CSCI 3313-10: Foundation of Computing

1 Overview

Foundation of Computing

- Theory of Computing
- Automata theory
- Computability
- solvable vs. unsolvable problems
- Complexity
- computationally easy vs. hard problems
- Formal language theory

Chomsky Hierarchy

- Type-3: Regular languages (RL); Finite state automata
- Type-2: Context-free languages (CFL); Pushdown automata
- Type-1: Context-sensitive languages (CSL); Linear-bound Turing machines
- Type-0: Recursively enumerable languages (REL); Turing machines

$$
R L \subset C F L \subset C S L \subset R E L
$$

1.1 Mathematical Notations and Terminologies

- sets: element, member, subset, proper subset, finite set, infinite set, empty set, union, intersection, complement, power set, Cartesian product (cross product)
- sequence, tuple: k-tuple: a sequence with k elements
- functions: mapping, domain, co-domain, range, one-to-one function, onto function, one-toone correcspondence
- relation:
- reflexive: $x R x$
- symmetric: $x R y \Rightarrow y R x$
- transitive: $x R y \wedge y R z \Rightarrow x R z$
- equivalence relation
- graphs:
- strings, languages:
- alphabet: any non-empty finite set
- string over an alphabet: a finite sequence of symbols from the alphabet
- $|w|$: length of a string $w\left(w=w_{1} w_{2} \cdots w_{n}\right.$, where $w \in \Sigma$, for an alphabet $\left.\Sigma\right)$
- empty string: ϵ
- reverse of $w: w^{R}$
- substring
- concatenation
- logic
- theorem, proof
- by construction, induction contradiction

2 Regular Languages

2.1 Finite State Automata

Definition: A finite state automaton (FSA) is a 5 -tuple ($\left.Q, \Sigma, \delta, q_{0}, F\right)$, where

1. Q is a finite set called the states.
2. Σ is a finite set called the alphabet.
3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function.
4. $q_{0} \in Q$ is the start state.
5. $F \subseteq Q$ is the set of accept states.

Formal definition of computation:

Let $w=w_{1} w_{2} \cdots w_{n}$ be a string such that $w \in \Sigma$, and $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a FSA. Then, M accepts w if a sequence of states $r_{0}, r_{1}, \cdots, r_{n} \in Q$ exists with conditions:

1. $r_{0}=q_{0}$,
2. $\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$ for $i=0,1, \cdots, n-1$, and
3. $r_{n} \in F$.

We say M recognizes A if $A=\{w \mid M$ accepts $w\}$.
A language is called a regular language if some FSA recognizes it.

2.2 Designing FSA

2.3 Regular Operations

Let A and B be languages. We define regular operations as follows:
union: $A \cup B=\{x \mid x \in A$ or $x \in B\}$
concatenation: $A \circ B=\{x y \mid x \in A$ and $y \in B\}$
star: $A^{*}=\left\{x_{1} x_{2} \cdots x_{k} \mid k \geq 0\right.$ and each $\left.x_{i} \in A\right\}$

Example:

$A=\{0,1\}, B=\{a, b\}:$
$A \cup B=\{0,1, a, b\}$
$A \circ B=\{0 a, 0 b, 1 a, 1 b\}$
$A^{*}=\{\epsilon, 0,1,00,01,10,11,000,001, \cdots, 111,0000, \cdots\}$
Theorem 2.1 The class of regular languages is closed under the union operation, i.e., if A_{1} and A_{2} are regular languages, so is $A_{1} \cup A_{2}$.

Proof: Let A_{1} and A_{2} be regular languages. By definition, A_{1} and A_{2} are recognized by FSA M_{1} and M_{2}, resp. Let $M_{1}=\left(Q_{1}, \Sigma_{1}, \delta_{1}, q_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma_{2}, \delta_{2}, q_{2}, F_{2}\right)$. We construct $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ from M_{1} and M_{2} such that

1. $Q=Q_{1} \times Q_{2}$,
i.e., $Q=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in Q_{1}, r_{2} \in Q_{2}\right\}$
2. $\Sigma=\Sigma_{1} \cup \Sigma_{2}$
3. $\delta\left(\left(r_{1}, r_{2}\right), a\right)=\left(\delta\left(r_{1}, a\right), \delta\left(r_{2}, a\right)\right)$
4. $q_{0}=\left(q_{1}, q_{2}\right)$
5. $F=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in F_{1}\right.$ or $\left.r_{2} \in F_{2}\right\}$,
i.e., $F=\left(F_{1} \times Q_{2}\right) \cup\left(Q_{1} \times F_{2}\right)$. (Note that $F \neq F_{1} \times F_{2}$.)

Example:
Let $L_{1}=\{w \mid w$ has even number of 1's $\}$ and $L_{2}=\{w \mid w$ contains 001 as a substring $\}$. Construct a FSA M for $L_{1} \cup L_{2}$.

Theorem 2.2 The class of regular languages are closed under intersection operation.

Proof: Proof is same as above, except that $F=F_{1} \times F_{2}$.
Example:
Let $L_{1}=\{w \mid w$ has odd number of a's $\}$ and $L_{2}=\{w \mid w$ has one b $\}$. Construct a FSA M for $L=L_{1} \cap L_{2}$, i.e., $L=\{w \mid w$ has odd number of a's and one b. $\}$

2.4 Nondeterminism

Formal definition of non-deterministic FSA (NFA):
An NFA is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

1. Q is a finite set of states.
2. Σ is an alphabet.
3. $\delta: Q \times \Sigma_{\epsilon} \rightarrow P(Q)$ is the transition relation,
where $\Sigma_{\epsilon}=\Sigma \cup\{\epsilon\}$ and $P(Q)$ is the power set of Q.
4. $q_{0} \in F$ is the initial state.
5. $F \subseteq Q$ is the set of accept states.

2.5 Equivalence of NFA and DFA

Theorem 2.3 Every NFA has an equivalent DFA.

Proof: Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an NFA recognizing language A. We construct a DFA $M=$ $\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ as follows.
(i) First, assume that N does not have ϵ-transition.

1. $Q^{\prime}=P(Q)$.
2. For $R \in P(Q)$, let $\delta^{\prime}(R, a)=\{q \in Q \mid q \in \delta(r, a)$ for some $r \in R\}$ (or, let $\delta^{\prime}(R, a)=\cup\{\delta(r, a) \mid r \in R\}$.)
3. $q_{0}^{\prime}=\left\{q_{0}\right\}$.
4. $F^{\prime}=\left\{R \in Q^{\prime} \mid R\right.$ contains an accept state of $\left.N\right\}$.
(ii) Next, assume that N contains ϵ-transitions. For any $R \in P(Q)$, let $E(R)=\{q \mid q$ can be reached from R by traveling along 0 or more ϵ arrow. $\}$
Let $\delta^{\prime}(R, a)=\{q \in Q \mid q \in E(\delta(r, a))$ for some $r \in R\}$. The rest are same as in case (i)

Example (i): Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an NFA, where

1. $Q=\left\{q_{0}, q_{1}\right\}$
2. $\Sigma=\{0,1\}$
3. $\delta\left(q_{0}, 0\right)=\left\{q_{0}\right\} ; \delta\left(q_{0}, 1\right)=\left\{q_{0}, q_{1}\right\} ;$
4. initial state $=q_{0}$
5. $F=\left\{q_{1}\right\}$

A DFA $M=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ that is equivalent to N is then constructed as:

1. $Q^{\prime}=\left\{\left\{q_{0}\right\},\left\{q_{0}, q_{1}\right\}\right\}$
2. $\Sigma=\{0,1\}$
3. $\delta^{\prime}\left(\left\{q_{0}\right\}, 0\right)=\left\{q_{0}\right\} ; \delta^{\prime}\left(\left\{q_{0}\right\}, 1\right)=\left\{q_{0}, q_{1}\right\} ; \delta^{\prime}\left(\left\{q_{0}, q_{1}\right\}, 0\right)=\left\{q_{0}\right\} ; \delta^{\prime}\left(\left\{q_{0}, q_{1}\right\}, 1\right)=\left\{q_{0}, q_{1}\right\}$
4. initial state $=\left\{q_{0}\right\}$
5. $F=\left\{\left\{q_{0}, q_{1}\right\}\right\}$

Example (ii): Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an NFA, where

1. $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}$
2. $\Sigma=\{a, b\}$
3. $\delta\left(q_{0}, \epsilon\right)=\left\{q_{1}\right\} ; \delta\left(q_{0}, b\right)=\left\{q_{2}\right\} ; \delta\left(q_{1}, \epsilon\right)=\left\{q_{2}, q_{3}\right\} ; \delta\left(q_{1}, a\right)=\left\{q_{0}, q_{4}\right\} ; \delta\left(q_{2}, b\right)=\left\{q_{4}\right\} ; \delta\left(q_{3}, a\right)=$ $\left\{q_{4}\right\} ; \delta\left(q_{4}, \epsilon\right)=\left\{q_{3}\right\}$
4. initial state $=q_{0}$
5. $F=\left\{q_{4}\right\}$

Note that $E\left(q_{0}\right)=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, E\left(q_{1}\right)=\left\{q_{1}, q_{2}, q_{3}\right\}, E\left(q_{2}\right)=\left\{q_{2}\right\}, E\left(q_{3}\right)=\left\{q_{3}\right\}$, and $E\left(q_{4}\right)=$ $\left\{q_{3}, q_{4}\right\}$. We then construct a DFA $M=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ by following the algorithm in (i) as follows:

1. $Q^{\prime}=\left\{p_{0}, p_{1}, p_{2}, p_{3}, p_{4}\right\}$ where $p_{0}=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, p_{1}=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}, p_{2}=\left\{q_{2}, q_{3}, q_{4}\right\}$, $p_{3}=\left\{q_{3}, q_{4}\right\}$, and $p_{4}=\emptyset$ (or a trap state).
2. $\Sigma=\{a, b\}$
3. $\delta^{\prime}\left(p_{0}, a\right)=p_{1} ; \delta^{\prime}\left(p_{0}, b\right)=p_{2} ; \delta^{\prime}\left(p_{1}, b\right)=p_{2} ; \delta^{\prime}\left(p_{1}, a\right)=p_{1} ; \delta^{\prime}\left(p_{2}, a\right)=p_{3} ; \delta^{\prime}\left(p_{2}, b\right)=p_{3} ;$ $\delta^{\prime}\left(p_{3}, a\right)=p_{3} ; \delta^{\prime}\left(p_{3}, b\right)=p_{4} ; \delta^{\prime}\left(p_{4}, a\right)=p_{4}$, and $\delta^{\prime}\left(o_{4}, b\right)=p_{3}$.
4. initial state $=p_{0}$
5. $F=\left\{p_{1}, p_{2}, p_{3}\right\}$.

2.6 Closure Properties of Regular Languages

Theorem 2.4 Regular languages are closed under the following operations:
(1) union
(2) intersection
(3) concatenation
(4) star operation (or Kleene star operation)

Note: We can construct an NFA N for each case and find a DFA M equivalent to N.

2.7 Regular Expressions

- To describe regular languages

Examples: $(0 \cup 1) 0^{*},(0 \cup 1)=(\{0\} \cup\{1\}),(0 \cup 1)^{*}$
Definition: We say R is a regular expression if R is
(1) a for some $a \in \Sigma$
(2) ϵ
(3) \emptyset
(4) $R_{1} \cup R_{2}$, where R_{1} and R_{2} are regular expressions.
(5) $R_{1} \circ R_{2}$, where \circ is a concatenation operation, and R_{1} and R_{2} are regular expressions.
(6) $\left(R_{1}\right)^{*}$, where R_{1} is a regular expression.

- recursive or inductive definition
- () may be omitted.
- $R^{+}=R R^{*}$ or $R^{*} R$
- $R^{+} \cup \epsilon=R^{*}$
$-R^{k}=R \circ R \circ \cdots \circ R$ (i.e., R is concatenated k times.)
- $L(R)$

Examples: $0^{*} 10^{*}, \Sigma^{*} 1 \Sigma^{*}, 1^{*}\left(01^{+}\right)^{*},(0 \cup \epsilon) 1^{*}=01^{*} \cup 1^{*},(0 \cup \epsilon)(1 \cup \epsilon)=\{01,0,1, \epsilon\}, 1^{*} \circ \emptyset=\emptyset$, $1 \circ \epsilon=1^{*}, \emptyset^{*}=\{\epsilon\}$

2.8 Equivalence of Regular Expression and DFA

Recall: A language is regular if and only if a DFA recognizes it.

Theorem 2.5 A language is regular if and only if some regular expression can describe it.

Proof is based on the following two lemmas.
Lemma 2.1 If a language L is described by a regular expression R, then it is a regular language, i.e., there is a DFA that recognizes L.

Proof. We will convert R to an NFA N (equivalently a DFA).
(1) $R=a \Rightarrow L(R)=\{a\}$
(2) $R=\epsilon \Rightarrow L(R)=\{\epsilon\}$
(3) $R=\emptyset \Rightarrow L(R)=\emptyset$
(4) $R=R_{1} \cup R_{2} \Rightarrow$
(5) $R=R_{1} \circ R_{2} \Rightarrow$
(6) $R=R_{1}^{*} \Rightarrow$

Example: $R=(a b \cup a)^{*} \Rightarrow N$:

Lemma 2.2 If L is a regular language, then it can be described by a regular expression.

Proof: Reference: text, Lemma 1.60.

2.8.1 Alternate proof:

Since L is a regular language, there must be a DFA that recognizes L. We then apply the following result.

Lemma: Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA. Then there exists a regular expression E such that $L(E)=L(M)$, where $L(E)$ denotes the language represented by E.

Proof: Let $Q=\left\{q_{1}, \cdots, q_{m}\right\}$ such that q_{1} is the start state of M. For $1 \leq i, j \leq m$ and $1 \leq k \leq$ $m+1$, we let $R(i, j, k)$ denote the set of all strings in Σ^{*} that derive M from q_{i} to q_{j} without passing through any state numbered k or greater.

When $k=m+1$, it follows that

$$
R(i, j, m+1)=\left\{x \in \Sigma^{*} \mid\left(q_{i}, x\right) \vdash_{M}^{*}\left(q_{j}, \epsilon\right)\right\}
$$

Therefore, $L(M)=\cup\left\{R(1, j, m+1) \mid q_{j} \in F\right\}$.
The crucial point is that each set $R(i, j, k)$ is regular, and hence so is $L(M)$. The proof is by induction on k. For $k=1$, we have the following.

$$
R(i, j, 1)= \begin{cases}\left\{a \in \Sigma \mid \delta\left(q_{i}, a\right)=q_{j}\right\} & \text { if } i \neq j \\ \{\epsilon\} \cup\left\{a \in \Sigma \mid \delta\left(q_{i}, a\right)=q_{j}\right\} & \text { if } i=j\end{cases}
$$

Each of these sets is finite, and therefore regular. For $k=1, \cdots, m$, provided that all the sets $R(i, j, k)$ have been defined, each set $R(i, j, k+1)$ can be defined in terms of previously defined languages as

$$
R(i, j, k+1)=R(i, j, k) \cup R(i, k, k) R(k, k, k)^{*} R(k, j, k)
$$

This equation states that to get from q_{i} to q_{j} without passing through a state numbered greater than k, M may either
(i) go from q_{i} to q_{j} without passing through a state numbered greater than $k-1$, or
(ii) go from q_{i} to q_{k}; then from q_{k} to q_{k} repeatedly; and then from q_{k} to q_{j}, in each case without passing through a state numbered greater than $k-1$.

Therefore, if each language $R(i, j, k)$ is regular, so is each language $R(i, j, k+1)$. This completes the induction.

2.9 Non-regular Languages (Pumping Lemma)

Review ...

- Let L be an arbitrary finite set. Is L a regular language?
- Give a regular expression for the set L_{1} of non-negative integers.

Let $\Sigma=\{0,1, \cdots, 9\}$. Then, $L_{1}=\{0\} \cup\{1,2, \cdots, 9\} \circ \Sigma^{*}$.

- Give a regular expression for the set L_{2} of non-negative integers that are divisible by 2 .

Then, $L_{2}=L_{1} \cap \Sigma^{*} \circ\{0,2,4,6,8\}$

- Give a regular expression for the set L_{3} of integers that are divisible by 3 .

Then, $L_{3}=L_{1} \cap L(M)$, where
M is defined as:

- Let $\Sigma=\{a, b\}$, and $L_{4} \subseteq \Sigma^{*}$ be the set of odd length, containing an even $\#$ of a 's. Then, $L_{4}=L_{5} \cap L_{6}$, where L_{5} is the set of all strings of odd length, i.e., $L_{5}=\Sigma(\Sigma \Sigma)^{*}$, and L_{6} is the set of all strings with an even \# of a 's, i.e., $L_{6}=b^{*}\left(a b^{*} a b^{*}\right)^{*}$.

Now, consider the following...

- $A_{1}=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$
- $A_{2}=\{w \mid w$ has an equal number of occurrences of a 's and b 's. $\}$
- $A_{3}=\{w \mid w$ has an equal number of occurrences of 01 and 10 as substrings. $\}$

Lemma 2.3 (Pumping Lemma for Regular Languages)

If A is a regular language, then there is a positive integer p called the pumping length where if s is any string in A of length at least p, then s may be divided into three substrings $s=x y z$ for some x, y, and z satisfying the following conditions:
(i) $|y|>0 \quad(|x|,|z| \geq 0)$
(ii) $|x y| \leq p$
(iii) for each $i \geq 0, x y^{i} z \in A$.

2.9.1 Non-regular languages

- $\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}$.
- $\left\{w w \mid w \in\{0,1\}^{*}\right\}$
- $\left\{a^{n} b a^{m} b a^{n+m} \mid n, m \geq 1\right\}$
- $\left\{w \bar{w} \mid w \in\{a, b\}^{*}\right.$ where \bar{w} stands for w with each occurrence of a replaced by b, and vice versa.\}
- $L=\{w \mid w$ has equal number of 0 's and 1's $\}$
- $L=\left\{a^{m} b^{n} \mid m \neq n\right\}$

Answer true or false:

(a) Every subset of a regular language is regular.
(b) Every regular language has a subset that is regular.
(c) If L is regular, then so is $\{x y \mid x \in L$ and $y \notin L\}$
(d) $L=\left\{w \mid w=w^{R}\right\}$ is regular.
(e) If L is regular, then $L^{R}=\left\{w^{R} \mid w \in L\right\}$ is regular.
(f) $L=\left\{x y x^{R} \mid x, y \in \Sigma^{*}\right\}$ is regular.
(g) If L is regular, then $L_{1}=\left\{w \mid w \in L\right.$ and $\left.w^{R} \in L\right\}$ is regular.

2.9.2 more non-regular languages proved by Pumping lemma

1. $L=\left\{a^{n^{2}} \mid n \geq 1\right\}$
2. $L=\left\{a^{2^{n}} \mid n \geq 1\right\}$
3. $L=\left\{a^{q} \mid q\right.$ is a prime number. $\}$
4. $L=\left\{a^{n!} \mid n \geq 1\right\}$
5. $L=\left\{a^{m} b^{n} \mid m>n\right\}$
6. $L=\left\{a^{m} b^{n} \mid m<n\right\}$
7. $L=\left\{w \in\{a, b\}^{*} \mid n_{a}(w)=n_{b}(w)\right\}$
8. $L=\left\{w \in\{a, b\}^{*} \mid n_{a}(w) \neq n_{b}(w)\right\}$
9. $L=\left\{a^{p} b^{q} \mid p\right.$ and q are prime numbers. $\}$
10. $L=\left\{a^{n^{2}} b^{m^{2}} \mid n, m \geq 1\right\}$
11. $L=\left\{w \in\{a, b\}^{*} \mid n_{a}(w)\right.$ and $n_{b}(w)$ both are prime numbers $\}$
12. $L=\left\{a^{n!} b^{m!} \mid n, m \geq 1\right\}$

2.9.3 additional properties of regular languages

- Given two regular languages L_{1} and L_{2}, describe an algorithm to determine if $L_{1}=L_{2}$.
- There exists an algorithm to determine whether a regular language is empty, finite, or infinite.
- membership

3 Context Free Languages and Context Free Grammars

Definition. A context-free grammar (CFG) is a 4 -tuple (V, Σ, R, S) where

1. V is a finite set called the variables (or non-terminals).
2. Σ is a finite set called the terminals.
3. R is a finite set of production rules such that
$R: V \rightarrow(V \cup \Sigma)^{*}$.
4. $S \in V$ is a start symbol.

Examples of Context-Free Grammars

$G_{0}: \quad E \rightarrow E+E|E * E| i d$

$$
\begin{array}{ll}
G_{1}: \quad & E \rightarrow T E^{\prime} \\
& E^{\prime} \rightarrow+T E^{\prime} \mid \epsilon \\
& T \rightarrow F T^{\prime} \\
& T^{\prime} \rightarrow * F T^{\prime} \mid \epsilon \\
& F \rightarrow(E) \mid i d
\end{array}
$$

$$
\begin{array}{ll}
G_{2}: & \\
& E \rightarrow E+T \mid T \\
& T \rightarrow T * F \mid F \\
& F \rightarrow(E) \mid i d
\end{array}
$$

$$
\begin{array}{ll}
G_{3}: & E^{\prime} \rightarrow E \\
& E \rightarrow E+T \mid T \\
& T \rightarrow T * F \mid F \\
& F \rightarrow(E) \mid i d
\end{array}
$$

$$
\begin{aligned}
G_{4}: & S^{\prime} \rightarrow S \\
& S \rightarrow L=R \\
& S \rightarrow R \\
& L \rightarrow * R \\
& L \rightarrow i d \\
& R \rightarrow L
\end{aligned}
$$

$$
\begin{aligned}
G_{5}: \quad & S^{\prime} \rightarrow S \\
& S \rightarrow a A d|b B d| a B e \mid b A e \\
& A \rightarrow c \\
B & \rightarrow c
\end{aligned}
$$

3.1 Context Free Grammar

1. $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$

$$
S \rightarrow a S b \mid \epsilon
$$

2. $L=\left\{a^{m} b^{n} \mid m>n\right\}$

$$
\begin{aligned}
& S \rightarrow A C \\
& C \rightarrow a C b \mid \epsilon \\
& A \rightarrow a A \mid a
\end{aligned}
$$

3. $L=\left\{a^{m} b^{n} \mid m<n\right\}$

$$
\begin{aligned}
& S \rightarrow C B \\
& C \rightarrow a C b \mid \epsilon \\
& B \rightarrow b B \mid b
\end{aligned}
$$

4. $L=\left\{a^{m} b^{n} \mid m \neq n\right\}$

$$
\begin{aligned}
& S \rightarrow A C \mid C B \\
& C \rightarrow a C b \mid \epsilon \\
& A \rightarrow a A \mid a \\
& B \rightarrow b B \mid b
\end{aligned}
$$

5. $L=\left\{w \in\{a, b\}^{*} \mid n_{a}(w)=n_{b}(w)\right\}$.

$$
S \rightarrow S S|a S b| b S a \mid \epsilon
$$

6. $L=\left\{w \in\{a, b\}^{*} \mid n_{a}(w)>n_{b}(w)\right\}$.

$$
\begin{aligned}
& S_{0} \rightarrow A S|S A S| S A \\
& S \rightarrow S S|S A S| a S b|b S a| \epsilon \\
& A \rightarrow a A \mid a
\end{aligned}
$$

Proof: Note that any string generated by the above rules has more a 's than b 's. We next proceed to show that any string $w \in L$ can be generated by these rules. We first note that any string z such that $n_{a}(z)=n_{b}(z)$ must be split into substrings such that $z=z_{1} z_{2} \cdots z_{l}$
where (i) each z_{j} has equal number of a 's and b 's, (ii) the first and the last symbols of z_{j} are different, and (iii) any such z_{j} does not contain a substring that has the same number of a 's and b 's but the first and the last symbols are same. For example, $a a b b a b$ cannot be such a z_{j} since it contains $a b b a$, but $a a b a b b$ can be such a z_{j}. It is then noted that for any $w \in L, w$ can be denoted as:

$$
w=a^{l_{0}} z_{1} a^{l_{1}} z_{2} a^{l_{2}} \cdots z_{k} a^{l_{k}}
$$

where (1) each z_{i} satisfies the above three conditions (i) - (iii); (2) for each $i, 0 \leq i \leq k$, $l_{i} \geq 0$; and (3) $l_{0}+l_{1}+\cdots+l_{k}>0$. For example, $w=a a a b a b b a a a a b b a a a$ may be decomposed into $w=a a \cdot a b \cdot a b \cdot b a \cdot a \cdot a a b b \cdot a a a$, where $l_{0}=2, z_{1}=a b, l_{1}=0, z_{2}=a b, l_{2}=0, z_{3}=b a$, $l_{3}=1, z_{4}=a a b b$, and $l_{4}=3$.
From the start state S_{0}, one of the following three cases occurs: If $l_{0}>0, S_{0} \Rightarrow A S$; else if $l_{k}>0, S_{0} \Rightarrow S A$; otherwise, $S_{0} \Rightarrow S A S$. We then recursively apply $S \rightarrow S S$ or $S \rightarrow S A S$ such that a single S generates a substring z_{j} satisfying conditions (i)-(iii) above.
Consider the example above: $w=a a a b a b b a a a a b b a a a . ~ w$ is then split into $a^{2} z_{1} z_{2} z_{3} a^{1} z_{4} a^{3}$, and is generated as follows.

Note: The following also work correctly. You can verify the correctness using the similar arguments.

$$
\begin{aligned}
& S \rightarrow R a R|a R R| R R a \\
& R \rightarrow R a R|a R R| R R a|a R b| b R a \mid \epsilon
\end{aligned}
$$

7. $L=\left\{w \in\{a, b\}^{*} \mid n_{a}(w) \neq n_{b}(w)\right\}$.

Note that $L=\left\{w \in\{a, b\}^{*} \mid n_{a}(w)>n_{b}(w)\right.$ or $\left.n_{a}(w)<n_{b}(w)\right\}$.
8. $L=\left\{w \in\{a, b, c\}^{*} \mid n_{a}(w)+n_{b}(w)=n_{c}(w)\right\}$.

$$
S \quad \rightarrow \quad S S|a S c| c S a|b S c| c S b \mid \epsilon
$$

9. $L=\left\{w \in\{a, b, c\}^{*} \mid n_{a}(w)+n_{b}(w)>n_{c}(w)\right\}$.

$$
\begin{aligned}
& S_{0} \rightarrow T S|S T S| S T \\
& S \rightarrow S S|S T S| a S c|c S a| b S c|c S b| \epsilon \\
& T \rightarrow a T|b T| a \mid b
\end{aligned}
$$

10. $L=\left\{w \in\{a, b, c\}^{*} \mid n_{a}(w)+n_{b}(w) \neq n_{c}(w)\right\}$.

Note that $L=\left\{w \in\{a, b, c\}^{*} \mid n_{a}(w)+n_{b}(w)>n_{c}(w)\right.$ or $\left.n_{a}(w)+n_{b}(w)<n_{c}(w)\right\}$.
11. $L=\left\{w \in\{a, b, c\}^{*} \mid n_{a}(w)+n_{b}(w)>2 n_{c}(w)\right\}$.

$$
\begin{array}{rl}
S_{0} & \rightarrow \\
S & T S|S T S| S T \\
S & \\
S S|S T S| \epsilon \\
& \rightarrow \\
& S D D C|D S D C| D D S C \mid D D C S \\
& S D C D D S C D|D C S D| D C D S \\
D & \rightarrow a \mid b \\
C \rightarrow & c \\
T & \rightarrow \\
& a T|b T| a \mid b
\end{array}
$$

12. $L=\left\{w \in\{a, b, c\}^{*} \mid n_{a}(w)+n_{b}(w)<2 n_{c}(w)\right\}$.

$$
\begin{array}{rlr}
S_{0} & \rightarrow & T S|S T S| S T \\
S & \rightarrow & S S|S T S| \epsilon \\
S \rightarrow & S D D C|D S D C| D D S C \mid D D C S \\
& S D C D|D S C D| D C S D \mid D C D S \\
& S C D D|C S D D| C D S D \mid C D D S \\
D & \rightarrow & a \mid b \\
C \rightarrow & c \\
T & \rightarrow & c T \mid c
\end{array}
$$

13. $L=\left\{w \in\{a, b, c\}^{*} \mid n_{a}(w)+n_{b}(w) \neq 2 n_{c}(w)\right\}$.

Note that $L=\left\{w \in\{a, b, c\}^{*} \mid n_{a}(w)+n_{b}(w)>2 n_{c}(w)\right.$ or $\left.n_{a}(w)+n_{b}(w)<2 n_{c}(w)\right\}$.

3.2 Chompsky Normal Form

Definition: A CFG is in Chomsky Normal Form if every rule is of the form

$$
\begin{aligned}
A & \rightarrow B C \\
A & \rightarrow a
\end{aligned}
$$

where a is any terminal and A, B, and C are any non-terminal (i.e., variable) except that B and C may not be the start symbol. In addition, we permit the rule $S \rightarrow \epsilon$, where S is the start symbol.

Theorem 2.9 (pp. 107). Any context-free languages is generated by a context-free grammar in Chomsky normal form.

3.3 CYK Membership Algorithm for Context-Free Grammars

Let $G=(V, \Sigma, R, S)$ be a CFG in CNF, and consider a string $w=a_{1} a_{2} \cdots a_{n}$. We define substrings $w_{i j}=a_{i} \cdots a_{j}$ and subset $V_{i j}=\left\{A \in V \mid A \stackrel{*}{\Rightarrow} w_{i j}\right\}$ of V.

Clearly, $w \in L(G)$ if and only if $S \in V_{1 n}$. To compute $V_{i j}$, we observe that $A \in V_{i i}$ if and only if R contains a production $A \rightarrow a_{i}$. Therefore, $V_{i i}$ can be computed for all $1 \leq i \leq n$ by inspection of w and the production rules of G. To continue, notice that for $j>i, A$ derives $w_{i j}$ if and only if there is a production $A \rightarrow B C$ with $B \stackrel{*}{\Rightarrow} w_{i k}$ and $C \stackrel{*}{\Rightarrow} w_{k+1 j}$ for some k with $i \leq k<j$. In other words,

$$
V_{i j}=\cup_{k \in\{i, i+1, \cdots, j-1\}}\left\{A \mid A \rightarrow B C \text {, with } B \in V_{i k}, C \in V_{k+1 j}\right\} .
$$

The above equation can be used to compute all the $V_{i j}$ if we proceed in the following sequence:

1. Compute $V_{11}, V_{22}, \cdots, V_{n n}$
2. Compute $V_{12}, V_{23}, \cdots, V_{(n-1) n}$
3. Compute $V_{13}, V_{24}, \cdots, V_{(n-2) n}$
and so on.

Time Complexity: $O\left(n^{3}\right)$, where $n=|w|$.

Example: Consider a string $w=a a b b b$ and a CFG G with the following production rules:

$$
\begin{aligned}
& S \rightarrow A B \\
& A \rightarrow B B \mid a \\
& B \rightarrow A B \mid b
\end{aligned}
$$

	j					
i	1	2	3	4	5	
1	A	\emptyset	S, B	A	\mathbf{S}, B	
2		A	S, B	A	B, S	
3			B	A	S, B	
4				B	A	
5					B	

Since $S \in V_{15}, w \in L(G)$.

3.4 Pushdown Automata

A pushdown automaton is a 6 -tuples $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ where

1. Q is the finite set of states,
2. Σ is the input alphabet,
3. Γ is the stack alphabet,
4. $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \rightarrow \mathcal{P}\left(Q \times \Gamma_{\epsilon}\right)$ is the transition function,
5. $q_{0} \in Q$ is the start state, and
6. $F \subseteq Q$ is the set of accept states.

Note: An input is accepted only if (i) input is all read and (ii) the stack is empty.

3.4.1 PDA for CFL

- $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
- $L=\left\{a^{i} b^{j} c^{k} \mid i=j\right.$ or $i=k$, where $\left.i, j, k \geq 0\right\}$
- $L=\left\{w \in\{a, b\}^{*} \mid n_{a}(w)=n_{b}(w)\right\}$
- $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$
- $L=\left\{a^{n} b^{2 n} \mid n \geq 0\right\}$
- $L=\left\{w c w^{R} \mid w \in\{a, b\}^{*}\right\}$
- $L=\left\{a^{n} b^{m} c^{n+m} \mid n, m \geq 0\right\}$
- $L=\left\{a^{n} b^{m} \mid n \leq m \leq 3 n\right\}$

3.5 Equivalence of PDA and CFG

Theorem 3.1 A language L is a CFL if and only if some PDA recognizes L.

3.6 Pumping Lemma for CFL

Let L be a CFL. Then, there exists a number p, called the pumping length, where for any string $w \in L$ with $|w| \geq p, w$ may be divided into five substrings $w=u v x y z$ such that

1) $|v y|>0$
2) $|v x y| \leq p$, and
3) for each $i \geq 0, u v^{i} x y^{i} z \in L$.

3.6.1 Non-Context Free Languages

$L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$
Let $w=a^{p} b^{p} c^{p}$ and apply the Pumping lemma.
$L=\left\{w w \mid w \in 0,1^{*}\right\}$
(Try with $w=0^{p} 10^{p} 1$. Pumping lemma is not working!)
Let $w=0^{p} 1^{p} 0^{p} 1^{p}$ and apply Pumping lemma.
$L=\left\{a^{i} b^{j} c^{k} \mid 0 \leq i \leq j \leq k \leq n\right\}$
Let $w=a^{p} b^{p} c^{p}$ and apply Pumping lemma.
$L=\left\{a^{n!} \mid n \geq 0\right\}$
(Recall: L is not regular.)
Let $w=a^{p!}$ and apply Pumping lemma.
$L=\left\{a^{n} b^{j} \mid n=j^{2}\right\}$.
Let $w=a^{p^{2}} b^{p}$ and apply Pumping lemma. We then have $w=u v x y z$ and three cases to consider.
(i) $v y=a^{\alpha}$ or $v y=b^{\beta}$. Let $i=0$ and come up with a contradiction.
(ii) $v=a^{\alpha} b^{\beta}$ or $y=a^{\alpha} b^{\beta}$. Let $i=2$ and come up with a contradiction.
(iii) $v=a^{\alpha}$ and $y=b^{\beta}$, where $\alpha \neq 0$ and $\beta \neq 0$.

Let's first consider $i=0$. If $p^{2}-\alpha \neq(p-\beta)^{2}$, then we are done. So assume that $p^{2}-\alpha=(p-\beta)^{2}$, i.e., we assume $\alpha=2 p \beta-\beta^{2}$. We then consider $i=2$. The number of a 's in w^{2} is $p^{2}+\alpha=p^{2}+2 p \beta-\beta^{2}$, and the number of b 's in w^{2} is $p+\beta$. Note that $p^{2}+2 p \beta-\beta^{2} \neq(p+\beta)^{2}$ since $\beta \neq 0$. Therefore, $p^{2}+\alpha \neq(p+\beta)^{2}$, a contradiction to the Pumping lemma.

From (i) - (iii), we conclude that L cannot be a CFL.
$L=\left\{a^{r+s} \mid r\right.$ and s are both prime numbers. $\}$
Let $w=a^{2+p}$ where p is a prime number that is larger than or equal to the pumping length.
Then, by the Pumping lemma, $w=u v x y z$ where $v=a^{\alpha}$ and $y=a^{\beta}$. Consider $i=2 p+1$. Then, $\left|w^{2 p+1}\right|=2+p+2 p(\alpha+\beta)=2+p(1+2(\alpha+\beta))$, which is an odd number since $p(1+2(\alpha+\beta)$ is an odd number (odd * odd). However, $p(1+2(\alpha+\beta)$ is not a prime number; hence, $w^{2 p+1}$ cannot be in L. Consequently, L cannot be a CFL.

3.7 Closure Properties

- CFL's are closed under the union operation.
- CFL's are not closed under the intersection operation.
- CFL's are not closed under the complementation operation.
- CFL's are closed under the concatenation operation.
- CFL's are closed under the kleene star operation.
- The intersection of a CFL and a RL is a CFL.

3.8 Top-Down Parsing

3.8.1 Transform to Unambiguous Grammar

A grammar is called ambiguous if there is some sentence in its language for which there us more than one parse tree.

Example: $\quad E \rightarrow E+E|E * E| i d ;$
$w=i d+i d * i d$.

In general, we may not be able to determine which tree to use. In fact, determining whether a given arbitrary CFG is ambiguous or not is undecidable.

Solution:
(a) Transform the grammar to an equivalent unambiguous one, or
(b) Use disambiguating rule with the ambiguous grammar to specify, for ambiguous cases, which parse tree to use.

if then else statement

```
\(G_{1}: \quad s t m t \rightarrow\) if \(\exp\) then \(s t m t\)
    if exp then stmt else stmt
```

For an input "if E_{1} then if E_{2} then S_{1} else S_{2}," two parse trees can be constructed; hence, G_{1} is ambiguous. An unambiguous grammar G_{2} which is equivalent to G_{1} can be constructed as follows:

```
\(G_{2}: \quad\) stmt \(\rightarrow\) matched_stmt \(\mid\)
    unmatched_stmt
    matched_stmt \(\rightarrow\) if \(\exp\) then matched_stmt else matched_stmt
    other_stmt
    unmatched_stmt \(\rightarrow\) if \(\exp\) then stmt \(\mid\)
    if exp then matched_stmt else unmatched_stmt
```


3.8.2 Left-factoring and Removing left recursions

Consider the following grammar G_{1} and a token string $w=$ bede.

$$
\begin{aligned}
G_{1}: & \\
& S \rightarrow e e|b A c| b A e \\
& A \rightarrow d \mid e A
\end{aligned}
$$

Since the initial b is in two production rules, $S \rightarrow b A c$ and $S \rightarrow b A e$, the parser cannot make a correct decision without backtracking. This problem may be solved to redesign the grammar as shown in G_{2}.

$$
\begin{aligned}
G_{2}: & \\
& S \rightarrow e e \mid b A Q \\
& Q \rightarrow c \mid e \\
& A \rightarrow d \mid e A
\end{aligned}
$$

In G_{2}, we have factored out the common prefix $b A$ and used another non-terminal symbol Q to permit the choice between the final c and a. Such a transformation is called as left factorization or left factoring.

Now, consider the following grammar G_{3} and consider a token string $w=i d+i d+i d$.

$$
\begin{aligned}
G_{3}: & E \rightarrow E+T \mid T \\
& T \rightarrow T * F \mid F \\
& F \rightarrow i d \mid(E)
\end{aligned}
$$

A top-down parser for this grammar will start by expanding E with the production $E \rightarrow E+T$. It will then expand E in the same way. In the next step, the parser should expand E by $E \rightarrow T$ instead of $E \rightarrow E+T$. But there is no way for the parser to know which choice it should make. In general, there is no solution to this problem as long as the grammar has productions of the form $A \rightarrow A \alpha$, called left-recursive productions. The solution to this problem is to rewrite the grammar in such a way to eliminate the left recursions. There are two types of left recursions: immediate left recursions, where the productions are of the form $A \rightarrow A \alpha$, and non-immediate left recursions, where the productions are of the form $A \rightarrow B \alpha ; B \rightarrow A \beta$. In the latter case, A will use $B \alpha$, and B will use $A \beta$, resulting in the same problem as the immediate left recursions have.

We now have the following formal definition: "A grammar is left-recursive if it has a nonterminal A such that there is a derivation $A \stackrel{+}{\Rightarrow} A \alpha$ for some string α."

Removing immediate left recursions:

$$
\begin{array}{ll}
\text { Input: } & A \rightarrow A \alpha_{1}\left|A \alpha_{2}\right| \cdots\left|A \alpha_{m}\right| \beta_{1}\left|\beta_{2}\right| \cdots \mid \beta_{n} \\
\text { Output: } & A \rightarrow \beta_{1} A^{\prime}\left|\beta_{2} A^{\prime}\right| \cdots \mid \beta_{n} A^{\prime} \\
& A^{\prime} \rightarrow \alpha_{1} A^{\prime}\left|\alpha_{2} A^{\prime}\right| \cdots\left|\alpha_{m} A^{\prime}\right| \epsilon
\end{array}
$$

Consider the above example G_{3} in which two productions have left recursions. Applying the above algorithm to remove immediate left recursions, we have

$$
\begin{aligned}
& \text { (i) } E \rightarrow E+T \mid T \\
& \Rightarrow \quad E \rightarrow T E^{\prime} \\
& E^{\prime} \rightarrow+T E^{\prime} \mid \epsilon
\end{aligned}
$$

(ii) $T \rightarrow T * F \mid F$ $\Rightarrow \quad T \rightarrow F T^{\prime}$
$T^{\prime} \rightarrow * F T^{\prime} \mid \epsilon$

Now, we have following grammar G_{4} which is equivalent to G_{3} :

$$
\begin{array}{ll}
G_{4}: & E \rightarrow T E^{\prime} \\
& E^{\prime} \rightarrow+T E^{\prime} \mid \epsilon \\
& T \rightarrow F T^{\prime} \\
& T^{\prime} \rightarrow * F T^{\prime} \mid \epsilon \\
& F \rightarrow(E) \mid i d
\end{array}
$$

The following is an algorithm for eliminating all left recursions including non-immediate left recursions.

Algorithm: Eliminating left recursioin.
Input: Grammar G with no cycles or ϵ-productions.
Output: An equivalent grammar with no left recursion.

1. Arrange the nonterminals in some order $A_{1}, A_{2}, \cdots, A_{n}$.
2. for $i=1$ to n begin

for $j=1$ to $i-1$ do begin

replace each production of the form $A_{i} \rightarrow A_{j} \gamma$
by the productions $A_{i} \rightarrow \delta_{1} \gamma\left|\delta_{2} \gamma\right| \cdots \mid \delta_{k} \gamma$.
where $A_{j} \rightarrow \delta_{1}\left|\delta_{2}\right| \cdots \mid \delta_{k}$ are all the current A_{j}-productions; end
eliminate the immediate left recursion among the A_{i}-productions end
end.

Examples

EXAMPLE 1: Consider the following example:

$$
\begin{aligned}
G: & \\
& S \rightarrow B a \mid b \\
& B \rightarrow B c|S d| e
\end{aligned}
$$

Let $A_{1}=S$ and $A_{2}=B$. We then have,
$G: \quad A_{1} \rightarrow A_{2} a \mid b$

$$
A_{2} \rightarrow A_{2} c\left|A_{1} d\right| e
$$

(i) $\mathrm{i}=1$:

$$
A_{1} \rightarrow A_{2} a \mid b, \mathrm{OK}
$$

(ii) $\mathrm{i}=2$:
$A_{2} \rightarrow A_{1} d$ is replace by $A_{2} \rightarrow A_{2} a d \mid b d$
Now, G becomes
$G: \quad A_{1} \rightarrow A_{2} a \mid b$
$A_{2} \rightarrow A_{2} c\left|A_{2} a d\right| b d \mid e$

By eliminating immediate recursions in A_{2}-productions, we have
(i) $A_{2} \rightarrow A_{2} c|b d| e$ are replaced by

$$
A_{2} \rightarrow b d A_{3}
$$

$$
A_{2} \rightarrow e A_{3}
$$

$$
A_{3} \rightarrow c A_{3} \mid \epsilon
$$

(ii) $A_{2} \rightarrow A_{2} a d|b d| e$ are replaced by

$$
\begin{aligned}
& A_{2} \rightarrow b d A_{4} \\
& A_{2} \rightarrow e A_{4} \\
& A_{4} \rightarrow a d A_{4} \mid \epsilon
\end{aligned}
$$

(i) and (ii) can be combined as

$$
\begin{aligned}
& A_{2} \rightarrow b d A_{3} \mid e A_{3} \\
& A_{3} \rightarrow c A_{3}\left|a d A_{3}\right| \epsilon
\end{aligned}
$$

Therefore, we have
$S \rightarrow B a \mid b$
$B \rightarrow b d D \mid e D$
$D \rightarrow c D|a d D| \epsilon$

3.8.3 First and Follow Sets

Consider every string derivable from some sentential form α by a leftmost derivation. If $\alpha \stackrel{*}{\Longrightarrow} \beta$, where β begins with some terminal, then that terminal is in $\operatorname{FIRST}(\alpha)$.

Algorithm: Computing $\operatorname{FIRST}(A)$.

1. If A is a terminal, $\operatorname{FIRST}(A)=\{A\}$.
2. If $A \rightarrow \epsilon$, add ϵ to $\operatorname{FIRST}(A)$.
3. if $A \rightarrow Y_{1} Y_{2} \cdots Y_{k}$, then
for $i=1$ to $k-1$ do
if $\left[\epsilon \in \operatorname{FIRST}\left(Y_{1}\right) \cap \operatorname{FIRST}\left(Y_{2}\right) \cap \cdots \cap \operatorname{FIRST}\left(Y_{i-1}\right)\right]$ (i.e., $Y_{1} Y_{2} \cdots Y_{i-1} \stackrel{*}{\Rightarrow} \epsilon$) and $a \in \operatorname{FIRST}\left(Y_{i}\right)$, then add a to $\operatorname{FIRST}(A)$.
end
if $\epsilon \in \operatorname{FIRST}\left(Y_{1}\right) \cap \cdots \cap \operatorname{FIRST}\left(Y_{k}\right)$, then add ϵ to $\operatorname{FIRST}(A)$.
end.

Now, we define $\operatorname{FOLLOW}(A)$ as the set of terminals that cam come right after A in any sentential form of $L(G)$. If A comes at the end, then $\operatorname{FOLLOW}(A)$ includes the end marker $\$$.

Algorithm: Computing $\operatorname{FOLLOW}(B)$.

1. $\$$ is in $F O L L O W(S)$.
2. if $A \rightarrow \alpha B \beta$, then $\operatorname{FIRST}(\beta)-\{\epsilon\} \subseteq F O L L O W(B)$.
3. if $A \rightarrow \alpha B$ or $A \rightarrow \alpha B \beta$ where $\epsilon \in \operatorname{FIRST}(\beta)$ (i.e., $\beta \stackrel{*}{\Rightarrow} \epsilon$), $F O L L O W(A) \subseteq F O L L O W(B)$
end.

Note: In Step 3, $F O L L O W(B) \nsubseteq F O L L O W(A)$. To prove this, consider the following example: $S \rightarrow A b \mid B c ; A \rightarrow a B ; B \rightarrow c$. Clearly, $c \in \operatorname{FOLLOW}(B)$ but $c \notin \operatorname{FOLLOW}(A)$.

EXAMPLE:

For the grammar G_{4},

```
\(G_{4}: \quad E \rightarrow T E^{\prime}\)
    \(E^{\prime} \rightarrow+T E^{\prime} \mid \epsilon\)
    \(T \rightarrow F T^{\prime}\)
    \(T^{\prime} \rightarrow * F T^{\prime} \mid \epsilon\)
    \(F \rightarrow(E) \mid i d\)
\(\operatorname{FIRST}(E)=F \operatorname{IRST}(T)=\operatorname{FIRST}(F)=\{(, \mathbf{i d}\}\).
\(\operatorname{FIRST}\left(E^{\prime}\right)=\{+, \epsilon\}\).
```

$\operatorname{FIRST}\left(T^{\prime}\right)=\{*, \epsilon\}$.
$\left.F O L L O W(E)=F O L L O W\left(E^{\prime}\right)=\{), \$\right\}$.
$\left.F O L L O W(T)=F O L L O W\left(T^{\prime}\right)=\{+),, \$\right\}$.
$F O L L O W(F)=\{+, *),, \$\}$.

3.8.4 Constructing a predictive parser

Algorithm: Predictive parser contruction.
Input: Grammar G.
Output: Parsing table M.

1. for each $A \rightarrow \alpha$, do Steps $2 \& 3$.
2. for each terminal $a \in \operatorname{FIRST}(\alpha)$,
add $A \rightarrow \alpha$ to $M[A, a]$.
3. 3.1 if $\epsilon \in \operatorname{FIRST}(\alpha)$,
add $A \rightarrow \alpha$ to $M[A, b]$ for each terminal $b \in \operatorname{FOLLOW}(A)$.
3.2 if $\epsilon \in \operatorname{FIRST}(\alpha)$ and $\$ \in \operatorname{FOLLOW}(A)$, $\operatorname{add} A \rightarrow \alpha$ to $M[A, \$]$.
end.

EXAMPLE:

$$
\begin{array}{ll}
G_{4}: & E \rightarrow T E^{\prime} \\
& E^{\prime} \rightarrow+T E^{\prime} \mid \epsilon \\
& T \rightarrow F T^{\prime} \\
& T^{\prime} \rightarrow * F T^{\prime} \mid \epsilon \\
& F \rightarrow(E) \mid i d
\end{array}
$$

	Input symbol						
	id	+	$*$	$($	$)$	$\$$	
E	$E \rightarrow T E^{\prime}$			$E \rightarrow T E^{\prime}$			
E^{\prime}		$E^{\prime} \rightarrow+T E^{\prime}$			$E^{\prime} \rightarrow \epsilon$	$E^{\prime} \rightarrow \epsilon$	
T	$T \rightarrow F T^{\prime}$			$T \rightarrow F T^{\prime}$			
T^{\prime}		$T^{\prime} \rightarrow \epsilon$	$T^{\prime} \rightarrow * F T^{\prime}$		$T^{\prime} \rightarrow \epsilon$	$T^{\prime} \rightarrow \epsilon$	
F	$F \rightarrow i d$			$F \rightarrow(E)$			

Stack Operation

Stack	Input	Action
$\$ E$	$i d+i d * i d \$$	$E \rightarrow T E^{\prime}$
$\$ E^{\prime} T$	$i d+i d * i d \$$	$T \rightarrow F T^{\prime}$
$\$ E^{\prime} T^{\prime} F$	$i d+i d * i d \$$	$F \rightarrow i d$
$\$ E^{\prime} T^{\prime} i d$	$i d+i d * i d \$$	match
$\$ E^{\prime} T^{\prime}$	$+i d * i d \$$	$T^{\prime} \rightarrow \epsilon$
$\$ E^{\prime}$	$+i d * i d \$$	$E^{\prime} \rightarrow+T E^{\prime}$
$\$ E^{\prime} T+$	$+i d * i d \$$	match
$\$ E^{\prime} T$	$i d * i d \$$	$T \rightarrow F T^{\prime}$
$\$ E^{\prime} T^{\prime} F$	$i d * i d \$$	$F \rightarrow i d$
$\$ E^{\prime} T^{\prime} i d$	$i d * i d \$$	match
$\$ E^{\prime} T^{\prime}$	$* i d \$$	$T^{\prime} \rightarrow * F T^{\prime}$
$\$ E^{\prime} T^{\prime} F *$	$* i d \$$	match
$\$ E^{\prime} T^{\prime} F$	$i d \$$	$F \rightarrow$
$\$ E^{\prime} T^{\prime} i d$	$i d \$$	match
$\$ E^{\prime} T^{\prime}$	$\$$	$T^{\prime} \rightarrow \epsilon$
$\$ E^{\prime}$	$\$$	$E^{\prime} \rightarrow \epsilon$
$\$ E$	$\$ \$$	accept

3.8.5 Properties of LL(1) Grammars

A grammar whose parsing table has no multiply-defined entries is said to be LL(1).

Properties:

1. No ambiguous or left-recursive grammar can be LL(1).
2. A grammar G is $\operatorname{LL}(1)$ if and only if whenever $A \rightarrow \alpha \mid \beta$ are two distinct productions, the following conditions hold:
2.1 For any terminal a, there exist no derivations that $\alpha \stackrel{*}{\Rightarrow} a \alpha^{\prime}$ and $\beta \stackrel{*}{\Rightarrow} a \beta^{\prime}$.
2.2 Either α or β, but not both, can derive ϵ.
2.3 If $\beta \stackrel{*}{\Rightarrow} \epsilon$, then α does not derive any string beginning with a terminal in $\operatorname{FOLLOW}(A)$.

Proof of Condition 2.2: Suppose $\alpha \stackrel{*}{\Rightarrow} \epsilon$ and $\beta \stackrel{*}{\Rightarrow} \epsilon$. Consider $S \stackrel{*}{\Rightarrow} \gamma_{1} A \gamma_{2}$. Then, two possibilities exist: $S \stackrel{*}{\Rightarrow} \gamma_{1} A \gamma_{2} \stackrel{*}{\Rightarrow} \gamma_{1} \alpha \gamma_{2} \stackrel{*}{\Rightarrow} \gamma_{1} \gamma_{2}$ and $S \stackrel{*}{\Rightarrow} \gamma_{1} A \gamma_{2} \stackrel{*}{\Rightarrow} \gamma_{1} \beta \gamma_{2} \stackrel{*}{\Rightarrow} \gamma_{1} \gamma_{2} . G$ must be then ambiguous.
Proof of Condition 2.3: Suppose $\beta \stackrel{*}{\Rightarrow} \epsilon$ and $\alpha \stackrel{*}{\Rightarrow} a \alpha^{\prime}$, where $a \in \operatorname{FOLLOW}(A)$. Also, assume that $\gamma_{2} \stackrel{*}{\Rightarrow} a \gamma_{2}^{\prime}$. We then have two possibilities: (i) $S \stackrel{*}{\Rightarrow} \gamma_{1} A \gamma_{2} \stackrel{*}{\Rightarrow} \gamma_{1} \alpha \gamma_{2} \stackrel{*}{\Rightarrow} \gamma_{1} a \alpha^{\prime} \gamma_{2}$, and (ii) $S \stackrel{*}{\Rightarrow} \gamma_{1} A \gamma_{2} \stackrel{*}{\Rightarrow} \gamma_{1} \beta \gamma_{2} \stackrel{*}{\Rightarrow} \gamma_{1} \gamma_{2} \stackrel{*}{\Rightarrow} \gamma_{1} a \gamma_{2}^{\prime}$. Hence, after taking care of the input tokens corresponding to γ_{1}, the parser cannot make a clear choice between the two productions $A \rightarrow \alpha$ and $A \rightarrow \beta$.

3.9 Bottom-Up Parsing

3.9.1 SLR Parser

Computation of Closure

If I is a set of items for a grammar G, then closure (I) is the set of items constructed from I by the two rules.

1. Initially, every item in I is added to closure (I).
2. If $A \rightarrow \alpha \cdot B \beta$ is in $\operatorname{closre}(I)$ and $B \rightarrow \gamma$ is a production, then add the item $B \rightarrow \cdot \gamma$ to I, if it is not already in I. We apply this rule until no more new items can be added to closure (I).
function closure(I):
begin
$J=I ;$
repeat
for each item $A \rightarrow \alpha \cdot B \beta$ in J and each production
$B \rightarrow \gamma$ of G such that $B \rightarrow \cdot \gamma$ is not in J do
add $B \rightarrow \cdot \gamma$ to J
until no more items can be added to J
return
end

We are now ready to give the algorithm to construct C, the canonical collection of stes of $L R(0)$ items for an augmenting grammar G^{\prime}.
procedure items $\left(G^{\prime}\right)$:
begin
$C=\left\{\operatorname{closure}\left(\left\{\left[S^{\prime} \rightarrow \cdot S\right]\right\}\right)\right\} ;$
repeat
for each set of items I in C and each grammar symbol X such that $\operatorname{goto}(I, X)$ is not empty and not in C do add $\operatorname{goto}(I, X)$ to C
until no more sets of items can be added to C
end

Constructing SLR Parsing Table

Algorithm: Constructing an SLR parsing table.
Input: An augmenting grammar G^{\prime}.
Output: The SLR parsing table functions action and goto for G^{\prime}.

1. Construct $C=\left\{I_{0}, \cdots, I_{n}\right\}$, the collection of sets of $\operatorname{LR}(0)$ items for G^{\prime}.
2. State i constructed from I_{i}. The parsing actions for state i are determined as follows:
a) If $[A \rightarrow \alpha \cdot a \beta]$ is in I_{i} and $\operatorname{goto}\left(I_{i}, a\right)=I_{j}$, then set action $[i, a]$ to "shift j."

Here a must be a terminal.
b) If $[A \rightarrow \alpha \cdot]$ is in I_{i}, then set action $[i, a]$ to "reduce $A \rightarrow \alpha$ " for all a in $\operatorname{FOLLOW}(A)$; here A may not be S^{\prime}.
c) If $\left[S^{\prime} \rightarrow S^{\cdot}\right]$ is in I_{i}, then set action $[i, \$]$ to "accept."

If any conflicting actions are generated by the above rules, we say the grammar is not $\operatorname{SLR}(0)$. The algorithm fails to produce a parser in this case.
3. The goto transitions for state i are constructed for all nonterminals A using the rule:

If $\operatorname{goto}\left(I_{i}, A\right)=I_{j}$, then $\operatorname{goto}[i, A]=j$.
4. All entries not defined by rules (2) and (3) are made "error."
5. The initial state of the parser is teh one constructed from the set of items containing $\left[S^{\prime} \rightarrow \cdot S\right]$. end.

Example

Consider the following grammar G :
(0) $\quad E^{\prime} \rightarrow E$
(1) $E \rightarrow E+T$
(2) $E \rightarrow T$
(3) $\quad T \rightarrow T * F$
(5) $\quad F \rightarrow(E)$
(6) $\quad F \rightarrow i d$

The canonical $\operatorname{LR}(0)$ collection for G is:

$$
\begin{aligned}
& I_{0}: \quad E^{\prime} \rightarrow \cdot E \\
& I_{5}: \quad F \rightarrow i d . \\
& E \rightarrow \cdot E+T \\
& E \rightarrow \cdot T \quad I_{6}: \quad E \rightarrow E+\cdot T \\
& T \rightarrow \cdot T * F \\
& T \rightarrow \cdot F \\
& F \rightarrow \cdot(E) \\
& F \rightarrow \cdot i d \\
& \begin{aligned}
I_{1}: & \\
& E^{\prime} \rightarrow E . \\
& E \rightarrow E \cdot+T
\end{aligned} \\
& I_{7}: \quad T \rightarrow T * \cdot F \\
& F \rightarrow \cdot(E) \\
& F \rightarrow \cdot i d \\
& I_{2}: \quad E \rightarrow T . \\
& T \rightarrow T \cdot * F \\
& I_{8}: \quad F \rightarrow(E \cdot) \\
& E \rightarrow E \cdot+T \\
& I_{3}: \quad T \rightarrow F . \\
& I_{4}: \quad F \rightarrow(\cdot E) \\
& E \rightarrow \cdot E+T \\
& E \rightarrow \cdot T \\
& I_{9}: \quad E \rightarrow E+T . \\
& T \rightarrow T \cdot * F \\
& T \rightarrow \cdot T * F \\
& T \rightarrow \cdot F \\
& F \rightarrow \cdot(E) \\
& F \rightarrow \cdot i d
\end{aligned}
$$

The transition for viable prefixes is:
$I_{0}: \operatorname{goto}\left(I_{0}, E\right)=I_{1} ; \operatorname{goto}\left(I_{0}, T\right)=I_{2} ; \operatorname{goto}\left(I_{0}, F\right)=I_{3} ; \operatorname{goto}\left(I_{0},()=I_{4} ; \operatorname{goto}\left(I_{0}, i d\right)=I_{5} ;\right.$
$I_{1}: \operatorname{goto}\left(I_{1},+\right)=I_{6} ;$
$I_{2}: \operatorname{goto}\left(I_{2}, *\right)=I_{7} ;$
$I_{4}: \operatorname{goto}\left(I_{4}, E\right)=I_{8} ; \operatorname{goto}\left(I_{4}, T\right)=I_{2} ; \operatorname{goto}\left(I_{4}, F\right)=I_{3} ; \operatorname{goto}\left(I_{4},()=I_{4} ;\right.$
$I_{6}: \operatorname{goto}\left(I_{6}, T\right)=I_{9} ; \operatorname{goto}\left(I_{6}, F\right)=I_{3} ; \operatorname{goto}\left(I_{6},()=I_{4} ; \operatorname{goto}\left(I_{6}, i d\right)=I_{5} ;\right.$
$I_{7}: \operatorname{goto}\left(I_{7}, F\right)=I_{10} ; \operatorname{goto}\left(I_{7},()=I_{4} ; \operatorname{goto}\left(I_{7}, i d\right)=I_{5} ;\right.$
$I_{8}: \operatorname{goto}\left(I_{8},\right)=I_{11} ; \operatorname{goto}\left(I_{8},+\right)=I_{6} ;$
$I_{9}: \operatorname{goto}\left(I_{9}, *\right)=I_{7} ;$

The FOLLOW set is: $\left.F O L L O W\left(E^{\prime}\right)=\{\$\} ; F O L L O W(E)=\{+),, \$\right\} ; F O L L O W(T)=F O L L O W(F)=$ $\{+),, \$, *\}$.

State	action						goto		
	id	+	*	()	\$	E	T	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7			r1			
10		r3	r3			r3			
11		r5	r5		r5	r5			

The moves of the SLR parser on input $i d * i d+i d$ is:

Step	Stack	Input	ACtion
(1)	0	id * id + id \$	shift
(2)	0id5	*id+id\$	reduce by $F \rightarrow i d$
(3)	0F3	*id+id\$	reduce by $T \rightarrow F$
(4)	0T2	*id+id\$	shift
(5)	0T2*7	id+id\$	shift
(6)	0T2*7id5	+id\$	reduce by $F \rightarrow i d$
(7)	0T2*7F10	+id\$	reduce by $T \rightarrow T * F$
(8)	0T2	+id\$	reduce by $E \rightarrow T$
(9)	0E1	+id\$	shift
(10)	0E1+6	id\$	shift
(11)	$0 \mathrm{E} 1+6 \mathrm{id} 5$	\$	reduce by $F \rightarrow i d$
(12)	0E1+6F3	\$	reduce by $T \rightarrow F$
(13)	$0 \mathrm{E} 1+6 \mathrm{~T} 9$	\$	reduce by $E \rightarrow E+T$
(14)	0E1	\$	accept

3.9.2 Canonical LR(1) Parser

Consider the following grammar G with productions:

$$
\begin{aligned}
& S^{\prime} \rightarrow S \\
& S \rightarrow L=R \\
& S \rightarrow R \\
& L \rightarrow * R \\
& L \rightarrow i d \\
& R \rightarrow L
\end{aligned}
$$

Let's construct the canonical sets of $\operatorname{LR}(0)$ items for G :

$$
\left.\begin{array}{cc}
I_{0}: S^{\prime} \rightarrow \cdot S & I_{5}: L \rightarrow i d . \\
& S \rightarrow \cdot=R \\
& \\
& \rightarrow \cdot R
\end{array}\right]
$$

Note that $=\in \operatorname{FOLLOW}(R)$ since $S \Rightarrow L=R \Rightarrow * R=R$. Consider the state I_{2} and the input symbol is " $=$." From $[R \rightarrow L \cdot]$, the parser will reduce by $R \rightarrow L$ since $=\in \operatorname{FOLLOW}(R)$. But due to $[S \rightarrow L \cdot=R$], it will try to shift the input as well, a conflict. Therefore, this grammar G cannot be handled by the $\operatorname{SLR}(0)$ parser. In fact, G can be parsed using the canonical-LR(1) parser that will be discussed next.

Construction of LR(1) Items

Let G^{\prime} be an augmented grammar of G.

```
function closure(I):
begin
    repeat
        for each item [A->\alpha\cdotB\beta,a] in I,
                each production B->\gamma in G}\mp@subsup{G}{}{\prime
                and each terminal b in FIRST( }\betaa
                such that [B->\cdot\gamma,b] is not in I do
                    add [B->\cdot\gamma,b] to I;
    until no more items can be added to }
    return I
end
```

function $\operatorname{goto}(I, X)$:
begin
let J be the set of items $[A \rightarrow \alpha X \cdot \beta, a]$ such that
$[A \rightarrow \alpha \cdot X \beta, a]$ is in $I ;$
return closure (J)
end
procedure items $\left(G^{\prime}\right)$:
begin
$C=\left\{\right.$ closure $\left.\left(\left\{\left[S^{\prime} \rightarrow \cdot S, \$\right]\right\}\right)\right\} ;$
repeat
for each set of items I in C and each grammar symbol X
such that $\operatorname{goto}(I, X)$ is not empty and not in C do
add $\operatorname{goto}(I, X)$ to C
until no more sets of items can be added to C
end

Construction of canonical-LR(1) parser

Algorithm: Constructing a canonical LR(1) parsing table.
Input: An augmenting grammar G^{\prime}.
Output: The canonical $\operatorname{LR}(1)$ parsing table functions action and goto for G^{\prime}.

1. Construct $C=\left\{I_{0}, \cdots, I_{n}\right\}$, the collection of sets of $\operatorname{LR}(1)$ items for G^{\prime}.
2. State i constructed from I_{i}. The parsing actions for state i are determined as follows:
a) If $[A \rightarrow \alpha \cdot a \beta, b]$ is in I_{i} and $\operatorname{goto}\left(I_{i}, a\right)=I_{j}$, then set action $[i, a]$ to "shift j." Here a must be a terminal.
b) If $[A \rightarrow \alpha \cdot a]$ is in I_{i}, then set $\operatorname{action}[i, a]$ to "reduce $A \rightarrow \alpha$ "; here A may not be S^{\prime}.
c) If $\left[S^{\prime} \rightarrow S \cdot, \$\right]$ is in I_{i}, then set action $[i, \$]$ to "accept."

If any conflicting actions are generated by the above rules, we say the grammar is not to be $\operatorname{LR}(1)$. The algorithm fails to produce a parser in this case.
3. The goto transitions for state i are constructed for all nonterminals A using the rule:

If $\operatorname{goto}\left(I_{i}, A\right)=I_{j}$, then $\operatorname{goto}[i, A]=j$.
4. All entries not defined by rules (2) and (3) are made "error."
5. The initial state of the parser is the one constructed from the set of items containing $\left[S^{\prime} \rightarrow \cdot S, \$\right]$. end.

Construction of LALR Parsing Table

Algorithm: Constructing an LALR parsing table.
Input: A grammar G.
Output: The LALR parsing table for G.

1. Construct $C=\left\{I_{0}, \cdots, I_{n}\right\}$, the collection of sets of $\operatorname{LR}(1)$ items for G.
2. Final all sets having the same core, and replace these sets by their union.
3. Let $C^{\prime}=\left\{J_{1}, J_{2}, \cdots, J_{m}\right\}$ be the resulting sets of $\operatorname{LR}(1)$ items.

Action table is constructed in the same manner as in Algorithm for Canonical LR(1) parsing table.
4. goto table is constructed as follows.

Note that if $J_{q}=I_{1} \cup I_{2} \cup \cdots \cup I_{k}$, and for a non-terminal X, $\operatorname{goto}\left(I_{1}, X\right)=J_{p_{1}}, \operatorname{goto}\left(I_{2}, X\right)=J_{p_{2}}, \cdots, \operatorname{goto}\left(I_{k}, X\right)=J_{p_{k}}$,
then make $\operatorname{goto}\left(J_{q}, X\right)=s$ where $s=J_{p_{1}} \cup J_{p_{2}} \cup \cdots \cup J_{p_{k}}$.
(Note that $J_{p_{1}}, \cdots, J_{p_{k}}$ all have the same core.) end.

Example 1: Consider the following grammar G^{\prime}.
(0) $S^{\prime} \rightarrow S$
(1) $S \rightarrow L=R$
(2) $S \rightarrow R$
(3) $L \rightarrow * R$
(4) $L \rightarrow i d$
(5) $R \rightarrow L$

The canonical $\operatorname{LR}(1)$ collection for G^{\prime} is:

$$
\begin{aligned}
& I_{0}: \quad S^{\prime} \rightarrow \cdot S, \$ \\
& S \rightarrow \cdot L=R, \$ \\
& S \rightarrow \cdot R, \$ \\
& L \rightarrow \cdot * R,= \\
& L \rightarrow \cdot i d,= \\
& R \rightarrow \cdot L, \$ \\
& L \rightarrow * R, \$ \\
& L \rightarrow \cdot i d, \$ \\
& I_{1}: \quad S^{\prime} \rightarrow S \cdot, \$ \\
& I_{2}: \quad S \rightarrow L \cdot=R, \$ \\
& R \rightarrow L \cdot, \$ \\
& I_{3}: \quad S \rightarrow R \cdot, \$ \\
& I_{4}: \quad L \rightarrow * \cdot R,= \\
& L \rightarrow * \cdot R, \$ \\
& R \rightarrow \cdot L,=/ \$ \\
& L \rightarrow \cdot * R,=/ \$ \\
& L \rightarrow \cdot i d,=/ \$ \\
& I_{5}: \quad L \rightarrow i d \cdot,=/ \$ \\
& I_{6}: \quad S \rightarrow L=\cdot R, \$ \\
& R \rightarrow \cdot L, \$ \\
& L \rightarrow \cdot * R, \$ \\
& L \rightarrow \cdot i d, \$
\end{aligned}
$$

$I_{7}: \quad L \rightarrow * R \cdot=/ \$$
$I_{8}: \quad R \rightarrow L \cdot,=/ \$$
$I_{9}: \quad S \rightarrow L=R \cdot, \$$
$I_{10}: \quad R \rightarrow L \cdot, \$$
$I_{11}: \quad L \rightarrow * \cdot R, \$$
$R \rightarrow \cdot L, \$$
$L \rightarrow * R, \$$
$L \rightarrow \cdot i d, \$$
$I_{12}: \quad L \rightarrow i d \cdot, \$$
$I_{13}: \quad L \rightarrow * R \cdot, \$$

Example 2:

Consider the following grammar G^{\prime} :
(0) $\quad S^{\prime} \rightarrow S$
(1) $\quad S \rightarrow C C$
(2) $C \rightarrow c C$
(3) $\quad C \rightarrow d$

The canonical $\operatorname{LR}(1)$ collection for G^{\prime} is:

$$
\begin{array}{ll}
I_{0}: & S^{\prime} \rightarrow \cdot S, \$ \\
& S \rightarrow \cdot C C, \$ \\
& C \rightarrow \cdot c C, c / d \\
& C \rightarrow \cdot d, c / d \\
I_{1}: & \\
& S^{\prime} \rightarrow S \cdot, \$ \\
I_{2}: & \\
& S \rightarrow C \cdot C, \$ \\
& C \rightarrow \cdot c C, \$ \\
& C \rightarrow \cdot d, \$ \\
I_{3}: \quad & C \rightarrow c \cdot C, c / d \\
& C \rightarrow \cdot c C, c / d \\
& C \rightarrow \cdot d, c / d
\end{array}
$$

$$
\begin{array}{ll}
I_{4}: C \rightarrow d \cdot c / d \\
I_{5}: & \\
& S \rightarrow C C \cdot, \$ \\
I_{6}: & C \rightarrow c \cdot C, \$ \\
& C \rightarrow \cdot c C, \$ \\
& C \rightarrow \cdot d, \$
\end{array}
$$

$I_{7}: \quad C \rightarrow d \cdot, \$$
$I_{8}: C \rightarrow c C \cdot, c / d$
$I_{9}: \quad C \rightarrow c C \cdot, \$$

The transition for viable prefixes is:
$I_{0}: \operatorname{goto}\left(I_{0}, S\right)=I_{1} ; \operatorname{goto}\left(I_{0}, C\right)=I_{2} ; \operatorname{goto}\left(I_{0}, c\right)=I_{3} ; \operatorname{goto}\left(I_{0}, d\right)=I_{4} ;$
$I_{2}: \operatorname{goto}\left(I_{2}, C\right)=I_{5} ; \operatorname{goto}\left(I_{2}, c\right)=I_{6} ; \operatorname{goto}\left(I_{2}, d\right)=I_{7} ;$
$I_{3}: \operatorname{goto}\left(I_{3}, c\right)=I_{3} ; \operatorname{goto}\left(I_{3}, d\right)=I_{4} ; \operatorname{goto}\left(I_{3}, C\right)=I_{8} ;$
$I_{6}: \operatorname{goto}\left(I_{6}, C\right)=I_{9} ;$

A. Canonical-LR(1) parsing table

State	action			goto	
	c	d	$\$$	S	C
0	s 3	s 4		1	2
1			acc		
2	s 6	s 7			5
3	s 3	s 4			8
4	r 3	r 3			
5			r 1		
6	s 6	s 7			9
7			r 3		
8	r 2	r 2			
9			r 2		

B. LALR(1) parsing table

State	action			goto	
	c	d	S	S	C
0	s 36	s 47		1	2
1			acc		
2	s 36	s 47			5
36	s 36	s 47			89
47	r3	r3	r3		
5			r1		
89	r2	r2	r2		

Note on LALR Parsing Table

Suppose we have an $\operatorname{LR}(1)$ grammar, that is, one whose sets of $\operatorname{LR}(1)$ items produce no parsing action conflicts. If we replace all states having the same core with their union, it is possible that the resulting union wil have a conflict, but it is unlikely for the following reasons.

Suppose in the union there is a conflict on lookahead a because there is an item $[B \rightarrow \beta \cdot a \gamma, b]$ calling for a reduction by $A \rightarrow \alpha$, and there is another item $[B \rightarrow \beta \cdot a \gamma, b]$ calling for a shift. Then, some set of items from which the union was formed has item $[A \rightarrow \alpha \cdot, a]$, and since the cores of
all these states are the same, it must have an item $[B \rightarrow \beta \cdot a \gamma, c]$ for some c. But then this state has the same shift/reduce conflict on a, and the grammar was not $\operatorname{LR}(1)$ as we assumed. Thus, the merging of states with common cores can never produce a shift/reduce conflict that was not present in one of the original states, because shift actions depend only on core, not the lookahead.

It is possible, however, that a merger will produce a reduce/reduce conflict as the following example shows.

Example:

$$
\begin{aligned}
& S^{\prime} \rightarrow S \\
& S \rightarrow a A d|b B d| a B e \mid b A e \\
& A \rightarrow c \\
& B \rightarrow c
\end{aligned}
$$

which generates the four strings $a c d, a c e, b c d, b c e$. This grammar can be checked to be $\operatorname{LR}(1)$ by constructing the sets of items. Upon doing so, we find the set of items $\{[A \rightarrow c \cdot, d],[B \rightarrow c \cdot, e]\}$ valid for viable prefix $a c$ and $\{[A \rightarrow c \cdot, e],[B \rightarrow c \cdot, d]\}$ valid for $b c$. Neither of these sets generates a conflict, and their cores are the same. However, their union, which is

$$
\begin{aligned}
& A \rightarrow c \cdot, d / e \\
& B \rightarrow c \cdot, d / e
\end{aligned}
$$

generates a reduce/reduce conflict, since reduction by both $A \rightarrow c$ and $B \rightarrow c$ are called for on input d and e.

4 Turing Machine

$M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{a c c e p t}, q_{\text {reject }}\right)$. where

$$
\Sigma \subseteq \Gamma
$$

$$
\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}
$$

$$
q_{a c c e p t} \neq q_{\text {reject }}
$$

- L is Turing-decidable if some TM decides it (always halts with accept or reject).
- L is Turing-recognizable if some TM recognizes it (accept, reject, or loop).

Examples of Turing-decidable languages:

1. $L=\{w| | w \mid$ is a multiple of three. $\}$
2. $L=\left\{a^{n} b^{m} \mid n, m \geq 1, n \neq m\right\}$
3. $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$
4. $L=\left\{w w \mid w \in\{a, b\}^{*}\right\}$
5. $L=\left\{a^{2^{n}} \mid n \geq 1\right\}$
6. $L=\left\{a^{n^{2}} \mid n \geq 1\right\}$
7. $L=\left\{a^{i} b^{j} c^{k} \mid i \cdot j=k\right\}$
8. $L=\left\{a^{n} \mid n\right.$ is a prime number. $\}$

Hilbert's 10th problem:

Let $D=\{P \mid P$ is a polynomial with an integral root. $\}$ Is D decidable?

- D is not Turing-decidable.
- D is Turing-recognizable.

Church's Thesis: Turing machine is equivalent in computing power to the digital computers.

4.1 Turing Decidable Languages

1. $A_{D F A}=\{<M, w>\mid M$ is a DFA that accepts w.$\} (Theorem 4.1, TEXT)$
2. $A_{N F A}$ (Theorem 4.2, TEXT)
3. $A_{R E X}=\{<R, w>\mid R$ is a regular expression that generates w.$\} (Theorem 4.3, TEXT)$
4. $E_{D F A}=\{\langle A\rangle \mid A$ is a DFA such that $L(A)=\emptyset$.$\} (Theorem 4.4, TEXT)$
5. $E Q_{D F A}=\{<A, B\rangle \mid A$ and B are DFAs and $\left.L(A)=L(B).\right\}$ (Theorem 4.5, TEXT)
6. $A_{C F G}=\{\langle G, w\rangle \mid G$ is a CFG that generates w. $\}$ (Theorem 4.7, TEXT)
7. $E_{C F G}=\{\langle G\rangle \mid G$ is a CFG and $L(G)=\emptyset$.$\} (Theorem 4.8, TEXT)$
8. $E Q_{C F G}=\{<G, H\rangle \mid G$ and H are CFGs and $\left.L(G)=L(H).\right\}$ (Not decidable)

4.2 Diagonalization Method

Goal: Some languages are not Turing-decidable.
Definition: A set A is countable if and only if either A is finite or A has the same size of N. That is, there exists a bijection f such that $f: N \rightarrow A$.
example: $N=\{1,2,3, \cdots$,$\} and E=\{2,4,6, \cdots$,$\} .$

1. The set of rational numbers are countable. (Example 4.15, TEXT)
2. The set of real numbers are uncountable. (Theorem 4.17, TEXT)
3. The set of all strings over Σ is countable. (Proof: Corollary 4.18, TEXT)
4. The set of all TMs is countable. (Proof: Corollary 4.18, TEXT)
5. The set of all binary sequences of infinite length is uncountable. (Proof: Corollary 4.18, TEXT)
6. The set of all languages over Σ is uncountable. (Proof: Corollary 4.18, TEXT)

From 4 and 6 above, we have:

Theorem 4.1 There exists a language that is not Turing-recognizable. (Corollary 4.18, TEXT)

5 Turing Undecidable Problems and Reducibility

$5.1 A_{T M}$

Let $A_{T M}=\{\langle M, w\rangle \mid M$ is a TM and M accepts w.

Theorem 5.1 $A_{T M}$ is Turing undecidable.

Proof: Suppose $A_{T M}$ is decidable, and let H be a decider (i.e, H is a TM that decides $A_{T M}$.) Thus,

$$
H(<M, w\rangle)= \begin{cases}\text { accept } & \text { if } M \text { accepts } w \\ \text { reject } & \text { if } M \text { does not accept } w\end{cases}
$$

Now, we construct a new TM D with H as a subroutine:
Given a TM M, D take $<M>$ as an input, and (1) run H on input $<M,<M \gg$, (2) output the opposite of what H outputs, i.e., if H accepts, then "reject" and if H rejects, then "accept."

In summary,

$$
D(<M>)= \begin{cases}\text { accept } & \text { if } M \text { does not accepts }<M> \\ \text { reject } & \text { if } M \text { accepts }<M>\end{cases}
$$

What happens when we run D with its own description $<D>$ as input? In that case, we get

$$
D(<D>)= \begin{cases}\text { accept } & \text { if } D \text { does not accepts }<D> \\ \text { reject } & \text { if } D \text { accepts }<D>\end{cases}
$$

That is, no matter what D does, it is forced to do the opposite, a contradiction. Thus, neither TM D nor TM H can exist. Therefore, $A_{T M}$ is not Turing-decidable.

However, $A_{T M}$ is Turing-recognizable.

Theorem 5.2 A language is Turing-decidable if and only if it is Turing-recognizable and also co-Turing-recognizable.

Corollary 5.1 $\overline{A_{T M}}$ is not Turing-recognizable.

5.2 Halting Problem

Let $H A L T_{T M}=\{<M, w\rangle \mid M$ is a TM and M halts on $\left.w,\right\}$

Theorem 5.3 $H A L T_{T M}$ is Turing undecidable.

Proof: Suppose $H A L T_{T M}$ is Turing-decidable, and let R be a decider. We then use R as a subroutine to construct a TM S that decides $A_{T M}$ as follows. $S=$ "On input $<M, w>$ ":

1. Run R on $<M, w>$
2. If R reject, reject
3. If R accepts, accept, simulate M until it halts.
4. If M has accepted, accept; if M has rejected, reject.

Clearly, if R decides $H A L T_{T M}$, then S decides $A_{T M}$. Since $A_{T M}$ is undecidable, $H A L T_{T M}$ must be undecidable.

Theorem 5.4 (Theorem 5.2, TEXT) $E_{T M}$ is Turing undecidable.

Proof: Suppose $E_{T M}$ is decidable. Let R be a decider. We then construct two TMs M_{1} and S that takes $\langle M, w\rangle$, an input to $A_{T M}$ and run as follows.
$M_{1}=$ "On input $x ":$

1. If $x \neq w$, reject.
2. If $x=w$, run M on w and accept if M does.

Note that M_{1} has w as a part of its description.
$S=$ "On input $\langle M, w\rangle$ ":

1. Use the description of M and w to construct M_{1}
2. Run R on input $<M_{1}>$
3. If R accepts, reject; if R rejects, accept.

Clearly, if $E_{T M}$ is TM decidable, then $A_{T M}$ is also TM decidable. However, we already proved $A_{T M}$ is not TM decidable. Hence, $E_{T M}$ is TM undecidable.

5.3 More Turing undecidable Problems

- Post Correspondence Problem (PCP)
- Deciding whether an arbitrary CFG G is ambiguous
- Deciding whether $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$ for arbitrary two CFG G_{1} and G_{2}.

6 NP-Completeness

6.1 Problem Transformation (Reduction)

Let A and B be two decision problems. We say problem A is transformed to B using a transformation algorithm f that takes I_{A} (an arbitrary input to A) and computes $f\left(I_{A}\right)$ (an input to B) such that problem A with input I_{A} is YES if and only if problem B with input $f\left(I_{A}\right)$ is $Y E S$.

EXAMPLES:

- Hamiltonian Path Problem to Hamiltonian Cycle Problem
- Hamiltonian Cycle Problem to Hamiltonian Path Problem
- 3COLORABILITY to 4COLORABILITY
- SAT to 3SAT
- ...

6.1.1 Upper Bound Analysis

Suppose A is a new problem for which we are interested in computing an upper bound, i.e., finding an algorithm to solve A. Assume we have an algorithm $A L G O_{B}$ to solve B in $O\left(n_{B}\right)$ time where n_{B} is the size of an input to B. We can then solve A using the following steps: (i) for an arbitrary instance I_{A} to A, transform I_{A} to $f\left(I_{A}\right)$ where $f\left(I_{A}\right)$ is an instance to B; (ii) solve $f\left(I_{A}\right)$ to B using $A L G O_{B}$; (iii) if $A L G O_{B}$ taking $f\left(I_{A}\right)$ as an input reports YES, we report I_{A} is YES; otherwise, NO.

6.1.2 Lower Bound Analysis

6.2 Satisfiability Problem

Let $U=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ be a set of boolean variables. A truth assignment for U is a function $f: U \rightarrow\{T, F\}$. If $f\left(u_{i}\right)=T$, we say u_{i} is true under f; and if $f\left(u_{i}\right)=F$, we say u_{i} is false under f. For each $u_{i} \in U, u_{i}$ and \bar{u}_{i} are literals over U. The literal \bar{u}_{i} is true under f if and only if the variable u_{i} is false under f. A clause over U is a set of literals over U such as $\left\{u_{1}, \bar{u}_{3}, u_{8}, u_{9}\right\}$. Each clause represents the disjunction of its literals, and we say it is satisfied by a truth assignment function if and only if at least one of its members is true under that assignment. A collection C over U is satisfiable if and only if there exists a truth assignment for U that simultaneously satisfies all the clauses in C.

Satisfiability (SAT) Problem

Given: a set U of variable and a collection C of clauses over U
Question: is there a satisfying truth assignment for C ?

Example:

$U=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
$C=\left\{\left\{x_{1}, x_{2}, x_{3}\right\},\left\{\bar{x}_{1}, \bar{x}_{3}, \bar{x}_{4}\right\},\left\{\bar{x}_{2}, \bar{x}_{3}, x_{4}\right\},\left\{\bar{x}_{1}, x_{2}, x_{4}\right\}\right\}$.

The input to SAT is also given as a well-formed formula in conjunctive normal form (i.e., sum-of-product form:

$$
w=\left(x_{1}+x_{2}+x_{3}\right)\left(\bar{x}_{1}+\bar{x}_{3}+\bar{x}_{4}\right)\left(\bar{x}_{2}+\bar{x}_{3}+x_{4}\right)\left(\bar{x}_{1}+x_{2}+x_{4}\right)
$$

Let $x_{1}=T, x_{2}=F, x_{3}=F, x_{4}=T$. Then, $w=T$.
Ans: yes

Reduction from SAT to 3SAT:

$(1)\left(x_{1}\right) \rightarrow\left(x_{1}+a+b\right)\left(x_{1}+a+\bar{b}\right)\left(x_{1}+\bar{a}+b\right)\left(x_{1}+\bar{a}+\bar{b}\right)$
$(2)\left(x_{1}+x_{2}\right) \rightarrow\left(x_{1}+x_{2}+a\right)\left(x_{1}+x_{2}+\bar{a}\right)$
$(3)\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right) \rightarrow\left(x_{1}+x_{2}+a_{1}\right)\left(\overline{a_{1}}+x_{3}+a_{2}\right)\left(\overline{a_{2}}+x_{4}+x_{5}\right)$

- 3SAT
- Not-All-Equal 3SAT: Each clause has at least one true literal and one false literal, i,e, not all three literals can be true.
- One-In-Three 3SAT: Each clause has exactly one true literal and two false literals.

Definition:

\mathbf{P} : a set of problems that can be solved deterministically in polynomial time.
NP: a set of problems that can be solved nondeterministically in polynomial time.
NPC: a problem B is called NP-complete or a NP-complete problem if (i) $B \in N P$, i.e., B can be solved nondeterministically in polynomial time, and (ii) for all $B^{\prime} \in N P, B^{\prime} \leq_{P} B$, i.e., any problem in NP can be transformed to B deterministically in polynomial time.

Cook's Theorem: Every problem in NP can be transformed to the Satisfiability problem deterministicall in polynomial time.

Note:

(i) The SAT is the first problem belonging to NPC.
(ii) To prove a new problem, say B, being NPC, we need to show (1) B is in NP and (2) any known NPC problem, say B^{\prime}, can be transformed to B deterministically in polynomial time. (By definition of $B^{\prime} \in N P C$, every problem in NP can be transformed to B in polynomial time. As polynomial time transformation is transitive, it implies that every problem in NP can be transformed to B in polynomial time.)

Theorem: $P=N P$ if and only if there exists a problem $B \in N P C \cap P$.
Proof: If $P=N P$, it is clear that every problem in $N P C$ belongs to P. Now assume that there is a problem $B \in N P C$ that can be solved in polynomial time deterministically. Then by definition of $B \in N P C$, any problem in $N P$ can be transformed to B in polynomial time derterministically, which can then be solved in polynomial time deterministically using the algorithm for B. Hence, $N P \subseteq P$. Since $P \subseteq N P$, we conclude that $P=N P$, which completes the proof of the theorem.

Problem Transformations:

Node Cover Problem:

Given: a graph G and an integer k,
Objective: to find a subset $S \subseteq V$ such that (i) for each $(u, v) \in E$, either u or v (or both) is in S, and (ii) $|S| \leq k$.

Hamiltonian Cycle Problem:

Given: a graph G
Objective: to find a simple cycle of G that goes through every vertex exactly once.

Hamiltonian Path Problem:

Given: a graph G
Objective: to find a simple path of G that goes through every vertex exactly once.

Vertex Coloring Problem:

Given: a graph G and an integer k
Objective: to decide if there exists a proper coloring of V (i.e., a coloring of vertices in V such that no two adjacent vertices receive the same color) using k colors.

- $3 S A T \leq_{P}$ Node - Cover

Let W be an arbitrary well-formed formula in conjunctive normal form, i.e., in sum-of-product form, where W has n variables and m clauses. We then construct a graph G from W as follows.

The vertex set $V(G)$ is defined as $V(G)=X \cup Y$, where $X=\left\{x_{i}, \bar{x}_{i} \mid 1 \leq i \leq n\right\}$ and $Y=\left\{p_{j}, q_{j}, r_{j} \mid 1 \leq j \leq m\right\}$. The edge set of G is defined to be $E(G)=E_{1} \cup E_{2} \cup E_{3}$, where $E_{1}=\left\{\left(x_{i}, \bar{x}_{i}\right) \mid 1 \leq i \leq n\right\}, E_{2}=\left\{\left(p_{j}, q_{j}\right),\left(q_{j}, r_{j}\right),\left(r_{j}, p_{j}\right) \mid 1 \leq j \leq m\right\}$, and E_{3} is defined to be a set of edges such that p_{j}, q_{j}, and r_{j} are respectively connected to c_{j}^{1}, c_{j}^{2}, and c_{j}^{3}, where c_{j}^{1}, c_{j}^{2}, and c_{j}^{3} denote the first, second and the third literals in clause C_{j}.

For example, let $W=\left(x_{1}+x_{2}+x_{3}\right)\left(\bar{x}_{1}+x_{2}+\bar{x}_{3}\right)\left(\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}\right)$. Then G is defined such that $V(G)=\left\{x_{1}, \bar{x}_{1}, x_{2}, \bar{x}_{2}, x_{3}, \bar{x}_{3}, p_{1}, q_{1}, r_{1}, p_{2}, q_{2}, r_{2}, p_{3}, q_{3}, r_{3}\right\}$ and $E(G)=\left\{\left(x_{1}, \bar{x}_{1}\right),\left(x_{2}, \bar{x}_{2}\right),\left(x_{3}, \bar{x}_{3}\right)\right.$, $\left(p_{1}, q_{1}\right),\left(q_{1}, r_{1}\right),\left(r_{1}, q_{1}\right),\left(p_{2}, q_{2}\right),\left(q_{2}, r_{2}\right),\left(r_{2}, p_{2}\right),\left(p_{3}, q_{3}\right),\left(q_{3}, r_{3}\right),\left(r_{3}, p_{3}\right),\left(p_{1}, x_{1}\right),\left(q_{1}, x_{2}\right),\left(r_{1}, x_{3}\right)$, $\left.\left(p_{2}, \bar{x}_{1}\right),\left(q_{2}, x_{2}\right),\left(r_{3}, \bar{x}_{3}\right),\left(p_{3}, \bar{x}_{1}\right),\left(q_{3}, \bar{x}_{2}\right),\left(r_{3}, \bar{x}_{3}\right)\right\}$.

We now claim that there exists a truth assignment to make $W=T$ if and only if G has a node cover of size $k=n+2 m$.

To prove this claim, suppose there exists a truth assignment. We then construct a node cover S such that $x_{i} \in S$ if $x_{i}=T$ and $\bar{x}_{i} \in S$ if $x_{i}=F$. Since at least one literal in each clause C_{j} must be true, we include the other two nodes in each triangle (i.e., p_{j}, q_{j}, r_{j}) in S. Conversely, assume that there exists a node cover of size $n+2 m$. We then note that exactly one of x_{i}, \bar{x}_{i} for each $1 \leq i \leq n$ must be in S, and exactly two nodes in p_{j}, q_{j}, r_{j} for each $1 \leq j \leq m$ must be in S. It is then easy to see the S must be such that at least one node in each p_{j}, q_{j}, r_{j} for $1 \leq j \leq m$ must be connected to a node x_{i} or \bar{x}_{i} for $1 \leq i \leq n$. Hence we can find a truth assignment to W by assigning x_{i} true if $x_{i} \in S$ and false $\bar{x}_{i} \in S$.

