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While multicore processors promise large performance benefits for parallel applications, writing these ap-
plications is notoriously difficult. Tuning a parallel application to achieve good performance, also known as
performance debugging, is often more challenging than debugging the application for correctness. Parallel
programs have many performance-related issues that are not seen in sequential programs. An increase in
cache misses is one of the biggest challenges that programmers face. To minimize these misses, programmers
must not only identify the source of the extra misses, but also perform the tricky task of determining if the
misses are caused by interthread communication (i.e., coherence misses) and if so, whether they are caused
by true or false sharing (since the solutions for these two are quite different).

In this article, we propose a new programmer-centric definition of false sharing misses and describe
our novel algorithm to perform coherence miss classification. We contrast our approach with existing data-
centric definitions of false sharing. A straightforward implementation of our algorithm is too expensive to
be incorporated in real hardware. Therefore, we explore the design space for low-cost hardware support that
can classify coherence misses on-the-fly into true and false sharing misses, allowing existing performance
counters and profiling tools to expose and attribute them. We find that our approximate schemes achieve
good accuracy at only a fraction of the cost of the ideal scheme. Additionally, we demonstrate the usefulness
of our work in a case study involving a real application.
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1. INTRODUCTION

Multicore processors provide the potential for a huge increase in general-purpose pro-
cessor performance. Tapping this potential requires efficient use of the multiple cores
on the chip; that is, applications must be written so that their performance scales
with the number of available cores. This is often extremely challenging, even when
the underlying application is amenable to parallelization, because multithreaded (par-
allel) applications can suffer performance problems that either do not exist in serial
execution or that are aggravated by parallel execution.

One important class of such performance limiters consists of coherence misses, which
are caused by communication of data between cores, either intentionally (true sharing)
or unintentionally (false sharing). Since coherence misses do not occur in uniprocessor
execution, many programmers are not familiar with them. To understand the cause
of these misses, the developer must have a working knowledge and understanding of
the coherence protocol and how it interacts with caches. Without suitable tools, pro-
grammers are left to guess whether an increase in misses is caused by coherence and
whether such misses are caused by true or by false sharing. Further, most program-
mers do not have an in-depth understanding of computer architecture, which leads
them to interpret “excessive cache misses” as “data does not fit in cache.” Even those
programmers who are aware of the concept of coherence misses are still often surprised
by false sharing misses; without sufficient knowledge of the underlying hardware, the
presence of these misses is mysterious and even frustrating.1

Not understanding the underlying reason for excessive cache misses would not be
an issue if the same set of techniques could be used to alleviate all types of cache
misses. Unfortunately, the techniques for addressing different types of cache misses
are fundamentally different. Noncoherence misses in long-running applications and
on typical hardware are typically dominated by capacity misses, which are usually
alleviated by reducing the working set size using blocking transformations, more space-
efficient data structures, etc. True sharing misses are typically reduced by changing the
assignment of tasks to threads, or by using a different parallel algorithm. Finally, false
sharing is often easily addressed by separating affected data in memory, for example,
by adding padding.

Processor vendors understand that making processors with increased raw perfor-
mance is not sufficient: customers must see a real performance difference. This requires
that software vendors write their applications to take advantage of the increased raw
performance. To aid programmers in finding and eliminating performance bottlenecks
in their code (i.e., performance debugging), most processor vendors currently invest
some of the chip resources into support for performance counters [Intel 2007].

Unfortunately, existing solutions are either insufficient or inefficient for accurately
classifying coherence misses. Current performance counter infrastructures can in-
form programmers which points in a program are generating cache misses, but do
not specifically count coherence misses, which often leads programmers to attempt
time-consuming but futile (or even harmful) program transformations.

To overcome this problem, a profiling infrastructure should detect and breakdown
misses into noncoherence, true sharing, and false sharing misses, which can be sep-
arately attributed to particular points in the code and reported to the programmer
with minimal impact on original program behavior. With such an infrastructure, the
developer can focus on solving the performance problem rather than figuring out which
hardware mechanism is causing it.

1Our anecdotal evidence from observing inexperienced developers (senior-year computer science students at
Georgia Tech) suggests that many have not internalized even that false sharing exists as a concept, so they
are completely perplexed when their parallel code performs poorly due to these misses.
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Such profiling infrastructure can be implemented either as a software tool or as
an extension to the existing profiling counter infrastructure. A software tool would
either simulate or instrument an application to capture the memory behavior. Our
I-FSD algortihm (described in Appendix A) can provide such functionality. However,
a software-only false sharing analysis tool would have some inherent drawbacks, in
addition to requiring programmers to add yet another tool to their repertoire. In par-
ticular, the tool may perturb the behavior of the software it is analyzing in at least two
ways: (1) Instructions added by the tools could create additional memory accesses and
interfere with normal memory access patterns. (2) False sharing may depend on the
timing of different threads execution, which can be perturbed by software tools. Also, a
software false sharing detection tool will cause a large performance degradation (e.g.,
MemSpy [Martonosi et al. 1992], a software tool of similar complexity, gives a 57.9x
slowdown). With this in mind, in this article, we also provide the intellectual frame-
work and hardware support that is needed to extend existing performance counter
infrastructure with cache miss classification.

The main contributions of this article are as follows.

(1) We provide the first programmer-centric definition of true and false sharing for
invalidation-based cache-coherent machines, along with a novel algorithm to
classify coherence misses. We then discuss the relationship between the new
programmer-centric definition and prior dataflow-centric definitions. Unlike prior
definitions, which focus on whether cache misses are necessary in the dataflow
sense (i.e., is it needed to transfer data from a producer thread to a consumer
thread), our definition focuses on whether or not the cache miss would occur if
different data items were in different cache blocks. Intuitively, prior definitions ask
“Is this communication needed on every possible machine to obey the same true
dependence (dataflow) between threads?” In contrast, our definition asks “Will a
miss still occur on this particular machine if variables in memory are allocated
differently?”

(2) Although there have been several proposals for cache miss classification offline or
in architectural simulators [Dubois et al. 1993; Mattson et al. 1970; Torrellas et al.
1990], to our knowledge, this work is the first to propose classification of cache
misses on-the-fly in real hardware to drive performance counters and hardware-
assisted profiling.

(3) We explore the design space for different implementations of cache miss classifiers
(which we call as DeFT) based on our programmer-centric definition. This includes
a detailed cost-usefulness trade-off analysis and evaluation of several different
approximations that sacrifice classification accuracy to reduce hardware cost.

2. FALSE SHARING AND ITS IMPLICATIONS ON SCALABILITY

In cache-coherent Chip Multiprocessors (CMP), data sharing between threads primar-
ily manifests as coherence misses, which can further be classified as true sharing and
false sharing misses.

True sharing misses are a consequence of actual data sharing amongst cores, which
is intuitive to most programmers. One example is when a consumer (reader) of the
data must suffer a cache miss to obtain the updated version of the data from the
producer (writer). Scalability issues stemming from true sharing misses can typically
be addressed only by changing the algorithm, the distribution of work among cores, or
synchronization and timing.

In contrast, false sharing misses are an artifact of interaction between data place-
ment and cache blocks. As an example, consider a block containing two data items
where each data item is (exclusively) used by a different core. Every coherence miss
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Fig. 1. A parallel reduction showing false sharing on an array of counters (one-per-thread). The merging of
partial results is omitted for brevity.

Fig. 2. A parallel histogram computation illustrating false sharing on an indirectly accessed array. Locking
of counter array elements is omitted for brevity.

that happens on this cache block is a result of false sharing between these cores. Scal-
ability issues arising from false sharing are often alleviated by changing alignment or
by adding padding between affected data items.

2.1. Real-World Examples of False Sharing as a Scalability Limiter

We provide examples, taken from code written by experienced programmers, to illus-
trate some common situations where false sharing can occur and have a (sometimes
devastating) impact on parallel scalability.

Our first example involves an array of private counters or accumulators (one per-
thread), which is often used when parallelizing reductions as shown in Figure 1. There
is no true sharing in this code, as each thread is reading and writing a unique array
element. False sharing occurs when two threads’ counters lie in the same cache block.
This kind of code was encountered in real-world Web search, fluid simulation, and
human body tracking applications. A common fix is to add padding around each counter.
As a real-world example, we use facesim from the PARSEC-1.0 benchmark suite. The
benchmark’s authors spent multiple days to eventually identify that false sharing from
this loop is the primary source of performance problems. We ran the facesim benchmark
with the native input on an 8-core Intel Xeon machine and observed that, without
padding, false sharing limits the benchmark’s parallel scaling to 4x. After adding
padding, the benchmark achieves linear scaling (8x). A profiling tool that automatically
identifies and reports false sharing misses would have greatly helped the programmers.
A case study of applying our proposed support to this code is presented in Section 3.5.

Our second example, shown in Figure 2, involves an indirectly accessed data array.
It often occurs in histogram computation used in image processing applications and in
some implementations of radix sort. The pattern of indirections is input dependent, so
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Fig. 3. A red-black Gauss-Seidel-style array update showing false sharing on a finely partitioned array.

the programmer and compiler cannot predetermine how many accesses will occur to
each element, and which threads will perform them. This example involves both true
and false sharing. True sharing occurs when two threads update the same element.
False sharing occurs when two threads access two different elements in the same
cache block, which happens much more frequently. For example, with 64-byte blocks
and 4-byte elements, a block contains 16 elements; with a completely random access
pattern, false sharing is 15 times more likely than true sharing. A common fix is to
either add padding around each element (which addresses only false sharing) or to use
privatization2 to reduce both true and false sharing. This reinforces the importance of
knowing which types of misses are happening; if most are due to false sharing, padding
should be used, but if true sharing contributes significantly to coherence misses, then
privatization is needed. A histogram benchmark from a real-world image processing
application achieves only a 2x parallel speedup when run on a 16-core Intel Xeon
machine, mostly due to false sharing. With privatization, the benchmark achieves
near-linear scalability.

Our final example of false sharing involves finely partitioned arrays, such as those in
red-black Gauss-Seidel computation shown in Figure 3, which is again taken from real-
world code. In many applications, a data array is partitioned such that each partition
will only be written to by a single thread. However, when updating elements around
the boundary of a partition, a thread sometimes needs to read data across the boundary
(i.e., from another partition). The red-black approach avoids synchronization on each
element by treating the array as a checkerboard with red and black elements. Even-
numbered passes update red cells, and odd-numbered passes update black cells. An
update involves reading the Manhattan-adjacent neighbors, which are of a different
color than the cell being updated, and therefore not updated during the current pass
even if they belong to another thread’s partition.

Both true and false sharing occurs in this example. The first time a thread accesses
a cache block across a partition boundary, it incurs a true sharing miss because it
is reading data written by another thread during the previous pass. However, that
other thread is actively updating elements in the same cache block, which will trigger
additional misses that are all due to false sharing. This situation is most likely when
partitions are small; for example, if a parallel task is to update one row, and the tasks
are distributed to threads round-robin. This kind of computation was encountered in
real-world scientific codes (i.e., applications that involve solving systems of differential
equations). We ran an early real-world implementation of red-black Gauss-Seidel with
the preceding task distribution on an 8-core Intel Xeon processor. Parallel scaling is
limited to 3x. Padding around each cell can eliminate false sharing, but with significant

2Privatization involves using a separate (private) array for each thread, then merging partial results at the
end.
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loss in spatial locality. Grouping multiple rows together to be processed by the same
thread, and using two separate arrays for red and black cells improved the scaling to
almost 6x.

3. DETECTION OF TRUE AND FALSE SHARING MISSES

In this section, we first describe the relatively simple mechanism for distinguishing
coherence misses from noncoherence misses, then discuss an Ideal False Sharing De-
tector (I-FSD) mechanism that further classifies coherence misses into those caused
by false sharing and those caused by true sharing. We then contrast our I-FSD algo-
rithm with the algorithm proposed by Dubois et al. [1993] and show the key differences
between them.

3.1. Identification of Coherence Misses

Coherence misses can be distinguished from other (cold, capacity, or conflict) misses by
checking if the cache block is already present in the cache. For noncoherence misses,
the block either never was in the cache (cold miss) or was replaced by another block
(capacity or conflict miss). In contrast, a coherence miss occurs when the block was
invalidated or downgraded to allow another core to cache and access that block. Co-
herence misses are easily detected with a minor modification to the existing cache
lookup procedure: a cache miss is identified as a coherence miss if a matching tag is
found but the block does not have an appropriate state (for MSI coherence protocol,
finding a cache block in Invalid state for read operations, or Shared/Invalid states for
write operations); conversely, the miss is identified as a noncoherence miss if no block
with a matching tag is found. This technique has a few corner cases that are further
elaborated in Section 4.5, but is still highly accurate.

3.2. Need for a Programmer-Centric Definition of False Sharing

We define false and true sharing misses based on whether the miss can be avoided
if the data item(s) involved are placed in different cache block(s). In contrast, prior
works [Dubois et al. 1993; Torrellas et al. 1990] define false and true sharing misses
according to whether the miss is necessary, that is, whether the miss is needed to
communicate a new value regardless of the underlying hardware. Note that this is not
meant to imply that prior definitions are incorrect. Instead, the different definitions are
driven by different needs. Prior definitions were derived for the purpose of comparing
the behavior of different coherence mechanisms and algorithms; our aim is to help
programmers and/or compilers decide how to modify code to improve performance on
a real cache-coherent machine with an invalidation-based protocol.

3.3. Ideal False Sharing Detector (I-FSD) Based on Programmer-Centric Definition

We define true and false sharing using the notion of “overlapping” accesses by different
cores to the same line. When core A incurs a coherence miss on a line, it is a true
sharing miss if and only if there is at least some “overlap” between the parts of the
line core A accesses and the parts of the line that were accessed by other cores since
the line was invalidated or downgraded in core A’s cache. “Overlap” exists when other
cores have accessed the same memory location in a way that requires coherence action
when core A accesses it. Thus, a read access from the core A has overlap with a write
from another core if the address range being read intersects the address range written.
Coherence actions are necessary in this case to bring the new value to the core A.
Similarly, a write access from core A has overlap with a read or write access from
another core if their address ranges intersect. Coherence actions are necessary in this
case to invalidate the stale version of the data in the caches of other cores. As we
will discuss in Section 3.4, this coherence-action-oriented overlap definition is the key
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Fig. 4. State maintained and used by our I-FSD coherence miss classification algorithm.

difference between our programmer-centric definition and prior definitions of true and
false sharing.

Our definition considers overlap between accesses from other cores and all accesses
from core A between the miss and when the line is replaced, invalidated, downgraded,
or upgraded.3 This means that while the line is in the cache, if any access has overlap
with other cores, the coherence miss that brought the line into the cache (or upgraded it)
is a true sharing miss. This is needed because it is possible that the access that triggers
the miss may not be involved in true sharing, but subsequent accesses to different parts
of the same block may be. Because the miss being considered has brought the entire
block into the cache, these subsequent true sharing accesses do not result in coherence
actions. However, if the original miss is treated as a false sharing miss and the code
is modified to avoid it (e.g., by separating the data items into different cache blocks),
the true sharing would still result in a miss. In light of this, a coherence miss that is
involved in both true and false sharing is defined to be a true sharing miss. This is
similar to prior definitions (e.g., Dubois et al. [1993]).

Appendix A presents an algorithm that uses the preceding definition to distinguish
between true and false sharing misses. This Ideal False Sharing Detector (I-FSD) has
two main mechanisms: an Access Tracker (AcT) and an Overlap Detector (OD). The
AcT mechanism maintains the information about past accesses by different cores that
will be needed to classify future coherence misses. After a coherence miss occurs, the
OD mechanism determines whether that miss was caused by true or false sharing.

I-FSD keeps the state shown in Figure 4 for its AcT and OD mechanisms. For each
word in main memory and shared caches, I-FSD tracks which core was the last to write
to that word (Writer field) and which cores have read that word since it was last written
(Readers bit-vector). We refer to this state as the global AcT state. For each private
cache block, I-FSD keeps a Potentially False Sharing (PFS) bit. It sets this bit at the
time of a coherence miss to indicate that this line might have been brought into the
cache (or upgraded) because of a false sharing access. On every access to a line with
the PFS bit set, I-FSD uses the global AcT state to check if the access has overlap with
another core; as described earlier, this means the coherence miss is a true sharing miss.
When a line with the PFS bit set is invalidated, downgraded, upgraded, or replaced,
I-FSD classifies the miss that brought the line in (or upgraded it) as a false sharing
miss. For each private cache block, I-FSD also keeps a Program Counter (PC) field to
record the static instruction that suffered a coherence miss on it for proper attribution
once I-FSD finally determines if the miss was from true or false sharing.

3We treat upgrade misses (i.e., writes to lines in shared state) as coherence misses. If the line suffering an
upgrade miss previously suffered a different coherence miss, we classify the previous miss as true or false
sharing based on accesses up to the upgrade.
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Fig. 5. Accurate classification requires us to keep access information even for blocks that are no longer in
any cache.

3.4. Comparison with Dubois et al.’s Scheme

Dubois et al. [1993] propose algorithms to classify coherence misses for invalidation-
and update-based cache coherence protocols. Since our I-FSD algorithm is intended for
real invalidation-based coherence protocols that are implemented in modern multicore
processors, we contrast it with the invalidate-based algorithm described by Dubois et al.
[1993], which maintains a stale bit for every cache word. This stale bit is maintained
for every word in the private-level caches and is used to track whether a new value
was produced by any core to the word and whether the value was consumed by this
core. When a write happens on a word, the caches that currently have the word clear
the stale bit to indicate that a new value is produced. A subsequent read of this word
denotes consumption of a fresh value produced by a write and indicates true sharing.
This also sets the per-core stale bit so any further reads from the same core are found
to use a stale value. When the cache block is replaced, the information regarding stale
bits are discarded and the bits are reset to track the producer-consumer patterns of
the new incoming block.

Both Dubois et al. [1993] and our scheme perform delayed classification of coherence
misses and detect any true sharing of data between accesses by different cores. The
difference is in how true and false sharing are detected for each memory access. In
Dubois et al.’s scheme, true sharing is determined as dataflow from producers to con-
sumers, and all other sharing patterns are considered to be false sharing. In contrast,
our scheme classifies coherence misses based on whether the miss would be eliminated
if data items were placed in different cache blocks.

As a result, there are two main cases where our I-FSD and Dubois et al. differ in
classifying a miss. First, write accesses that overwrite data read or written by other
cores are assumed nonessential (false sharing) in Dubois et al. [1993], but are consid-
ered true sharing in our I-FSD. In a single producer-multiple consumer pattern (e.g.,
Gauss-Seidel code in Section 2.1) and multiple producer-multiple consumer pattern
(e.g., histogram code in Section 2.1), coherence misses are highly likely to happen in
multiple cores (the producer and the respective consumers). Dubois et al. may clas-
sify producer-side misses as false sharing and consumer-side misses as true sharing,
which may underestimate the effect of true sharing in such situations and confuse
the programmer. Our I-FSD algorithm classifies producer- and consumer-side misses
consistently.

Second, the Dubois et al. [1993] algorithm clears stale bits on every cache block re-
placement. This results in loss of history about the “staleness of values” (information
that a consumer had already read the value from the cache word). When the word is
subsequently read by the core (after another miss), the stale bit is zero and hence, true
sharing is indicated by Dubois et al. Figure 5 shows an example where the cache block
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Fig. 6. Comparison between I-FSD and Dubois et al. Each bar has three portions- bottom portion shows
the percentage agreement between the two schemes, and the middle and top portions show the percentage
breakdown of disagreement between the two schemes.

having items X, Y, and Z has been replaced by both cores A and B. When core A suffers
a coherence miss, Dubois et al. [1993] classifies “Read Z” as true sharing access because
the information regarding the “staleness” of Z has been lost during cache block replace-
ment. Our I-FSD algorithm uses the global AcT state to correctly classify the access
as false sharing, which is the correct programmer-centric classification because the
coherence miss would not happen if Y is separated from Z and X. We believe that these
misclassifications in Dubois et al. stem from a desire to have more efficient implemen-
tation of coherence miss classification in a cache simulator. In contrast, our I-FSD is
designed to provide a programmer-centric “ground-truth” classification against which
we can evaluate approximate classification schemes. We note that any approximations
that are crafted into I-FSD itself would jeopardize the soundness of the evaluation of
further approximations in classification schemes.

Figure 6 shows results of experiments that compare coherence miss classification
reported by our I-FSD and by Dubois et al. (configuration parameters used in our
evaluation are shown in Section 6). The bottom portion of each bar shows the percentage
of coherence miss classifications that Dubois et al. [1993] and I-FSD schemes agree
on. In many benchmarks, the two schemes agree for at least 75% coherence misses
except fft, ocean, raytrace, and blackscholes. The middle portion of each bar shows
the percentage of coherence misses where our I-FSD identifies true sharing on the
writer side, but Dubois et al. classifies the same misses as nonessential (false sharing).
A large portion of such misclassifications occur in benchmarks such as ocean (62%),
blackscholes (45%), raytrace (28%), and fluidanimate (21%). Finally, the top portion
of each bar shows the percentage of coherence misses that Dubois et al. classifies as
essential (true sharing) because the relevant stale bits were lost due to replacement,
whereas our I-FSD algorithm uses its global AcT information to identify that these
misses are actually caused by false sharing. This type of misclassification in Dubois et
al. occurs relatively frequently in several benchmarks, such as fft (29%), volrend (14%),
and bodytrack (14%).

3.5. Case Study: Facesim Benchmark

To illustrate how a cache miss classification scheme could be combined with existing
performance counter infrastructure to provide insight for performance debugging, we
present an example case study for the Facesim benchmark from the Parsec-1.0 suite
[Bienia et al. 2008]. The code has been tested and fine-tuned for performance before re-
lease, but the original code that suffers false sharing is still present in the released code.
We restore this early original code for this case study, and use I-FSD implemented in a
simulator to classify coherence misses and attribute them to individual code addresses
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Table I. Program Counters with False Sharing
Misses in the Modified Facesim Benchmark

Program Counter False Sharing Count
4cc084 9921186
4cc074 7803903
53eb34 251457
53f2ac 214323
53f5d8 201885
... ...
Total 18854631

(static instructions). The results of this attribution (Table I) point to two instructions,
4cc084 and 4cc074, which are responsible for 24.5% of cache misses, and show that
94% of misses on these instructions are caused by false sharing. We use the addr2line
utility from the GCC toolchain to identify source-code lines for these instructions. We
find that they point to lines inside the loop where accumulators rho new and super-
norm are being updated in the One Newton Step Toward Steady State CG Helper II()
function. We change the loop to accumulate the results locally into local new rho and
local supernorm and update new rho and supernorm after the loop is complete. This
change effectively restores the released version of the code, and it improves perfor-
mance scaling from a 4x parallel speedup on a real 8-core machine to near-linear
(almost 8x) speedup. Further details on scalability of this benchmark can be found in
Bienia et al. [2008].

4. DESIGN SPACE EXPLORATION FOR PRACTICAL FALSE SHARING DETECTORS

Our ideal I-FSD scheme described in Section 3.3 achieves its accuracy by keeping
global and per-core state for every word in memory which results in enormous space
overheads. Also, a lookup of the word’s global AcT State entry is needed on each access,
making the scheme impractical for hardware implementation even if its hardware cost
can otherwise be tolerated. Therefore, we first describe how our scheme can be adapted
(without loss in accuracy) for more cache-friendly operation.

Further, to reduce memory space overheads, a reasonable approach would be to bound
the state while still maintaining fairly good accuracy in classifying relevant coherence
misses. In Sections 4.2 and 4.3, we describe and examine a range of design choices that
trade off accuracy for lower hardware costs. The key to overcoming implementation
costs posed by I-FSD is to reduce the state used by both its AcT and its OD mechanisms.
We explore several designs that have varying cost versus accuracy trade-offs shown in
Figure 7. We perform experimental evaluation of these design points in Section 7.

4.1. I-FSD with Fewer Accesses to Global State

I-FSD scheme requires a lookup of word’s global AcT state entry on every access. In
this section, we show how I-FSD can be adapted (without loss in accuracy) for more
cache-friendly operation. This adaptation consists of keeping access updates in the local
cache and only propagating those updates to the global AcT State on replacements and
coherence actions. Similarly, for OD we can avoid frequent checks of the global AcT
State by collecting relevant access information at the time of the miss and caching this
information in the local cache. The additional state needed for these modifications is
shown in Figure 8.

To keep the global AcT State up-to-date, we record which words have been read
and written by the local core using per-core Own-Access4 bits. A read simply sets the

4Own-Access indicates to the core’s cache that the word has been accessed by its own (local) core and doesn’t
imply any ownership (in the coherence sense of the word).
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Fig. 8. Additional state to reduce frequency of global state accesses in our I-FSD coherence miss classification
algorithm.

word’s Own-Access Read bit. A write sets the Write bit and resets the Read bit. Each
replacement, invalidation, upgrade, or downgrade received by the local cache results
in sending the per-core Own-Access bits to the global AcT State, which is then updated
accordingly.5

When a coherence miss occurs, the global AcT State of each word in that block can
be examined (after it is updated as described previously) and the condensed Others-
Access information can be sent to the requesting core.6 With this per-core Others-
Access information, the OD mechanism finds overlap when reading a word whose
Others-Access Write bit is 1, or when writing a word where any (Read, Write, or both)
Others-Access is 1.

While it may seem that some inaccuracy in classification can be caused by delaying
updates of the global AcT State or by not updating per-core Others-Access bits after
the miss being classified has occurred, such inaccuracy cannot occur. Delayed updates
cannot be a source of inaccuracy because a coherence miss triggers updates to global

5If the Write bit is 1, the core’s ID is placed into the Writers field and all Readers bits for that word are
cleared; if a Read bit is set to 1, the AcT Readers bit corresponding to that core is set.
6The Others-Access Write bit for a word is set if the word’s global Writer field points to another core. The
Others-Access Read bit for a word is set if any Readers bit (except the one corresponding to the requesting
core) for that word is set in the global AcT State.
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AcT state, bringing that state sufficiently up-to-date to accurately classify that miss7.
Similarly, the lack of updates to Others-Access state after a miss cannot result in incor-
rect classification: a write by another processor triggers an invalidation and immediate
classification, so no stale Others-Access state is possible; a read by another processor
either triggers a downgrade (and thus an update) or the local cache is only read-sharing
the line and Reads bits in the Others-Access state are irrelevant (OD for reads only
examines per-core Writer bits).

4.2. Approximate Access Tracking

The AcT scheme used in I-FSD maintains global AcT state for the entire memory
throughout the program execution. We call this Total AcT in Figure 7. The number of
bits needed for global AcT entries grows proportionally with both the number of cores
and the size of the memory. The overhead (as a percentage of on-chip cache space)
grows linearly with the number of cores; with 4 cores and 32-bit words, the storage
overhead is 19%; with 32 cores, the storage overhead is 116%. Therefore, this solution
is impractical in real hardware, but it is useful as a baseline for accuracy in our design
space exploration.

The first simplification of AcT maintains AcT state only for cache blocks in the
on-die caches. We call this Near-Total AcT, and its state can be kept with the lowest-
level shared cache, for systems that have one. For chips with only private caches and
a separate mechanism for maintaining coherence (e.g., a directory), the classification
state can be kept with the coherence state. This Near-Total AcT scheme can misclassify
coherence misses due to “loss of history” between accesses (see example in Figure 5).
Note that this loss of accuracy is not the same as the loss of “stale” bits in Dubois
et al. [1993]; for example, using private L1 and shared L2 caches, Dubois et al. [1993]
loses staleness information for any block that is not present in L1 caches, even if the
block is still present in the (usually much larger) L2 cache. In contrast, our Near-Total
AcT approximation only loses information for blocks that are no longer present in any
on-chip cache (private L1 or the large shared L2). Furthermore, our Near-Total AcT is
an approximate scheme and its accuracy will be compared to a fully accurate I-FSD
scheme to find out exactly what the loss of accuracy is.

A more aggressive AcT simplification maintains only a limited pool of global AcT
entries, and allocates entries from this pool on-demand. We call this Partial AcT. In
this approach, an entry is allocated from the pool for a block when that block is either
invalidated or downgraded, in anticipation of possible coherence misses on that block in
the future. Subsequent accesses by various cores to the block are tracked and updated
as described in the I-FSD algorithm. An AcT entry is freed when the block is no longer
in any of the coherent caches (same as in Near-Total AcT), and also when the free
pool is empty and an entry is needed for another block (using a replacement policy).
Note that this approach cannot classify the very first coherence miss for a particular
block but, because its allocation of AcT entries depends on seeing coherence actions,
it actually spends the limited global AcT resources only on blocks that are actually
involved in coherence. This Partial AcT approximation can lead to misclassification of
coherence misses for any cache block whose AcT state is not tracked.

The most aggressive AcT simplification does not maintain any AcT state at all; it
infers others-access information by comparing the stale value of the cache block with

7A write miss results in invalidations for all other sharers, whose Own-Access information is used to fully
update Global State for the block. A read miss downgrades the previous writer (if any), whose Own-Access
Write bits update the Global State’s Writer fields for the block. Note that Reader bits are not needed to
classify reads, and any writes will trigger full invalidation and bring Reader bits up-to-date.
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incoming values.8 If the data value has changed, then a write by another core is inferred
and true sharing accesses is detected, otherwise, the access is classified as false sharing.
We call this Zero AcT. This approximation suffers two additional sources of inaccuracy:
(1) losing others-read information completely, which brings this scheme closer to Dubois
et al. because reader-writer overlap is not detected as true sharing (but writer-writer
patterns are still correctly classified), and (2) incomplete others-write information due
to idempotent writes (e.g., lock variables before and after critical sections have identical
values although during the critical section, the core sets and resets lock variables).

4.3. Approximate Overlap Detection

The OD implementation used in our I-FSD maintains per-core state for all blocks in
coherent private caches. We call this Total OD in Figure 7, and we use this implemen-
tation as a baseline for OD accuracy.

The first simplification in OD we consider maintains a limited per-core pool of OD
entries, and allocates an OD entry only when a coherence miss occurs9, and frees it
when the miss is eventually classified. We call this approach Partial OD, and it does not
result in any misclassification of coherence misses. However, it may omit classification
of coherence misses that occur when all entries in the per-core pool are in use. Still,
Partial OD only omits miss classification when many other misses are being classified,
so it is expected to still classify many coherence misses in spite of its lower cost.

The most aggressive simplification to OD does not maintain per-core state corre-
sponding to OD for any cache block, and classifies a miss based only on the access
that triggers it. We call this Zero OD, and note that it can overestimate the number
false sharing misses by missing subsequent true sharing accesses to the same block
(as discussed in Section 3.3).

Even though the preceding discussion appears to categorize Access Tracking and
Overlap Detection into discrete design points, in reality, we get a continuous spectrum
of design points along both axes, with Partial State providing a continuum between
Total and Zero states along either axis. Ideally, a design point should be selected to
minimize the hardware cost while still providing the programmer with enough accuracy
to correctly diagnose performance bottlenecks.

4.4. Handling of Nonprimary Coherent Caches

Per-core state is relatively easy to update and check in a primary (L1) cache, where the
actual address of each access is visible to the cache controller. In lower-level caches, only
cache line addresses for misses and replacements in higher-level caches are visible. For
systems where multiple levels of cache may be involved in coherence (e.g., with private
L2 caches), information from a private nonprimary (L2) cache should be passed to the
primary cache (L1) when it suffers a cache miss. The L1 cache then updates per-core
AcT and OD state and forwards this information back to the L2 cache when the block
is replaced, invalidated, upgraded or downgraded from the L1 cache.

4.5. Possible Inaccuracies in Coherence/Noncoherence Miss Identification

The relatively simple mechanism to detect coherence misses described in Section 3.1
can err in two ways. First, on power-up or after a page fault, the state of the block
is set to invalid, but the tag need not be initialized and may accidentally match a
requested block. This should be quite rare and is random enough to not attribute

8This technique of detecting false sharing through data comparison was used by Coherence Decoupling [Huh
et al. 2004] to save cache access latency due to false sharing misses.
9Note that, if AcT has no state for a block (e.g., in Partial AcT), we can omit allocation of OD state without
further loss in accuracy.
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Fig. 9. Breakdown of coherence misses. For each benchmark, the two bars represent breakdown of coherence
misses on caches that (1) always replace LRU block, and (2) prioritize invalid blocks over LRU block.

significant numbers of misses to any particular piece of code. Second, cache replacement
could prioritize replacement of invalidated blocks, which can destroy the evidence of
a coherence miss. For highly contended blocks involved in sharing patterns, there is
little time for a block to be replaced between its invalidation and the subsequent miss,
so replacement priority is not expected to obscure enough coherence misses to hide a
scalability problem. Figure 9 validates this expectation quantitatively, by comparing
cache miss classification results in caches that do and caches that do not prioritize
replacement of invalid blocks. We find that prioritization of invalid blocks has only a
small effect on the breakdown of true and false sharing misses and hence is unlikely
to mislead programmers.

5. RELATED WORK

True and false sharing misses have been defined by Torrellas et al. [1990], Eggers and
Jeremiassen [1991], and Dubois et al. [1993]. Each of them also describe an offline
classification algorithm. Bianchini and Kontothanassis [1995] and Foglia [2001] have
proposed algorithms for classification of coherence-related overheads for different pro-
tocols based on offline analysis of data access patterns. In contrast to these schemes
and definitions, the mechanisms we describe in this article are designed to be imple-
mented in real hardware for integration with existing online performance debugging
infrastructures. Tools such as MemSpy [Martonosi et al. 1992], SIGMA [DeRose et al.
2002], SM-prof [Brorsson 1995], PIN [Luk et al. 2005], and Valgrind [Seward 2004]
are software-only performance debuggers to study memory bottlenecks. Unlike these
simulation-based tools, which suffer major performance overheads, our coherence miss
classification mechanisms are intended to classify cache misses at-speed and drive per-
formance counters for performance debugging of real applications with real input sets
running on actual hardware.

Coherence Decoupling [Huh et al. 2004] uses local data comparison that we describe
in Section 4.2 to detect false sharing. It speculatively reads values from the invalid
cache lines to hide latency of a cache miss caused by false sharing. It then uses the
incoming (coherent) data values to verify successful value speculation. If the values
differ (true sharing of data between the cores), recovery action is triggered to recover
from misspeculation. In our design space, coherence decoupling maps to Zero OD with
Zero AcT.

Prior works have also looked at avoiding false sharing misses by associating
coherence protocol information with cache subblock units [Dubnicki and LeBlanc
1992; Goodman 1987]. This type of design, also known as sectored cache, needs to
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Table II. Splash-2 Benchmarks and Their Inputs

Benchmark Input Benchmark Input
Barnes 16K Cholesky tk29.0
FFT 64K FMM 16K
LU 512×512 Ocean 258×258
Radiosity -room Radix 256K
Raytrace car Volrend head
Water-sp 512 Water-n2 512

Table III. PARSEC Benchmarks and Inputs

Benchmark Input
Blackscholes 16k options
Bodytrack 4 cameras, 2 frames, 2000 particles, 5 layers
Facesim 80598 particles, 1 frame
Fluidanimate 100000 particles, 5 frames
Swaptions 32 swaptions, 10000 simulations

accommodate coherence information for subblock units at various granularities for a
given cache block size. Also, the coherence protocol implementation should be modified
extensively on top of changes to the existing cache hardware. On the contrary, our
scheme is aimed at providing feedback directly to the programmers through minimal
hardware changes that are off the critical path that could affect program performance.

Numerous research proposals have been made for improving the performance
counter infrastructure [Sastry et al. 2001], attribution of performance-related events
to particular instructions [Dean et al. 1997], and for sampling and processing of pro-
filing data [Alexandrov et al. 2007; Mousa and Krintz 2005; Nagpurkar et al. 2006;
Zhao et al. 2007; Zilles and Sohi 2001]. Our cache miss classification mechanisms are
synergistic with improvements in performance counters, sampling, and profiling in-
frastructure: better profiling infrastructure increases the value of our classification to
the programmer, and our scheme enhances the value of a profiling infrastructure by
providing additional event types that can be profiled.

Much work has also been done in sofware tools for multithreaded correctness and in
thread-safety of tools themselves. Chung et al. [2008] proposed a dynamic binary trans-
lation framework and use transactional memory mechanisms to detect and correct data
races in multithreaded programs. Nagarajan and Gupta [2009] propose architectural
support for exposing cache-related events to software; this enables better control of
interprocessor shared memory dependences for the programmer as well as handle mis-
speculation when speculatively executing past barriers. Ruwase et al. [2010] explore
compiler-based optimizations to reduce runtime overheads for dynamic correctness
checking mechanisms.

6. EVALUATION SETUP

We evaluate our DeFT mechanisms using SESC [Renau et al. 2006], a cycle-accurate
execution-driven simulator, to model a 64-core chip-multiprocessor with 2.93GHz
4-way out-of-order cores, each with a private 32KB, 4-way set-associative L1 cache
and a private 256KB, 16-way set-associative L2 cache. L2 caches are kept coherent
using the MESI protocol, and all cores share an 8MB, 32-way L3 cache. The block size
is 64 bytes in all caches.

For partial state schemes that hold a limited number of entries, a replacement
policy is needed to make room for incoming blocks. We use the NkMRU(Not “k” Most
Recently Used) replacement policy, which replaces a random entry that is not among
the “k” most-recently-used cache blocks. It should be noted that not all invalidated or
downgraded cache blocks will eventually suffer coherence misses, so we promote an
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entry into the k most-recently-used set only when its cache block actually suffers a
coherence miss in one of the caches.

We use two sets of benchmarks for our evaluation: Splash-2 benchmarks [Woo et al.
1995] (Table II) and all benchmarks from the PARSEC-1.0 [Bienia et al. 2008] bench-
mark suite that we could compile to run in our simulator (Table III) Both benchmark
suites are highly scalable and thoroughly tuned. Therefore, our experiments show the
accuracy of our DeFT mechanisms with respect to I-FSD in these applications, but
we do not expect to find actual scalability problems. We measure accuracy (how many
misses are misclassified) and perform attribution to individual program counters (static
instructions) to see how closely attribution results for each DeFT scheme match those
reported by I-FSD. This helps us to determine whether the programmer would still get
a meaningful picture about false and true sharing in the program.

We estimate chip area overheads of DeFT mechanisms schemes using Cacti
5.3 [Jouppi et al. 2006], an integrated cache access time, area and dynamic power
model. These area costs come from per-core OD and AcT state maintained by L1 and
L2 caches as well as global AcT state in the L3 cache.

Our DeFT schemes could result in performance overheads in two ways: (1) when
primary caches update per-core read/write vectors for every access, there is a 0.41%
latency increase for 32 KB L1 caches used in our experiments and (2) when the on-die
interconnect becomes saturated with extra traffic from AcT state needed for reading
and updating information in the central repository or global pool. All other latencies
for AcT and OD state updates can be hidden by looking up state in parallel with
data accesses and/or updating state after data access completes. We did not find any
instances of interconnect saturation, and a <1% L1 latency increase is unlikely to affect
performance. Because our mechanisms are not expected to affect performance, we do
not show any performance overhead results.

We do not have access to an existing software tool that implements I-FSD or another
false sharing detection algorithm to directly collect accuracy or performance data, and
building such a tool is beyond the scope of this article. We therefore concentrate on
DeFT design points in our evaluation. However, we try to give the readers a sense for
what we could expect from a software tool. Regarding accuracy, we are not aware of any
cache miss classification algorithm whose accuracy (in the programmer-centric sense)
matches or exceeds I-FSD. Regarding performance, we cite performance overheads of
other sofware-based memory analysis tools; we expect a software false sharing detector
tool to have similar overheads.

7. EXPERIMENTAL EVALUATION

In this section, we first show that coherence misses become more prevalent as we
increase the number of cores. We then quantitatively examine how classification accu-
racy and hardware cost of DeFT schemes is affected by approximations along the AcT
and OD axes for 64 cores. Based on this analysis, we also examine specific AcT-OD
combinations whose cost is low enough for actual hardware implementation.

When evaluating the accuracy of DeFT schemes, we use our I-FSD algorithm as the
baseline, and measure two aspects of potential inaccuracy. First, we measure on how
many misses there is disagreement (true or false sharing miss) between the particular
DeFT scheme and I-FSD. Second, some of the DeFT schemes (Partial AcT or OD state)
cannot classify all coherence misses, so we measure the percentage of coherence misses
that are actually classified. We note that this inability to classify all coherence misses
effectively creates a sampling method, and results in inaccurate reporting to the pro-
grammer only when the sample (coherence misses that are classified) is not sufficiently
representative of the population (all coherence misses). Also, all coherence misses are

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 8, Publication date: July 2011.



DeFT: Design Space Exploration for On-the-Fly Detection of Coherence Misses 8:17

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ba
rn

es

ch
ol

es
ky fft

fm
m lu

oc
ea

n

ra
di

os
ity

ra
di

x

ra
yt

ra
ce

vo
lre

nd

w
at

er
-n

2

w
at

er
-s

p

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k

fa
ce

si
m

flu
id

an
im

at
e

sw
ap

tio
ns

Non-coherence

Coherence

Fig. 10. Breakdown of all cache misses for 8 and 64 cores.

detected by DeFT schemes, but classification of these coherence misses uses sampling
in schemes that have partial state.

7.1. Scaling of Coherence Misses

Figure 10 shows the breakdown of cache misses into coherence and noncoherence
misses as we increase the number of cores from 8 to 64 for our benchmarks. With more
cores, coherence misses represent a larger percentage of all cache misses. As a result,
performance issues related to true and false sharing become worse when more cores
are used, and are more likely to be a scaling limiter. As a result, tools and mechanisms
for identification and classification of coherence misses are likely to be increasingly
relevant in the near future.

7.2. Varying AcT state

Figure 11 shows accuracy and classification rate results for five different AcT mecha-
nisms, using Total OD in combination with each AcT mechanism. This figure shows,
for each benchmark (from left to right), Near-Total AcT (global AcT state kept for every
block in the shared L3 cache, with a total of 256k entries), three Partial AcT design
points with global AcT pools of 16k, 4k, and 1k entries, and Zero AcT (AcT information
inferred using data comparison).

As expected, Near-Total AcT achieves nearly perfect accuracy. The few disagreements
(<1% of coherence misses in ocean, none in other applications) are caused by situa-
tions similar to the one shown in Figure 5. Partial AcT with 16k and 4k entries omit
classification of relatively few (<10% except for fmm) coherence misses and achieve
excellent (>90%) agreement with I-FSD, so we expect low distortion of results reported
to the programmer. Partial AcT with 1k entries result in some reduction in actual accu-
racy and fewer classifications (more potential for sampling error). Finally, Zero AcT has
no sampling error but has substantial disagreement with I-FSD, resulting in incorrect
classification of 4.5% (in radix) to 33.5% (in barnes) of coherence misses. To estimate
the actual impact on the programmer of both inaccuracy (disagreement with I-FSD)
and sampling (inability to classify), we perform an experiment where we assume that
the programmer should be provided with a breakdown of all coherence misses by static
instruction and, for each static instruction, by type (true or false sharing). This is con-
sistent with the most common usage of performance counters today, and will tell the
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Fig. 11. Accuracy for different AcT approximations with classification rates (% of coherence misses that are
actually classified) shown above each bar. For each benchmark, the five bars (from left to right labeled 1
through 5) represent Near-Total AcT state, Partial AcT state with 16k, 4k, 1k entries and Zero AcT state.

programmer both: (1) which instructions (lines of code) are causing most of the misses
and (2) the dominant types of misses for each instruction.

Figure 12 shows, for each AcT scheme, the Pearson’s correlation coefficient between
the scheme’s report and the report from I-FSD. We observe that even 1k-entry Partial
AcT schemes, despite having a significant fraction of coherence misses go unclassi-
fied, still provide reports that nearly perfectly correlate with I-FSD reports for all
applications.

A final observation from Figure 12 is that Zero AcT often produces reports that do
not have very high correlation with correct (I-FSD) reports. We examined actual Zero
AcT reports and found that in several applications the top few (e.g., ten) offenders in
each category (false and true sharing) in Zero AcT and I-FSD still mostly match for
many (but not all) applications, but in most applications there are significant differ-
ences in percentages in each category for a particular instruction. Overall, Zero AcT
would often still lead to correct conclusions (which kind of fixes are needed and where
they should be made), but in some applications the results would likely mislead pro-
grammers into attempting (time consuming) fixes that do not improve (and may even
hurt) performance.

Figure 13 shows the area cost of global AcT state for each AcT mechanism, shown as
a percentage of total on-die cache area. Note that the total cost of a DeFT scheme is a
combination of global AcT cost (shown here) and per-core AcT and OD cost which will
be discussed in Section 7.3. The most accurate Near-Total AcT scheme keeps global
AcT state for all words in the shared L3 cache, which represents a 4.36% overhead.
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Fig. 12. Correlation coefficient between number of false sharing misses suffered by static instructions in
Partial AcT, Zero AcT schemes against Near-total AcT. Samples of static instructions are chosen by Partial
AcT schemes.

Fig. 13. Area overhead of AcT state as a percentage of on-die cache area. Total OD state adds 7.35% area
overhead to on-die caches.

Partial AcT reduces AcT cost to about 1.7%, 1.6%, and 1.25 for 16k, 4k, and 1k-entry
global AcT pools, respectively. Finally, the Zero AcT scheme has no global AcT state
(cost of global AcT support is zero).

Since Zero AcT is the most desirable mechanism in terms of cost, we conducted
additional experiments to gain insight into what is causing its inaccuracy. We modified
Total AcT to ignore updates to Reader bits in global AcT state (to model Zero AcT’s
lack of such state) and modified Total AcT to not update the Writer field in global
AcT state for silent writes (to model Zero AcT’s inability to identify such writes). We
find that nearly all of Zero AcT’s inaccuracy is due to these two limitations, but that
neither of the two is dominant in all applications: missing read information is the main
culprit in barnes, fmm, radiosity, and blacksholes, both limitations are about equally
responsible in volrend and facesim, and missing silent writes is the dominant problem
in the remaining benchmarks.

7.3. Varying OD state

Figure 14 shows accuracy and classification rates for four different OD mechanisms,
using Near-Total AcT state. The figure shows, for each benchmark (from left to right):
Total OD (OD state kept for every cache block with a total of 4k entries for each private
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Fig. 14. Accuracy for different OD approaches with classification rates (% of coherence misses that are
actually classified) shown above each bar. For each benchmark, the four bars (left to right labeled 1 through
4) represent Total OD state, Partial OD state with 1k and 256 entries, and Zero OD state.

cache), two Partial OD design points with per-core pool of 1k, and 256 entries, and Zero
OD (false and true sharing are detected at the time of a coherence miss).

Total OD state achieves the highest accuracy. Partial OD schemes achieve nearly
perfect accuracy (>99% agreement with I-FSD). However, Partial OD schemes provide
fewer classifications in some cases (up to 60%, for fmm) and hence may have sampling
error. Zero OD has no sampling error but has substantial disagreement with I-FSD,
resulting in incorrect classification of 15% (bodytrack) to 80% (radiosity) coherence
misses. This disagreement between Zero OD and I-FSD is caused by missing true
sharing accesses that occur after the time of coherence miss.

Figure 15 shows correlation between reports produced by different OD schemes and
the report produced by I-FSD. We observe that Partial OD schemes, despite having
a significant fraction of coherence misses go unclassified in some applications, still
provide reports that nearly perfectly correlate with I-FSD reports for most applications.
However, Zero OD often produces reports that do not have high correlation with correct
(I-FSD) reports. We examined actual Zero OD reports and had similar findings as we did
for Zero AcT; the results would likely lead to similar conclusions in most applications,
but in several applications they are likely to mislead the programmer.

Figure 16 shows the area cost of OD state for each DeFT mechanism, shown as a
percentage of total on-die cache area. Again, note that the total cost of a DeFT scheme is
a combination of per-core OD cost (shown here) and the AcT cost (shown in Section 7.2).
The Total OD scheme keeps OD state for all words in private caches, which represents
a 7.35% overhead. Partial OD schemes reduce OD cost to about 3.8% for 1k and to 2%
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Fig. 15. Correlation coefficient between number of false sharing misses suffered by static instructions in
Partial OD, Zero OD schemes against Total OD. Samples of static instructions are chosen by Partial OD
schemes.

Fig. 16. Area overhead of OD state as a percentage of on-die cache area. Total global AcT state adds 4.22%
area overhead to on-die caches.

for 256-entry per-core pools. Finally, the Zero OD scheme has no OD state (cost of OD
support is zero).

7.4. Specific Low-Cost AcT-OD Combinations and Dubois et al.’s Scheme

Figure 17 shows the accuracy and sampling rates for a range of DeFT schemes that
have relatively low cost and can be implemented in real hardware. For each benchmark,
we show four different schemes (from left to right): (1) Partial (16k) AcT with Partial
(1k) OD, (2) Partial (4k) AcT with Partial (256) OD, (3) Zero AcT with Zero OD, and (4)
Dubois et al.’s scheme.

From prior experiments, we have seen that Partial AcT and Partial OD on their
own offer reasonable accuracy while achieving lower costs. Our experiments show
that, when Partial AcT and Partial OD are combined, they still retain very good accu-
racy. However, we observe that the total inaccuracy of a combined (Partial AcT, Par-
tial OD) scheme is slightly worse than the sum of their individual inaccuracies from
Figures 11 and 14. This is because we couple per-core AcT state (Own-Access bits) with
per-core OD state into the same entry, to avoid having separate structures (pools) for
per-core Act and per-core OD state. This means that, when combining an AcT scheme
with a Partial OD scheme, the accuracy of AcT may suffer additionally because some
accesses are not captured (and thus do not eventually update global AcT state). How-
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Fig. 17. Accuracy for low-cost DeFT and Dubois et al.’s schemes with classification rates (% of coherence
misses that are actually classified) shown above each bar. For each benchmark, bar 1 (leftmost bar in each
4-bar group) represents (Partial (16k) AcT, Partial (1k) OD), bar 2 is (Partial (4k) AcT, Partial (256) OD), bar
3 is (Zero AcT, Zero OD), and bar 4 is Dubois et al.’s scheme.

ever, even with this effect, the accuracy of (Partial AcT, Partial OD) is still very good,
and Figure 18 shows that their reports still very strongly correlate with I-FSD reports.

The (Zero OD, Zero AcT) design point, which is attractive because of its nearly-
zero hardware cost, is the least accurate. It misclassifies up to 65% (for radiosity)
of coherence misses, and its reports have poor correlation with I-FSD reports in
many applications. We note that this design point was used in Coherence Decoupling
[Huh et al. 2004] to perform value speculation and hide cache miss latency due to
false sharing. Although this design point was successfully used for speculation (where
there are recovery mechanisms), it is unlikely to be suitable for performance debugging
because it often produces reports that are likely to mislead the programmer.

We also show the Dubois et al.’s [1993] scheme for comparison. Note that the accuracy
of this scheme is also shown with respect to I-FSD, and that most of the disagreement
is caused simply by differences in how false sharing misses are defined in I-FSD and
in Dubois et al. However, one conclusion that can be drawn from this data is that, for
programmer-centric purposes, the Dubois et al.’s scheme only achieves accuracy similar
to our nearly-cost-free (Zero OD, Zero AcT) DeFT scheme. Among the two, (Zero OD,
Zero AcT) has better accuracy in benchmarks with large numbers of false sharing
misses on the writer side, whereas Dubois et al. achieves better accuracy when silent
and idempotent writes (which are not detected as writes in the Zero OD approximation)
cause true sharing misses.
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Fig. 18. Correlation coefficient between number of false sharing misses suffered by static instructions in
various schemes against (Total OD, Near-Total AcT). Samples of static instructions are chosen by partial
state schemes.

Fig. 19. Area overhead of partial state DeFT and Dubois et al. schemes as a percentage of on-die cache area.

Finally, Figure 19 shows the area cost incurred by DeFT schemes, as a percentage of
total on-die cache area. Partial schemes incur relatively modest area overheads of about
5.5% and 3%, a major portion (about 70%) of which is incurred by maintaining per-core
pools for every private cache in our 64-core configuration. The (Zero OD, Zero AcT)
scheme can be implemented with minimal hardware modifications, such as changing
the cache controller to perform data comparison on a coherence miss. For Dubois et al.’s
scheme, a stale bit is needed for every word in every cache to track whether the fresh
value produced by a write has been consumed. For every 32-bit data word in caches, a
1-bit overhead is incurred. Note that (Partial(256) OD, Partial(4k) AcT) has similar cost
to Dubois et al. but achieves consistently better programmer-centric accuracy. Overall,
we conclude that Partial AcT - Partial OD schemes can offer very good accuracy with
reasonably modest costs, while the Zero AcT - Zero OD scheme can offer some insight
that can benefit experienced programmers with nearly-zero hardware cost.

8. CONCLUSIONS

Achieving good parallel performance is critical to the success of current and future
multi- and many-core processors, but it is currently very difficult for programmers to
diagnose (and therefore fix) a common scalability problem: excessive coherence misses.
Programmers must not only find the source (line of code) of cache misses but, in order
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to address them, must also discover whether the misses are due to true sharing, false
sharing, or noncoherence (usually capacity) reasons.

In this article, we introduce a programmer-centric definition of true and false sharing,
an algorithm to classify coherence misses according to this definition, and approxima-
tions that makes this definition suitable for implementation in real processors, to drive
hardware performance counters. We evaluate a range of design points to explore the
trade-offs between hardware cost, classification accuracy, and impact on the program-
mer. We find that it is possible to achieve very good accuracy with relatively low cost
(about 3% of total on-chip cache area), which is only a fraction of the cost needed for
the ideal (most expensive) scheme. We also find that the simplest scheme, which keeps
no state at all, can be implemented at nearly zero cost, yields good results in some
benchmarks, but is likely to mislead the programmer in others.

APPENDIX

A. IDEAL FALSE SHARING DETECTOR (I-FSD) ALGORITHM

In this section, we present a pseudocode algorithm based on the programmer-centric
definition for false sharing coherence misses described in Section 3.3.

/ / P= t o t a l number of cores , W=number of words in a cache block
/ / A=current data address , B=cache block holding address A
/ / c=current core

PROC ACCESS TRACKING
/ / Tracks reads and writes by a l l cores through Global and Local vectors

ON Coherence Miss to B
WAIT ON current sharers to update Global AcT State ;

ON Write access to A
Own Access vector write [A] = 1;
Own Access vector read [A] = 0;

ON Read access to A
Own Access vector read [A] = 1;

ON Inval idat ion / Downgrade / Replacement / Upgrade request for B
FOR each word address K in B DO

IF ( Own Access vector write [K]==1) THEN
Global Writer ID = c ;
Global Reader vector ={0} ;

ENDIF
IF ( Own Access vector read [K]==1) THEN

Global Reader vector [ c ]=1 ;
ENDIF

DONE

ENDPROC ACCESS TRACKING
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PROC OVERLAP DETECTION
/ / C l a s s i f i e s Coherences misses through Others vector , Program Counter ,
/ / Coherence Miss and Potential False Sharing

ON Coherence Miss to B
Set Coherence Miss to true ;
Set Potential False Sharing to true ;
/ / Reset on observing f i r s t true sharing on the block
Record the current PC into Miss PC ;
Others Access vector write = Others Access vector read = {0} ;
FOR each word address K in B DO

/ / Writes c lear Global Reader vector .
/ / Global Reader vector [ c ]=1 denotes NO intervening write
IF ( Global Writer ID != c AND Global Reader vector [ c ] ! = 1 ) THEN

Others Access vector write [K] = 1;
ENDIF
IF ( a b i t other than c i s set in Global Reader vector ) THEN

Others Access vector read [K] = 1;
ENDIF

DONE

ON Write access to A
IF ( Coherence Miss == true AND

Potential False Sharing == true ) THEN
/ / True sharing i f another core had read ( consumer ) or
/ / written ( producer ) to this word
IF ( Others Access vector write [A] == 1 OR

Others Access vector read [A] == 1) THEN
Potential False Sharing = fa l se ;

ENDIF
ENDIF

ON Read access to A
IF ( Coherence Miss == true AND

Potential False Sharing == true ) THEN
/ / True sharing i f another core had written ( producer ) to this word
IF ( Others Access vector write [A] == 1) THEN

Potential False Sharing = fa l se ;
ENDIF

ENDIF

ON Inval idat ion / Downgrade / Replacement / Upgrade request for B
IF ( Coherence Miss == true ) THEN

Record Miss PC and Potential False Sharing ; / / Output to P r o f i l e r
ENDIF

ENDPROC OVERLAP DETECTION
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SASTRY, S. S., BODÍK, R., AND SMITH, J. E. 2001. Rapid profiling via stratified sampling. In Proceedings of

the 28th Annual International Symposium on Computer Architecture (ISCA’01). ACM Press, New York,
278–89.

SEWARD, J. 2004. Valgrind, An open-source memory debugger for x86-GNU/Linux. http://valgrind.kde.org/.
TORRELLAS, J., LAM, M. J., AND HENNESSY, J. L. 1990. Shared data placement optimizations to reduce mul-

tiprocessor cache misses. In Proceedings of the International Conference on Parallel Processing. 266–
270.

WOO, S., OHARA, M., TORRIE, E., SINGH, J., AND GUPTA, A. 1995. The splash-2 programs: Characteriza-
tion and methodological considerations. In Proceedings of the International Symposium on Computer
Architecture.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 8, Publication date: July 2011.



DeFT: Design Space Exploration for On-the-Fly Detection of Coherence Misses 8:27

ZHAO, L., IYER, R., ILLIKKAL, R., MOSES, J., MAKINENI, S., AND NEWELL, D. 2007. Cachescouts: Fine-Grain moni-
toring of shared caches in cmp platforms. In Proceedings of the 16th International Conference on Parallel
Architecture and Compilation Techniques (PACT’07). IEEE Computer Society, Los Alumitos, CA, 339–
352.

ZILLES, C. B. AND SOHI, G. S. 2001. A programmable co-processor for profiling. In Proceedings of the 7th Inter-
national Symposium on High-Performance Computer Architecture (HPCA’01). IEEE Computer Society,
Los Alamitos, CA, 241.

Received March 2010; revised September 2010; accepted November 2010

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 8, Publication date: July 2011.


