$\left\{ \operatorname{Csc} 80030 \mid \operatorname{Lecture} 5 \right\}$

PROBABILISTIC ANALYSIS & RANDOMIZED ALGORITHMS

Hoeteck Wee · hoeteck@cs.qc.edu

part 0

- ► HOMEWORK: HW2 due; HW3 is out
- ► TODAY: random graphs & probabilistic method

PART 1 | random graphs

Random Graphs

- ▶ Random graph model $G_{n,p}$
 - Distribution over undirected graphs on n vertices
 - Every edge occurs with probability *p*
 - Graph with given set of *m* edges has probability

$$p^m(1-p)^{\binom{n}{2}-m}$$

- Basic properties
 - Expected number of edges is $p\binom{n}{2}$
 - Each vertex has expected degree p(n-1)

Threshold behavior for triangles

• TODAY: show that for random graph model $\mathcal{G}_{n,p}$:

$$\Pr[G \text{ contains a triangle}] \stackrel{n \to \infty}{\longrightarrow} \begin{cases} 1 & \text{if } p = \omega(\frac{1}{n}) \\ 0 & \text{if } p = o(\frac{1}{n}) \end{cases}$$

- If p grows faster than $\frac{1}{n}$, almost every graph contains a triangle
- If p grows slower than $\frac{1}{n}$, almost no graph contains a triangle
- ► THRESHOLD BEHAVIOR: holds for many properties, e.g. "is connected", "contains a clique of size 4", with difference choices of " $\frac{1}{n}$ "
- ▶ "STEP" ZERO: Let *X* be r.v. for # of triangles in a random graph in $\mathcal{G}_{n,p}$.

Threshold behavior for triangles

• GOAL: show that for random graph model $\mathcal{G}_{n,p}$:

$$\Pr[X \ge 1] \xrightarrow{n \to \infty} \begin{cases} 1 & \text{if } p = \omega(\frac{1}{n}) \\ 0 & \text{if } p = o(\frac{1}{n}) \end{cases}$$

- ► CLAIM 1: $\Pr[X \ge 1] \le o(1)$ if $p = o(\frac{1}{n})$ IDEA: by Markov's, $\Pr[X \ge 1] \le \mathbb{E}[X]$.
- ► CLAIM 2: $\Pr[X \le 0] \le o(1)$ if $p = \omega(\frac{1}{n})$ IDEA: use Chebyshev's to argue that $\Pr[|X - E[X]| \ge E[X]] = o(1)$

Triangles in expectation

• COMPUTING E[X]: $X = \sum_{S} X_{S}$, S ranges over subsets of 3 vertices

$$X_{S} = \begin{cases} 1 & \text{if } S \text{ corresponds to a triangle in } G \\ 0 & \text{otherwise} \end{cases}$$

•
$$E[X_S] = p^3$$
 and $E[X] = {n \choose 3}p^3$

$$\mathbf{E}[X] = \begin{cases} \omega(1) & \text{if } p = \omega(\frac{1}{n}) \\ \Theta(1) & \text{if } p = \Theta(\frac{1}{n}) \\ o(1) & \text{if } p = o(\frac{1}{n}) \end{cases}$$

• THUS: $\Pr[X \ge 1] \le \mathbb{E}[X] = o(1)$ if $p = o(\frac{1}{n})$

Computing variance

► FACT: $\operatorname{Var}\left[\sum_{S} X_{S}\right] = \sum_{S} \operatorname{Var}[X_{S}] + \sum_{S \neq T} \operatorname{Cov}[X_{S}, X_{T}]$

•
$$\operatorname{Var}[X_S] = p^3(1-p^3)$$

• $\operatorname{Cov}[X_S, X_T] = \operatorname{E}[X_S X_T] - \operatorname{E}[X_S] \operatorname{E}[X_T] = \Pr[X_S X_T = 1] - (p^3)^2.$

• Case 1:
$$|S \cap T| \le 1$$
:
 $\Pr[X_S X_T = 1] = p^6 \Rightarrow \operatorname{Cov}[X_S, X_T] = 0$

• Case 2:
$$|S \cap T| = 2$$
:

$$\Pr[X_S X_T = 1] = p^5 \quad \Rightarrow \quad \operatorname{Cov}[X_S, X_T] = p^5 - p^6$$

▶ # pairs (S, T) fall into Case 2? $\binom{n}{2}(n-2)(n-3)$

► Var[X] = $\binom{n}{3}p^3(1-p^3) + \binom{n}{2}(n-2)(n-3)(p^5-p^6) \le \Theta(n^3p^3+n^4p^5)$

Completing the analysis

• CLAIM 2:
$$\Pr[X \le 0] \le o(1)$$
 if $p = \omega(\frac{1}{n})$

▶ By Chebyshev's, $\Pr[X \le 0] \le \Pr[|X - \mathbb{E}[X]| \ge \mathbb{E}[X]] \le \frac{\operatorname{Var}[X]}{(\mathbb{E}[X])^2}$.

$$\frac{\text{Var}[X]}{(\text{E}[X])^2} \le \Theta\Big(\frac{n^3 p^3 + n^4 p^5}{(n^3 p^3)^2}\Big) = \Theta\Big(\frac{1}{n^3 p^3} + \frac{p}{n^2 p^2}\Big) = o(1) \text{ if } p = \omega(\frac{1}{n})$$

PART 2 probabilistic method

Basic counting argument

- ▶ FACT: If $\Pr_{x \in U}[x \text{ has property } P] > 0$, then $\exists x \in U$ with property *P*.
- ► THEOREM: If $\binom{n}{k} 2^{-\binom{k}{2}+1} < 1$, then it is possible to color the edges of K_n with two colors so that it has no monochromatic K_k subgraph.
 - ► can set k ≈ 2 log n, e.g. exists a 2-coloring of the edges of K₁₀₀₀ with no monochromatic K₂₀.
 - here, $\mathcal{U} =$ all 2-colorings of the edges of K_n and
 - P =contains no monochromatic K_k subgraph
 - will show $\Pr_{x \in \mathcal{U}}[x \text{ contains a monochromatic } K_k \text{ subgraph}] < 1$

Avoiding monochromatic subgraphs

- ► CLAIM: If $\binom{n}{k} 2^{-\binom{k}{2}+1} < 1$ and $\mathcal{U} =$ all 2-colorings of the edges of K_n , then $\Pr_{x \in \mathcal{U}}[x \text{ contains a monochromatic } K_k \text{ subgraph}] < 1$.
- STEP ONE: fix a K_k subgraph corresponding to a subset S of k vertices.
 - Picking random $x \in \mathcal{U} \equiv$ coloring each edge independently at random.
 - ▶ $\Pr_{x \in U}$ [edges of *S* form a monochromatic K_k subgraph in x] = $2^{1-\binom{k}{2}}$
- ► STEP TWO: take a union bound.
 - ▶ $\Pr_{x \in \mathcal{U}}[x \text{ contains a monochromatic } K_k \text{ subgraph}] \leq {n \choose k} \cdot 2^{1 {k \choose 2}} < 1$

Averaging argument

- ► INFORMALLY: "not everyone is better than average"
- ► EXAMPLE: can show

 $E_{x \in \mathcal{U}}$ [# of monochromatic K_k subgraphs in x] < 1.

- ▶ THEOREM: Any graph G with m edges has a cut of size $\geq \frac{m}{2}$.
 - $\mathcal{U} = \text{all } 2^n \text{ possible (vertex) partitions/cuts}$
 - Claim: $E_{x \in U}$ [size of the cut *x* in *G*] = $\frac{m}{2}$.
 - ▶ Picking random $x \in U \equiv$ picking each vertex on a random side of the cut

THE END | next, power of two choices