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Abstract—Programs written in languages allowing direct access to memory through pointers often contain memory-related faults,

which cause nondeterministic failures and security vulnerabilities. We present a new dynamic tainting technique to detect illegal

memory accesses. When memory is allocated, at runtime, we taint both the memory and the corresponding pointer using the same

taint mark. Taint marks are then propagated and checked every time a memory address m is accessed through a pointer p; if the

associated taint marks differ, an illegal access is reported. To allow always-on checking using a low overhead, hardware-assisted

implementation, we make several key technical decisions. We use a configurable, low number of reusable taint marks instead of a

unique mark for each allocated area of memory, reducing the performance overhead without losing the ability to target most memory-

related faults. We also define the technique at the binary level, which helps handle applications using third-party libraries whose source

code is unavailable. We created a software-only prototype of our technique and simulated a hardware-assisted implementation. Our

results show that 1) it identifies a large class of memory-related faults, even when using only two unique taint marks, and 2) a

hardware-assisted implementation can achieve performance overheads in single-digit percentages.

Index Terms—Computer systems organization, hardware/software interfaces, processor architectures, monitors.
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1 INTRODUCTION

MEMORY-RELATED faults are a serious problem for
languages that allow direct memory access through

pointers. An important class of memory-related faults are
what we call illegal memory accesses. In languages such as
C and C++, when memory is allocated, a currently free area
of memory m of the required size is reserved. After m is
allocated, its starting address can be assigned to a pointer p,
either immediately (e.g., in the case of heap allocated
memory) or at a later time (e.g., when retrieving and storing
the address of a local variable). An access to m is legal only
if 1) it uses pointer p or a pointer derived from p, and 2) if
the access occurs during the interval when p is valid, (i.e.,
between the allocation and deallocation of m). All other
accesses to m are illegal memory accesses (IMAs), where a
pointer is used to access memory outside the bounds of the
memory area with which it was originally associated, or
outside the time period during which the pointer is valid.

IMAs are especially relevant for several reasons. First,

they are caused by typical programming errors, such as

array-out-of-bounds accesses and stale pointer dereferences,

and are thus widespread and common. Second, they often
result in nondeterministic failures that are hard to identify
and diagnose; the specific effects of an IMA depend on
several factors, such as memory layout, that may vary
between executions. Finally, many security concerns such as
viruses, worms, and rootkits use IMAs as injection vectors.

This paper is an extended version of our previous work
[3], that presents a new dynamic technique for protecting
programs against most known types of IMAs. The basic
idea behind the technique is to use dynamic tainting, also
known as dynamic information flow tracking (DIFT) [11], to
link memory areas with their valid pointers. Every time
memory is accessed through a pointer, our technique checks
if the access is legal by comparing the taint mark associated
with the memory and the taint mark associated with the
pointer used to access it. The access is considered legitimate
if the taint marks match. Otherwise, an IMA is reported.

Because our technique is intended for efficient hardware-
assisted implementation, one of the key goals in our design
is to allow runtime decisions about the trade-off between
application performance and IMA detection probability.
Whereas a software-only tool can select among any number
of schemes that offer different trade-offs, in a hardware-
assisted tool the hardware cost would be the sum of
hardware costs of all supported schemes. In effect, hard-
ware support for each distinct scheme would be included in
the hardware cost of a system even if that particular system
never actually uses that scheme. For this reason, our
technique should be parametrized such that the same scheme
can be used to achieve different points in the performance-
accuracy trade-off. We achieve this parametrization by
using a configurable number of taint marks, instead of
using a distinct taint mark for each memory allocation.
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Limiting the number of taint marks can result in false
negatives, because different memory regions and their
pointers can have the same taint mark and an IMA where
the address and the memory region happen to have the
same taint mark would be undetected. Thus, the probability
of IMA detection depends on how many taint marks can be
used. The hardware-assisted performance of the scheme
also depends on the number of taint marks—the number of
bits needed to encode each taint mark determines how
much extra capacity and bandwidth are used by the
memory subsystem, and also how much extra latency is
added by taint propagation circuitry. Overall, the number
of taint marks can be used to select the desired point in the
performance-accuracy trade-off.

Our evaluation has dual goals: evaluating the ability of
our technique to detect IMAs, and determining its effect on
program performance. To assess IMA detection, we devel-
oped a software-only prototype that implements the
approach for x86 64-bit binaries and protects stack, heap,
and global allocated memory and was used to perform a set
of empirical studies. This prototype instruments the
application’s code using LLVM [16] and its runtime
component is built within DYTAN [4], a generic dynamic-
taint analysis framework. To determine the performance
impact of the hardware-assisted implementation, we im-
plemented another prototype within the SESC [23] computer
architecture simulator that uses MIPS binaries. This two-
pronged evaluation approach is needed because hardware
simulation is extremely time consuming, making start-to-
finish simulations of real large programs with known IMAs
infeasible. Instead, we use a software-only prototype to run
these programs to evaluate our technique’s IMA detection
ability, but determine expected overheads using a bench-
marking methodology traditionally used in computer
architecture research—simulation of smaller applications
and using only a representative fraction of the entire run.

Our experiments show that our proposed technique can
identify a large number of IMAs, even when using only
one-bit taint marks (only two unique taint marks). They also
show that a hardware-assisted implementation imposes low
time overheads, typically a few percent for a single taint
mark, that grow moderately as the number of taint marks
increases. These low overheads should make our scheme
practical for use on deployed software.

The contributions of this paper are:

. A new technique for detecting IMAs that is
effective and amenable to hardware-supported
implementation.

. A design space analysis for hardware implementa-
tion of our technique.

. Two prototype implementations of the technique: a
software-only one that works on x86_64 binaries, and
a hardware-assisted one that works on MIPS binaries.

. A set of empirical studies that provide evidence of
the effectiveness and practical applicability of the
approach.

2 MOTIVATING EXAMPLE

In this section, we introduce an example that we use to
illustrate our technique. The code shown in Fig. 1 is taken

from a reference manual [5] and consists of a function
that, given an integer n, generates and prints a string of
n� 1 random characters. We slightly modified the original
code by adding the use of a seed for the random number
generation and adding a call to a function (getSeed-
FromUser) that reads the seed from the user and returns
it in a parameter passed by address. We also introduced
two memory-related faults. First, at line 7 we changed the
terminating condition for the for loop from “i < n” to
“i <¼ n”, which causes the statement at line 8 to write a
random character at position bufferþ n. Because the
address at offset n is outside the bounds of the memory
area pointed to by buffer, accessing it through buffer

is an IMA. The second IMA we introduced is that buffer
is freed in line 10, so at line 11 the user-level library code
in printf accesses memory that is no longer allocated.

The first IMA in this example is a spatial IMA—the access is
illegal because a pointer accesses memory outside of the
range that is valid for that pointer. The second IMA in our
example is a temporal IMA—a previously valid pointer-
memory association is no longer valid at the time of the access.

3 OUR TECHNIQUE

We first outline our technique at the source code level using
an unlimited number of taint marks. Sections 3.2 and 4 then
discuss how the technique works when the number of taint
marks is limited and when operating at the level of binaries.

3.1 General Approach

Our technique is based on dynamic tainting, which is a
technique for marking and tracking certain data at runtime.
Our approach instruments programs to mark two kinds of
data: memory in the data space and pointers. When a
memory area m is allocated, the technique taints m with a
taint mark t. When a pointer p is created with m as its
referent (i.e., p points to m’s starting address), p is tainted
with the same taint mark used to taint m. The technique
propagates taint marks associated with pointers as the
program executes. Finally, when memory is accessed using
a pointer, the technique checks that the memory and the
pointer have the same taint mark. Because pointers can be
stored in memory, our technique actually stores two taint
marks for each memory location, one associated with the
memory location itself and the other for a pointer that may
be stored in that location.
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Fig. 1. An example IMA.



The rest of this section describes in detail the three parts of
our technique: tainting, taint propagation, and taint checking.

3.1.1 Tainting

This part of our technique is responsible for initializing taint
marks for memory and pointers. There are four cases that
our technique must handle: static memory allocations,
dynamic memory allocations, pointers to statically allocated
memory, and pointers to dynamically allocated memory.

Static memory allocations occur implicitly wherever a
global or local variable is declared. The memory for global
variables is allocated at program entry, by reserving space in
a global data area. For local variables declared in a function
f , memory is allocated upon entry to f , by reserving space on
the stack. For our example code in Fig. 1, assuming a 32-bit
word size, 12 bytes of stack space are allocated (for i, seed,
and buffer) when prRandStr is entered.

To taint statically allocated memory, our technique
intercepts function-entry and program-entry events, identi-
fies the memory area used to store each local and global
variable, and taints each individual area with a fresh taint
mark. The memory area for a variable is identified using its
starting address and the size needed to store that variable’s
type. In our example code, when prRandStr is entered,
three fresh taint marks (e.g., t1, t2, ad t3) are created, using the
first to mark the memory range ½&i;&iþ sizeofðintÞÞ, the
second taint mark for ½&seed;&seedþ sizeofðintÞÞ, and the
third for the ½&buffer;&bufferþ sizeofðchar�ÞÞ range. For
statically allocated arrays, the range is calculated analo-
gously, with the exception that the type’s size is multiplied
by the number of elements in the array.

Pointers to statically allocated memory can be initi-
alized in two ways. For a scalar variable, the address-of
operator (&) returns the starting memory address of the
variable to which it is applied. When the address-of operator
is used on a variable, our technique taints the pointer with
the same taint mark that was used for the variable’s
memory. In our example, when the address-of operator at
line 5 produces the starting address of seed, our technique
retrieves the taint mark t2 associated with seed and
associates it with the address passed to getSeedFromU-

ser. For statically allocated arrays, the name of the array is,
for all practical purposes, a pointer to the first element of
the array. In either case, we can create a shadow pointer that
corresponds to each pointed-to region, and taint this
shadow pointer with the region’s taint mark (more detail
on this is provided in Section 4).

Dynamic memory allocations, occur explicitly, as a
consequence of a call to a memory-allocation function. In C
and C++, there are only a few memory-allocation functions,
and they all 1) take as input the size of the memory area to
allocate, and 2) return either the beginning address of a
contiguous memory area of the requested size or NULL if
the allocation is unsuccessful.

To taint dynamically allocated memory, our technique
intercepts calls to memory-allocation functions, (e.g.,
malloc). When such a function is about to return
successfully, the technique identifies the range of the
allocated memory as ½r; rþ sizeÞ, where r is the value
returned by the memory-allocation function and size is the

amount of memory requested passed as a parameter to the
function, and taints the memory in this range with a fresh
taint mark. In our example (Fig. 1), the call to malloc at
line 3 would taint the range ½buffer; bufferþ nÞ with a
fresh taint mark (e.g., t4).

Pointers to dynamically allocated memory are created
either directly (as a return value of an allocation function) or
indirectly (from another pointer). When our technique
intercepts a memory allocation function that returns
successfully and taints the allocated memory area with a
fresh taint mark, it taints the function’s return value
(pointer) with the same taint mark. If other pointers are
derived from that pointer, their taint mark is propagated to
them as discussed in Section 3.1.2. In our example, the call
to malloc returns a value tainted with t4, then (as a result
of the assignment at line 3) this taint is propagated to the
buffer pointer.

3.1.2 Taint Propagation

In dynamic tainting, a propagation policy dictates how taint
marks flow along data- and control-dependencies as the
program executes. In our context, there are no cases where
taint marks should propagate through control-flow, so we
define our propagation policy for data-flow only. Our
propagation policy treats taint marks associated with
memory and taint marks associated with pointers differently.

Propagation of Memory Taint Marks. Taint marks
associated with memory are not actually propagated. They
are associated with a memory area when it is allocated and
removed when it is deallocated. This removal of taint marks
upon deallocation is implemented by intercepting memory
deallocation and clearing (e.g., setting to zero) the taint
marks associated with that memory area. Note that pointers
that were tainted with the memory area’s taint mark can
remain tainted. If such a pointer is used to access memory
after its deallocation, the taint marks of the pointer and the
memory location are different and an IMA is still detected.

Dynamically allocated memory is deallocated by calling
a memory-deallocation function (e.g., free), which is
intercepted by our technique to clear the taint marks of
the deallocated memory range. For the example in Fig. 1,
the call to free at line 11 is intercepted and the taint marks
for the memory region ½buffer; bufferþ nÞ are cleared.

Statically allocated memory is deallocated when the
function that allocated it returns (for local variables) or at
program exit (for global variables). The latter case is
irrelevant for our technique. To handle deallocation of local
variables, our technique intercepts function exits and clears
taint marks of the memory that corresponds to the
function’s stack frame. In our example code, when
prRandStr returns, our technique clears taint marks
associated with prRandStr’s stack, thus removing taint
marks associated with memory that stores local variables i,
seed, and buffer.

Propagation of Pointer Taint Marks. Unlike taint marks
associated with memory, taint marks associated with
pointers are propagated to derived pointers. To correctly
propagate these taint marks, our technique must accurately
model all possible operations on pointers and associate, for
each operation, a propagation action that assigns to the result
of the operation the correct pointer taint mark (using a zero
taint to denote “untaintedness” of nonpointer values).
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A superficial analysis of typical pointer operations can
produce a reasonable initial propagation policy. For
example, additions or subtractions of a pointer p and an
integer should produce a pointer with the same taint mark
as p; subtractions of two pointers should produce an
untainted integer (an offset); operations such as adding or
multiplying two pointers or performing logical operations
between pointers should be meaningless and simply result
in an untainted value.

Unfortunately, due to commonly used hand-coded
assembly functions and compiler optimizations, a propaga-
tion policy defined in this way would be highly inaccurate
and result in a large number of false negatives. In our
preliminary investigation, we encountered dozens of cases
where a simple policy falls short. To illustrate why simple
policies are inadequate, we use the strcpy function of the
C library as an example. This is a commonly used function
that copies the contents of a character array (src) to another
character array (dest) under the assumption that the two
arrays do not overlap. In the version of the C library that we
inspected, the strcpy function is implemented as follows:
it first initializes two pointers s and d to point to the initial
address of src and dest, respectively. It then calculates the
distance, dist, between s and d by subtracting the two
pointers. Finally, it executes a loop that copies the character
at position s, to the memory location sþ dist, incrementing
s in each iteration until a string-termination character (zero
in C/C++) is copied.

With the simple policy described above, this function
always produces false positives—if src and dest have taint
marks tsrc and tdest, when offset dist is computed it is an
untainted integer which, when added to s, results in a
pointer that has the taint mark tsrc but points to the memory
area of the dest string. As a result, an IMA is reported for
each write to the dest string in the strcpy function.

To address this and other issues, we defined a more
sophisticated policy based on our intuition and knowledge
of the underlying assembly instructions and patterns found
in the software subjects that we studied. We present a
summary of our more final policy by discussing how it
handles different operations:

Add, Subtract (c ¼ a þ=� b). If a and b are tainted with ta
and tb, respectively, then c is tainted with ta þ tb (for
addition) or ta � tb (for subtraction). This accounts for a
range of situations, such as adding to (or subtracting from)
a pointer an offset computed by subtracting two pointers. In
the strcpy code discussed above, dist is now tainted with
tdest � tsrc. When dist is added to s, the result is now tainted
with tsrc þ ðtdest � tsrcÞ ¼ tdest, the correct taint for accessing
the memory that contains the dest string. This policy also
produces correct tc for the cases where a and b are untainted
(ta and tb are zero, so tc is also zero) and where one of them
is tainted (pointer) and the other is not (e.g., when ta is
nonzero and tb is zero, tc will be equal to ta).

Multiply, Divide, Modulo, Bitwise OR and XOR.

Independently from the taint mark of the operands, the
result of any of these operations is never tainted.

Bitwise AND ðc ¼ a&bÞðc ¼ a&bÞ. Bitwise AND can have different
semantics depending on the value of its operands. In
particular, a program may AND a pointer and an integer to

get a base address (mask out the lower bits of the pointer).
For example, “c ¼ a & 0xffffff00” masks out the lowest
eight bits of pointer a. Bitwise AND can also be used to
compute an offset (e.g., “c ¼ a & 0x000000000f”). To ad-
dress this issue, we defined our propagation policy as
follows: If a and b are either both untainted or both tainted,
then c is not tainted; we could not identify any reasonable
case where c could still contain useful pointer-related
information in these two cases. If only one of a and b is
tainted with a given taint mark t, c is tainted with t if the
result preserves the most-significant bits of the tainted
value; the rationale for this is that the operation is (or might
be) computing a base address for some memory range.

Bitwise NOT ðc ¼� aÞðc ¼� aÞ. Bitwise NOT can be used as an
alternative to subtraction, e.g., “c ¼ b� a� 1” could be
optimized into “c ¼ b þ � a”. Thus, our taint propagation
rule for bitwise NOT is tc ¼ �ta. Note that this also correctly
handles bitwise NOT of untainted values (ta is zero).

It is important to note that clever or unusual combina-
tions of operators can result in sequences that are not
handled correctly by any specific policy, and similar
problematic sequences can be created for any IMA detection
scheme that is defined at the binary level. Therefore, it is
unlikely that any propagation policy can be proven to be
sound and complete. However, our policy works correctly
for all the software that we studied so far, as discussed in
Section 5. If additional experimentation reveals shortcom-
ings of our policy, we will refine it accordingly.

3.1.3 Checking

To check legality of memory accesses, our technique
intercepts all memory accesses and compares the taint
mark of the pointer used to access memory with the taint
mark of the accessed memory location. These taint marks
are equal for legitimate memory accesses, so the access is
considered an IMA when the taint marks are different
(including the case where one is tainted and the other is
not). Currently, our technique halts program execution
when it detects an IMA. However, it could also perform
different actions, such as attaching a debugger or logging
the IMA and allowing the execution to continue. The
specific action chosen may depend on the context (e.g., in-
house versus in-the-field, friendly versus antagonistic
environments, etc.).

3.2 Limiting the Number of Taint Marks

Ideally, our technique would use an unlimited number of
unique taint marks because it would allow detecting all
IMAs. Realistically, however, the number of distinct taint
marks that the technique can use must be limited for the
technique to be practical.

In our implementations, each taint mark is represented
with n bits, limiting the number of distinct taint marks to
2n. Although it is possible to use a large number of bits
(e.g., 64 bits) for a virtually unlimited number of taint
marks, the storage and manipulation of large taints would
introduce unacceptable overheads. As stated previously,
our approach stores two taint marks for every memory
location—one for the memory location, and the other for
the pointer stored in that location. Two 64-bit taint marks
per byte of data would result in a 16-fold memory increase,
which is prohibitive for many applications.
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Most importantly, large taints would prevent a practical
hardware-assisted implementation. There are two primary
reasons for this. First, the performance overhead in a
hardware-based implementation comes mostly from the
competition between data and taint marks for space (e.g., in
caches) and bandwidth (e.g., on the system bus). Therefore,
it is highly desirable to keep the size of taint marks small
relative to the size of the corresponding data. Second, large
taints would dramatically affect the design complexity of
the hardware.

Based on these considerations, a key feature of our
scheme is that the number of taint marks can be small while
still 1) avoiding false positives, and 2) retaining the ability
to detect all types of IMAs. The drawback of using fewer
taint marks is that they have to be reused, so several
allocated memory areas may have the same taint mark.
When a pointer intended to point to one area is used to
access another that has the same mark, the resulting IMA
would be undetected. In other words, when using a limited
number of taint marks, IMAs are detected probabilistically.
Assuming n-bit taint marks, a uniformly-distributed ran-
dom assignment of taint marks to memory regions, and
IMAs where a pointer accesses a random memory region,
the probability of detecting each IMA is equal to P ¼ 1� 1

2n .
This is encouraging: even for a single taint mark (1 bit), our
technique may still find 50 percent of all IMA events; with 2,
4, and 8-bit taints we would expect to detect each IMA with
75, 94, and 99.6 percent probability, respectively.

Moreover, these estimates may actually be low for two
reasons. First, many IMAs occur because a pointer is used
to access memory slightly outside the bounds of its
intended referent. Ensuring that abutting regions get
different taint marks would mean that these IMAs will be
caught. Second, in cases where a single defect can result in
multiple IMAs, even a 50 percent probability of detection
for each IMA event results in a much higher probability of
revealing the underlying defect by detecting at least one
IMA caused by it.

Even though limiting the number of taint marks makes
the technique probabilistic, it does not lead to false positives.
A pointer and its corresponding memory region will always
have the same taint mark. This gives us the ability to tune the
number of taint marks to achieve a desired trade-off
between likelihood of IMA detection and space and
performance overhead, without worrying about introducing
false positives that would need to be investigated and
detract from the practical usability of the technique.

4 IMPLEMENTATION

Although previous sections present the technique at the
source-code level, our prototype implementations actually
operate at the binary level. This approach allows our
technique to work correctly even when no source code is
available for parts of the application, such as when using
dynamically loaded off-the-shelf modules and libraries.
Working at the binary level also facilitates a hardware-
assisted implementation, where the hardware accelerator
operates at the machine level with little or no knowledge of
the source code structure. The role of this hardware
accelerator in our technique is to propagate taints, while

the software is responsible for correctly initializing the taint
information using the ISA (similar to FlexiTaint [30])
extensions provided by the hardware. In this section, we
provide details of the two implementations (software-based
and hardware-assisted) and discuss the main differences
between them.

4.1 Operating at the Binary Level

When operating at the binary level, our technique can still
use the same taint propagation rules described in Section 3,
but loses the necessary information for initializing taints
correctly. To retain that information, the runtime library
needs to be modified to intercept heap allocations and
deallocations, and the compiler must instrument the
application’s code to appropriately initialize memory and
pointer taints for global- and stack-allocated memory.

Handling of dynamically allocated objects requires that
we modify the heap allocation library to appropriately
initialize the taint as described in Section 3.1.1. We note that
use of custom memory allocators by the application, even if
they are not changed to initialize memory and pointer
taints, does not result in false positives in our technique.
Assume that an application allocates several MBytes
through malloc and internally partitions them. The
allocated memory area will have a single memory taint,
and all the pointers pointing to its partitions will have the
same pointer taint as the original pointer to the array
(return value of the malloc function) because they have all
been derived from it. This eliminates false positives, but
does prevent identification of IMAs within that area (e.g.,
using a pointer to one partition to access another). To enable
IMA detection in this case, the author of the memory
allocator should modify the custom allocator to insert
appropriate taint initialization and clearing code.

For the case of statically allocated objects on the stack,
e.g., a stack-based buffer, the address of the object is
determined at runtime and it is relative to the stack pointer
of the program. The compiler instruments the code to
initialize the memory taint of the buffer, e.g., using the ISA
extensions. However, subsequent accesses to the buffer are
ordinarily often computed by adding a constant offset to the
stack pointer, which has zero pointer taint in order to access
the nontainted stack variables, and would result in false
positives, because the resulting pointer will not have the
“correct” taint. In our prototype implementation, we over-
come this problem by introducing a shadow pointer for
every tainted area (e.g., a buffer) in the stack. The prologue
of each function initializes these shadow pointers to point to
the corresponding stack-allocated memory areas, and
initializes the memory taint of each memory area and the
pointer taint of its shadow pointer. The body of the function
is then changed to no longer use the stack pointer to access
these memory areas, but use the shadow pointers instead.
Similarly, the address-of operator now simply copies the
shadow pointer, propagating it to the newly created
pointer. Finally, the epilogue of each function clears the
memory taints of the stack-based objects that are freed at
that point. The same approach is also used for global
statically allocated memory—the only difference is that
initialization of the memory taint occurs when global
constructors and initializers are being called. Finally, the
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memory taint of the shadow pointers themselves is zero,
protecting them from any accidental or malicious over-
writes. Similarly to the shadow pointers the memory taint of
the return address is also zero to prevent possible attacks.

These changes ensure that each statically allocated object
is now accessed only through its shadow pointer or pointers
copied or derived from it, just like a dynamically allocated
object is only accessed through the pointer returned by an
allocation function (e.g., malloc) or pointers copied or
derived from it. Furthermore, clearing of memory taints
when we leave the object’s scope makes the object’s shadow
pointer no longer valid for accessing it, also just like
pointers to dynamically allocated memory stop being valid
because deallocation clears memory taints of the memory
that is being deallocated.

Finally, our technique operates without false positives
inside shared libraries and other binaries for which the
source code is not available. Inside such code, our technique
will not detect IMAs that only involve stack-based objects
from within the uninstrumented code, but will still detect
heap-based IMAs and IMAs where a pointer from the
instrumented part of the code is used to access memory that
belongs to the uninstrumented code, or vice versa. It should
be noted that this is neither a fundamental limitation in our
scheme nor is it endemic to our scheme: any IMA detection
scheme would be unable to detect IMAs in code whose
pointer-memory associations cannot be conveyed to the
scheme, and dynamic recompilation at the binary level
would be able to overcome this problem (at least for stack-
based objects) by instrumenting function entry and exit
code even when no source code is available.

4.2 Software-Based Implementation

To create our software-based prototype, we added a pass in
LLVM 2.6 [16] to taint all stack and global defined arrays
using the shadow-pointer approach described in Section 4.1.
The taint propagation is implemented using DYTAN [4], a
generic dynamic tainting framework which is itself built on
top of the Pin dynamic-instrumentation framework [18].
Taint initialization requests from the instrumented applica-
tion code are conveyed to our Dytan-based runtime im-
plementation via function calls that are intercepted by Pin.

Although Pin allows our implementation to handle
shared libraries, it cannot instrument the underlying
Operating System (OS), so our implementation must
recognize system calls and and account for their effects on
memory and pointers. These effects are relatively simple to
model and account for, so system call handling in our
prototype is more of a tedium than a conceptual difficulty.
Signals are only slightly more difficult to handle than
ordinary function calls—the OS performs a context switch
and allocates a new stack frame before calling the handler
function in the application, so our implementation must
suitably initialize and clear taint information in the
handler’s entry and exit code, respectively.

4.3 Hardware-Based Implementation

As explained in Section 3, one of the key advantages of our
IMA detection technique is that the bulk of the performance
overhead in the software-only implementation is due to
propagation of pointer taints and comparisons between

pointer and memory taints when accessing memory, both of
which are amenable to hardware acceleration. Hardware
acceleration of taint propagation and checking have already
been discussed in the literature, both for fixed-functionality
security schemes (e.g., Minos [6]) and programmable ones
(e.g., Raksha [19] and FlexiTaint [30]).

Because our technique’s taint propagation and checking
needs differ from those in prior tainting work, in this
section we briefly reexamine the design space to identify
good candidates for an IMA-detection accelerator. The
primary parameters of this design space are:

. How are taints processed and stored—tightly coupled
with data in a “data-widening” implementation such
as the one used in Minos [6] or Raksha [19], or
separately from data in a “decoupled taint” imple-
mentation such as the one used in FlexiTaint [30].

. How are taints propagated and accesses checked—
by hard-wiring the rules or programming one of
the programmable accelerators proposed in the
literature?

4.3.1 Taint Processing and Storage: Data-Widening or

Decoupled Taint?

The most straightforward way to implement a hardware
DIFT scheme is to simply extend (widen) each word by a
few bits to accommodate the taint information. This
widening applies to all parts of the system where values
can be stored or transmitted, including memory, registers,
data buses, forwarding logic, etc. The main appeal of this
approach is that taint information is simply an extension of
a data value and naturally flows together with it. Whenever
data values are operated on in an ALU, the taint bits of the
operands can be processed in parallel with that ALU
operation to produce the taint bits for the result. The main
disadvantage is that it requires extensive changes (e.g.,
widening of buses, forwarding logic, memory locations,
registers, etc.) across the entire processor pipeline and the
memory subsystem, and prevents use of standard memory
modules and buses (must be widened to add taint bits).

Another way to implement our DIFT-based hardware
IMA detector is to decouple taint storage and processing
from data. A similar decoupling approach has been adopted
in prior schemes for program monitoring, such as program-
mable monitoring of memory accesses in MemTracker [31],
programmable DIFT support in FlexiTaint [30], and even
IMA detection using “safe pointers” in HardBound [7]. In
this approach, taint information is stored as a packed array in
a reserved part of the application’s virtual address space.
This reserved virtual space is managed by the Operating
System, allowing taint pages to be paged in and out similar
to normal data pages. Existing page-level access controls can
be simply extended to protect taints from accidental or
malicious overwrites using normal data access instructions
while allowing them to be initialized, propagated, and
checked by the DIFT mechanism itself. Finally, a separate
and small L1 cache can be dedicated to storing taints,
preventing any pollution in the existing data L1 cache and
avoiding any extra contention on its ports. Because taints are
typically much smaller than the corresponding data, the
L2 cache and memory capacity and bandwidth can be shared
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between data and taints, so they store taint regions of
memory just like any other memory. More details on this
implementation can be found in MemTracker [31] and
FlexiTaint [30], including details on how a decoupled-taint
approach can be implemented with minimal impact on
performance-critical parts of the out-of-order instruction
execution engine found in modern processors, as well as
how it interacts with the OS.

Most prior proposals for hardware-assisted DIFT use this
data-widening approach [6], [19]. These mechanisms use
DIFT primarily to identify unsafe uses of “untrusted”
values, typically using a one-bit taint to mark “untrusted”
values that come from external sources, such as the
network, propagating the “untrusted” taint to derived
values, and detecting a possible attack when an “untrusted”
value is used in an unsafe way.

The conceptually straightforward data-widening ap-
proach is very attractive for such schemes: one additional
bit in each word in memory or in a bus can be accom-
modated relatively easily, e.g., by repurposing ECC bits (if
some degradation in reliability is acceptable). Also the
additional bit in the data paths, caches, registers, etc., of the
processor chip results in only a minor increase in area and
circuit latency.

For our IMA detection technique, however, more than
one taint bit is needed for each memory location, and ability
to support multibit taint marks is also highly desirable: one
of the key features of our IMA detection technique is that it
permits a cost-accuracy trade-off, i.e., using more taint bits
to improve detection accurately at the cost of memory (to
store taints) and performance (to process and manage larger
taints), or using fewer taint bits to minimize cost with some
degradation in accuracy.

Because the data-widening approach adds a taint mark

to every data location and register, it requires the maximum

number of supported taint marks to be decided at hardware

design time. A data-widening implementation eliminates

this important advantage. The maximum number of taint

bits is decided at runtime, and the cost (additional bits in

memory, registers, etc., and performance degradation due

to larger circuitry and caches) is paid for that maximum

number of bits. As a result, it makes little sense to not use

anything but the maximum number of taint bits.
In contrast, a decoupled-taint implementation allows the

desired point in the cost-accuracy trade-off to be decided for
each system or even application separately: how much
memory and L2 space is occupied by taints depends on
taint size; how much performance overhead is incurred also
primarily depends on taint size (larger taints consume more
bandwidth and suffer more misses in the taint L1 cache and
in the shared L2 cache).

At one extreme of the cost-accuracy trade-off, the
technique can be turned off—no IMAs will be detected,
but no memory is used for taint storage and the taint
propagation and checking support in the processor pipeline
can be turned off and kept outside the processor’s critical
path [30]. At the other extreme, a very large number of
taints (e.g., 32-bit or even 64-bit taints) can provide each
area of memory with its own unique taint mark, resulting in
detection of all IMAs but with a large cost in terms of

memory space and performance; half or more of memory
and L2 space is used for taints, and the small taint L1 cache
is suffering large numbers of misses.

Storing taints as packed arrays in memory using the
decoupled-taint approach has a secondary advantage in
terms of performance—rapid initialization and clearing of
memory taints in a given (allocated or deallocated) block of
memory, because each memory word in the taint storage
area stores taints for several consecutive data locations.

Overall, for our IMA detection technique, the decoupled-
taint approach has multiple important advantages over the
data-widening approach. As a result, the prototype hard-
ware-accelerated implementation of our IMA detection
scheme uses the decoupled-taint approach.

4.3.2 Taint Propagation and Access Checking:

Hard-Wiring or Programming an Accelerator?

Our IMA detection technique can be implemented by hard-

wiring our taint propagation rules (Section 3.1.2) and

pointer-memory taint checks (Section 3.1.3) into the taint

propagation and checking engine of a decoupled-taint DIFT

accelerator. However, it would be highly desirable if these

propagation rules and checks could be implemented using

one of the previously proposed programmable DIFT

accelerators: the cost of tainting support could then be

amortized between existing DIFT-based schemes (detection

of unsafe uses of untrusted data) and our new IMA detection

scheme. An additional advantage of using programmable

accelerators lies in future-proofing: hard-wired approaches

would require a hardware upgrade each time DIFT rules are

upgraded, whereas a scheme using a programmable accel-

erator can be upgraded by reprogramming the accelerator.

It should be noted that future-proofing, while still a

possible concern, is not as pressing for our IMA detection

scheme as it is for prior uses of DIFT that interpret the taint

mark as an indication of whether the data are trusted or not

by propagating the trusted/untrusted property to derived

values and identifying unsafe operations that use untrusted

values (e.g., a jump instruction that uses an input-derived

target address). In such schemes, different interpretations of

trust and safety have resulted in many different sets of DIFT

rules, and updates to DIFT rules may be needed as the

interpretations of trust and safety are revised in the face of

new attacks. In contrast, DIFT rules in our scheme mirror

legal ways of deriving pointers from one another. Whether

a value is a pointer and how it is derived are well-defined

properties, so we do not expect frequent changes in our

DIFT rules. Still, we cannot rule out the need for such

upgrades, so an implementation that uses a programmable

accelerator would still be desirable.
Unfortunately, our technique has four characteristics that

are at odds with the assumptions that were made in the
design of prior programmable accelerators. First, the
resulting pointer taint mark for an operation (e.g., ADD or
SUB) is not a simple copy or a result of a logical operation
(AND, OR, etc.) of the sources’ taint marks—e.g., for ADD,
the taint mark of the result is the sum of sources’ taint
marks. This kind of propagation can only be implemented
using an exception handler for each ADD/SUB/NOT, etc.,
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instruction1 in the Raksha [19] DIFT accelerator as it was
originally described. However, it would be relatively simple
to add hardware support for these taint operations to
Raksha’s repertoire. In FlexiTaint [30], the hardware
accelerator can be programmed to perform these opera-
tions, but the performance degradation would be somewhat
higher due to the large number of possible input-output
taint combinations that could cause misses in FlexiTaint’s
TPC (a small cache used to memoize output taints for
recently encountered input taint combinations). The second
obstacle is that our technique divides taint information into
pointer and memory taints which are propagated differ-
ently, then compares the pointer taint of the address with
the memory taint of the location being accessed. In Raksha,
different rules would require pointer and memory taints to
be treated as different taint propagation schemes, which
precludes comparisons of pointer and memory taints
without resorting to exceptions2 in Raksha [19]. Although
extensions to Raksha that would enable such cross-scheme
checks are feasible, they would not be straightforward. In
FlexiTaint, the two separate taints can be implemented
together, but would increase the number of frequently seen
input taint combinations (which again reduces the effec-
tiveness of its TPC). The third difficulty is that both schemes
do not treat the taint of the destination (e.g., memory
location in a store instruction) as one of the input taints for
the operation, which prevents them from comparing the
memory taint of the target memory location with the
pointer taint of the address in a store-to-memory operation.3

Again, either scheme can be extended to support this, but
the extension would be nontrivial, would increase the
schemes’ cost, and result in additional performance over-
head. The final (fourth) and most pressing problem is that
our taint propagation rules determine the resulting taint
using not only the taints of the input operands, but also
their data values—e.g., to handle the AND operation4 as
described in Section 3.1.2. Extensions to allow efficient and
programmable consideration of data values in taint propa-
gation in either scheme (Raksha or FlexiTaint) are an open
research problem.

As a result of these considerations, we chose a hard-
wired approach for our implementation. However, we do
expect that further work on programmable taint propaga-
tion accelerators to eventually allow an efficient implemen-
tation of our technique using a programmable DIFT
accelerator. In fact, we hope that the above discussion of

the existing accelerators’ shortcomings will serve as
motivation for improving their flexibility in this direction.

5 EMPIRICAL EVALUATION

The goal of our empirical evaluation is to assess the
effectiveness and efficiency of our technique. To this end,
we used the two prototypes described in Section 4 on a set
of real applications gathered from different sources and
investigated three research questions:

. RQ1: How effective is our technique at detecting
IMAs when using only a small number of taint marks?

. RQ2: Does our technique erroneously report an IMA
for any legitimate memory access?

. RQ3: How much runtime overhead is a hardware-
assisted implementation of the technique likely to
impose?

Section 5.1 presents the software applications that we
used in the study. Sections 5.2, 5.3, and 5.4 present our
results and discuss each of our three research questions.

5.1 Experimental Subjects and Setup

In our empirical studies, we used two sets of subjects. The
first set consists of applications with known illegal memory
accesses, shown in Table 1. Most of these applications are
from the BugBench [17] suite. Four additional subjects were
obtained by browsing online bug databases (CVE5): pine
v4.44, an email and news client, mutt v1.4.2.li, an email and
news client, gnupg v1.2.2, an implementation of the
OpenPGP standard, and version 5.2.0 of the php language.
Pine, mutt, gnupg, and php each have one known heap-
based IMA. Finally, we also used a testbed [32] that
performs various attacks exploiting stack, heap, and global
buffers. We use all these subjects to investigate RQ1.
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1. These instructions represent about 20 percent of all dynamic
instructions in the benchmarks we used in our experimental evaluation.
Even with a 10-instruction exception handler (which is extremely
optimistic), the total instruction count would increase three-fold.

2. Load and store instructions, which require these checks, represent
about 39 percent of all dynamic instructions in the benchmarks we used in
our experimental evaluation; even a 10-instruction exception handler would
result in a five-fold increase in the total instruction count.

3. 12 percent of dynamic instructions in our experiments, so an
exception-based workaround would result in a two-fold instruction count
increase.

4. This operation represents only 0.5 percent of dynamic instructions in
our experiments, so an exception-based workaround with 10, 20, and 30-
instruction handlers would increase the instruction count by 5, 10, and
15 percent, respectively, and likely cause somewhat higher performance
degradation (exceptions cause expensive pipeline flushes in modern
processors). 5. http://cve.mitre.org/.

TABLE 1
Results for RQ1 (Effectiveness)



Our second set of subjects consists of the 12 applications
from the integer component of SPEC CPU 2000 [26]. These
applications cover a wide range of possible program
behaviors and range in size from �3:1k LoC, for
181.mcf, to �1312:2k LoC, for 176.gcc. The SPEC
benchmarks were created as a standardized set of applica-
tions to be used for performance assessment and are close-
to-ideal subjects for us for two reasons. First, they are
widely used and, thus, thoroughly tested (i.e., we do not
expect them to be faulty), so we can use them to address
RQ2. Second, they are commonly used to evaluate hard-
ware-based approaches, so they are also a good set of
subjects for investigating RQ3. For RQ3, we used the SPEC
CPU 2000, SPEC CPU 2006, and Splash-2 [27] benchmark
suites, a detailed list of the benchmarks we ran can be found
in Section 5.4.

In our experiments (both x86_64 software-only and MIPS
hardware-assisted), we use taints at the granularity of 32-bit
memory words. This creates some risk of false positives and
negatives when subword accesses are used, but no such
problems exist in any of the applications we used: pointers
stored in memory are word-aligned so word-granularity
pointer taints are sufficient, dynamic memory allocation in
the standard library is in terms of chunks that are at least
double-word-aligned, and existing performance optimiza-
tions of stack and global memory result in pointer-accessed
variables (i.e., arrays) being word-aligned as well. Note that
this word-granularity tainting is again a cost-performance
choice, not a fundamental requirement: when byte-granu-
larity tainting is used instead, taints would use four times as
many bits per word of data, i.e., two taint marks at byte
granularity would result in performance similar to the
performance results we show for 16 taint marks, four taints
marks would result in performance similar to what we
show for 256 taint marks, etc.

5.2 RQ1

To address RQ1, we ran all applications from our first set of
subjects while protecting them with our software-based tool
configured to use only two taint marks. For each known
IMA in these applications, we ran the application, repro-
duced the IMA, and checked if our tool detected it. The
results of the study are shown in Table 1. For each IMA, the
table shows the application containing the IMA, the IMA
location, the type of the illegal access, and if our prototype
detected the IMA. The type of the overflow can be either
sequential (seq), where the contents of an adjacent memory
location are overwritten, or random (rnd) where the base
pointer of the buffer is used to access potentially any
memory location.

As the table shows, all IMAs were detected by the
prototype. Recall that we only expected about 50 percent of
IMA occurrences to be detected when using only two taint
marks, whereas our experiments indicate that the detection
rate is 100 percent. This apparent discrepancy is a result of
the fact that many IMAs in these test subjects (and likely in
software in general) tend to involve abutting regions of
memory—we try to ensure, whenever it is feasible, that
abutting regions of memory have different taint marks, thus
detection of IMAs that involve such region is highly likely.
This result is very encouraging because it indicates that
even with a very limited number of taint marks our

technique can detect nearly all real heap, global, and
stack-based IMAs of the most common variety (those
involving abutting regions) and a significant percentage
(50 percent for two taint marks, 75 percent for four, etc.) of
all other (non-abutting-region) IMAs.

5.3 RQ2

To address RQ2, we performed a study similar to the one
we performed for RQ1: we protected the applications in the
SPEC CPU 2000 integer benchmarks using our software-
based tool, ran each of them against their test-input
workload, and checked that no IMA was reported. Because
we consider the programs in the benchmark to be virtually
bug-free due to their widespread usage, reporting an IMA
would correspond to a false positive. Note that, although
our technique should not generate any false positive by
construction, we have no formal proof of that. Therefore,
this study served as a sanity check for both our technique
and our implementation.

Although we observed no IMAs for eleven of the
12 applications, the prototype reported an IMA for
255.vortex. After examining 255.vortex’s source code,
we discovered that the IMA reported was indeed caused by
a heap-based temporal fault (dangling pointer) in the code.
We then checked the documentation for the SPEC bench-
marks and found that this is a known fault in 255.vortex
that was corrected in the subsequent release of the bench-
marks, and that this was the only known memory-related
fault in that release of the benchmark suite.

Overall, the results for RQ2 are fairly positive: our
technique generated no false positives, and was also able to
detect the only actual memory-related fault in this whole set
of subjects.

5.4 RQ3

For RQ3, we could not use the software-based implementa-
tion of our approach. First, we developed our prototype by
focusing on functionality rather than efficiency. We used a
generic tainting framework that already trades speed for
flexibility and imposes approximately a 30� time overhead
[4]. In addition, we implemented our tainting, propagation,
and checking approach as external functions that are
invoked by the framework for every memory access, which
results in a considerable additional overhead. As a result,
the overall overhead of the software-based implementation
varies between 100� and 500�, depending on the applica-
tion. Second, no software implementation based on binary
rewriting can approach the efficiency of a hardware-assisted
implementation due to the intrinsic cost of instrumenting
almost every instruction in the code.

The hardware implementation of our technique has three
potential sources of overhead: 1) execution of code instru-
mented by LLVM [16], 2) initialization of memory taints
when allocating and freeing memory, and 3) taint propaga-
tion in hardware can cause stalls in the taint processing unit
and/or make taints and data compete for cache space. In
the evaluation of our technique we believe that the most
important points in this performance cost/detection accu-
racy trade-off are the ones that allow detection of most IMAs,
while suffering relatively small performance overheads—
such settings would allow always-on use of our technique
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(continuous protection, even in production runs). Therefore,
our evaluation will focus on configurations that use 2, 4, 16,
and 256 distinct taint marks per word—this corresponds to
using 2, 4, 8, and 16 taint bits for each word in memory; half
of the taint bits are used for the memory taint of the memory
location, and the other half for the pointer that stored in it (or
to mark the value as a nonpointer).

To evaluate the taint propagation overhead, we employ
cycle-accurate simulation using the open-source SESC [23]
architectural simulator. We model a four-core multiproces-
sor, with Core2-like 4-wide out-of-order superscalar cores
running at 2.93 GHz. Each core has a private 32 KByte,
8-way set-associative, dual-ported Data L1 cache with a
64-byte line size. All cores share an L2 cache that is
8 MBytes in size, 32-way set-associative, single ported, and
also with a 64-byte line size. The Taint L1 cache is 8 KByte,
4-way associative, dual ported, and with a 64-byte line size.
To determine taint initialization overheads, we added a
taint initialization instruction that adds two cycles to the
execution time to process each 32-bit word in the packed
taint array. Finally, we had to estimate the overhead of
running LLVM-instrumented code. LLVM 2.6 [16] does not
provide, as of now, a stable MIPS back-end (SESC [23] uses
the MIPS ISA). We estimate the instrumentation overhead
by running an uninstrumented and then a LLVM-instru-
mented x86_64 version of the application code on a Xeon
X5450 running at 3.0 GHz. We then apply this overhead to
the MIPS version of the code. This assumes that the

instrumentation would cause similar slowdown in MIPS
code and in x86_64 code. This is likely a conservative
assumption (overestimates the overhead) because the
instrumented code could benefit from the larger number
of registers available in the MIPS ISA.

In our evaluation, we use SPEC 2000 and SPEC 2006
benchmarks [26], shown in Figs. 2 and 3, respectively, all
executed with reference input sets. The only omitted
applications are those for which the baseline LLVM (with-
out our instrumentation pass) did not produce a correct
executable. To achieve reasonable simulation time, we fast-
forward through the first five percent of the application’s
execution (to skip initialization) and then simulate two
billion instructions in detail. For evaluating multithreaded
applications, we use all benchmarks from the Splash2 [27]
suite with reference input sets, and simulate their execution
from start to end when running with four threads.

Figs. 2, 3, and 4 present the performance overhead,
broken down into the overhead of IMA detection in the heap
and in the stack (the overhead for global memory protection
is negligible) when using four distinct taint marks.6

The heap protection overhead accounts for the initializa-
tion of heap memory taints during allocation and deal-
location, as well as all of the taint propagation cost. The
stack and global protection overhead includes initialization
of stack and global memory taints, as well as the
instrumentation overhead (mostly from changing stack-
pointer-based accesses to use our shadow pointers as
described in Section 4.1). To gain more insight into these
sources of overhead, Fig. 5 breaks down the total overhead
according to its cause (instrumentation, taint initialization,
taint propagation) for applications whose total overhead is
more than 9 percent, and also for the average of all
simulated applications (not just the ones shown in Fig. 5) in
each benchmark suite.

In the benchmarks that exhibit higher overheads, the two
factors that dominate are the taint propagation and the
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Fig. 2. SPEC 2000 performance overhead.

Fig. 3. SPEC 2006 performance overhead.

6. This corresponds to a total of 4 taint bits per memory location, two for
the memory taint and two for the pointer taint.Fig. 4. Splash-2 performance overhead.



instrumentation necessary for taint initialization of the stack
memory. For applications where the taint propagation
overhead is dominant (e.g., lucas, mcf, omnetpp, xa-
lancbmk, milc, sphinx3), it is caused mainly by pipeline
stalls due to misses in the Taint L1 cache and by
competition between data and taints for L2 capacity. In
some situations, the increase in the L2 miss rate also leads to
increased contention for L2 bandwidth. This effect is
especially pronounced in SPEC 2006 benchmarks, which
tend to be more memory intensive than those in SPEC 2000.

The instrumentation and initialization overhead is domi-
nant in applications which allocate global or stack buffers
often (e.g., crafty, fma3d, gobmk, h264ref, mesa). A
pathological case was mesa, which allocates stack buffers in
frequently called functions for the maximum possible
texture size (several KBytes), even when the application
operates on much smaller textures (whose size is passed as a
parameter to the function). This results in initializing taints
for many stack locations at each function entry and exit
point, then actually accessing only the first few of these
locations. By changing the code to allocate only the necessary
buffer size (e.g., in texture.c:2265, change the array size from
PB_SIZE to n), the taint initialization overhead is reduced
by an order of magnitude (and the total overhead of IMA
detection is reduced from 227 to 15 percent).

On average, SPEC 2000 benchmarks exhibit a perfor-
mance overhead of seven percent. For SPEC 2006, the
average is eight percent, and in Splash2 the average is
six percent. In the Splash2 benchmark suite, taint propaga-
tion overheads are increased because of coherence misses
needed to keep taints in memory coherent. Instrumentation
overheads in these benchmarks are also relatively high,
primarily because their execution times are generally much
shorter than in SPEC 2000 and especially SPEC 2006,
resulting in reduced amortization of instrumentation over-
heads in initialization, setup, and cleanup code.

Fig. 6 shows the average performance overheads across
our benchmarks for various numbers of taint marks. We

observe that, as we increase the number of taint bits, the
overheads increase accordingly. The increase is nonlinear
because some of the overheads (e.g., the overhead of
running instrumented code) are fixed, and also because
the taint L1 miss rates and the contention for L2 space are
nonlinear phenomena that depend on working set sizes. For
applications with smaller working set sizes, data, and taints
can fit in the L2 cache even when large taints are used. When
working sets are large (as in several SPEC 2006 applications),
however, contention for L2 space exists even with the
smallest taint size and gets worse as taint size is increased.
As a result, SPEC 2000 benchmarks still have a nominal
13 percent overhead even for 256 taint marks (16 taint bits
for each memory location), whereas SPEC 2006 exhibits
overheads of 11 percent for 16 taint marks (eight taint bits for
each memory location) and 21 percent for 256 taint marks.

In Splash2 benchmarks, the overhead steadily increases in
spite of their small working sets. This overhead is caused by
increased coherence activity, which almost doubles as we
double the number of taint bits. The increased coherence
activity can be attributed in part to false-sharing of lines
containing taint bits—the taint bits of adjacent memory
regions, which are mapped in different cache lines and cause
no false-sharing when accessed, will reside in the same line.
Although taint coherence traffic is still much smaller than
data coherence traffic, it still contributes to interconnect
contention and causes additional performance overhead.

Finally, we note that even the “large” overheads in SPEC
2006 are still much lower than any software IMA detection
scheme, such as a software implementation of our DIFT-
based IMA detection (100� slowdown). Moreover, our
technique loses very little efficiency when applied to multi-
threaded code. In contrast, software-only approaches typi-
cally suffer very large additional overheads when applied to
multithreaded code, mainly because extensive lock/unlock
activity is needed to ensure atomicity of data and metadata
(taints in our technique) updates and checks. We also note
that some of our overheads (e.g., the instrumentation
overhead for detection IMAs in stack and global memory)
may be reduced based on static analysis and optimizations
similar to those applied in software-only IMA detection
work (e.g., SoftBound [20])—in this proof-of-concept im-
plementation, shadow pointers are used for all stack and
global allocations, although many can be eliminated because
the corresponding checks are redundant.

Analysis of a Data-Widening Implementation. Our
qualitative analysis in Section 4.3 has resulted in choosing
a decoupled-taint implementation over a data-widening
one. The primary reason for this choice is that data
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Fig. 5. Breakdown of the performance overhead.
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widening incurs overheads that depend on the maximum
number of supported taint marks, whereas overheads in
decoupled-taint implementations mainly depend on the
number of actually used taint marks. This choice allows a
runtime selection of the cost-accuracy trade-off.

However, our rejection of data widening may still be
flawed if overheads of data widening with a large number
of supported taint marks are still lower than with a
decoupled-taint approach. Therefore, we performed addi-
tional quantitative analysis to estimate the overheads of a
possible data-widening implementation. Fig. 7 shows the
latency increase and Fig. 8 shows the energy consumption
increase, both obtained using the Cacti v5.0 [28] tool, from
data widening in the register file, L1 cache, and L2 cache.
Both of these increases are mostly caused by the increase in
the structure’s size (i.e., longer bit-lines and other wires).
From these figures, we see that data widening causes
significant energy and latency increases in L1 and
L2 caches when using more than four taint marks. In
modern energy-constrained processors, this is likely to
reduce the processor’s clock frequency and/or its IPC,
resulting in performance overheads similar to those
incurred by a decoupled-taint implementation when using
a similar number of taint marks.

6 RELATED WORK

There is a large body of existing work, across many
disciplines, that attempts to detect IMAs in C and C++
programs. Therefore, in this section we can only discuss the
work most closely related to ours.

Program-analysis-based tools (e.g., [9], [10], [12], [14],
[33]) attempt to discover IMAs by performing various
types of static analysis on an application. Although
powerful, these tools may produce a large number of false
positives due to the conservative nature of the analysis
they perform, which is likely to alienate users. Language-
based approaches, such as Cyclone [15] and CCured [21],
are also static in nature; they attempt to remove the
possibility of IMAs by translating unsafe languages into
safe variants. Some of these approaches attempt to perform
an automated translation, but for large applications they
still involve programmer intervention, in the form of
rewriting or annotations. Overall, approaches based on
static analysis or program transformations can be consid-
ered complementary to dynamic approaches in terms of
strengths and weaknesses.

Dynamic approaches for IMA detection instrument a
target application to perform runtime monitoring. Instru-
mentation can either be done at the source-code level

(e.g., [8], [24], [34]) or a the binary level (e.g., [13], [25]).
Source-code level approaches typically impose less over-
head because they can leverage additional information not
present at the binary level. However, they have the problem
of not being able to track memory allocations or accesses
within external black-box libraries and components. Ap-
proaches based on dynamic instrumentation, conversely,
can instrument code on the fly and handle precompiled
external code. Among the approaches that work at the
binary level, Valgrind [25] is the most similar to our
technique, in that it uses a bit to keep track of which
memory has been defined and identify illegal accesses to
uninitialized memory. Unlike our technique, however,
Valgrind cannot detect accesses to memory that has been
initialized, but is being accessed through an illegal pointer.

Another popular approach for detecting IMAs is that of
using safe pointers (sometimes referred to as fat pointers)
[1], [7], [20], [21]. A smart pointer augments the pointer
value with the upper and lower bounds of the memory
object it points to. During the program execution, any
derived pointers from the original fat pointer inherit the
bounds information. For example, if a new pointer is
obtained as a sum of an existing base pointer and an offset,
the new pointer inherits the bounds metadata from that of
the base pointer. During a memory accesses, the metadata
of the fat pointer needs to be checked if the access is within
bounds in order to verify that this is a legal access.

Software-only implementations of these safe pointers
need to instrument the program code not only to intercept
allocation events that create pointers, but also to implement
the metadata propagation and checking mechanism. This
result in high overheads—even recent schemes that analyze
the code to eliminate redundant checks, such as SoftBound
[20], still incur average overheads in excess of 50 percent.
Another drawback of software-only IMA detection schemes
is that they are typically not thread-safe—significant
additional overheads would be needed to keep pointers
and their bounds consistent (i.e., pointers and their bounds
must be updated atomically, e.g., using a critical section or
a transaction).

Hardware-assisted solutions for safe pointers, such as
HardBound [7], alleviate the cost of storing and propagat-
ing the pointer bounds metadata, using bounds checking in
hardware and with a number of optimizations aimed at
efficiently storing and propagating this metadata to and
from memory. Additionally, hardware techniques such as
HardBound can maintain data/metadata consistency at a
relatively low cost—both HardBound and our new DIFT-
based technique store metadata (taints for our technique,
bounds for HardBound) in a packed array, decoupled from
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its data, and (as described in MemTracker [31] and
FlexiTaint [30]) can leverage the existing instruction replay
mechanisms in modern out-of-order processors to keep
their data and metadata consistent.

Even though safe pointers offer strong detection guar-
antees for spatial IMAs (access to a different region of
memory region), they cannot efficiently detect temporal
memory errors (access to memory the pointer is no longer
allowed to access). For example, an access through a
dangling pointer is undetectable with bounds information
alone, and would require additional expensive checks (e.g.,
a lookup in a hash table of still-allocated memory regions).
In contrast, our DIFT-based IMA detector can detect both
spatial and temporal IMAs with equal probability, because
the association between a pointer and the memory it points
to is broken when the taint of the memory location
changes—it is reset on deallocation and then set to a
different (with a probability that increases in proportion to
the number of available taint marks) when it is reused for
another allocation.

In addition to software-based approaches and hardware-
assisted safe pointer approaches, there have also been
numerous other proposals for hardware-assisted detection
of particular classes of IMAs. In SafeMem [22], existing
memory-error correcting codes were used to detect accesses
to unallocated memory. MemTracker [31] associates a state
with each memory location and uses a programmable state
machine to detect accesses incompatible with the location’s
current state (e.g., reads from uninitialized locations). Our
DIFT-based technique is more general than these ap-
proaches, in that it targets all spatial and temporal IMAs,
e.g., those that involve accesses to allocated and initialized
memory. For example, SafeMem and MemTracker can only
allow (or disallow) all reads from a location, but cannot
prevent reads using a given pointer while allowing reads
using another one.

Other related work includes DIFT support in hardware
[2], [6], [19], [29]. These schemes taint data that comes from
external inputs, propagate this taint at runtime, and detect
when input-derived values are used as jump addresses or
fetched as instructions. These mechanisms, as originally
proposed, cannot support the taint propagation rules
needed for our new IMA-detection technique. However,
they demonstrate that hardware support can provide taint
propagation with nearly negligible overheads, and are
complementary to our technique in that they could, with
some additional design effort, help amortize the cost of taint
propagation and checking hardware.

7 CONCLUSION

This paper presents a novel dynamic technique for
detecting IMAs. Our approach 1) taints a memory region
and the pointers that are allowed to point to that region
with the same taint mark, 2) propagates taint marks, and
3) checks memory accesses performed through pointers to
make sure that the pointer and the memory it accesses have
the same taint mark. If this is not the case, it reports an IMA
and stops the execution.

Our approach has several key advantages over previous
dynamic techniques for IMA detection. First, it is highly

effective: it was able to identify all known IMAs in the real
programs we used in our evaluation. Second, it is amenable
to a hardware-assisted implementation: detailed simula-
tions of a hardware-based implementation show average
performance overheads below 10 percent, even in multi-
threaded applications. Finally, unlike previous IMA detec-
tion techniques, our technique can easily be tuned to
achieve different trade-offs between performance overhead
and probability of detecting IMAs.
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