a
K−a

)
(K − a)!sa2s(n+k) log s(

N
K

)
·K!

<
(4Nn/D)a

(
K
a

)
sa(

N
a

)
a!

· 2s(n+k) log s

<

(
4Nn
D

)a (
Ke
a

)a
sa(

N
a

)a (
a
e

)a · 2s(n+k) log s

=
(

4Ke2ns

Da

)a

· 2s(n+k) log s

<

(
8e2s2n

D

)K/2s

· 2K/2s < 2−(s+1)

3.3.3. Rest of the proof From lemmas 3.5 and
3.7, we have (for the parameters stated in the the-
orem)

|compf| < 2−s
(
N
K

)
K!

The result follows readily from this and lemma 2.4.

4. Separating Metric-type and Yao-
type Pseudoentropy

The construction is the same as that used in The-
orem 3.1, and the analysis is very similar too.

Theorem 4.1. For any k satisfying 7 log s+O(1) <
k < n, there exists (injective) functions f : {0, 1}k →
{0, 1}n such that limited to themodel of circuits of size
s with oracle access to Of , HMetric

1/s (f(Uk)) ≤ k + 1
but HYao

1/s (f(Uk)) > n− 2 log s−O(1). Furthermore,
f(Uk) is samplable.

First, we observe that if we consider the model
of efficient algorithms with s = poly(n) bits of ad-
vice, then for any injective function f : {0, 1}k →
{0, 1}n, f(Uk) is 2−ks/n-somewhere compressible to
length exactly dlog(s/n)e. To accomplish this, use
the s bits of advice to specify the concatenation of
f(a0), f(a1), . . . , f(as/n−1), where ai denotes the bi-
nary representation of i (padded with leading 0’s to
length k), and we can compress these s/n strings op-
timally to length dlog(s/n)e by sending f(ai) to ai

(truncated to the last dlog(s/n)e bits). This tells us

that HYao
0 (f(Uk)) ≤ k. Therefore, to establish the

n− 2 log s−O(1) lower bound on HYao
1/s (f(Uk)), we

have to use the 1/s in an essential manner, as it al-
lows us to simply neglect subsets of f({0, 1}k) of
density less than 1/s that could be optimally com-
pressed, and only establish a compressibility lower
bound for subsets of density at least 1/s.

Proof. To see why HMetric
1/s (f(Uk)) ≤ k + 1

(which holds for all injective functions f),
consider the test T given by OM

f . Then,
Pr[T (f(Uk)) = 1] = 1, whereas for any source
Y over {0, 1}n of min-entropy at least k + 1,
Pr[T (Y) = 1] =

∑
z∈f({0,1}k) Pr[Y = z] ≤ 1/2.

Again, let us fix n and k and study for which d do
we get HYao

1/s (f(Uk)) ≤ n−d. We will also retain the
notation from Section 3 (though the references are
somewhat different). Let compf be the set of func-
tions f ∈ F for which HYao

1/s (f(Uk)) ≤ n−d. For each
such f , there exists ` < n−d, a set Df ⊂ f({0, 1}k)
such that |Df | ≥ (2`−(n−d) + 1/s) · 2k and the uni-
form distribution over Df is compressible to length
exactly ` using some oracle circuits (Enc,Dec) of size
s. We may then define

invertf = {x | f(x) ∈ Df and on input Enc(f(x)),
Dec queries OS

f on x}
forgef = {x | f(x) ∈ Df and on input Enc(f(x)),

Dec does not query OS
f on x}

Clearly, invertf and forgef form a partition of
f−1(D). In addition, we define

invertible =
{
f ∈ compf : |invertf | ≥ 1

2s · 2
k
}

forgeable =
{
f ∈ compf :

|forgef | ≥
(
2`−(n−d) + 1

2s

)
· 2k

}
Again, observe that compf = invertible ∪ forgeable.

By the same analysis as used in Lemma 3.5, we
have for k > 7 log s + O(1),

|invertible| < 2−(s+1)
(
N
K

)
K!

Furthermore, we have the following analogue of
Lemma 3.6:

Lemma 4.2. Take any f ∈ forgeable, and let
(Enc,Dec) be oracle circuits of size s that compress
the uniform distribution over Df to length exactly
`, and also satisfy |forgef | ≥

(
2`−(n−d) + 1

2s

)
· 2k.

Then, f can be described using

a` + log
(
K
a

)
+ log

(
N−a
K−a

)
(K − a)! + a log s

9

bits, given Dec, where a =
(
2`−(n−d) + 1

2s

)
· 2k/s.

Proof. (sketch) The proof is similar to that for
Lemma 3.6: again, we show that there exists a sub-
set W of forgef of size a, such that we can describe
f given:

Enc(f(W)),W, f |{0,1}k−W

in addition to {az ∈ [s] | z ∈ Enc(f(W))} of mem-
bership advice strings and where Enc(f(W)) is rep-
resented as an ordered set where the ordering is that
induced by the lexicographic ordering on W . Now,
Enc has fixed output length `, so we may describe
Enc(f(W)) using just a` bits.

This yields the following analogue of Lemma 3.7:
for k > 7 log s + O(1) and d > 2 log s + O(1),

|forgeable|(
N
K

)
K!

≤
2a`

(
K
a

)(
N−a
K−a

)
(K − a)!sa2s(n+k) log s(

N
K

)
·K!

<
2a`

(
Ke
a

)a
sa(

N
a

)a (
a
e

)a · 2s(n+k) log s

=
(

2`Ke2s

Na

)a

· 2s(n+k) log s

<

(
e2s2

D

)K/2s2

· 2K/2s2
< 2−(s+1)

and thus

|forgeable| < 2−(s+1)
(
N
K

)
K!

Combining the upper bounds on |invertible| and
|forgeable|, we have

|compf| < 2−s
(
N
K

)
K!

and the theorem follows.

5. An Incompressible Function From
Cryptography

5.1. On Incompressible Functions

5.1.1. Motivation Dwork, Lotspiech and Naor
[3] defined an incompressible length-increasing func-
tion f : {0, 1}k → {0, 1}n (with k = o(n)) to be one
where in order for one party Alice to communicate
f(x) to Bob in o(|f(x)|) bits, Alice must reveal x, in
the sense that Bob can effectively compute x from
the message Alice transmits. This definition is moti-
vated by its application to Digital Signets, a scheme

for protecting digital content from illegal redistribu-
tion by an authorized user. Here, some digital con-
tent is distributed in an encrypted form, say us-
ing a one-time pad with the string f(x), which has
length comparable to that of the content, where the
seed x to f is typically some sensitive piece of in-
formation about the authorized user, such as her
credit card number. Typically, the content being dis-
tributed requires large bandwidth for redistribution
and therefore it is infeasible to redistribute f(x) un-
compressed. On the other hand, the user will not
want to reveal x either.

5.1.2. A Formal Definition

Definition 5.1. Given a length-increasing function
f : {0, 1}k → {0, 1}n, and functions Enc : {0, 1}k ×
{0, 1}n → {0, 1}∗ and Dec : {0, 1}∗ → {0, 1}n, we
say (Enc,Dec) compresses f to length m if

1. For all x ∈ {0, 1}k, Dec(Enc(x, f(x))) = x, and

2. E[|Enc(Uk, f(Uk))|] ≤ m.

Furthermore, we say (Enc,Dec) securely compresses
f to length m if the following additional condition is
satisfied: for all polynomial size circuits A,

Pr
x∈{0,1}k

[A(Enc(x, f(x))) = x] = neg(n)

Definition 5.2. We say the function f : {0, 1}k →
{0, 1}n is incompressible if there exists no polynomial
size circuits (Enc,Dec) that securely compresses f to
length o(n).

The key distinction between the notion of com-
pressibility here and that in section 2.3 is that
Enc has access to a short description of f(x) here,
namely that of x. Therefore, Enc(x, f(x)) = x and
Dec(x) = x efficiently compress f to length k;
however, it does not securely compress f . In addi-
tion, even if we take f to be some pseudorandom
generator secure against polynomial size circuits,
(Uk, f(Uk)) is not pseudorandom against polyno-
mial size circuits (since the seed is exposed to Enc),
so it is no longer necessarily the case that f can-
not be efficiently compressed to length n−O(1).

5.2. Existence of Incompressible Func-
tions in the Random Oracle Model

Theorem 5.3. Let O be a random oracle that maps
{0, 1}k to {0, 1}k. Then, for every integer c > 1 and
n = kc, the function f : {0, 1}k → {0, 1}n:

f : x 7→ O(x + 1) ◦ O(x + 2) ◦ · · · ◦ O(x + n/k)

10

is incompressible (per definition 5.2) with probability
1 − neg(k) (over the choices made by the random or-
acle).

Let H be the set of functions h : {0, 1}k →
{0, 1}k, so we may view O as being a uniformly cho-
sen element of H. We write Oh when O is chosen to
be h ∈ H, and we define

fh : x 7→ h(x + 1) ◦ h(x + 2) ◦ · · · ◦ h(x + `)

where ` = n/k. In addition, for each h ∈ H, and
each (Enc,Dec) that compresses hf , we define

inverth,(Enc,Dec) = {x | on input Enc(x, fh(x)),
Dec queries Oh on at least
one of x + 1, . . . , x + ` }

forgeh,(Enc,Dec) = {x | on input Enc(x, fh(x)),
Dec does not query Oh on
any of x + 1, . . . , x + ` }

Clearly, inverth,(Enc,Dec) and forgeh,(Enc,Dec) form a
partition of {0, 1}k. The following lemma relates the
cardinality of inverth,(Enc,Dec) to whether (Enc,Dec)
securely compresses hf :

Lemma 5.4. Suppose (Enc,Dec) compresses hf to
length n/2 and satisfy | inverth,(Enc,Dec)| > 2k/n.
Then, there exists a circuitA of size poly(s) such that

Pr
x∈{0,1}k

[A(Enc(x, fh(x))) = x] >
1
n

In particular, if s = poly(n), then (Enc,Dec) does not
securely compress fh to length n/2.

Proof. Consider the following circuit A that on in-
put y: Simulate Dec on input y and and moni-
tor the queries Dec makes to h. Suppose Dec out-
puts w1 ◦ . . . ◦ w` and queries h at q1, . . . , qt. For
i = 1, 2, . . . , t, if h(qi) = wj , then output qi − j.
Otherwise, output 0.

It is easy to see that for all x ∈ invertf ,
A(Enc(x, fh(x))) = x, from which the result fol-
lows.

Now, consider s−compressible, the set of func-
tions h ∈ H for which there exists oracle circuits
(Enc,Dec) of size s that compresses hf to length
n/2 and satisfy | inverth,(Enc,Dec)| ≤ 2k/n. It fol-
lows from lemma 5.4 that s−compressible contains
all functions h ∈ H for which there exists ora-
cle circuits (Enc,Dec) of size s that securely com-
presses hf to length n/2. Hence, to prove theorem
5.3, it suffices to establish a (strong) upper bound
on |s−compressible|.

Lemma 5.5. Take any h ∈ s−compressible, and let
(Enc,Dec) be oracle circuits of size s that compress
hf to length n/2, and also satisfy | inverth,(Enc,Dec)| ≤
2k/n. Then, h can be described using

a
(

n
n−1 ·

n
2 + log n + 1

)
+ log

(
K
a

)
+ (K − a`)k

bits, given Dec, where a =
(
1− 1

n

)
K

s+` .

Proof. The proof is very similar to that for lemma
3.6, possibly much simpler too. First, recall that for
all x ∈ forgeh,(Enc,Dec), Dec on input Enc(x, fh(x))
never queries Oh on x. WLOG, assume that Dec
makes distinct queries to h on all of these x.

We claim that there exists a subset W of
forgeh,(Enc,Dec) of size a, such that we can de-
scribe h given:

Enc(W, fh(W)),W, h|{0,1}k−
S`

i=1(W+i)

where Enc(W, fh(W)) = {Enc(w, fh(w)) | w ∈ W}
is represented as an ordered set where the ordering
is that induced by the lexicographic ordering on W .
Moreover, W satisfies

Ex∈W [|Enc(x, fh(x))|] ≤ n

n− 1
· n

2

Therefore, we can describe the ordered set
Enc(f(W)) using a

(
n

n−1 ·
n
2 +log n+1

)
bits by con-

catenating the values of |Enc(w, f(w))|Enc(w, f(w))
as w runs through W in lexicographic order-
ing.

Greedy-Construct-W

1. Initially, W is empty and all elements of
forgeh,(Enc,Dec) are candidates for being an
element of W . Remove the lexicographi-
cally smallest element z = Enc(x, fh(x)) in
Enc(W, fh(W)), and put x in W .

2. Simulate Dec on z, and halt the simulation
when Dec is done and outputs y1 . . . y`. Let
x1, . . . , xq be the queries Dec makes to f . We
could then use the ordering on Enc(W, fh(W))
to find out what x is.

3. Remove Enc(x1, fh(x1)), . . . ,Enc(xq, fh(xq))
and Enc(x+1, fh(x+1)), . . . ,Enc(x+ `, fh(x+
`)) from Enc(W, fh(W)). Then, all the ele-
ments x1, . . . , xq and x + 1, . . . , x + ` that were
not already added to W will never be added
to W .

11

4. Remove the lexicographically smallest of the re-
maining elements in Enc(W, fh(W)), say z =
Enc(x, fh(x)), put x in W , and return to step
(2).

Recover-f

1. To reconstruct the values of f on W , start with
a look-up table for f on values in {0, 1}k −W ′,
and go through the strings in Enc(W, fh(W))
in lexicographic order.

2. Pick the lexicographically smallest element z =
Enc(x, fh(x)) from Enc(W, fh(W)) and simu-
late Dec on z. Halt the simulation when Dec
is done and outputs y1 . . . y`.

3. By construction, whenever Dec makes a query
x′ to f , we can retrieve the answer from the
look-up table.

4. Once the simulation halts, we know f(x +
1), . . . , f(x + `) (given by y1, . . . , y` respec-
tively). In addition, we can use the ordering
Enc(W, fh(W)) to figure out x. We can then
add (x1, y1), . . . , (x`, y`) to the look-up for f .

5. Remove z from Enc(W, fh(W)), and return to
step (2), choosing the lexicographically smallest
of the remaining elements in Enc(W, fh(W)).

In each step of Greedy-Construct-W, we add
one element to W and remove at most s+` elements
from Enc(forgeh,(Enc,Dec), fh(forgeh,(Enc,Dec))). Since
Enc(forgeh,(Enc,Dec), fh(forgeh,(Enc,Dec))) has initially(
1− 1

n

)
K elements, in the end W has at least(

1− 1
n

)
K

s+` elements.

Lemma 5.6.

|s−compressible| < 2−sKK

Proof. Again, we can describe Dec using s(n +
k) log s bits, so any function h ∈ s−compressible can
be described using

a
(

n
n−1 ·

n
2 + log n + 1

)
+ log

(
K
a

)
+(K − a`)k + s(n + k) log s

bits. It follows that

|s−compressible|
KK

<

(
2nN1/2N1/2(n−1)Ke

K`a

)a

· 2s(n+k) log s

≤
(

4enN1/2

aK`−1

)a

· 2s(n+k) log s

≤
(

8enN1/2(s + `)
K`

)a

· 2s(n+k) log s < 2−s

5.2.1. A Remark on Oracle Implementation
Consider an implementation of the random oracle
with say x 7→ gx over some field Fp for which g is
a generator. Then the output is clearly not incom-
pressible; Enc(x, f(x)) = gx (and the corresponding
Dec) compresses f to length O(log p).

On the other hand, Theorem 5.3 does suggest
a practical realization of an incompressible func-
tion: let H : {0, 1}∗ → {0, 1}k be a cryptographic
hash function (such as SHA-1). Under the assump-
tion that cryptographic hash functions are a prac-
tical realization of random oracles, f as defined be-
low is an incompressible function:

f(x) = H(x + 1)H(x + 2) . . .H(x + n/k)

Using the same techniques, we can also prove that
the function obtained by replacing O in 5.3 with
a random permutation oracle, or taking a random
function from {0, 1}k to {0, 1}n yields an incom-
pressible function.

6. Necessity of One-Way Functions

In the previous sections, we gave separation re-
sults between pseudoentropy and compressibility
and between metric-type and Yao-type pseudoen-
tropy for samplable sources in an oracle setting in
which one-way functions exist. In this section, we
show that the existence of one-way functions are in
fact necessary to prove such results.

Informally, a function f is (uniformly) one-way if
it is easy to compute but hard to invert by prob-
abilistic polynomial-time algorithms. We do not
know whether one-way functions exist, but even if
they do not exist, it seems conceivable that there
may exist a easy to compute many-to-one func-
tion f for which that finding a pre-image is easy,
whereas uniformly sampling from the pre-images is
hard. This turns out to be impossible, as stated pre-
cisely in the following definition and theorem:

12

Definition 6.1. [7] A function f is distribution-
ally one-way if, for some constant c > 0, for every
feasible (probabilistic) algorithm A, the distribution
defined by x ◦ f(x) and the distribution defined by
A(f(x)) ◦ f(x) have statistical distance at least n−c,
where x ∈R {0, 1}n.

Theorem 6.2. [7] If there is a distributionally one-
way function, then there is a (uniformly) one-way
function.

Now, suppose one-way functions and thus distri-
butionally one-way functions do not exist. Let X be
a samplable flat source X over {0, 1}n of entropy
k. If the sampling algorithm S for X uses exactly
k random bits, then we can optimally compress X
by inverting the function S. However, S could use
nO(1) random bits. We know that a random hash
function h from {0, 1}n to {0, 1}k+2 log n maps most
elements in the support of X to distinct elements.
Thus, to compress X, we simply apply h. To decom-
press, it is not sufficiently to simply invert h, since
we need to identify the pre-images of h that is in
the support of X; moreover, there may be an expo-
nential number of pre-images (though if h is linear,
these pre-images have a compact description). To
address both problems, we will instead sample from
the preimages of h ◦ S (approximately uniformly).

Theorem 6.3. If (uniformly) one-way functions
do not exist, then any samplable flat source X over
{0, 1}n of entropy k can be compressed to length k +
2 log n+O(1). Furthermore,HYao

1/2 (X) ≤ k+2 log n+
O(1).

Proof. Let X be a samplable flat source X over
{0, 1}n of entropy k. Let W = Sup(X), and S :
{0, 1}r → {0, 1}n be an efficient sampling algo-
rithm for X, that is, S(Ur) = X. Fix a fam-
ily of linear pairwise independent hash functions
H = {h : {0, 1}n → {0, 1}k+2 log n}, and for each
h ∈ H, define:

Ch =
{
x ∈ W | ∃ y ∈ W : y 6= x ∧ h(y) = h(x)

}
that is, Ch is subset of W with collisions under h.
A simple union bound tells us that for any x ∈ W ,

Pr
h

[
∃y ∈ W : y 6= x ∧ h(y) = h(x)

]
≤ 2k

2k+2 log n
=

1
n2

Therefore, E
[
|Ch|

]
≤ 1

n2 · 2k. We say that h ∈ H
is good if |Ch| ≤ 1

n · 2
k, that is, h maps most ele-

ments in W to distinct images. Then, a straight-
forward application of Markov’s inequality yields
Prh

[
|Ch| > 1

n · 2k
]

< 1
n ; that is, at most a 1/n

fraction of H is not good.
Next, consider the function f : {0, 1}k × H →

H × {0, 1}k+2 log n given by f(a, h) = (h, h(S(a))).
Clearly, f is polynomial-time computable, so un-
der the assumption that one-way functions and
hence distributionally one-way functions do not ex-
ist, there exists a probabilistic polynomial-time A =
(A1, A2) with A : H× {0, 1}k+2 log n → {0, 1}k ×H
such that the distribution defined by (a, h, f(a, h))
and that defined by (A(f(a, h)), f(a, h)) have sta-
tistical distance at most 1/n, where a ∈R {0, 1}r

and h ∈ H. Considering the statistical test induced
by f , we obtain:

Pr
M,a,h

[
f(A(f(a, h))) = f(a, h)

]
≥ 1− 1

n

(with the probability taken over the random coin
tosses of M , as well as a ∈R {0, 1}r and h ∈ H) and
thus,

Pr
M,a,h

[
f(A(f(a, h))) = f(a, h) and h is good

]
≥ 1− 2

n

We may then fix the coin tosses of M and also fix
h = h0 such that h0 is good, and

Pr
a

[
f(A(f(a, h0))) = f(a, h0)

]
≥ 1− 2

n

Now, consider any a such that f(A(f(a, h0))) =
f(a, h0). Writing A(f(a, h0)) = (a′, h′) (where
A1(f(a, h0)) = a′ and A2(f(a, h0)) = h′), we
have f(a′, h′) = f(a, h0), that is, h′ = h0 and
h0(S(a′)) = h0(S(a)). Furthermore, with probabil-
ity at least 1−1/n over a, S(a) /∈ Ch0 , in which case
S(a′) = S(a), that is, S(A1(h0, h0(S(a)))) = S(a).
Therefore, if we define the circuits (Enc,Dec) given
by Enc(y) = h0(y) and Dec(y) = S(A1(h0, y)), then
we have:

Pr
a

[
Dec

(
h0(S(a))

)
= S(a)

]
= Pr

x∈X

[
Dec(h0(x)) = x

]
≥ 1− 3

n

Hence, (Enc,Dec) (1− 3
n)-somewhere compresses X

to exactly length k+2 log n, so X can be compressed
to length k +2 log n+O(1) by polynomial-sized cir-
cuits, and HYao

1/2 (X) ≤ k + 2 log n + O(1).

Note that a similar result holds even if X is only
approximately samplable, that is, S(Ur) and X are
only statistically close (or even just computation-
ally indistinguishable by polynomial-sized circuits).

13

7. Discussion

The proofs for the separation results in this pa-
per depend on a very fundamental manner on the
information-theoretic one-wayness of random func-
tion and permutation oracles, and as a result, the
techniques used are limited to such settings. The
problem as to whether we obtain similar results
without oracles under standard complexity or cryp-
tographic assumptions (at least as strong as the ex-
istence of one-way functions) remains open.

8. Acknowledgements

Most of the ideas in this work originated from dis-
cussions with Luca Trevisan; I am very grateful to
him for getting me started on this problem, and for
his guidance and support throughout the course of
this work. In addition, I would like to thank Cynthia
Dwork for pointing out [3] to us; Ronen Shaltiel for
helpful discussions regarding [1]; and Andrej Bog-
danov for raising the question of whether one-way
functions are necessary for the separation results.

References

[1] Boaz Barak, Ronen Shaltiel and Avi Wigderson.
“Computational Analogues of Entropy”, Proceed-
ings of RANDOM 2003.

[2] T.M. Cover and J.A. Thomas. Elements of Infor-
mation Theory. John Wily & Sons, Inc., 1991.

[3] Cynthia Dwork, Jeffrey Lotspiech and Moni Naor,
“Digital Signets: Self-EnforcingProtection ofDig-
ital Information”, Proceedings of STOC 1996.

[4] Andrew V. Goldberg and Michael Sipser. “Com-
pression and Ranking”, SIAM Journal on Com-
puting, 20:524-536, 1991.

[5] Rosario Gennaro and Luca Trevisan, “Lower
Bounds on Efficiency of Generic Cryptographic
Constructions”, Proceedings of FOCS 2000.

[6] Russell Impagliazzo, October 1999. Remarks in
Open Problem session at the DIMACS Workshop
on Pseudorandomness and Explicit Combinato-
rial Constructions.

[7] Russell Impagliazzo and Michael Luby. “One-
way Functions are Essential for Complexity Based
Cryptography”, Proceedings of FOCS 1989.

[8] Luca Trevisan, private communication.

[9] Luca Trevisan, Salil Vadhan and David Zucker-
man, “Compression of Samplable Sources”, Pro-
ceedings of CCC 2004.

14

