$\left\{ \operatorname{Csc} 80030 \mid \operatorname{Lecture} 1 \right\}$

PROBABILISTIC ANALYSIS & RANDOMIZED ALGORITHMS

Hoeteck Wee · hoeteck@cs.qc.edu

- Overview of this course
- Course administration
- ► A randomized algorithm

Randomization in Computer Science

Algorithm Design

- ► Basic algorithmic problems, e.g. PRIMALITY (1977, 2002)
- ► Practical problems, e.g. symmetry breaking in sharing resources
- Cryptography
 - Randomness provides secrecy, e.g. 4-digit PIN random in {0000,...,9999}.
- Computational Models
 - ▶ Random processes, e.g. natural selection & mutation in biology
 - ► Complex networks, e.g. social networks and the Internet

Randomized algorithms

- Simplicity: Randomized min-cut, median-finding and 2-SAT
- Efficiency: Sublinear-time algorithms
- Average-Case "Goodness": Load balancing
- ► Tools and techniques for probabilistic analysis
 - ► Tail bounds, e.g. Markov's inequality and Chernoff bounds
- Computational models
 - Random graphs

Basic Information

- Course webpage www.cs.qc.edu/~hoeteck/s09
- Contacting me hoeteck@cs.qc.edu
- Webpage + email for disseminating information
- ► Textbook: Probability and Computing: ..., by Mitzenmacher & Upfal
- ► Pre-requisites
 - Strong background in basic probability; basic algorithms course
- ► Course "rescheduling"? 4.10 PM 6 PM

- Homework: \sim once every two weeks
- ► One mid-term: Mar 18 (maybe 2-4 pm?)
- One programming assignment
- Final project
- Class attendance and participation

IDENTITY TESTING

Given two polynomials p(x) and q(x), decide whether $p \equiv q$ (that is, whether *p* is "identical" to *q*).

- "polynomials": coefficients are integers or field elements; degree $\leq d$
- " $p \equiv q$ ": coefficients for each monomial are the same, e.g. $(x+1)(x-1) \equiv x^2 - 1$
- "given": (1) list of coefficients, or (2) as a formula, e.g. $((x-1)^2+1)^3+4x.$

IDENTITY TESTING

Given two polynomials p(x) and q(x), decide whether $p \equiv q$ (that is, whether *p* is "identical" to *q*).

IDENTITY TESTING (special case)

Given a polynomial p(x), decide whether $p \equiv 0$.

► To solve the general case, check whether p(x) - q(x) is identical to 0.

IDENTITY TESTING Algorithm

- 1. Pick a number *r* uniformly at random from $\{1, 2, ..., 2d\}$.
- 2. Evaluate p(r). If the result is 0, accept; else, reject.

- If $p(x) \equiv 0$, then algorithm always accepts.
- If $p(x) \neq 0$, then algorithm accepts with probability $\leq \frac{1}{2}$.

Fact

A non-zero degree d polynomial has at most d roots.

IDENTITY TESTING Algorithm

- 1. Pick a number *r* uniformly at random from $\{1, 2, ..., 2d\}$.
- 2. Evaluate p(r). If the result is 0, accept; else, reject.

- If $p(x) \equiv 0$, then algorithm always accepts.
- If $p(x) \neq 0$, then algorithm accepts with probability $\leq \frac{1}{2}$.

Question

How can we reduce the error (i.e. the probability of accepting $p(x) \neq 0$)?

- 1. Try all r in $\{1, 2, \ldots, d+1\}$.
 - Always outputs correct answer.
 - Problem: d may be as large as 2^n . e.g.

$$\underset{((((x+1)^2+1)^2+1)^2\cdots+1)^2}{\leftarrow}$$

- 2. Replace 2*d* with 1000*d*.
 - Reduces error to 1/1000.
 - Disadvantage: need to compute with large numbers.
- 3. Repeat k times, using different random values r
 - ▶ Reduces error to 1/2^k.
 - Advantage: works in general for any randomized algorithm.

- ▶ Next week: review basic probability
- ▶ Homework 1 to be posted by Fri, due Feb 11 (Wed).
- Short quiz