$\left\{ \text{ Csc 80030 } \mid \text{ Lecture 9} \right\}$

PROBABILISTIC ANALYSIS & RANDOMIZED ALGORITHMS

Hoeteck Wee · hoeteck@cs.qc.edu

part 0

- ► HOMEWORK: HW4 due today, HW5 due Apr 29
- ▶ PRESENTATIONS: May 6, 13 40-min student presentations
- ► TODAY: sublinear time algorithms

PART 1 sublinear time algorithms

- EXAMPLES: genome project, sales logs, world-wide web, network traffic, clickstream patterns, health data, large remote database, ...
 - hardly fit in storage
- ► QUESTION: are traditional notions of an efficient algorithm sufficient?
 - ▶ is linear time good enough?
 - example: election vs polls
 - trade-off between efficiency and correctness

Additional examples

Outbreak of diseases

- how rapidly? wide-spread? correlated with income level / zip code?
- speed is paramount
- ► Is the lottery uniform?
 - approximate answer good enough
 - can work with fewer samples than statistical χ^2 -test
- Pattern matching in genome data
 - want quick answers, before further refinement
 - desire trade-off between running time and accuracy

- PROBLEM. Given a list L of n distinct integers, check if the list is monotone (i.e. sorted).
 - can append index of an item to enforce distinctness
 - ▶ model: comparisons and random access take *O*(1) time
 - need $\Omega(n)$ time for exact answer

- PROBLEM. Given a list L of n distinct integers, check if the list is monotone (i.e. sorted).
- NOTION OF APPROXIMATION. *L* is ϵ -close to monotone if changing/deleting ϵn entries makes it monotone.
- **PROPERTY TESTER.** randomized algorithm that on input L, ϵ ,
 - If *L* is monotone, accept w.p. $\geq 2/3$
 - If *L* is ϵ -far from monotone, reject w.p. $\geq 2/3$
 - "in-between" cases, don't care.
- ► NOTE. can improve 2/3 to any 1δ by taking majority of $O(\log 1/\delta)$ repetitions.

Warm-up

- ► NAIVE ALGORITHM: Pick a random subset *S* of indices and check that *L* restricted to *S* is monotone.
 - consider $L = (2, 1, 4, 3, 6, 5, \ldots)$
 - requires $\Omega(\sqrt{n})$ samples
- ► Can do do better! [Ergün et. al, STOC 98, JCSS 2000]

monotonicity testing

Input: a list $L = (x_1, \ldots, x_n)$ of distinct integers

- 1. Repeat $2/\epsilon$ times:
 - **1.1** Pick a random index i from [n].
 - **1.2** Perform a binary search for x_i .
 - 1.3 Reject if we fail to find x_i or if we find out-of-order elements.
- 2. Accept if all the binary searches succeed.

• running time is $O(\frac{1}{\epsilon} \log n)$.

always accept if L is monotone.

- ► KEY LEMMA. Let *G* denote the set of indices for which binary search succeeds. Then, the elements of *L* restricted to *G* is monotone.
 - ► If $|G| < (1 \epsilon)n$, then algorithm rejects with prob. $1 - (1 - \epsilon)^{2/\epsilon} \ge 1 - e^{-2} \ge 2/3.$
 - If $|G| \ge (1 \epsilon)n$, then L is ϵ -close to monotone.
- ▶ PROOF. for all *i*, *j* ∈ *G*, look at least common ancestor index where the binary searches for *x_i* and *x_i* diverge.

PART 2 student presentations

40-min presentations on different papers

- mandatory attendance
- May 6 and 13, 4 pm 6.15 pm
- Topics
 - ► Load balancing: Talwar, Wieder [STOC 2007]; Godfrey [SODA 2008]
 - Sublinear time algorithms: Chazelle, Rubinfeld, Trevisan [ICALP 2001]; Bogdanov, Obata, Trevisan [FOCS 2002]
 - Spectral algorithms: Trevisan [STOC 2009]

THE END | next, spring break!