
{
Csc 80030

∣∣ Lecture 2
}

PROBABILISTIC ANALYSIS &

RANDOMIZED ALGORITHMS

Hoeteck Wee · hoeteck@cs.qc.edu



PART 0 |
I LAST WEEK:

(n
2

)
∈ Ω(

√
n), ω(n log n).

I HOMEWORK: HW1 is out, due next week; hiring problem → HW2.

I TODAY: randomized min-cut; basic probability & coupon-collecting



PART 1 | randomized min-cut



Minimum cut

Definitions

1. Cut: set of edges whose removal render the graph disconnected

2. Minimum cut: cut of the smallest size (size = # edges in the cut)
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I cut: {(1, 2), (1, 3), (1, 4)} 〈 {1}, {2, 3, 4} 〉

I min-cut: {(1, 4), (3, 4)} 〈 {1, 2, 3}, {4} 〉
or {(1, 2), (2, 3)} 〈 {1, 3, 4}, {2} 〉

Easy Fact

The minimum cut has size at most the minimum degree of any node.
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Minimum cut

Definitions

1. Cut: set of edges whose removal render the graph disconnected

2. Minimum cut: cut of the smallest size (size = # edges in the cut)

MINIMUM CUT Problem

On input an undirected graph with n vertices, output a minimum cut.

APPLICATIONS

I network reliability (nodes = machines, edges = connections)

I clustering webpages (nodes = webpages, edges = hyperlinks)
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Minimum cut

Definitions

1. Cut: set of edges whose removal render the graph disconnected

2. Minimum cut: cut of the smallest size (size = # edges in the cut)

MINIMUM CUT Problem

On input an undirected graph with n vertices, output a minimum cut.

ALGORITHMS

I “naive”: compute s-t minimum cut n times (via Ford-Fulkerson).

I next: randomized algorithm based on edge contractions
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Edge contraction

Operation EDGE CONTRACTION

Input: edge (u, v) in undirected graph

1. Merge vertices u and v.

2. Remove any self-loops and keep multi-edges.
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Randomized min-cut (Karger, 1993)

RANDMINCUT Algorithm

Input: undirected graph G.

1. Repeat n − 2 times: contract a random edge

2. Output the edges connecting the remaining two vertices.

I Each edge contraction reduces # vertices by 1.
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Analysis

FACT 1

Let C be a min-cut. If we never contract an edge in C, then C remains a cut.

I PROOF: only contract edges, so 〈 edges, vertices 〉 on left side of C stay

on left side, and the same for right side.
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Analysis

FACT 1

Let C be a min-cut. If we never contract an edge in C, then C remains a cut.

I INTUITION: ∃ lots of edges, so we’re unlikely to contract an edge in C

I GOAL: bound Pr[Ei] where Ei is “C survives the first i iterations”.

Base case: Pr[E1]

1. degree of every vertex ≥ k

2. # edges ≥ nk/2

3. Pr[E1] = 1 − k
# edges ≥ 1 − k

nk/2 = n−2
n
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Analysis

FACT 2

Min-cut size never decreases.

I CLAIM: Any cut C in the new graph is also a cut in the original graph.

I PROOF: Induction. Any “contracted edge” must lie on same side of C.
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Analysis

FACT 2

Min-cut size never decreases.

Iterative step: Pr[Ei+1 | Ei]

1. By Fact 2, min-cut size ≥ k, so degree ≥ k

2. # vertices = n − i

3. # edges ≥ (n − i)k/2

4. Pr[Ei+1 | Ei] = 1 − k
# edges ≥ 1 − k

(n−i)k/2 = n−i−2
n−i
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Analysis

Pr[RANDMINCUT outputs C]

= Pr[En−2] = Pr[En−2 | En−1] · · ·Pr[E2 | E1] · Pr[E1]

≥ ( n−2
n )( n−3

n−1 )( n−4
n−2 )( n−5

n−3 ) · · · ( 4
6 )( 3

5 )( 2
4 )( 1

3 )

= 2
n(n−1)

Question

How can we increase the probability of returning a min-cut?

I Repeat n(n−1)
2 ln n times and output the smallest cut.

I Pr[fails to output C] ≤
(

1 − 2
n(n−1)

) n(n−1)
2 ln n

≤ 1
n
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PART 2 | two distributions & coupon-collecting



Expectation

Definition (expectation)

The expectation E[X] of a discrete random variable X is given by∑
i

i Pr[X = i].

Fact (linearity of expectations)

Given any finite collection of r.v. X1, . . . , Xn, we have

E
[ n∑

i=1

Xi

]
=

n∑
i=1

E[Xi]

I EXAMPLE: toss two 6-sided dice and take the sum of the two values.
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Variance

Definition (variance)

The variance Var[X] of a random variable X is given by

E[(X − E[X])2] = E[X2]− (E[X])2.

Fact

Given any finite collection of independent r.v. X1, . . . , Xn, we have

Var
[ n∑

i=1

Xi

]
=

n∑
i=1

Var[Xi]
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Bernoulli and Binomial random variables

I Consider an experiment with success probability p, and call Y the r.v.:

Y =

1 if the experiment succeeds

0 otherwise

Then, Y is called a Bernoulli or indicator r.v.

I E[Y] = p · 1 + (1 − p) · 0 = p.

I Var[Y] = E[Y2]− (E[Y])2 = p(1 − p).
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Bernoulli and Binomial random variables

I Consider an experiment with success probability p, and call Y the r.v.:

Y =

1 if the experiment succeeds

0 otherwise

Then, Y is called a Bernoulli or indicator r.v.

I Binomial r.v. X – B(n, p) – denotes # successes in n independent trials.

Pr
[
X = j

]
=

(
n
j

)
pj(1 − p)n−j

I Can write X as sum of indicator r.v. Y1 + Y2 + · · ·+ Yn

I E[X] = np and Var[X] = np(1 − p).
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Geometric random variable

I Perform a sequence of independent trials until the first success.

I Geometric r.v. X with parameter p denotes # trials until first success.

Pr
[
X = n

]
= (1 − p)n−1p

I E[X] =
∑∞

n=1 n(1 − p)n−1p = 1/p2 · p = 1/p

I Fact: 1
(1−x)2 = 1 + 2x + 3x2 + 4x3 + · · · .

I p.g.f. GX(t) = E[ tX] = pt
1−(1−p)t
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Coupon collector’s problem

Coupon Collector’s Problem

I Each box of cereals contains one of n different coupons.

I Coupon in every box is chosen independently and uniformly at random.

How many boxes must we buy to obtain at least one coupon of every type?

I Let Xi be the # boxes to go from exactly i − 1 different coupons to i.

1. Xi is a geometric r.v. with parameter pi = 1 − i−1
n .

2. Total # of boxes X = X1 + X2 + · · · + Xn.

I E[X] =
∑n

i=1 E[Xi] =
∑n

i=1
n

n−i+1 = n ·
∑n

i=1
1
i = n(ln n + Θ(1))
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