$\left\{ \text{ Csc 80030 } \mid \text{ Lecture 4} \right\}$

PROBABILISTIC ANALYSIS & RANDOMIZED ALGORITHMS

Hoeteck Wee · hoeteck@cs.qc.edu

part 0

- ► HOMEWORK: HW2 is out; review HW1
- ► TODAY: randomized median finding & balls n' bins

PART 1 randomized median finding

Median Finding

MEDIAN FINDING Problem

Input: a set *S* of *n* values from some totally ordered universe Goal: output the median element *m* of *S*

- ► WHAT'S KNOWN: "easier" than sorting there is a deterministic linear-time algorithm.
- ► TODAY: a randomized linear-time algorithm based on random sampling and the fact that we can sort a set of size $O(n^{3/4})$ in O(n) time.

RANDMEDIAN Algorithm

Input: A list S of n distinct values

- 1. Sample ℓ from *S* such that rank_{*S*}(ℓ)/ $n \in [\frac{1}{2} 2\delta, \frac{1}{2}]$;
- 2. Sample *u* from *S* such that rank_{*S*}(*u*)/ $n \in [\frac{1}{2}, \frac{1}{2} + 2\delta]$;
- 3. By comparing with each value in *S*, compute $C = \{y \in S \mid \ell \le y \le u\};$
- 4. Output the $(\frac{1}{2}n \operatorname{rank}_{S}(\ell) + 1)$ 'th smallest element in the sorted set *C*.
- CORRECTNESS: $\operatorname{rank}_{S}(\operatorname{output}) = \operatorname{rank}_{C}(\operatorname{output}) + (\operatorname{rank}_{S}(\ell) 1).$
- FACT: $|C| \le 4\delta n + 1$, can sort in $O(\delta n \log n)$ time; set $\delta = 1/n^{1/4}$.
- GOAL: implement steps 1, 2 in O(n) time.

RANDMEDIAN Subroutine

- 1. Sample ℓ from *S* such that rank_{*S*}(ℓ)/ $n \in [\frac{1}{2} 2\delta, \frac{1}{2}];$
 - 1.1 Pick a set R of $n^{3/4}$ elements in S with replacement.
 - 1.2 Output the element x in R whose rank is $(\frac{1}{2} \delta)|R|$.
- INTUITION: $\operatorname{rank}_{S}(x)/n \approx \operatorname{rank}_{R}(x)/|R| = \frac{1}{2} \delta$
- CLAIM: $\Pr_R[\operatorname{rank}_S(x)/n \notin [\frac{1}{2} 2\delta, \frac{1}{2}]$ is tiny.
- SUB-CLAIM 1: $\Pr_R[\operatorname{rank}_S(x)/n > \frac{1}{2}]$ is tiny.
 - ► rank_S(x)/n > $\frac{1}{2} \Rightarrow #$ {elements in R > median(S)} $\geq (\frac{1}{2} + \delta)|R|$
 - X: #{elements in R > median(S)}, so $X \sim B(|R|, \frac{1}{2})$
 - Show $\Pr[X \ge (\frac{1}{2} + \delta)|R|]$ is tiny.

Analysis of RANDMEDIAN

- SUB-CLAIM 1: $\Pr_R[\operatorname{rank}_S(x)/n > \frac{1}{2}]$ is tiny.
 - $X \sim B(|R|, \frac{1}{2})$, will show $\Pr[X \ge (\frac{1}{2} + \delta)|R|]$ is tiny.

PROOF:

- $E[X] = \frac{1}{2}|R|$ and $Var[X] = \frac{1}{4}|R|$.
- Applying Chebyshev's,

$$\begin{split} \Pr\bigl[X \geq (\frac{1}{2} + \delta) |R|\bigr] &\leq & \Pr\bigl[|X - \mathbf{E}[X]| \geq \delta |R|\bigr] \\ &\leq & \frac{\operatorname{Var}[X]}{(\delta |R|)^2} = \frac{1}{4n^{1/4}} \end{split}$$

Analysis of RANDMEDIAN

- SUB-CLAIM 2: $\Pr_R[\operatorname{rank}_S(x)/n < \frac{1}{2} 2\delta]$ is tiny.
 - ► rank_S(x)/n < $\frac{1}{2} 2\delta \Rightarrow$ #{elements in *R* with rank_S < $(\frac{1}{2} - 2\delta)n$ } ≥ $(\frac{1}{2} - \delta)|R|$
 - ► *Y*: #{elements in *R* with rank_{*S*} < $(\frac{1}{2} 2\delta)n$ }, so $Y \sim B(|R|, \frac{1}{2} 2\delta)$
 - Show $\Pr[Y \ge (\frac{1}{2} \delta)|R|]$ is tiny.

▶ PROOF:

- ► $E[Y] = (\frac{1}{2} 2\delta)|R|$ and $Var[Y] = (\frac{1}{4} 4\delta^2)|R| \le \frac{1}{4}|R|$.
- Applying Chebyshev's,

$$\begin{aligned} \Pr[Y \ge (\frac{1}{2} - \delta)|R|] &\leq & \Pr[|Y - \mathrm{E}[Y]| \ge \delta|R|] \\ &\leq & \frac{\mathrm{Var}[Y]}{(\delta|R|)^2} \le \frac{1}{4n^{1/4}} \end{aligned}$$

Analysis of RANDMEDIAN

RANDMEDIAN Algorithm

Input: A list S of n distinct values

- 1. Sample ℓ from *S* such that rank_{*S*}(ℓ)/ $n \in [\frac{1}{2} 2\delta, \frac{1}{2}]$;
- 2. Sample *u* from *S* such that rank_{*S*}(*u*)/ $n \in [\frac{1}{2}, \frac{1}{2} + 2\delta]$;

3. ...

- $\Pr\left[\operatorname{rank}_{S}(\ell)/n \notin \left[\frac{1}{2} 2\delta, \frac{1}{2}\right]\right] \leq \frac{1}{2n^{1/4}}$
- similarly, $\Pr[\operatorname{rank}_{S}(u)/n \notin [\frac{1}{2}, \frac{1}{2} + 2\delta]] \leq \frac{1}{2n^{1/4}}$
- Pr[RANDMEDIAN outputs incorrect answer] $\leq \frac{1}{n^{1/4}}$

PART 2 | balls 'n bins

QUESTION. What is the probability that amongst 30 people in a room, two share the same birthday?

MODEL. Everyone's birthday is independently and uniformly chosen at random amongst 365 days.

ANALYSIS. Pr[all birthdays are distinct] is $(1 - \frac{1}{365}) \cdot (1 - \frac{2}{365}) \cdot (1 - \frac{3}{365}) \cdots (1 - \frac{29}{365}) \approx 0.2937$ MORE GENERALLY... For *m* people and *n* "birthdays", it's

$$(1 - \frac{1}{n}) \cdot (1 - \frac{2}{n}) \cdot (1 - \frac{3}{n}) \cdots (1 - \frac{m-1}{n})$$

$$\approx \prod_{j=1}^{m-1} e^{-j/n} = e^{-m(m-1)/2n} \approx e^{-m^2/2n}$$

 \Rightarrow constant prob of "collision" whenever $m \gtrsim \sqrt{2n \ln 2}$

- ▶ *m* balls thrown into *n* bins
 - location of each ball independent and random
- ► Example: job scheduling
 - balls = tasks, bins = processors
- Quantities of interest
 - average load = expected number of balls in each bin
 - maximum load = number of balls in fullest bin
 - number of empty bins (= number of idle processors)

Average/Maximum Load

• L_i be r.v. for # balls in Bin i

•
$$L_i \sim B(m, \frac{1}{n})$$
, so $\mathbb{E}[L_i] = \frac{m}{n}$, $\operatorname{Var}[L_i] = \frac{m}{n}(1 - \frac{1}{n})$

Chernoff Bound

Let X_1, \ldots, X_n be *independent* $\{0, 1\}$ -r.v.'s. Let $X = X_1 + \cdots + X_n$ and $\mu = \mathbb{E}[X]$. Then, for all $\delta > 0$, $\Pr[X \ge (1 + \delta)\mu] \le e^{-\frac{\mu\delta^2}{2+\delta}}$

• APPLICATION. bounding $Pr[L_i \ge 2 \ln n + 1]$ for m = n

• set
$$\mu = 1, \delta = 2 \ln n$$
, so $\frac{\mu \delta^2}{2+\delta} \ge 2 \ln n$
 $\Rightarrow \Pr[L_i \ge 2 \ln n+1] \le e^{-2 \ln n} = \frac{1}{n^2}$

- By union bound, $\Pr[\bigvee_{i=1}^{n} (L_i \ge 2 \ln n + 1)] \le \frac{1}{n}$
- Hence, $\Pr[\text{maximum load} \le 2 \ln n + 1] \ge 1 \frac{1}{n}$.
- e.g. n = 1 million, max load is at most 30 w.h.p.

▶ BETTER ANALYSIS.

$$\begin{aligned} \Pr[L_i \ge k] &= \Pr[\exists \text{ subset of } k \text{ balls all of which fall into bin } i] \\ &\leq \binom{n}{k} \cdot (1/n)^k \\ &\leq (ne/k)^k \cdot (1/n)^k = (e/k)^k \\ &\leq 1/n^2 \quad \text{ for } k \ge \frac{3\ln n}{\ln \ln n} \end{aligned}$$

BETTER BOUND.

- ▶ obtain a bound of $O(\frac{\log n}{\log \log n})$ instead of $O(\log n)$ for the maximum load.
- e.g. n = 1 million, max load is at most 16 w.h.p.

Empty Bins

- Let *X* be random variable for # empty bins.
- Let X_i be r.v. indicating whether Bin *i* is empty.
- $\Pr[X_i = 1] = (1 \frac{1}{n})^m$ and $\mathbb{E}[X] = n(1 \frac{1}{n})^m$.
- ► NOTE. X_i and X_j are *not* independent, e.g. $\Pr[X_i = 1 \land X_j = 1] = (1 - \frac{2}{n})^m \neq \Pr[X_i = 1] \cdot \Pr[X_j = 1]$

Empty Bins: Variance

• Recall $\operatorname{Var}[X] = \operatorname{E}[X^2] - \operatorname{E}[X]^2$

- ► $E[X^2] = E[(X_1 + \dots + X_n)^2] = \sum_{i=1}^n E[X_i^2] + \sum_{i \neq j} E[X_i X_j]$
- If $X_i \in \{0, 1\}$, then $E[X_i^2] = E[X_i]$
- Computing $E[X_iX_j]$

• $E[X_iX_j] = Pr[X_iX_j = 1] = Pr[X_i = 1 \land X_j = 1] = (1 - \frac{2}{n})^m$

► Computing Var[X]

►
$$E[X^2] = n(1 - \frac{1}{n})^m + n(n-1)(1 - \frac{2}{n})^m$$

► $Var[X] = n(1 - \frac{1}{n})^m + n(n-1)(1 - \frac{2}{n})^m - n^2(1 - \frac{1}{n})^{2m}$

THE END | HW2 due next week