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PART O

> LAST WEEK: (3) € Q(y/n),w(nlogn).
» HOMEWORK: HW1 is out, due next week; hiring problem — HW2.

» TODAY: randomized min-cut; basic probability & coupon-collecting



PART 1 randomized min-cut



Minimum cut

1. Cut: set of edges whose removal render the graph disconnected

2. Minimum cut: cut of the smallest size (size = # edges in the cut)

» cut: {(1,2),(1,3),(1,4)} ({1},{2,3,4})
» min-cut: {(1,4),(3,4)} ({1,2,3},{4})
or{(1,2),(2,3)} ({1,3,4},{2})

4 3

The minimum cut has size at most the minimum degree of any node.
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Minimum cut

1. Cut: set of edges whose removal render the graph disconnected

2. Minimum cut: cut of the smallest size (size = # edges in the cut)

MINIMUM CUT Problem

On input an undirected graph with n vertices, output a minimum cut.

APPLICATIONS
» network reliability (nodes = machines, edges = connections)

» clustering webpages (nodes = webpages, edges = hyperlinks)
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Minimum cut

1. Cut: set of edges whose removal render the graph disconnected

2. Minimum cut: cut of the smallest size (size = # edges in the cut)

MINIMUM CUT Problem

On input an undirected graph with n vertices, output a minimum cut.

ALGORITHMS
> “naive”: compute s-f minimum cut n times (via Ford-Fulkerson).

» next: randomized algorithm based on edge contractions
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Edge contraction

Operation EDGE CONTRACTION

Input: edge (u,v) in undirected graph
1. Merge vertices u and v.

2. Remove any self-loops and keep multi-edges.

1 2 1 2,3 1,23

Csc 80030 (Prob. Analysis & Rand. Alg) Feb 4, 2009



Randomized min-cut (Karger, 1993)

RANDMINCUT Algorithm

Input: undirected graph G.
1. Repeat n — 2 times: contract a random edge

2. Output the edges connecting the remaining two vertices.

» Each edge contraction reduces # vertices by 1.
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Analysis

Let C be a min-cut. If we never contract an edge in C, then C remains a cut.

> PROOF: only contract edges, so ( edges, vertices ) on left side of C stay

on left side, and the same for right side.

Csc 80030 (Prob. Analysis & Rand. Alg) Feb 4, 2009 9/20



Analysis

Let C be a min-cut. If we never contract an edge in C, then C remains a cut.

> INTUITION: 3 lots of edges, so we’re unlikely to contract an edge in C

> GOAL: bound Pr[E;] where E; is “C survives the first i iterations”.

Base case: Pr[E|]
1. degree of every vertex > k

2. #edges > nk/2

n—2

B PE] =1~ geim 21— n =57
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Analysis

FACT 2

Min-cut size never decreases.

» CLAIM: Any cut C in the new graph is also a cut in the original graph.

» PROOF: Induction. Any “contracted edge” must lie on same side of C.
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Analysis

FACT 2

Min-cut size never decreases.

Iterative step: Pr[E;i;; | Ej]
1. By Fact 2, min-cut size > k, so degree > k
2. #vertices=n—1i

3. #edges > (n—i)k/2

_ n—i=2

k
> 1= (n—0k/2 — n—i

k
#edges —

4, PI'[E,'_H | El] =1
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Analysis

Pr[RANDMINCUT outputs C]

Pr[E,_»]| = Pr[E,—> | E,—1] - - Pr|E, | Ey] - Pr[E]
() EEDEEDER) - (DB)E)G)

\%

How can we increase the probability of returning a min-cut?

(

> Repeat ~ D Inn times and output the smallest cut.

n(nz D

» Pr[fails to output C] < (1 - <

S =

2
n(n—1)
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PART 2 two distributions & coupon-collecting



Expectation

Definition (expectation)

The expectation E[X] of a discrete random variable X is given by

> iPrX =],
i
Fact (linearity of expectations)

Given any finite collection of r.v. Xi, ..., X,, we have

E[Z Xi] - iE[X,»]

» EXAMPLE: toss two 6-sided dice and take the sum of the two values.
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Variance

Definition (variance)

The variance Var[X] of a random variable X is given by

E[(X — E[X])’] = E[X*] — (E[X])*.

Given any finite collection of independent r.v. Xy, . . ., X,, we have

Var [i X,} = i:Var[Xi]
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Bernoulli and Binomial random variables

» Consider an experiment with success probability p, and call Y the r.v.:

v 1 if the experiment succeeds

0 otherwise

Then, Y is called a Bernoulli or indicator r.v.
» EY]=p-14+(1—p)-0=p.
> Var[¥] = E[¥?] — (E[¥])? = p(1 - p).
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Bernoulli and Binomial random variables

>

Consider an experiment with success probability p, and call Y the r.v.:

v 1 if the experiment succeeds

0 otherwise

Then, Y is called a Bernoulli or indicator r.v.

v

Binomial r.v. X — B(n, p) — denotes # successes in n independent trials.

Pr[x = j] = (’?);m —py

v

Can write X as sum of indicatorr.v. Y] + Y, + ---+ Y,

» E[X] = np and Var[X] = np(1 — p).
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Geometric random variable

>

Perform a sequence of independent trials until the first success.

v

Geometric r.v. X with parameter p denotes # trials until first success.

Pr[X=n]=(1-p)"'p

v

EX] =3 n(1—p'p=1/p*-p=1/p

Fact: = )2—1+2x+3x +4x3 + -

v

v
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Coupon collector’s problem

Coupon Collector’s Problem

» Each box of cereals contains one of n different coupons.

» Coupon in every box is chosen independently and uniformly at random.

How many boxes must we buy to obtain at least one coupon of every type?

» Let X; be the # boxes to go from exactly i — 1 different coupons to i.

1. X; is a geometric r.v. with parameter p; = 1 — =1,

2. Total #of boxes X = X; + X + - - - + X,.

> BIX] =3 EIXi] = 3L, 2y =0 2, 1 =n(lnn + 6(1))
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