
Noname manuscript No.
(will be inserted by the editor)

Covert Timing Channels exploiting Cache Coherence
Hardware: Characterization and Defense

Fan Yao · Miloš Doroslovački ·
Guru Venkataramani

Received: date / Accepted: date

Abstract Information leakage of sensitive data has become one of the fast growing
concerns among computer users. With adversaries turning to hardware for exploits,
caches are frequently a target for timing channels since they present different timing
profiles for cache miss and hit latencies. Such timing channels operate by having an
adversary covertly communicate secrets to a spy simply through modulating resource
timing without leaving any physical evidence.

In this article, we demonstrate a new vulnerability exposed by cache coherence
protocols where adversaries could manipulate the coherence states on certain cache
blocks to alter cache access timing and communicate secrets illegitimately. Our threat
model assumes the trojan and spy can either exploit explicitly shared read-only phys-
ical pages (e.g., shared library code), or use memory deduplication feature to im-
plicitly force create shared physical pages. We demonstrate a template that adver-
saries may use to construct covert timing channels through manipulating combina-
tions of coherence states and data placement in different caches. We investigate sev-
eral classes of cache coherence protocols, and observe that both directory-based and
snoopy protocols can be subject to covert timing channel attacks. We identify that
the root cause of the vulnerability to be the existence of access latency difference for
cache lines in read-only cache coherence states: Exlusive and Shared. For defense,
we propose a slightly modified cache coherence scheme that will enable the last level
cache to directly respond to read data requests in these read-only coherence states,
and avoid any latency difference that could enable timing channels.

Fan Yao
The George Washington University
E-mail: albertyao@gwu.edu

Miloš Doroslovački
The George Washington University
E-mail: doroslov@email.gwu.edu

Guru Venkataramani
The George Washington University
E-mail: guruv@gwu.edu

2 Fan Yao et al.

Keywords cache coherence protocols; covert timing channels; information leakage;
hardware security; hardware defense

1 Introduction

Information leakage attacks, that maliciously tap insider processes and secretly com-
municate sensitive data, are an increasingly growing threat for computer users. Covert
channels are one such class of attacks, where a trojan process, that has access rights to
user’s sensitive profile information, secretly communicates such data to a spy process
despite the underlying system security policy explicitly prohibiting any such commu-
nication [1]. It is important to note the trojan will not be able to directly communicate
secrets to the outside entities with the system auditors monitoring for any such activ-
ity. Therefore, they rely on covert channels to reveal secrets to the spy. In contrast to
side channels where a victim process unwittingly exposes sensitive application pro-
file to the spy monitoring its activity, covert channels work by intentional collusion
between two malicious processes, namely the trojan and spy [2].

Among several types of covert channels, timing attacks are practically very dif-
ficult to catch since the trojan and spy communicate simply by manipulating the ac-
cess timing to shared hardware resources without leaving any physical trace of an
attack [3]. Caches, in particular, are a widely exploited resource since they present
the largest attack surface to adversaries. To manipulate the cache access latencies,
prior works have shown how to intentionally creating cache hits and misses by either
generating contention in a pre-determined cache set [4–7] or through invalidating
shared cache lines through cache cleansing instructions such as clflush [8]. Recently,
Irazoqui et al. [9] demonstrated a cache side channel that exploit different latencies
due to remote cache hit (i.e., cache hit in another socket kept coherent with the re-
questing socket) and DRAM accesses. We note that these prior works rely on access
latency difference between DRAM vs. caches, and as such, do not demonstrate the
vulnerability of hardware coherence protocol and its states.

In contrast to several cache-based covert timing channels, our recent work [10]
has demonstrated that cache coherence protocols, which are a widely supported per-
formance feature in most modern multi-core processors, can be vulnerable to infor-
mation leakage attacks. We have shown that the differences in timing profiles on
cache block accesses in Exclusive (E) and Shared (S) coherence states may present a
significant vulnerability that can be taken advantage by malicious entities for covert
timing channel exploits.

This article offers new technical contributions over our prior work in two major
aspects: First, we have systematically analyzed the vulnerability of several classes of
cache coherence protocols (directory-based, snoopy with inclusive and non-inclusive)
caches, and have presented our insights. Second, we have proposed a defense mecha-
nism that proposes a secure cache coherence scheme with modest changes to existing
coherence protocols, thereby, effectively closing the latency gap between cache ac-
cesses to read-only states, namely E and S.

We note that prior works have studied defense techniques to thwart timing chan-
nels on individual caches [11–14]. These techniques either work by preventing the ad-

Covert Timing Channels exploiting Cache Coherence Hardware: Characterization and Defense 3

versaries from cache evictions with significant hardware modifications (e.g., random
cache replacement) or through partitioning the cache among various user domains.
Although they are shown to be effective for several existing cache timing channel
attacks, these prior mechanisms are not designed to counter the attacks that manip-
ulate cache lines in distinct coherence states and in different caches across several
cores. Thus, they may be ineffective in defending against the vulnerabilities studied
in this article. We note that the root cause for the newly demonstrated vulnerability
is the differing latency profiles for cache coherence transactions associated with dif-
ferent read-only states. Therefore, to protect the cache coherence fabric and to avoid
adversely affecting the latency-critical read operations, we propose a defense scheme
that eliminates the latency differences among the corresponding read transactions.
The modified cache coherence scheme is able to defend against the exploits involv-
ing cache coherence states.

In summary, the contributions of our work are as follows:
1. We present a new study that shows the vulnerabilities exposed by hardware

cache coherence protocols, where adversaries exploit coherent cache blocks in exclu-
sive and shared states present in different levels of the cache hierarchy.

2. We show six ways to exploit the read latency differences for cache blocks,
stemming from combinations of coherence states and cache levels, and demonstrate
them on real machines.

3. We propose a new defense against timing channels in cache coherence hard-
ware through small changes to read operations on exclusive state cache blocks, that
effectively eliminates the latency differences between read transactions to E and S
coherence states. Our evaluations show that our proposed hardware changes incur
minimal overhead (less than 0.5%) for benign multi-threaded applications.

2 Background

2.1 Covert Channels

According to Trusted Computer System Evaluation (TCSEC) [1] developed by US
Department of Defense, covert channel is defined as a communication channel that
is exploited by a process to perform information transfer in a manner that violates
the system’s security policy. Specifically, timing channels work by allowing a trojan
process to signal information to a spy process by modulating its own use of system
resources in such a way that the change in response time observed by the spy would
provide information. As per TCSEC criteria, low bandwidth covert channels typically
present lower threat than higher bandwidth channels. This is because, adversaries
typically incur high price on lower bandwidth channels with lower returns in terms
of information gain. For example, TCSEC points out that the malicious entity obtains
very little useful information on covert channels with bandwidths below 0.1 bits/sec.
TCSEC classifies a high bandwidth covert channel to have a minimum rate of 100
bits/sec based upon measurements from several different computer systems.

4 Fan Yao et al.

M E

S I

Fig. 1: State transitions for the MESI protocol

2.2 Cache Coherence

Almost every modern processor family from leading hardware vendors implement
variants of MESI cache coherence protocol to realize coherence among data in private
caches [15,16]. The MESI protocol has four stable states, namely: (i) Modified (M)
state, where the data block is present only in one private cache and has been recently
updated by the owner core in comparison to the value in main memory. Note that the
current owner has both read and write permissions. (ii) Shared (S) state, where the
cache block is potentially present in more than one private cache and has not changed
by any core recently compared to the value in main memory. The current core only
has read permission on the block. (iii) Exclusive (E) state, where the cache block
is present only in the current owner cache, and the data has not changed recently
compared to the data contents in main memory. The current owner core has read per-
missions. However, since the cache block is present only in the current cache, when
a write operation need to be performed, E state lets the owner core to acquire write
permissions and upgrade to M state without the need to generate invalidation mes-
sages to other cores. Also, read misses to this block by other cores will downgrade
the coherence state in the current core to S state. This coherence state offers perfor-
mance advantage by enabling rapid transitions to M or S from the E state depending
on the memory operation. (iv) Invalid (I) state, where the cache block is invalid, and
does not have read or write permissions. Figure 1 illustrates the state transitions for
the four coherence states in MESI-based protocols. Several design options are avail-
able for implementing cache coherence protocols [17]. In a snooping protocol, cache
controllers send coherence requests by broadcasting the messages to all other cache
coherence controllers. In contrast, directory-based protocols offer higher scalability
by allowing directed, unicast messages between cache controller and the memory
controller or directory. Besides, modern processors also feature multiple levels of
caches to improve the caching performance. In inclusive cache hierarchy, lower-level
caches (e.g., shared caches) always store the cache blocks that are currently cached
in upper-level caches (e.g., private caches). Non-inclusive cache does not enforce
this requirement, i.e., lower-level caches may replace blocks that are still currently
cached in upper-level caches. In exclusive cache hierarchy, the lower-level caches are
designed to not cache any of the memory blocks that already reside in upper-level
caches.

Covert Timing Channels exploiting Cache Coherence Hardware: Characterization and Defense 5

3 Memory Sharing in Server Systems

To manipulate cache coherence states, the trojan and the spy should first have shared
physical memory such that certain cache blocks are shared and coherence is enforced
by the hardware. Prior techniques [8,9] have shown their timing channel implemen-
tations using explicitly shared library code or data between trojan and spy. Coher-
ence protocols would maintain states on such blocks to keep a coherent view of the
program memory that is supported by the underlying hardware. We note that this
memory sharing method can be used in our attack model as well. However, we note
that this explicitly shared memory setup will imply that we assume the trojan (with
access to sensitive user data) and the spy (that can’t access sensitive data as per the
system security policy) to have explicitly shared memory (e.g., shared library). Such
prerequisite may be difficult to achieve in systems where strict isolation policies are
enforced.

A more sophisticated attacker might circumvent the explicit sharing requirement
by exploiting a feature called memory deduplication, sometimes also referred to as
Kernel Same-page Merging (KSM). KSM is a kernel feature inside the OS that al-
lows the system to share identical memory pages (i.e., pages with the same memory
contents) between different processes. This feature is routinely used to enhance sys-
tem performance by avoiding the need to duplicate physical memory pages that hold
identical data. In current Linux systems, KSM is a kernel thread that periodically
scans the entire memory to identify identical memory pages and make them to be
candidates for merging. At the end of KSM scan, a single physical copy of the page
is retained and all of the duplicated pages are updated to point to this single physical
page in the application’s page table. The physical pages belonging to the duplicate
pages are then released back to the system that can be used later for storing more
physical pages with distinct memory contents. The single physical copy (at the end
of the merging process) is marked as copy on write and resides in read-only sharing
mode. In other words, write operations to these read-only shared pages are not pos-
sible since the kernel will separate them into two separate pages if one of the sharers
happen to modify the contents of the page. KSM has been widely adopted in most
modern server-class systems to avoid unwanted memory duplication and improve the
page miss rate by reducing the memory footprint in virtualized environments [18,19].

In covert channels, the trojan and spy may exploit this feature to force create
shared memory without explicitly having to share any data between them. In partic-
ular, the trojan and spy can generate physical pages with identical bit patterns known
to both of them ahead of time. KSM scans the memory spaces belonging to pro-
cesses in the order of their starting times (earliest first). To avoid noise from external
processes that may accidentally have the exact same bit patterns, the trojan and spy
can go through a trial communication phase where they perform a series of cache
flushes and reloads on this page to make sure that no other process is currently shar-
ing this page as a result of KSM scan. If an external sharing of this page is detected
(through timing measurements), the trojan and spy may repeat creating shared mem-
ory through KSM using another set of identical bit patterns known to both of them.

6 Fan Yao et al.

4 Threat Model

We assume that the trojan and spy share (one or more) multi-core processors. The
trojan has access to secretive information and it desires to transmit the secrets to the
spy. The spy process who does not have accesses to the secrets, will then cause dam-
ages to users by exfiltrating the information to outside world (e.g., identify theft). The
trojan can be an application that is downloaded from untrusted sources. Note that the
trojan is unable to send secretive data to the outside by itself since it either lacks suf-
ficient permissions to do so or its transmission activity can possibly be identified and
suspended by the system confinement mechanism at the software level. Meanwhile,
due to existing isolation techniques such as sandboxing, the trojan and spy processes
are explicitly prohibited from any form of direct communication. Such settings exist
currently in a variety of real-world scenarios, especially in multi-tenant cloud envi-
ronment where virtual machines from multiple users can be co-scheduled on the same
physical machine to increase resource utilization.

The trojan and spy are able to create shared DRAM pages by either explicitly
mounting shared libraries or by leveraging KSM to silently merge two identical
pages. We note that the latter method is more stealthy since it does not explicitly
request memory sharing between the trojan and spy. Also, KSM is widely used in
various server systems to improve memory usage efficiency, which is less likely to be
disabled due to its high performance advantages. We further assume that the trojan is
capable of spawning multiple threads that would run on multiple cores either within
the same socket or across multiple sockets. Through this capability, the trojan can
intentionally modulate the cache access timing through placing the shared data block
in different coherence states and possibly in various levels of the memory hierarchy
(local processor’s caches, another processor’s caches in a multi-processor). The pat-
tern of timing differences between cache block accesses in different coherence states
and locations enables a spy to infer trojan’s transmission. To synchronize, the trojan
and spy can initiate a pre-transmission process where the trojan and spy checks if a
pre-determined series of activities (such as flushes) are observed on the shared cache
blocks [10].

5 Coherence States and Latency

In order to understand the variations in cache access latency and the effects of cache
coherence states, we perform experiments that load (read) data in specific cache co-
herence states (S or E) from various cache locations (local and remote caches with
respect to the requesting core). We construct a micro-benchmark with process threads
that could be pinned to either one or multiple cores. Each requestor thread periodi-
cally issues load operations to local and/or remote cache blocks that are in one of the
two coherence states: S or E1. In this study, we use a dual-socket Intel Xeon X5650
server, each with 6 cores running at 2.67 GHz frequency. Each processor has a 32 KB

1 Note that other coherence states such as M may also exhibit different latency profiles. However,
change to M state will require writes to the cache blocks. Since writes to shared memory will annul silent
page sharing (created using KSM), we do not consider these other states.

Covert Timing Channels exploiting Cache Coherence Hardware: Characterization and Defense 7

Cache/Coherence State Min Latency Average Latency Max Latency
Local Exclusive 116 124 128

Local Shared 92 96 101
Remote Exclusive 244 248 253

Remote Shared 220 228 236

Table 1: Load operation latency (CPU Cycles) in various (location, coherence state)
combinations. Location is with respect to Spy.

private L1, 256 KB private L2 caches, 12 MB shared L3 cache within each socket.
All of the caches are kept coherent using hardware cache coherence. Our experiments
were conducted on a typical desktop server system with a representative mix of work-
loads such as browser, dropbox, code editors running alongside our micro-benchmark
as we made our measurements.

For our measurements, we generate 1,000 memory read (load) operations for each
combination pair of (location, coherence state), and time these loads using rdtsc in-
struction. We note that coherence transactions are generated in each case. For exam-
ple, in Local Shared configuration, the requested data is a local L2 cache miss and is
fetched from L3 cache in the same (local) processor socket where the data is present
in the S state. In Local Exclusive, the requested data is local cache miss and is fetched
from another core’s L1 or L2 cache belonging to the local socket where the data is
present in the E state. Similarly, in Remote Shared, the requested data is present in
the S state in the L3 cache of a different (remote) processor socket. In Remote Exclu-
sive, the requested data is present in the E state in a L2 cache belonging to a remote
socket. Table 1 shows the minimum, average and maximum access latencies for cache
blocks in the various (location, coherence state) combination pairs. Our results show
that these combination pairs show distinct bands of cache access latency distributions.
We observe that accessing a cache block in the E state incurs longer latency than ac-
cessing a data block in S state (e.g., 124 cycles for accessing local E state block and
98 cycles for local S state data block) triggered by cache lookup in different coher-
ence states (described in Section 6). Similar latency difference could also be observed
for accessing blocks in remote caches as well. Our experiments demonstrate that the
latency values are contained within a relatively narrow range for each configuration,
and the ranges corresponding to different configurations are sufficiently distinct from
each other. This clearly demonstrates that the malicious attackers may exploit such
latency differences between these combination pairs to achieve their timing channel
implementation.

6 Exploiting Cache Coherence

Having seen the differences in cache access latency profiles for different coherence
states, we investigate practical ways that the trojan and spy processes can implement
timing channels.

8 Fan Yao et al.

Local Cache

Shared Cache

On-chip Interconnect

Local CacheLocal Cache

Core
 3

Core
 1

Core
 4

Processor Socket

Exclusive cache block (maybe stale)

Local Cache

Core
 2

Cache

0 0 1 0

Core valid bitsre valid bits

(a) Cache block in E state

Local Cache

Shared Cache

On-chip Interconnect

Local CacheLocal Cache

Core
 3

Core
 1

Cache

Core
 4

Processor Socket

Shared cache block (clean)

Local Cache

Core
 2

Core valid bits

0 0 1 1

re valid bits

(b) Cache block in S state

Fig. 2: Trojan (on the right side) explicitly controlling Cache Coherence States as E
or S by running on one or two cores within the multi-core processor. The dotted lines
show the service path of the spy (on the left side) for a data block residing in E and S
states respectively.

6.1 Intra-socket Cache Coherence

Figure 2 shows an illustration of the attack using intra-socket coherence. Here we
assume a multi-core processor where each core has a private write-back cache kept
coherent using a variant of MESI protocol, and all of the cores have access to a shared
last level cache (LLC).

For a read miss in the private cache, the request is first sent to the shared LLC.
The LLC maintains the core valid bits vector for each cache block indicating the
private caches that have a copy of the cache block [20]. An 1 bit value shows that the
corresponding core stores that block currently, and a 0 shows that the corresponding
core does not have it.

When the count of 1’s in the vector is more than one, it shows that two or more
sharers exist for this block. That is, the cache block is in the S state. Since the LLC has
a clean data copy, it can directly service the cache miss request from the requesting
core.

Covert Timing Channels exploiting Cache Coherence Hardware: Characterization and Defense 9

When the count of 1’s in the core valid bits vector is equal to one, it shows that
only one cache currently has the block. This means that the cache may have the block
in the E or M coherence states. Due to the fact that most existing cache coherence
protocols allow silent upgrade of cache line from E state to M state, the LLC copy of
the block is possibly stale. Therefore, when a subsequent request for the same cache
block arrives, to avoid sending possibly stale data back to the requestor, the LLC
forwards the cache request to the owner. The owner cache responds to the requesting
core with the latest copy of the cache block, and downgrades itself to the S state. The
owner also performs a write-back to the LLC to leave a clean copy for future read
misses on this block. At the end of this transaction, note that the core valid bits vector
is updated to reflect the new sharer (the requesting core), and the count of 1’s (sharer
caches) increases to two.

When the count of 1’s in the core valid bits vector is equal to zero, it denotes
that none of the caches currently have the block. If the LLC has a clean copy of the
data (i.e., cache valid is 1), the LLC can service the miss request. Otherwise, the
miss request is forwarded to the lower level memory, e.g., DRAM. This case does not
generate any coherence activity.

In order to communicate covertly, the trojan has to place a cache block, B (that
can be read by the spy as well) in either of S or E coherence states, and let the spy
observe B’s access latency. The trojan spawns two reader threads on two different
cores, and lets both of these trojan threads access B such that the LLC will record at
least two 1’s in its core valid bits vector. When the spy generates a read miss on B,
its miss is serviced by the LLC since a clean copy will be available there.

On a similar note, to intentionally place B in E coherence state, B will be flushed
from all coherent caches. The trojan spawns one reader thread, that will then place
a read miss for B. The LLC’s core valid bits vector will record that only one sharer
exists for B. When the spy generates a read miss on B, its miss will routed to the
trojan’s local (private) cache. The spy’s read miss on a cache block in E state creates
a different latency profile compared to a read miss on B that is in S state.

6.2 Inter-socket Cache Coherence

Inter-socket cache coherence has been implemented through high speed point-to-
point links, e.g., AMD’s HyperTransport bus [16], and the Intel’s Quick Path In-
terconnect [15]. Such high speed links provide for efficient data sharing between the
sockets including the ability to maintain coherence between the caches.

The inter-socket coherence works similar to the intra-socket cache coherence (see
Section 6.1) with slight modifications to how the data miss requests are handled.
When a core requesting a cache block B generates a read miss and the corresponding
core’s LLC does not have B, the read miss request is sent to other remote sockets first
instead of DRAM.

If B is in S state in a remote socket, then a clean copy of B is present in the
corresponding remote LLC. The data reply is sent back from this remote LLC to
the requesting core’s LLC that is then propagated up the memory hierarchy to the
requestor core. If B is in E state in a remote socket, then the corresponding remote

10 Fan Yao et al.

Local Cache

On-chip Interconnect

LLLocal CacheLocal CacheLocal Cachee

Core
 1

rco

 Exclusive cache block 0 0 1 1

Local Cache

On-chip Interconnect

LLocal CacheLocal CacheL Cachee

Core
 3

Core
 1

rco

Core
 4

0 0 0 0 Invalidated Cache Line

Processor SocketProcessor Socket

Core
 3

Core
 4

! !Local CLocal C

 In

Local C

nect

LL

00

(a) Cache block in E state

Local Cache

On-chip Interconnect

LLLocal CacheLocal CacheLocal Cachee

Core
 1

rco

 Shared cache block 0 0 1 1

Local Cache

On-chip Interconnect

LLocal CacheLocal CacheL Cachee

Core
 1

rco

0 0 0 0 Invalidated Cache Line

Local CLocal C

 In 00 00 000 0nvalidated Cache Line In

Processor SocketProcessor Socket

! !

Core
 3

Core
 4

Core
 3

Core
 4

(b) Cache block in S state

Fig. 3: Trojan (on the right side) explicitly controlling Cache Coherence States as E
or S by running on one or two cores within the multi-socket, multi-core processor.
The dotted lines show the service path of the spy (on the left side) for a data block
residing in E and S states respectively.

LLC routes the data miss request up to the remote core, which then responds with the
data reply. The remote core then downgrades its cache copy to S state.

Similar to covert timing channels exploiting on-chip coherence states, the trojan-
spy pair can exploit block B’s presence in E or S states in remote caches and the
resulting access timing differences. Figure 3 shows an illustration of this scenario.
To explicitly place a block B in S state on a remote cache, all existing copies of B
must be flushed from all of the caches (through clflush or an equivalent instruction, or
through eviction of all the ways in the set [7]). The trojan spawns two threads of itself
on one of the sockets participating in hardware cache coherence, and places a block
in S state similar to how we described for the intra-socket scenario (see Section 6.1).
On a different socket, the spy spawns its thread, and generates a read miss to B to
observe its access latency. To explicitly place B in E state on a remote cache, all
existing copies of B are flushed. The trojan spawns its thread on one of the coherent
sockets, and places the block in E state similar to how we described for the intra-
socket scenario (see Section 6.1). On a different socket, the spy spawns its thread,
and generates a read miss to B in order to observe its latency.

Covert Timing Channels exploiting Cache Coherence Hardware: Characterization and Defense 11

Algorithm 1: Trojan Communication Protocol
Input: read-only cache block: B, Txbit[], CSc, CSb;

1 //CSc is the coherence state used in bit communication;
2 //CSb is the coherence state used for bit boundary;
3 spawn trojan threads;
4 synchronize with spy using shared cache block, B;
5 //B could be created implicitly via KSM or through explicitly
6 //shared data or library code;
7 //Spy-trojan communication protocol defines three counters:
8 //C1, C0 and Cb for communicating 1, 0 and boundary respectively;
9 i = 0;

10 while Txbit[i] != -1 do
11 Repeat Cb times: put B in CSb state;
12 if Txbit[i] == 1 then
13 Repeat C1 times: put B in CSc state;

14 else
15 Repeat C0 times: put B in CSc state;

16 i++;

7 Construction of Timing Channels exploiting Coherence States

We show a template for constructing trojan and spy that can be eventually integrated
into a real-world adversaries to exfiltrate sensitive secrets. For example, let us say
that a spy has the capability to observe any communication transmitted over a pub-
lic network between two processes with access to sensitive information. Even if the
the spy cannot communicate directly with either of these entities, nor may it be able
to decipher the communicated bits especially when the communication is encrypted.
However, a malicious insider trojan (that has access to secrets) could covertly com-
municate with the spy. Specifically, the trojan could transmit the secrets (such as cryp-
tographic keys) stealthily to the spy by modulating accesses to the coherent caches
on shared physical memory blocks.

7.1 Trojan and Spy

The trojan and spy pick a (location, coherence state) combination pair to modulate
timing and communicate bits (1 or 0), and another distinct (location, coherence state)
combination pair to separate individual bit transmission (i.e., to say that a bit trans-
mission has finished and another will start after the boundary). These two combina-
tion pairs are denoted as CSc and CSb respectively, where c stands for communica-
tion and b denotes boundary. Correspondingly, we assume that the bands of cache
access latency values Tc and Tb are already known to the trojan and spy through self-
measurements on cache hardware (similar to our experimental results in Figure 1).
Within the bit transmission period, the trojan and spy will also know how many con-
secutive times a block B will be seen in CSc state to distinguish between the trans-
mission of bits ‘1’ and ‘0’, denoted by C1 and C0 respectively. We note that having

12 Fan Yao et al.

Algorithm 2: Spy Communication Protocol
Input: read-only cache block: B, Tvalues[]=-1;

1 //Two access latency bands, Tc and Tb;
2 //Ts is the sampling interval;
3 //wait for the trojan to begin transmission;
4 synchronize with trojan using shared cache block, B;
5 //B could be created implicitly via KSM or through
6 //explicitly shared data or library code;
7 while true do
8 flush B from cache;
9 //wait for Ts sec until trojan has an opportunity to reload;

10 load B and time the load (T);
11 if T is within Tb then
12 //transmission has started;
13 break;

14 //reception period
15 i = 0;
16 while true do
17 flush B from cache;
18 //wait for Ts for trojan to reload;
19 load B and time the load (T);
20 record T into Tvalues[i++];
21 if T is outside of Tc and Tb for N consecutive times then
22 //N is defined by the trojan and spy;
23 break;

24 //translation period (interpret 1’s and 0’s)
25 read Tvalues[] vector from index 0 to N;
26 i = 0; j = 0; count[] = 0;
27 while Tvalues[i]! = -1 do
28 Repeat until Tvalues[i] is within Tb band: i++;
29 bitc = 0;
30 Repeat until Tvalues[i] is within Tc band: bitc++; i++;
31 count[j++] = bitc;

32 //Thold, Threshold separates C1 and C0 and helps decipher bits;
33 j = 0;
34 while count[j] != 0 do
35 if count[j++] > Thold then
36 //Infer that the transmitted bit is 1;

37 else
38 //Infer that the transmitted bit is 0;

distinct communication and boundary values remove the need for synchronization on
each bit transmission.

Algorithm 1 shows the trojan’s implementation. The trojan is assumed to have
multi-threads that can explicitly control the placement of blocks in S or E state either
locally or remotely. For every ‘1’ bit to be transmitted, the trojan puts the cache block
in CSc coherence state for C1 times, and for every ‘0’ bit transmission, the trojan
places the cache block in CSc for C0 times. Between every bit transmission, the trojan
places the cache block in CSb for Cb times to denote bit boundaries.

Covert Timing Channels exploiting Cache Coherence Hardware: Characterization and Defense 13

Processor 1 Processor 2

Flush

Timed read miss

Flush

Timed read miss

Flush

Timed read miss

bit ‘1’

Flush

Timed read miss

Flushbit boundary

Timed read miss

Timed read miss

Flush

Flush

Timed read miss

Flush

Timed read miss

bit ‘0’

bit boundary

Issue loads to B

repeatedly to maintain

E State

Issue loads to B

repeatedly to maintain

S State

Issue loads to B

repeatedly to maintain

S State

Processor 1 Processor 2

Flush

Timed read miss

Flush

Timed read miss

Flush

Timed read miss

T

T

bit ‘1’

Flush

Timed read misss

Flushbit boundary

Timed read miss

Timed read miss

Flush

Flushh

Timed read misss

Flush

Timed read miss

bit ‘0’

bit boundary

Issue loads to B

repeatedly to maintain

E State

Issue loads to B

repeatedly to maintain

S State

Issue loads to B

repeatedly to maintain

S State

bit b

timetime

Fig. 4: Illustrative example of ‘1’ and ‘0’ transmission protocol between trojan(s) and
spy.

Cache Location and Coherence State Notation Number of
for bit communication and boundary Trojan threads
(Local Exclusive, Local Shared) LExclc−LSharedb 2 (local)
(Remote Exclusive, Remote Shared) RExclc−RSharedb 2 (remote)
(Remote Exclusive, Local Exclusive) RExclc−LExclb 2 (1 local, 1 remote)
(Remote Exclusive, Local Shared) RExclc−LSharedb 3 (2 local, 1 remote)
(Remote Shared, Local Exclusive) RSharedc−LExclb 3 (1 local, 2 remote)
(Remote Shared, Local Shared) RSharedc−LSharedb 4 (2 local, 2 remote)

Table 2: Trojan implementation along with states used for bit communication and
boundary. ‘Remote’ and ‘Local’ are with respect to the spy’s location.

Algorithm 2 shows spy’s implementation. The spy is a single-threaded observer
that times the cache block accesses using repeated patterns of flushes and reloads on
them. We see that the spy has three phases: 1. Polling for start of transmission by
repeated flush and reload of a shared block B. 2. Reception of transmitted bits by
timing each access to B, and recording latencies into Tvalues[] vector. 3. Translation
of Tvalues[] by accumulating the consecutive T values belonging to the same band,
and distinguishing them into bits ‘1’ and ‘0’, and ‘bit boundaries’.

Figure 4 gives a diagrammatic illustration of an example communication proto-
col between the trojan and spy. In this example, the trojan is located in a processor
different from that of the spy (Note that the trojan and spy may potentially be in the

14 Fan Yao et al.

Fig. 5: Bit pattern (100 bits) covertly transmitted by the trojan.

same processor as well). The trojan modulates the cache access timing for the spy
by placing B in E state when it wants to transmit a bit, and through placing B in S
state to indicate boundaries between bits. The trojan spawns 2 threads on the remote
socket, and issues load requests to B from just one thread to explicitly place it in E
state and issues load requests to B from both threads to explicitly place it in S state. In
particular, between cache block flushes initiated by the spy, the trojan places B in E
state for 3 consecutive times to signal a ‘1’ bit, and places B in E state for just 1 time
to signal a ‘0’ bit. For bit boundaries, the trojan places B in S state for 2 consecutive
times between flushes initiated by the spy.

Table 2 shows 6 cases where the trojan and spy use two distinct (location, coher-
ence state) combination pairs for bit transmission and bit boundary identification. The
location identifiers ‘local’ and ‘remote’ are with respect to the spy, since it measures
the load latencies and deciphers the bit values/boundaries on its end.

8 Timing Channel Demonstration

We conduct experiments on a Intel Xeon X5650 2-socket server with a total of 12
cores, the configuration described in Section 5. We pin the trojan and spy threads
onto specific cores using the sched setaffinity API. All of the reported load latencies
were obtained by inserting the rdtsc instruction. We implement the 6 attack scenarios
listed in Table 2 and study their bandwidths.

8.1 Trojan-Spy Covert Communication

We show the bit pattern that the trojan intends to covertly communicate with the spy
in Figure 5. Figure 6 shows the profile of load latencies as observed by the spy on
its side. For each combination pair of (location, coherence state), we show two sets
of results: the top portion shows the load latencies observed throughout the entire
reception period, and bottom portion shows a magnified view illustrating the com-
munication of the first five bits in the top figure for clarity. In this magnified view,
we observe that for each ‘1’ bit transmitted, the spy observes the load latency in the
Tc band, corresponding to CSc, for four or five consecutive times (each dot in the fig-
ure denotes a ‘timed’ load operation); for each ‘0’ bit transmitted, the spy observes

Covert Timing Channels exploiting Cache Coherence Hardware: Characterization and Defense 15

(a) LExclc-LSharedb

(b) RExclc-RSharedb

(c) RExclc-LExclb

(d) RExclc-LSharedb

(e) RSharedc-LExclb

(f) RSharedc-LSharedb

Fig. 6: Bit Reception by the Spy through measuring load latency (in CPU cycles).
The top portion in each subfigure shows the entire reception period, and the bottom
portion shows a magnified view for the reception of first five bits.

load latency in the Tc band for one or two consecutive times (See discussion in Sec-
tion 7.1). These are shown as red dots in the bottom portion of each figure. Similarly,
the boundary between bit values are deciphered by the spy when it observes load la-
tency in the Tb band, corresponding to CSb, for four to five times consecutively. Our
experiments show that the spy is able to correctly decipher the transmitted bits for all
6 attack scenarios with 100% accuracy.

8.2 Transmission Bandwidth vs. Raw Bit Accuracy

To study the raw bit accuracy with increasing transmission bit rates between the tro-
jan and spy, we perform experiments by tuning two knobs: 1. Reduce the number
of consecutive caching operations for shared blocks that communicate bit values and

16 Fan Yao et al.

90%

92%

94%

96%

98%

100%

100 200 300 400 500 600 700 800 900 1000

R
a
w

 B
it

 A
cc

u
ra

cy

Bit Rate (Kbps)

(a) LExclc-LSharedb

90%

92%

94%

96%

98%

100%

100 200 300 400 500 600 700 800 900 1000

R
a
w

 B
it

 A
cc

u
ra

cy

Bit Rate (Kbps)

(b) RExclc-RSharedb

90%

92%

94%

96%

98%

100%

100 200 300 400 500 600 700 800 900 1000

R
a
w

 B
it

 A
cc

u
ra

cy

Bit Rate (Kbps)

(c) RExclc-LExclb

90%

92%

94%

96%

98%

100%

100 200 300 400 500 600 700 800 900 1000

 R
a
w

 B
it

 A
cc

u
ra

cy

Bit Rate (Kbps)

(d) RExclc-LSharedb

90%

92%

94%

96%

98%

100%

100 200 300 400 500 600 700 800 900 1000

R
a
w

 B
it

 A
cc

u
ra

cy

Bit Rate (Kbps)

(e) RSharedc-LExclb

90%

92%

94%

96%

98%

100%

100 200 300 400 500 600 700 800 900 1000

R
a
w

 B
it

 A
cc

u
ra

cy

Bit Rate (Kbps)

(f) RSharedc-LSharedb

Fig. 7: Raw bit accuracy as captured by the spy with increase in transmission rates.

boundaries, i.e., values of C1, C0 and Cb. 2. Reduce the interval between shared cache
block loads by the spy, i.e., the value of Ts. Algorithms 1 and 2 for further details
on these parameters. Figure 7 shows our results. In this study, we note that there are
3 possibilities for raw bit error on the reception side: 1. certain bits may be lost, 2.
extra bits may be added due to duplication (very rare and we did not observe any such
occurrence in our experiments), and 3. certain bits may be flipped (1 mis-interpreted
as 0, or vice versa). Accuracy is defined as the ratio of number of raw bits correctly
received by the spy to total number of raw bits transmitted by the trojan. As we in-
crease the bit rate to beyond 500 Kbps, we see that most cases experience a rapid
drop in raw bit accuracy. However, there are two exceptions: 1. RExclc−LExclb be-

Covert Timing Channels exploiting Cache Coherence Hardware: Characterization and Defense 17

gins with a high initial bit rate of over 400 Kbps and declines to below 90% accuracy
only beyond 800 Kbps. 2. RExclc−LSharedb shows high immunity and a good raw
bit accuracy of 96% even at 800 Kbps. We note that the effective ‘information bit’
accuracy rates can be kept potentially high by leveraging higher raw bit transmis-
sion rates especially when the underlying transmission protocol incorporates error
correcting codes. Methods to recover information bits due to omission and bit flips is
a well studied topic [21], and is outside the scope of our work.

9 Vulnerability Analysis on Variants of Coherence Protocols

Coherence Protocol and Exclusive Cache Block Shared Cache Block
Cache Inclusiveness
Snoopy, Inclusive Requestor→Owner cache Requestor→LLC

→ Requestor →Requestor
Snoopy, Non-inclusive Requester→Owner cache Requestor→MemCtrl

→Requestor →Requestor
Directory, Inclusive Requestor→Directory Requestor→LLC

→Owner cache→Requestor →Requestor
Directory, Non-inclusive Requestor→Directory Requestor→MemCtrl

→Owner cache→Requestor →Requestor

Table 3: Sequence of coherence controllers that interact in order to service the cache
blocks in E and S state under different classes of cache coherence protocols. ‘LLC’
and ‘MemCtrl’ denote Last Level Cache and Memory Controller respectively.

The processors used in our evaluation deploy a variant of directory-based co-
herence protocol (with LLC’s core-valid-bits) that directs the coherence messages to
specific cores in order to service these cache misses. In this section, we systematically
study the coherence state vulnerabilities in different variants of coherence protocols.

Two factors play a key role in determining the cache access latency, namely the
family of coherence protocols and the inclusiveness property of caches. Different
coherence protocol implementations have varying set of transactions when accessing
a cache block in a specific coherence state. When a requestor cache controller issues a
cache miss request for a block, coherence messages are sent over the interconnection
fabric. The owner (e.g., cache controllers, coherence directory or memory controller),
that owns the requested block, will respond with the data reply. Generally, for an E
state cache block, the cache controller that currently holds the private copy of the
date is designated as the owner, and responds with the data reply. Differently, the
cache directory (usually, LLC) or the memory controller typically own cache blocks
in S state. Table 3 illustrates the sequence of coherence controllers associated with

18 Fan Yao et al.

servicing data miss requests on E- and S-state cache blocks in the four variants of
cache coherence protocols2.

For snoopy protocols run on inclusive caches, read operations on E-state blocks
will involve snooping into the private owner cache, while reads on S-state blocks
are satisfied by the lower level LLC that has a clean copy of the cache block and
acts as the owner [17]. Although both coherence transactions need two hops, they
involve different paths. As a result, the cache access latencies for S and E states can
be distinguished by adversaries that are monitoring for such information. Similarly,
for directory-based protocols run on inclusive caches, a read on E state cache blocks
requires a coherence request first sent to the directory module (that is typically main-
tained in the LLC on many modern processors). The directory then forwards the
request to the owner cache, which will subsequently respond with the data. On the
other hand, reads on S state cache blocks are replied by the LLC. These two coher-
ence transactions differ in the hops traversed, which results in the distinct latency
bands as demonstrated in Table 1.

Additionally, the cache inclusion policy influences read operations to S-state cache
blocks. Specifically, for inclusive caches, the LLC always owns the S-state blocks and
will respond to cache controller directly with the data. In non-inclusive caches, the
memory controller is set to own the cache block and accordingly requests to S-state
blocks will be serviced by the main memory since the LLC may not potentially have
a copy. Such design decisions are made to avoid multiple data transfers from the
various sharers.

In summary, we note that all four variants of cache coherence protocols can be
vulnerable to exploits due to differences in their timing profile (as discussed in Sec-
tion 6).

10 Securing Cache Coherence Protocols

As we know, E-state aims to reduce the coherence transactions and the corresponding
latency for writes that immediately follow the read operation to that memory block.
Most existing cache coherence protocols allow cache blocks to transition from E to M
state without initiating coherence transactions (silent upgrade). Due to this optimiza-
tion, the cache directory and memory controller will not own these E-state blocks and
assume that their data copies are stale.

As discussed in Section 9, across all the four variants of cache coherence imple-
mentations, private caches claim ownership of E-state blocks. These design consid-
erations result in latency differences corresponding to the read-only coherence states,
namely E and S, and potentially enable construction of timing channels using read-
only states.

2 When the LLC holds a copy of the cache block, the coherence transactions on non-inclusive caches
are similar to that of exclusive caches. Therefore, the coherence transactions we listed for non-inclusive
caches in Table 3 may be applied to a strictly exclusive cache hierarchy as well.

Covert Timing Channels exploiting Cache Coherence Hardware: Characterization and Defense 19

10.1 Modifying E→M Transition

To remove the read latency differences between E and S states, a potential solution is
to service the read requests to cache blocks in read-only states (E and S) uniformly
by the directory (or memory controller). This means that all E→M upgrade requests
from the cores should be forwarded onto the directory or memory controller every
time. This makes the LLC to be aware of the precise coherence state for the corre-
sponding data block (i.e., helps distinguish E vs. M). The LLC can then store the
correct coherence state for that block. This enables the LLC to have ownership of
E-state cache blocks, since they are guaranteed to be clean until being notified by the
owner core. Also, the read requests to both E- and S- state blocks can now be serviced
by the LLC, and the read timing difference between these two states for an external
requestor will be zero.

Coherent cache block

in E state

CPU store

Coherent cache block

changes to EtM

Send upgrade req.

to LLC

Is LLC

block in E

state

LLC block upgrades

to M

LLC sends ACK

to cache controller

Coherent cache block

changes to M

Coherent cache tries

store again

YesNo

LLC sends

NACK

Fig. 8: Handling E→M transition in directory-based protocols. Coherent Cache de-
notes private caches kept coherent using the coherence protocol hardware.

Modifications needed in Directory-based protocols. In order to make LLCs own E-
and S- state cache blocks, directory-based protocols need an additional transient co-
herence state. Figure 8 shows our solution approach. Upon receiving a write com-
mand on E-state blocks in the private coherent caches, the corresponding coherence
state transitions to EtM . The write upgrade request is then forwarded to the LLC that
maintains the directory information corresponding to the cache block. If the current

20 Fan Yao et al.

Coherence State Min Latency Average Latency Max Latency
Exclusive & Shared 119 119.4 120

Table 4: Load operation latency (Cycles) for S- and E- state blocks within the socket
using the modified directory-based protocol.

coherence state in the LLC is also E, then the LLC modifies its coherence state to M,
approves the E→M, and forwards the acknowledgment to the requestor core. Other-
wise, the write request is denied, and the requestor core re-initiates the write operation
all over again by sending invalidation requests to other cores.

Modifications needed in Snoopy-based protocols. In snoopy protocols, write upgrade
requests are typically sent over the system bus when transitioning from S to E state.
Since memory controller monitors all of coherence traffic on the system bus, we
note that the following modifications can be made to avoid read latency differences
between E and S-state blocks. 1. All read requests to E- and S-state blocks can be
replied directly by the memory controller. 2. The upgrade miss requests can be issued
for E-state blocks for E→M transitions, instead of S-state blocks for S→E transitions.

10.2 Latency Profiles with the Modified Coherence Protocol

To evaluate the effectiveness of our proposed mechanism, we model the modified
E→M coherence transition and measure the latency profiles using Gem5, a cycle-
accurate full system simulator [22]. We configure Gem5 with eight x86 cores, and
use a minimal Linux distribution with kernel version 2.6.32. Each core has a 32 KB
private L1 and all cores share a 2MB L2 cache. The microbenchmark (described in
Section 5) is used to profile the cache access latencies. Figure 9 shows the CDFs
of cache access latencies for the E- and S- state cache blocks under the original co-
herence protocol and the modified coherence protocol with changes to E-state cache
blocks. We can see that under the original MESI-based protocol, the latency profiles
for E and S cache blocks accesses are easily distinguishable as the distributions form
two narrow bands that do not overlap (Figure 9a). Figure 9b demonstrates the same
latency profiles in the modified protocol that aims to close the latency gap between
the E and S cache block accesses. In fact, the two distribution are exactly the same
as the E and S cache block accesses now involve the same coherent transactions. Ta-
ble 4 lists the latency statistics including minimum, average and maximum latencies
for accessing E- and S-state blocks. Obviously, an attacker would not be able to build
a covert channel by manipulating the two latency values.

10.3 Implications on Application Performance

The modifications to the cache coherence protocol require additional messages sent
to the directory or memory to upgrade cache blocks from E to M as writes to E-
state block will be blocked before the upgrade transaction is completed. This may

Covert Timing Channels exploiting Cache Coherence Hardware: Characterization and Defense 21

(a) Original protocol

(b) Modified protocol

Fig. 9: Distributions of latencies for accessing E- and S- state cache blocks under orig-
inal MESI protocol and the modified protocol with changes to E-state cache blocks

potentially affect the application performance. To evaluate the performance overhead
involved in the modified coherence protocol, we run several multi-threaded PAR-
SEC benchmarks [23] that have various levels of cache coherence activities. Each
benchmark is configured to run with four threads. Figure 10 shows the performance
overheads in terms of execution time for each benchmark’s region of interest (ROI).
Notably, we observe less than 0.5% overhead for these applications. The performance
impact is negligible for the following two reasons: First, the number of stores to E-
state cache blocks is only a relatively small portion of all store instructions; Second,
the additional transaction for the write to E-state block is lightweight as it only in-
volves notifications to the last level cache, unlike writes to S-state blocks that typi-
cally generate getM requests as well as invalidation messages [17]. Specifically, we
see that blackscholes has very few stores to E-state blocks and our mechanism only
incurs less than 0.01% overhead. On the other hand, fluidanimate performs a consid-

22 Fan Yao et al.

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

blackscholes bodytrack fluidanimate freqmine streamcluster x264

P
e
r
fo

r
m

a
n

c
e
 O

v
e
r
h

e
a
d

Fig. 10: Performance overhead for the modified cache coherence protocol in PARSEC
benchmarks

erable number of writes to E-state blocks (that introduce longer latencies) and as well
as many reads to remote E-state blocks (that have reduced delays), and the overall
influence of the modified coherence protocol is less than 0.4%.

Moreover, our secure cache coherence is designed to protect the systems where
untrusted processes are running on the same machine and are sharing copy-on-write
pages (e.g., through KSM). We note that under this context, the latency of E-block
upgrade is essentially hidden by the latency of copying the physical page during the
first write operation to copy-on-write page. To avoid performance slowdown in regu-
lar applications, a simple switch between the performance version (unmodified pro-
tocol) and secure version (our modified protocol) can be designed in hardware such
that we can achieve trade off between performance and security. When the switch is
enabled, E→M transitions will undergo additional steps before actual transition that
are described in our Section 10.1.

11 Related Work

Prior work have demonstrated timing channels that exploit cache hardware [8,7,24,6,
25,26], functional units [27,28], processor-memory bus [29], frequency settings [30]
and branch predictors [31,32]. Jiang et al. [33] showed how to construct a side chan-
nel that recovers AES encryption keys on GPUs. Most of these prior works rely on
modulating the access timing behavior of a specific hardware resource that may po-
tentially be addressed through carefully monitoring that unit, and if it is feasible,
by isolating or disabling them. Differently, our work characterizes and studies the
defense against an attack that leverages the hardware cache coherence protocol oper-
ating on multiple caches and coherence states.

Yao et al. [26] showed how to construct covert timing channels by leveraging non-
uniform memory access latencies in multiple sockets. In contrast to this attack, the
proposed covert timing channel exploits combinations of coherence states and cache
location in order to construct timing channels. Also, almost all of the prior adversary
models [9,26] rely on user-initiated shared cache-blocks (via shared system libraries).
We show a more sophisticated adversary model where shared physical memory could
also be created using memory deduplication mechanisms such as KSM.

Covert Timing Channels exploiting Cache Coherence Hardware: Characterization and Defense 23

Many prior works have studied the detection and defense techniques for covert/side
channel attacks. Demme et al. [34] introduced a metric to quantify the difficulty
level to exploit a system for side channels. Wang et al. [12] proposed secure hard-
ware cache designs with partition-locking and random permutation. Venkataramani
et al. [2,35,36] have proposed techniques that detect contention-based timing chan-
nels in functional units and caches. Hunger et al. [37] also studied contention-based
cache timing channels and proposed anomaly-based detection. Yan et al. [38] build
a record and replay framework that detects covert timing channels by analyzing the
difference of caches miss patterns observed from the record and replay runs. In terms
of defense, Liu et al. [13] studied mechanisms that use cache allocation technology
(CAT) to create secure cache partitioning to prevent information leakage from vic-
tim processes. Prefetch-guard [39] leverages hardware prefetchers to obfuscate the
latency measurements for the trojan process in covert timing channels. Several other
works have proposed mechanisms that offer memory safety protection using hard-
ware support for memory access monitoring and tainting [40,41]. These mechanisms
can be effectively leveraged to protect systems from covert storage channels. To de-
fend against memory-based timing channels, Ferraiuolo et al. [42] designed a secure
memory scheduling algorithm. Camouflage [43] reshapes the timing of memory re-
quests and responses to a deterministic distribution that eliminate memory access
pattern snooping by malicious users. Recent work [44] leverages computation logic
in emerging memory technology to cryptographically obfuscate memory addresses
and memory bus timing to defend against memory bus attacks. We note that these
prior defense mechanisms are not designed to protect system-wide coherence proto-
cols that span multiple caches and take advantage of their coherence mechanisms.

12 Conclusions

In this article, we presented an important vulnerability exposed by a frequently-used
performance enhancing feature in many modern multi-core and multi-socket systems,
namely cache coherence protocols. We showed how adversaries could exploit cache
coherence states and construct covert timing channels in order to illegally exfiltrate
sensitive secrets to untrusted parties. We demonstrated six practical cases for covert
timing channels on real-world commercial processors. In contrast to prior works,
we assume a broader adversary model where the trojan and spy can either exploit
explicitly shared read-only physical pages, or use memory deduplication feature to
implicitly force create shared physical pages. We demonstrate how adversaries can
manipulate combinations of coherence states and data placement in different caches
to construct timing channels. Moreover, we performed vulnerabilities analysis on
multiple variants of coherence protocols and showed that all the major variants are
subject to the attacks under study. More importantly, we demonstrated our defense
mechanism with slight modifications to read operations on exclusive cache blocks.
This removes the read latency difference between read-only coherence states, and ob-
structs the adversaries from taking advantage of these states to implement their timing
channels. We evaluated the performance impact of our proposed changes to the cache
coherence protocols for multi-threaded benign applications. The experimental results

24 Fan Yao et al.

revealed that our modified coherence protocol introduces minimal performance over-
head.

Acknowledgment

This material is based on work supported by the US National Science Foundation
under CAREER Award CCF- 1149557 and CNS-1618786, and Semiconductor Re-
search Corp. (SRC) contract 2016-TS-2684. Any opinions, findings, conclusions, or
recommendations expressed in this article are those of the authors, and do not neces-
sarily reflect those of the NSF or SRC.

References

1. Department of Defense Standard, Trusted Computer System Evaluation Criteria. US Department of
Defense, 1983.

2. G. Venkataramani, J. Chen, and M. Doroslovacki, “Detecting hardware covert timing channels,” IEEE
Micro, vol. 36, pp. 17–27, Sept 2016.

3. A. Chen, W. B. Moore, H. Xiao, A. Haeberlen, L. T. X. Phan, M. Sherr, and W. Zhou, “Detecting
covert timing channels with time-deterministic replay,” in USENIX Symposium on Operating Systems
Design and Implementation, pp. 541–554, 2014.

4. O. Acıiçmez, B. B. Brumley, and P. Grabher, “New results on instruction cache attacks,” in Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems, pp. 110–124, Springer, 2010.

5. O. Aciiçmez, “Yet another microarchitectural attack: exploiting I-cache,” in Proceedings of ACM
Workshop on Computer Security Architecture, pp. 11–18, ACM, 2007.

6. Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R. Schlichting, “An exploration of L2 cache
covert channels in virtualized environments,” in Proceedings of ACM Workshop on Cloud Computing
Security, pp. 29–40, ACM, 2011.

7. F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-channel attacks are practical,”
in Proceedings of IEEE Symposium on Security and Privacy, pp. 605–622, IEEE, 2015.

8. Y. Yarom and K. Falkner, “Flush+ reload: a high resolution, low noise, L3 cache side-channel attack,”
in USENIX Security Symposium, pp. 719–732, 2014.

9. G. Irazoqui, T. Eisenbarth, and B. Sunar, “Cross processor cache attacks,” in Proceedings of ACM
Asia Conference on Computer and Communications Security, pp. 353–364, ACM, 2016.

10. F. Yao, M. Doroslovacki, and G. Venkataramani, “Are coherence protocol states vulnerable to infor-
mation leakage?,” in Proceedings of IEEE International Symposium on High Performance Computer
Architecture, pp. 168–179, IEEE, 2018.

11. F. Liu and R. B. Lee, “Random fill cache architecture,” in Proceedings of IEEE/ACM International
Symposium on Microarchitecture, pp. 203–215, IEEE, 2014.

12. Z. Wang and R. B. Lee, “New cache designs for thwarting software cache-based side channel attacks,”
ACM SIGARCH Computer Architecture News, vol. 35, no. 2, pp. 494–505, 2007.

13. F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B. Lee, “CATalyst: Defeating last-
level cache side channel attacks in cloud computing,” in Proceedings of IEEE International Sympo-
sium on High Performance Computer Architecture, pp. 406–418, IEEE, 2016.

14. Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh, “Secdcp: secure dynamic cache
partitioning for efficient timing channel protection,” in Proceedings of IEEE Design Automation Con-
ference, pp. 1–6, IEEE, 2016.

15. “Intel QuickPath Architecture,” 2012. http://www.intel.com/pressroom/archive/

reference/whitepaper_QuickPath.pdf.
16. P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes, “Cache hierarchy and mem-

ory subsystem of the AMD Opteron processor,” IEEE Micro, vol. 30, no. 2, pp. 16–29, 2010.
17. D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory consistency and cache coherence,”

Synthesis Lectures on Computer Architecture, vol. 6, no. 3, pp. 1–212, 2011.

Covert Timing Channels exploiting Cache Coherence Hardware: Characterization and Defense 25

18. C. A. Waldspurger, “Memory resource management in VMware ESX server,” ACM SIGOPS Operat-
ing Systems Review, vol. 36, no. SI, pp. 181–194, 2002.

19. A. Barresi, K. Razavi, M. Payer, and T. R. Gross, “CAIN: silently breaking ASLR in the cloud,” in
USENIX Workshop on Offensive Technologies, 2015.

20. “Using Intel VTune Amplifier,” 2013. https://goo.gl/E9Fp2m.
21. R. Gallager, “Low-density parity-check codes,” IRE Transactions on Information Theory, vol. 8, no. 1,

pp. 21–28, 1962.
22. N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower,

T. Krishna, S. Sardashti, et al., “The gem5 simulator,” ACM SIGARCH Computer Architecture News,
vol. 39, no. 2, pp. 1–7, 2011.

23. C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite: characterization and ar-
chitectural implications,” in Proceedings of ACM International Conference on Parallel Architectures
and Compilation Techniques, pp. 72–81, ACM, 2008.

24. D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks: Automating attacks on inclusive
last-level caches,” in USENIX Security Symposium, pp. 897–912, 2015.

25. T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds,” in Proceedings of ACM Conference on Computer
and Communications Security, pp. 199–212, ACM, 2009.

26. F. Yao, G. Venkataramani, and M. Doroslovacki, “Covert timing channels exploiting non-uniform
memory access based architectures,” in Proceedings of ACM Great Lakes Symposium on VLSI,
pp. 155–160, ACM, 2017.

27. O. Aciicmez and J.-P. Seifert, “Cheap hardware parallelism implies cheap security,” in Proceedings
of IEEE Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 80–91, IEEE, 2007.

28. D. Evtyushkin and D. Ponomarev, “Covert channels through random number generator: Mechanisms,
capacity estimation and mitigations,” in Proceedings of ACM Conference on Computer and Commu-
nications Security, pp. 843–857, ACM, 2016.

29. Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space: high-speed covert channel attacks in the
cloud,” in USENIX Security Symposium, pp. 159–173, 2012.

30. M. Alagappan, J. J. Rajendran, M. Doroslovacki, and G. Venkataramani, “DFS covert channels on
multi-core platforms,” in Proceedings of IEEE International Conference on Very Large Scale Integra-
tion, IEEE, 2017.

31. O. Aciiçmez, c. K. Koç, and J.-P. Seifert, “On the power of simple branch prediction analysis,” in
Proceedings of ACM Symposium on Information, Computer and Communications Security, pp. 312–
320, ACM, 2007.

32. D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Understanding and mitigating covert channels
through branch predictors,” ACM Transactions on Architecture and Code Optimization, vol. 13, no. 1,
p. 10, 2016.

33. Z. H. Jiang, Y. Fei, and D. Kaeli, “A complete key recovery timing attack on a GPU,” in Proceeding
of IEEE International Symposium on High Performance Computer Architecture, pp. 394–405, IEEE,
2016.

34. J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan, “Side-channel vulnerability factor: a
metric for measuring information leakage,” ACM SIGARCH Computer Architecture News, vol. 40,
no. 3, pp. 106–117, 2012.

35. J. Chen and G. Venkataramani, “An algorithm for detecting contention-based covert timing channels
on shared hardware,” in Proceedings of ACM Workshop on Hardware and Architectural Support for
Security and Privacy, ACM, 2014.

36. J. Chen and G. Venkataramani, “Cc-hunter: Uncovering covert timing channels on shared processor
hardware,” in Proceedings of IEEE/ACM International Symposium on Microarchitecture, pp. 216–
228, IEEE Computer Society, 2014.

37. C. Hunger, M. Kazdagli, A. Rawat, A. Dimakis, S. Vishwanath, and M. Tiwari, “Understanding
contention-based channels and using them for defense,” in Proceedings of IEEE International Sym-
posium on High Performance Computer Architecture, pp. 639–650, IEEE, 2015.

38. M. Yan, Y. Shalabi, and J. Torrellas, “ReplayConfusion: Detecting cache-based covert channel attacks
using record and replay,” in Proceedings of IEEE/ACM International Symposium on Microarchitec-
ture, pp. 1–14, IEEE, 2016.

39. H. Fang, S. S. Dayapule, F. Yao, M. Doroslovački, and G. Venkataramani, “Prefetch-guard: Leverag-
ing hardware prefetchers to defend against cache timing channels (short paper),” in Proceedings of
IEEE Symposium on Hardware Oriented Security and Trust, IEEE, 2018.

26 Fan Yao et al.

40. G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic, “Memtracker: An accelerator for mem-
ory debugging and monitoring,” ACM Transactions on Architecture and Code Optimization, 2009.

41. J. Shen, G. Venkataramani, and M. Prvulovic, “Tradeoffs in fine-grained heap memory protection,”
in Proceedings of ACM Workshop on Architectural and System Support for Improving Software De-
pendability, ACM, 2006.

42. A. Ferraiuolo, Y. Wang, D. Zhang, A. C. Myers, and G. E. Suh, “Lattice priority scheduling: Low-
overhead timing-channel protection for a shared memory controller,” in Proceedings of IEEE Inter-
national Symposium on High Performance Computer Architecture, pp. 382–393, IEEE, 2016.

43. Y. Zhou, S. Wagh, P. Mittal, and D. Wentzlaff, “Camouflage: Memory traffic shaping to mitigate
timing attacks,” in Proceedings of International Symposium on High Performance Computer Archi-
tecture, pp. 337–348, IEEE, 2017.

44. A. Awad, Y. Wang, D. Shands, and Y. Solihin, “Obfusmem: A low-overhead access obfuscation
for trusted memories,” in Proceedings of ACM International Symposium on Computer Architecture,
pp. 107–119, ACM, 2017.

