
CC-Hunter: Uncovering Covert Timing Channels on Shared Processor Hardware

Jie Chen and Guru Venkataramani
The George Washington University, Washington, DC

{jiec, guruv}@gwu.edu

Abstract—As we increasingly rely on computers to process
and manage our personal data, safeguarding sensitive informa-
tion from malicious hackers is a fast growing concern. Among
many forms of information leakage, covert timing channels
operate by establishing an illegitimate communication channel
between two processes and through transmitting information
via timing modulation, thereby violating the underlying sys-
tem’s security policy. Recent studies have shown the vulner-
ability of popular computing environments, such as cloud
computing, to these covert timing channels. In this work, we
propose a new microarchitecture-level framework, CC-Hunter,
that detects the possible presence of covert timing channels
on shared hardware. Our experiments demonstrate that CC-
Hunter is able to successfully detect different types of covert
timing channels at varying bandwidths and message patterns.

Keywords-Covert timing channels; Detection; Shared hard-
ware; Algorithms

I. INTRODUCTION

Information leakage is a fast growing concern affecting
computer users that is exacerbated by the increasing amount
of shared processor hardware. Every year, there are hundreds
of news reports on identity thefts and leaked confidential
information to unauthorized parties. NIST National Vulner-
ability Database reports an increase of 11× in the number of
information leak/disclosure-related software issues over the
past five years (2008-2013), compared to the prior decade
(1997-2007) [1].

Covert timing channels are information leakage channels
where a trojan process intentionally modulates the timing of
events on certain shared system resources to illegitimately
reveal sensitive information to a spy process. Note that the
trojan and the spy do not communicate explicitly through
send/receive or shared memory, but covertly via modulating
certain events (Figure 1). In contrast to side channels where
a process unintentionally leaks information to a spy process,
covert timing channels have an insider trojan process (with
higher privileges) that intentionally colludes with a spy pro-
cess (with lower privileges) to exfiltrate the system secrets.

To achieve covert timing based communication on shared
processor hardware, a fundamental strategy used by the
trojan process is modulating the timing of events through
intentionally creating conflicts1. The spy process deciphers
the secrets by observing the differences in resource access

1We use “conflict” to collectively denote methods that alter either the
latency of a single event or the inter-event intervals.

Trojan' Spy'

Shared'
Resource'

Modulate'
5ming'

Decode
secret'

Figure 1: A Covert Timing Channel using timing modulation
on a shared resource to divulge secrets

times. On hardware units such as compute logic and wires
(buses/interconnects), the trojan creates conflicts by intro-
ducing distinguishable contention patterns on the shared
resource. On caches, memory and disks, the trojan creates
conflicts by intentionally replacing certain memory blocks
such that the spy can decipher the message bits based
on the memory hit/miss latencies. This basic strategy of
creating conflicts for timing modulation has been observed
in numerous covert timing channel implementations [2], [3],
[4], [5], [6], [7], [8], [9], [10].

In this paper, we propose CC-Hunter, a novel framework
that detects the presence of covert timing channels by
dynamically tracking conflict patterns on shared processor
hardware. CC-Hunter offers low-cost hardware support that
gathers data on certain key indicator events during program
execution, and provides software support to compute the
likelihood of covert timing channels on a specific shared
hardware. Many prior works on covert channels have studied
mitigation techniques for specific hardware resources such
as caches [7] and bus/interconnect [2], [3], [11]. These
techniques can neatly complement our CC-Hunter frame-
work by mitigating the damages caused by covert timing
channels after detection. Note that detecting network-based
covert information transfer channels [12], [13], software-
based channels (e.g., data objects, file locks) [14] and side
channels [15], [16] are beyond the scope of our work.

Our framework can be extremely beneficial to users as we
transition to an era of running our applications on remote
servers that host programs from many different users. Recent
studies [6], [9] show how popular computing environments

like cloud computing are vulnerable to covert timing chan-
nels. Static techniques to eliminate timing channel attacks
such as program code analyses are virtually impractical
to enforce on every third-party software, especially when
most of these applications are available only as binaries.
Also, adopting strict system usage policies (such as mini-
mizing system-wide resource sharing or fuzzing the system
clock to reduce the possibility of covert timing channels)
could adversely affect the overall system performance. To
overcome these issues, CC-Hunter’s dynamic detection is a
desirable first step before adopting damage control strategies
like limiting resource sharing or bandwidth reduction.

In summary, the contributions of our paper are:
1) We propose CC-Hunter, a novel microarchitecture-

level framework to detect shared hardware-based covert
timing channels by monitoring for conflicts.

2) We design algorithms that extract recurrent (yet, some-
times irregular) conflict patterns used in covert transmission,
and show our implementation in hardware and software.

3) We evaluate the efficacy of our solution using covert
timing channels on three different types of shared hardware
resources, namely wires (memory bus/QPI), logic (integer
divider) and memory (shared L2 cache). Our experiments
demonstrate that CC-Hunter is able to successfully detect
different types of covert timing channels at varying band-
widths and message patterns, and has zero false alarms for
the cases we tested.

II. UNDERSTANDING COVERT TIMING CHANNELS

Trusted Computer System Evaluation Criteria (or TCSEC,
The Orange Book) [17] defines a covert channel as any
communication channel that can be exploited by a process to
transfer information in a manner that violates the system’s
security policy. In particular, covert timing channels are
those that would allow one process to signal information
to another process by modulating its own use of system
resources in such a way that the change in response time
observed by the second process would provide information.

Note that, between the trojan and the spy, the task of
constructing a reliable covert channel is not very simple.
Covert timing channels implemented on real systems take
significant amounts of synchronization, confirmation and
transmission time even for relatively short-length messages.
As examples, (1) Okamura et al. [4] construct a memory
load-based covert channel on a real system, and show that it
takes 131.5 seconds just to covertly communicate 64 bits
in a reliable manner achieving a bandwidth rate of 0.49
bits per second; (2) Ristenpart et al. [6] demonstrate a
memory-based covert channel that achieves a bandwidth of
0.2 bits per second. This shows that the covert channels
create non-negligible amounts of traffic on shared resources
to accomplish their intended tasks.

TCSEC points out that a covert channel bandwidth ex-
ceeding a rate of one hundred (100) bits per second is

classified as a high bandwidth channel based on the ob-
served data transfer rates between several kinds of computer
systems. In any computer system, there are a number of
relatively low-bandwidth covert channels whose existence
is deeply ingrained in the system design. If bandwidth-
reduction strategy to prevent covert timing channels were
to be applied to all of them, it becomes an impractical task.
Therefore, TCSEC points out that channels with maximum
bandwidths of less than 0.1 bit per second are generally not
considered to be very feasible covert timing channels. This
does not mean that it is impossible to construct very low
bandwidth covert timing channel, just that it becomes very
expensive and difficult for the adversary (spy) to extract any
meaningful information out of the system.

III. THREAT MODEL AND ASSUMPTIONS

Our threat model assumes that the trojan wants to in-
tentionally communicate the secret information to the spy
covertly by modulating the timing on certain hardware.
We assume that the spy is able to seek the services of
a compromised trojan that has sufficient privileges to run
inside the target system. As confinement mechanisms in
software improve, hardware-based covert timing channels
will become more important. So, we limit the scope of our
work to shared processor hardware.

A hardware-based covert timing channel could have noise
due to two factors- (1) processes other than the trojan/spy
using the shared resource frequently, (2) the trojan artifi-
cially inflating the patterns of random conflicts to evade
detection by CC-Hunter. In both cases, the reliability of
covert communication is severely affected resulting in loss
of data for the spy as evidenced by many prior studies [10],
[18], [19]. For example, on a cache-based covert timing
channel, Xu et al. [10] find that the covert transmission
error rate is at least 20% when 64 concurrent users share
the same processor with the trojan/spy. Therefore, we point
out that it is impossible for a covert timing channel to
just randomly inflate conflict events or operate in noisy
environments simply to evade detection. In light of these
prior findings, we model moderate amounts of interference
by running a few other (at least three) active processes
alongside the trojan/spy processes in our experiments.

In this work, our focus is on the detection of covert timing
channels rather than showing how to actually construct or
prevent them. We do not evaluate the robustness of covert
communication itself that has been demonstrated adequately
by prior work [6], [9], [10].

We assume that covert timing based communication hap-
pens through recurrent patterns of conflicts over non-trivial
intervals of time. CC-Hunter cannot detect the covert timing
attacks that happen instantly where the spy has the ability to
gain sensitive information in one pass. Also, covert timing
channels that employ sophisticated combinations of timing
and storage channels at both hardware and software layers

are not considered in this work. Finally, we assume that the
system software modules (including the operating system
kernel and security enforcing layers) are trusted.

IV. DESIGN OVERVIEW

From the perspective of covert timing channels that ex-
ploit shared hardware, there are two categories–

(1) Combinational structures such as logic and wires,
relying on patterns of high and low contention to commu-
nicate on the corresponding shared resource. Consequently,
a recurrent (yet sometimes irregular) pattern of contention
(conflicts) would be observed in the corresponding event
time series during covert communication.

(2) Memory structures, such as caches, DRAM and disks,
using intentional replacement of memory blocks (previously
owned by the spy) to create misses. As a result, we observe
a recurrent pattern of cache conflict misses.

We design algorithms to identify the recurrent patterns in
the corresponding event time series2. Our algorithms look for
patterns of conflicts, a fundamental property of covert timing
channels. Hence, even if the trojan and spy dynamically
change their communication protocol, CC-Hunter should
still be able to detect them based on conflict patterns.

To demonstrate our framework’s effectiveness, we use
three realistic covert timing channel implementations, two
of which (shared caches [10], memory bus [9]) have been
demonstrated successfully on Amazon EC2 cloud servers.
We evaluate using a full system environment by booting
MARSSx86 [21] with Ubuntu 11.04. The simulator models
a quad-core processor running at 2.5 GHz, each core with
two hyperthreads, and has a few (at least three) other active
processes to create real system interference effects. We
model a private 32 KB L1 and 256 KB L2 caches. Prior
to conducting our experiments, we validated the timing
behavior of our covert channel implementations running
on MARSSx86 against the timing measurements in a real
system environment (dual-socket Dell T7500 server with
Intel 4-core Xeon E5540 processors at 2.5 GHz, Ubuntu
11.04).

Note that the three covert timing channels described below
are randomly picked to test our detection framework. CC-
Hunter is neither limited to nor derived from their specific
implementations, and can be used to detect covert timing
channels on all shared processor hardware using recurrent
patterns of conflicts for covert communication.

A. Covert Timing Channels on Combinational Hardware

To illustrate the covert timing channels that occur on com-
binational structures and their associated indicator events, we
choose the memory bus and integer divider unit (Wang et
al [7] showed a similar implementation using multipliers).

2Our solution is inspired from studies in neuroscience that analyze
patterns of neuronal activity to understand the physiological mechanisms
associated with behavioral changes [20].

��
����
����
����
����

�����
�����

�� ��� ���� ���� ���� ���� �	��

�
��
�
�
��

�����������������������������

Figure 2: Average latency per memory access (in CPU
cycles) in Memory Bus Covert Channel

In the case of the memory bus covert channel, when the
trojan wants to transmit a ‘1’ to the spy, it intentionally
performs an atomic unaligned memory access spanning two
cache lines. This action triggers a memory bus lock in
the system, and puts the memory bus in contended state
for most modern generations of processors including Intel
Nehalem and AMD K10 family. The trojan repeats the
atomic unaligned memory access pattern for a number of
times to sufficiently alter the memory bus access timing for
the spy to take note of the ‘1’ value transmission. Even
on x86 platforms that have recently replaced the shared
memory bus with QuickPath Interconnect (QPI), the bus
locking behavior is still emulated for atomic unaligned
memory transactions spanning multiple cache lines [22].
Consequently, delayed interconnect access is still observable
in QPI-based architectures. To communicate a ‘0’, the trojan
simply puts the memory bus in un-contended state. The
spy deciphers the transmitted bits by accessing the memory
bus intentionally through creating cache misses. It times its
memory accesses and detects the memory bus contention
state by measuring the average latency. The spy accumulates
a number of memory latency samples to infer the transmitted
bit. Figure 2 shows the average loop execution time observed
by the spy for a randomly-chosen 64-bit credit card number.
A contended bus increases the memory latency enabling the
spy to infer ‘1’, and an un-contended bus to infer ‘0’.

For the integer division unit, both the trojan and the
spy processes are run on the same core as hyperthreads.
The trojan communicates ‘1’ by creating a contention on
all of the division units by executing a fixed number of
instructions. To transmit a ‘0’, the trojan puts all of the
division units in an un-contended state by simply executing
an empty loop. The spy covertly listens to the transmission
by executing loop iterations with a constant number of
integer division operations and timing them. A ‘1’ is inferred
on the spy side using iterations that take longer amounts
of time (due to contentions on the divider unit created by
the trojan), and ‘0’ is inferred when the iterations consume
shorter time. Figure 3 shows the average latency per loop
iteration as observed by the spy for the same 64-bit credit
card number chosen for memory bus covert channel. We
observe that the loop latency is high for ‘1’ transmission
and remains low for ‘0’ transmission.

��
���

����
����
����
����
����
����

�� ���� ���� ���� ���� ���� ����

	

��
�
��
��

�����������������������������

Figure 3: Average loop execution time (in CPU cycles) in
Integer Divider Covert Channel

�� ��� ���� ���� ����
���	
������	����������	��
���������������	���������

(a) Memory Bus

�� ��� ��� ��� ��� ���� ����
�	
�����������	���	
�	
��	����	
������
������	�������	��������

(b) Integer Divider

Figure 4: Event Train plots for Memory Bus and Integer
Divider showing burst patterns

B. Recurrent Burst Pattern Detection

The first step in detecting covert timing channels is to
identify the event that is behind the hardware resource
contention. In the case of the memory bus covert channel,
the event to be monitored is the memory bus lock operation.
In the case of the integer division covert channel, the event
to be monitored is the number of times a division instruction
from one process (hardware context) waits on a busy divider
occupied by an instruction from another process (context).
Note that not all division operations fall in this category.

The second step is to create an Event Train, i.e., a uni-
dimensional time series showing the occurrence of events
(Figures 4a and 4b). We notice a large number of thick bands
(or bursty patterns of events) whenever the trojan intends to
covertly communicate a ‘1’.

As the third step, we analyze the event train using our
recurrent burst pattern detection algorithm. This step consists
of two parts: (1) check whether the the event train has
significant contention clusters (bursts), and (2) determine if
the time series pattern exhibits recurrent patterns of bursts.

Our algorithm is as follows:
1) Determine the interval (∆t) for a given event train to

calculate event density. ∆t is the product of the inverse of
average event rate and α, an empirical constant determined
using the maximum and minimum achievable covert timing
channel bandwidth rates on a given shared hardware. In

3 3 0 0 0 3 1 3
Event Train

Δt time

Event Density Histogram

Fr
eq

ue
nc

y
of

 Δ
t

Event density in Δt

Figure 5: Illustration of Event Train and its corresponding
Event Density Histogram. The distribution is compared
against the Poisson Distribution shown by the dotted line
to detect the presence of burst patterns.

��

���

����

����

����

����

�� �� ��� ��� ��� ��� ���

��
	

�	
�
��
��
��
�

�	��������������	��������������������

(a) Memory Bus

��

����

�����

�����

�����

�� ��� ��� ��� ��� ���� ����

	

��
�
��
��
��
��
�

������
�������
��������������������������
��� ���

�����

(b) Integer Division Unit

Figure 6: Event Density Histograms for Covert Timing
Channels using Memory Bus and Integer Divider.

simple terms, ∆t is the observation window to count the
number of event occurrences within that interval. The value
of ∆t can be picked from a wide range, and is tempered
by the α factor which ensures that ∆t is neither too low
(when the probability of a certain number of events within
∆t follows Poisson distribution) nor too high (when the
probability of a certain number of events within ∆t follows
normal distribution). For covert timing channel with the
memory bus, ∆t is determined as 100,000 CPU cycles (or
40 µs), and for the covert timing channel using integer

divisions, ∆t is determined as 500 CPU cycles (or 200 ns).
2) Construct the event density histogram using ∆t. For

each interval of ∆t, the number of events are computed, and
an event density histogram is constructed to subsequently
estimate the probability distribution of event density. An
illustration is shown in Figure 5. The x-axis in the histogram
plot shows the range of ∆t bins that have a certain number
of events. Low density bins are to the left, and as we move
right, we see the bins with higher numbers of events. The
y-axis shows the number of ∆t’s within each bin.

3) Detect burst patterns. From left to right in the his-
togram, threshold density is the first bin which is smaller
than the preceding bin, and equal or smaller than the next
bin. If there is no such bin, then the bin at which the slope of
the fitted curve becomes gentle is considered as the threshold
density. If the event train has burst patterns, there will be
two distinct distributions- (1) one where the mean is below
1.0 showing the non-bursty periods, and (2) one where the
mean is above 1.0 showing the bursty periods present in
the right tail of the event density histogram. Figure 6 shows
the event density histogram distributions for covert timing
channels involving bursty contention patterns on the memory
bus and the integer division unit. For both timing channels,
we see significant non-burst patterns in the histogram bin#0.
In the case of the memory bus channel, we see significant
bursty pattern at histogram bin#20. For the integer division
channel, we see a very prominent second distribution (burst
pattern) between bins#84 and #105 with peak around bin#96.

4) Identify significant burst patterns (contention clusters)
and filter noise. To estimate the significance of burst distri-
bution and filter random (noise) distributions, we compute
the likelihood ratio3 of the second distribution. Empirically,
based on observing realistic covert timing channels [11],
[9], we find that the likelihood ratio of the burst pattern
distribution tends to be at least 0.9 (even on very low
bandwidth covert channels such as 0.1 bps). On the flip-
side, we observe this likelihood ratio to be less than 0.5
among regular programs that have no known covert timing
channels despite having some bursty access patterns. We set
a conservative threshold for likelihood ratio at 0.5, i.e., all
event density histograms with likelihood ratios above 0.5 are
considered for further analysis.

5) Determine the recurrence of burst patterns. Once the
presence of significant burst patterns are identified in the
event series, the next step is to check for recurrent patterns
of bursts. We limit the window of observation to 512 OS
time quanta (or 51.2 secs, assuming a time quantum of
0.1 secs), to avoid diluting the significance of event density
histograms involved in covert timing channels. We develop
a pattern clustering algorithm that performs two basic steps-

3Likelihood ratio is defined as the number of samples in the identified
distribution divided by the total number of samples in the population [23].
We omit bin#0 from this computation since it does not contribute to any
contention.

��

��

��

�� ��� ��� ��� ��� ��� ���	

��

�
��

��
��
�

���
�
��
�
��
�
��
�
��
��
��

�
�������
������������������

Figure 7: Ratios of cache access times between G1 and G0

cache sets in Cache Covert Channel

(1) discretize the event density histograms into strings, and
(2) use k-means clustering to aggregate similar strings. By
analyzing the clusters that represent event density histograms
with significant bursts, we can find the extent to which burst
patterns recur, and hence detect the possible presence of a
covert timing channel. Since we use clustering to extract
recurring burst patterns, our algorithm can detect covert
timing channels regardless of burst intervals (i.e., even on
low-bandwidth irregular bursts or in the presence of random
noise due to interference from the system environment).

C. Covert Timing Channel on Shared Cache

We use the L2 cache-based timing channel demonstrated
by Xu et al [10]. To transmit a ‘1’, the trojan visits a
dynamically4 determined group of cache sets (G1) and
replaces all of the constituent cache blocks, and for a ‘0’
it visits another dynamically determined group of cache sets
(G0) and replaces all of the constituent cache blocks. The
spy infers the transmitted bits as follows: It replaces all of
the cache blocks in G1 and G0, and times the accesses to the
G1 and G0 sets separately. If the accesses to G1 sets take
longer than the G0 sets (that is, all of the G1 sets resulted
in cache misses and G0 sets were cache hits), then the spy
infers ‘1’. Otherwise, if the accesses to G0 sets take longer
than the G1 sets (that is, all of the G0 sets resulted in cache
misses and G1 sets were cache hits), then the spy infers a
‘0’. Figure 7 shows the ratio of the average cache access
latencies between G1 and G0 cache set blocks observed by
the spy for the same 64-bit randomly generated credit card
number. A ‘1’ is inferred for ratios greater than 1 (i.e., G1

set access latencies are higher than G0 set access latencies)
and a ‘0’ is inferred for ratios less than 1 (i.e., G1 set access
latencies are lower than G0 set access latencies).

D. Oscillatory Pattern Detection

Unlike combinational structures where timing modulation
is performed by varying the inter-event intervals (observed as
bursts and non-bursts), cache based covert timing channels
rely on the latency of events to perform timing modulation.
To transmit a ‘1’ or a ‘0’, the trojan and the spy create

4The cache sets, where conflict misses are created and detected for covert
transmission, are chosen during the covert channel synchronization phase.

������

������

� ��� 	�
 ��
 ��

�����������������������

������

������

(a) Event Train (T→S: Trojan’s(S) conflict misses with
Spy(S) and S→T: S’s conflict misses with T)

��
����
����
����
����
	�

	���
	���
	���
	���
	�

	� 	��� 	��� 	��� 	��� 	����

�
�
�
��
��
��
�
�	
�

��
��
��

�

���
(b) Autocorrelogram

Figure 8: Oscillatory pattern of L2 cache conflict misses
between trojan and spy. An autocorrelogram is shown for
the conflict miss event train.

a sufficient number of conflict events (cache misses) alter-
natively among each other that lets the spy decipher the
transmitted bit based on the average memory access times
(hit/miss). Note that this leads to oscillatory patterns of
conflicts between the trojan and spy contexts.

Oscillation is defined as a property of periodicity in an
event train. This is different from bursts that are specific
periods of high frequency event occurrences in the event
train. Oscillation of an event train is detected by measuring
its autocorrelation [24]. Autocorrelation is the correlation
coefficient of the signal with a time-lagged version of itself,
i.e., the correlation coefficient between two values of the
same variable, Xi and Xi+p separated by a lag p.

In general, given the measurements of a variable X , (X1,
X2, ..., XN) at time instances of t (t1, t2, ..., tN), the
autocorrelation coefficient rp at a time lag of p and mean
of X̄ is defined as,

rp =

∑n−p
i=1 (Xi − X̄).(Xi+p − X̄)∑n

i=1(Xi − X̄)2

The autocorrelation function is primarily used for two
purposes– (1) detecting non-randomness in data, (2) iden-
tifying an appropriate time series model if the data values

are not random [24]. To satisfy #1, computing the autocor-
relation coefficient for a lag value of 1 (r1) is sufficient. To
satisfy #2, autocorrelation coefficients for a sequence of lag
values should exhibit significant periodicity.

An autocorrelogram is a chart showing the autocorrelation
coefficient values for a sequence of lag values. An oscillation
pattern is inferred when the autocorrelation coefficient shows
significant periodicity with peaks sufficiently high for certain
lag values (i.e., the values of X correlates highly with itself
at lag distances of k1, k2 etc.).

Figure 8 shows the oscillation detection method for
the covert timing channel on shared cache. In particular,
Figure 8a shows the event train (cache conflict misses)
annotated by whether the conflicts happen due to the trojan
replacing the spy’s cache sets, or vice versa. “T→S” denotes
the Trojan (T) replacing the Spy’s(S) blocks because the spy
had previously displaced those same blocks owned by the
trojan at that time. Since the conflict miss train shows a
dense cluttered pattern, we show a legible version of this
event train as an inset of Figure 8a.

The conflict misses that are observed within each obser-
vation window (typically one OS time quantum) are used to
construct a conflict miss event train plot. Every conflict miss
in the event train is denoted by an identifier based on the
replacer and the victim contexts. Note that every ordered pair
of trojan/spy contexts have unique identifiers. For example
“S→T” is assigned ‘0’ and “T→S” is assigned “1”. The
autocorrelation function is computed on this conflict miss
event train. Figure 8b shows the autocorrelogram of the
event train. A total of 512 cache sets were used in G1

and G0 for transmission of “1” or “0” bit values. We
observe that, at a lag value of 533 (that is very close to
the actual number of conflicting sets in the shared cache,
512), the autocorrelation value is highest at about 0.893. The
slight offset from the actual number of conflicting sets was
observed due to random conflict misses in the surrounding
code and the interference from conflict misses due to other
active contexts sharing the cache. At a lag value of 512,
the autocorrelation coefficient value was also high (≈0.85).
To evade detection, the trojan/spy may (with some effort)
may deliberately introduce noise through creating cache
conflicts with other contexts. This may potentially lower
autocorrelation coefficients, but we note that the trojan/spy
may face a much bigger problem in reliable transmission
due to higher variability in cache access latencies.

V. IMPLEMENTATION

In this section, we show the hardware modifications and
software support to implement our CC-Hunter framework.

A. Hardware Support

In current microprocessor architectures, we note that
most hardware units are shared by multiple threads, espe-
cially with the widespread adoption of Simultaneous Multi-

Gen 3

Gen 2

Gen 1

Gen 4

Ideal LRU Stack
based Conflict Miss
Tracker

Most recent access

Least recent access

Access Bits

Current Generation

Cache
lines

Bloom
Filter 1

Bloom
Filter 2

Bloom
Filter 3

Bloom
Filter 4

Upon Cache Block Replacement

Gen
1

Gen
2

Gen
3

Gen
4

Practical Generation bit
based Conflict Miss
Tracker

Figure 9: Conflict Miss Tracker implementation

Threading (SMT). Therefore, all of the microarchitectural
units are potential candidates for timing channel mediums.

The Instruction Set is augmented with a special instruction
that lets the user program the CC-auditor and choose certain
hardware units to audit. This special instruction is a privi-
leged instruction that only a subset of system users (usually
the system administrator) can utilize for system monitoring.
The hardware units have a monitor bit, which when set by
the CC-auditor, places the hardware unit under audit for
covert timing channels. The hardware units are wired to fire
a signal to the CC-auditor on the occurrence of certain key
indicator events seen in covert timing channels.

In super-secure environments, where performance con-
straints can be ignored, CC-auditor hardware can be en-
abled to monitor all shared hardware structures. However,
this would incur unacceptable performance overheads in
most real system environments. Therefore, to minimize CC-
Hunter implementation complexity, we design CC-auditor
with the capability to monitor up to two different hardware
units at any given time. The user (system administrator) is
responsible for choosing the two shared hardware units to
monitor based on his knowledge of the current system jobs.
We believe that this hardware design tradeoff can prevent
unnecessary overheads on most regular user applications.

For most of the core components like execution clusters
and logic, the indicator events are conflicts detected by a
hardware context when another context is already using
them. On certain uncore components like the memory bus,
conflicts are created using special events such as bus locks.

To accumulate the event signals arriving from the hard-
ware units, the CC-Auditor contains (1) two 32-bit count-
down registers initialized to the computed values of ∆t
based on the two microarchitecture units under monitor
(Section IV-B), (2) two 16-bit registers to accumulate the
number of event occurrences within ∆t, and (3) two his-
togram buffers with 128 entries (each entry is 16 bits long)
to record the event density histograms. Whenever the event

signal arrives from the unit under audit, the accumulator
register is incremented by one. At the end of each ∆t, the
corresponding 16-bit accumulator value is updated against
its entry in the histogram buffer, and the count-down register
is reset to ∆t. At the end of OS time quantum, the histogram
buffers are recorded by the software module.

For memory structures such as caches, conflict misses are
utilized for covert data transmission. A conflict miss happens
in a set associative cache when several blocks map into
the same cache set and replace each other even when there
is enough capacity left in the cache. When the number of
blocks in a set exceeds the cache associativity, a block, A,
will be evicted even though better candidates for eviction
may exist in the cache in other sets. If A is accessed again
before those better candidates are replaced, that access is a
conflict miss. Note that a fully associative cache of the same
capacity would have kept A in the cache, and not incur a
conflict miss (due to full associativity). Therefore, to accu-
rately identify the conflict misses in a set-associative cache,
we need to check whether the (incoming) block would be
retained (not be prematurely replaced) in a fully-associative
cache. Ideally, to do so, we need a fully-associative stack
with LRU (Least Recently Used) replacement policy that
tracks the access recency information for cache blocks. This
ideal scheme is expensive due to the frequent stack updates
necessary for every cache block access.

Figure 9 shows our practical implementation that approx-
imates the LRU stack access-recency information [25]. Our
scheme maintains four generations that are ordered by age.
Each generation consists of a set of blocks, and all the blocks
in a younger generation have been accessed more recently
than any block in an older generation. This means that the
blocks in the youngest generation are the blocks that would
be at the top of the LRU stack, the next (older) generation
corresponds to the next group on the LRU stack, etc. Note
that the blocks within a generation itself are unordered. A
new empty generation is started when the number of recently
accessed cache blocks reaches a threshold, T (that equals
to #totalcacheblocks(N)/4 and roughly corresponds to
reaching 25% capacity in an ideal LRU stack).

To implement our conflict miss tracker, each cache block
metadata field is augmented with four bits to record the
generations during which the block was accessed, and three
more bits are added to track the current owner context
(assuming four cores with two SMT threads). The youngest
generation bit in the cache block metadata is set upon block
access (to emulate the placement of a cache block at the top
of the LRU stack). During block replacement, the replaced
cache tags are recorded in a compact three-hash bloom filter
corresponding to the latest generation when the block was
accessed (to remember its premature removal from the cache
before reaching full capacity). If the incoming cache tag is

Table I: Area, Power and Latency Estimates of CC-Auditor

Histogram Registers Conflict Miss
Buffers Detector

Area(mm2) 0.0028 0.0011 0.004
Power(mW) 2.8 0.8 5.4
Latency(ns) 0.17 0.17 0.12

found in one of the bloom filters5, it denotes a conflict miss
since the (incoming) block was removed recently from the
cache prior to reaching the full N-block cache capacity.

When the number of accessed blocks reaches the thresh-
old, T , the oldest generation is discarded by flash clearing
the corresponding generation column in the cache metadata
and all of the bits in the respective bloom filter. This action
represents the removal of entries from the bottom of the
LRU stack. The generation tracking bits are reused similar
to circular buffers (Figure 9), and a separate two bit register
(per cache) holds the ID of the current youngest generation.

Since our scheme tracks the conflict misses on all of the
cache blocks, we can accurately identify the conflict miss
event patterns even if arbitrary cache sets were used by the
trojan/spy for covert communication. Inside our CC-auditor,
we maintain two alternating 128-byte vector registers that,
upon every conflict miss identified by our practical conflict
miss tracker, records the three-bit context IDs of the replacer
(context requesting the cache block) and the victim (current
owner context in the cache block metadata). When one
vector register is full, the other vector register begins to
record the data. Meanwhile, the software module records
the vector contents in the background (to prevent process
stalling), and then clears the vector register for future use.
Such tracking of the replacer and the victim represents
the construction of conflict miss event train. An autocor-
relogram on the conflict miss event series can help detect
the presence of cache conflict-based covert timing channel
(Section IV-D). Oscillation detection method (Section IV-C)
uses this practical implementation to identify cache conflict
misses. Occasionally, during context switches, the trojan or
spy may be scheduled to different cores. Fortunately, the OS
(and software layers) have the ability to track the possible
migration of processes during context switches. With such
added software support, we can identify trojan/spy pairs
correctly despite their migration.

1) Area, Latency and Power Estimates of CC-auditor:
We use Cacti 5.3 [26] to estimate the area, latency and
power needed for our CC-auditor hardware. Table I shows
the results of our experiments. For the two histogram buffers,
we model 128-entries that are each 16-bits long. For reg-
isters, we model two 128-byte vector registers, two 16-bit
accumulators, and two 4-byte countdown registers. For the

5A hit in one of the bloom filters means that the cache block was accessed
in the corresponding generation, but was replaced to accommodate another
more recently accessed block in the same or one of the younger generations.

conflict miss detector, we model 4 three-hash bloom filters
with (4×#totalcacheblocks) bits, seven metadata bits per
cache block (four generation bits plus three bits of owner
context). Our experimental results show that the CC-Hunter
hardware area overheads are insignificant compared to the
total chip area (e.g., 263 mm2 for Intel i7 processors [27]).
The CC-auditor hardware has latencies that are less than the
processor clock cycle time (0.33 ns for 3 GHz). Also, the
extra bits in the cache metadata array increase the cache
access latency slightly by about 1.5%, and is unlikely to
extend the clock cycle period. Similarly, the dynamic power
drawn by CC-auditor hardware is in the order of a few
milliwatts compared to 130 W peak in Intel i7 [27].

B. Software Support

In order to place a microarchitectural unit under audit,
the user requests the CC-auditor through a special software
API exported by the OS, where the OS performs user
authorization checks. This is to prevent the sensitive system
activity information from being exploited by attackers.

A separate daemon process (part of CC-Hunter soft-
ware support) accumulates the data points by recording the
histogram buffer contents at each OS time quantum (for
contention-based channels) or the 128-byte vector register
(for oscillation-based channels). Lightweight code is care-
fully added to avoid perturbing the system state, and to
record performance counters as accurately as possible [28].
To further reduce perturbation effects, the OS schedules the
CC-Hunter monitors on (currently) un-audited cores.

Since our analysis algorithms are run as background
processes, they incur minimal effect on system performance.
Our pattern clustering algorithm is invoked every 51.2 secs
(Section IV-B) and takes 0.25 secs (worst case) per compu-
tation. We note that further optimizations such as feature
dimension reduction improves the clustering computation
time to 0.02 secs (worst case). Our autocorrelation analysis
is invoked at the end of every OS time quantum (0.1 secs)
and takes 0.001 secs (worst case) per computation.

VI. EVALUATION AND SENSITIVITY STUDY

A. Varying Bandwidth Rates

We conduct experiments by altering the bandwidth rates
of three different covert timing channels from 0.1 bps to
1000 bps. The results (observed over a window of OS
time quantum, 0.1 secs) are shown in Figure 10. While the
magnitudes of ∆t frequencies decrease for lower bandwidth
contention-based channels, the likelihood ratios for second
(burst) distribution are still significant (higher than 0.9)6

On low-bandwidth cache covert channels such as 0.1 bps,
despite observing periodicity in autocorrelation values, we
note that their magnitudes do not show significant strength.

6The histogram bins for the second distribution (covert transmission) are
determined by the number of successive conflicts needed to reliably transmit
a bit and the timing characteristics of the specific hardware resource.

��

���

���

���

���

���

�� �� ��� ��� ��� ��� ���

�	

�

�

�
��
��
��
�

�
��	������������
����

����

��

��

��

��

��

���

�� ��� ��� ��� ��� ���� ����

�	

�

�

�
��
��
��
�

��
�
	������
	����
�����
����

������

�����

��

�����

����

�����

��

�� ���� �	�� �
�� ���� ������
��
��
��
��
��
��
��
��

��
��
��

�

���
(a) Bandwidth=0.1bps

��

���

���

���

���

���

�� �� ��� ��� ��� ��� ���

�	

�

�

�
��
��
��
�

�
��	������������
����

����

��

��

��

��

��

���

�� ��� ��� ��� ��� ���� ����

�	

�

�

�
��
��
��
�

��
�
	������
	����
�����
����

������

�����

��

�����

����

�����

��

�� ���� �	�� �
�� ���� ������
��
��
��
��
��
��
��
��

��
��
��

�

���
(b) Bandwidth=10bps

��
����
����
����
����

�����
�����

�� �� ��� ��� ��� ��� �	�

�
�

��
��
��
��
��
�

�����������������������
��

���

���

���

���

����

�� ��� ��� ��� ��� ���� ����

�	

�

�

�
��
��
��
�

��
�
	������
	����
�����
����

������

��
�����
����

�����
��

�����
����

�����
��

�� ���� �	�� �
�� ���� ������
��
��
��
��
��
��
��
��

��
��
��

�

���
(c) Bandwidth=1000bps

Figure 10: Bandwidth test using Memory Bus, Integer Divider and Cache Covert Channels

-0.25

 0

 0.25

 0.5

 0.75

 1

 0 200 400 600 800 1000A
u
to

co
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

Lag

(a) 0.75X OS time quantum

-0.25

 0

 0.25

 0.5

 0.75

 1

 0 200 400 600 800 1000A
u
to

co
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

Lag

(b) 0.5X OS time quantum

-0.75

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

 0 200 400 600 800 1000A
u
to

co
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

Lag

(c) 0.25X OS time quantum

Figure 11: Autocorrelograms for 0.1 bps cache covert channels at reduced observation window sizes

We conduct additional experiments by decreasing the win-
dows of observation to fractions of OS time quantum on
0.1 bps channel. This fine grain analysis is especially useful
for lower-bandwidth channels that create a certain number
of conflicts per second (needed to reliably transmit a bit)
frequently followed by longer periods of dormancy. Fig-

ure 11 shows that, as we reduce the sizes of the observation
window, the autocorrelograms show significant repetitive
peaks for 0.1 bps channel. Our experiments suggest that
autocorrelation analysis at finer granularity observation win-
dows can detect lower-bandwidth channels more effectively.

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30

Fr
e
q

u
e
n
cy

 o
f

Δ
t

Memory Bus Lock Density

1648

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

Fr
e
q

u
e
n
cy

 o
f

Δ
t

Integer Divider Contention Density

324992

��
�����
����

�����
��

�����
����

�����
��

�� ���� �	�� �
�� ���� ������
��
��
��
��
��
��
��
��

��
��
��

�

���

Figure 12: Test with 256 randomly generated 64-bit messages on Memory Bus, Integer Divider and Cache covert channels.
Black (thick) bars are the means, and the red (annotations) arrows above them show the range (min, max).

-1
-0.75

-0.5
-0.25

 0
 0.25

 0.5
 0.75

 1

 0 200 400 600 800 1000A
u
to

co
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

Lag

(a) #sets for covert channel=256

-1
-0.75

-0.5
-0.25

 0
 0.25

 0.5
 0.75

 1

 0 200 400 600 800 1000A
u
to

co
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

Lag

(b) #sets for covert channel=128

-1
-0.75

-0.5
-0.25

 0
 0.25

 0.5
 0.75

 1

 0 200 400 600 800 1000A
u
to

co
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

Lag

(c) #sets for covert channel=64

Figure 13: Autocorrelograms for cache covert channel with varying numbers of cache sets for communication

B. Encoded Message patterns

To simulate encoded message patterns that the trojan may
use to transmit messages, we generate 256 random 64-bit
combinations, and use them as inputs to the covert timing
channels. Our experimental results are shown in Figure 12.
Mean values of histogram bins are shown by dark bars that
are annotated by the range (maximum, minimum) of bin
values observed across the 128 runs. Despite variations in
peak magnitudes of ∆t frequencies (especially in integer
divider), we notice that our algorithm still shows signifi-
cant second distributions with likelihood ratios above 0.9.
For autocorrelograms in cache covert channels, we notice
insignificant deviations in autocorrelation coefficients.

C. Varying Cache Channel Implementations

We implement the cache covert timing channels by vary-
ing the number of cache sets used for bit transmission from
64 to 512. In Figure 13, we find that the autocorrelograms in
all of the cases show significant periodicity in autocorrela-
tion with maximum peak correlation values of around 0.95,
a key characteristic observed in covert timing channels. For
covert channels that uses a smaller number of cache sets,
note that random conflict misses occurring on other cache
sets and interference from other active processes increase
the wavelength of the autocorrelogram curve beyond the
expected values (typically the number of cache sets used
in covert communication).

D. Testing for False Alarms

We test our recurrent burst and oscillation pattern algo-
rithms on 128 pair-wise combinations of several standard
SPEC2006, Stream and Filebench benchmarks run simulta-
neously on the same physical core as hyperthreads. We pick
two different types of servers from Filebench- (1) webserver,
that emulates web-server I/O activity producing a sequence
of open-read-close on multiple files in a directory tree plus
a log file append (100 threads are used by default), (2)
mailserver, that stores each e-mail in a separate file con-
sisting of a multi-threaded set of create-append-sync, read-
append-sync, read and delete operations in a single directory
(16 threads are used by default). The individual benchmarks
are chosen based on their CPU-intensive (SPEC2006) and
memory- and I/O-intensive (Stream and Filebench) behavior,
and are paired such that we maximize the chances of them
creating conflicts on a particular microarchitectural unit. As
examples, (1) both gobmk and sjeng have numerous repeated
accesses to the memory bus, (2) both bzip2 and h264ref
have a significant number of integer divisions. The goal
of our experiments is to study whether these benchmark
pairs create similar levels of recurrent bursts or oscillatory
patterns of conflicts that were observed in realistic covert
channel implementations (which, if true, could potentially
lead to a false alarm). Despite having some regular bursts
and conflict cache misses, all of the benchmark pairs are
known to not have any covert timing channels. Figure 14

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30

Fr
e
q

u
e
n

cy
 o

f
Δ

t

Memory Bus Lock Density

2484

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

Fr
e
q

u
e
n

cy
 o

f
Δ

t

Integer Divider Contention Density

601302

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000A
u
to

co
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

Lag

(a) gobmk sjeng

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30

Fr
e
q

u
e
n

cy
 o

f
Δ

t

Memory Bus Lock Density

2449

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

Fr
e
q

u
e
n

cy
 o

f
Δ

t

Integer Divider Contention Density

498209

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000A
u
to

co
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

Lag

(b) bzip2 h264ref

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30

Fr
e
q

u
e
n

cy
 o

f
Δ

t

Memory Bus Lock Density

2499

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

Fr
e
q

u
e
n

cy
 o

f
Δ

t

Integer Divider Contention Density

499992

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000A
u
to

co
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

Lag

(c) stream stream

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30

Fr
e
q

u
e
n

cy
 o

f
Δ

t

Memory Bus Lock Density

2477

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

Fr
e
q

u
e
n

cy
 o

f
Δ

t

Integer Divider Contention Density

499781

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000A
u
to

co
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

Lag

(d) mailserver mailserver

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30

Fr
e
q

u
e
n

cy
 o

f
Δ

t

Memory Bus Lock Density

2490

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

Fr
e
q

u
e
n

cy
 o

f
Δ

t

Integer Divider Contention Density

499528

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000A
u
to

co
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

Lag

(e) webserver webserver

Figure 14: Event Density Histograms and Autocorrelograms in pair combinations of SPEC2k6, Stream & Filebench

presents a representative subset of our experiments7. We
observe that most of the benchmark pairs have either zero
or random burst patterns for both memory bus lock (first
column) and integer division contention (second column)
events. The only exception is mailserver pairs, where we
observe a second distribution with bursty patterns between
histogram bins#5 and #8. Upon further examination, we find
that the likelihood ratios for these distributions was less than
0.5 (which is significantly less than the ratios seen in all
of our covert timing channel experiments). In almost all of
the autocorrelograms (third column), we observe that the
autocorrelation coefficients do not exhibit any noticeable pe-
riodicity typically expected of cache covert timing channels.
The only exception was webserver where we see a very brief
period of periodicity between lag values 120 and 180, but
becomes non-periodic beyond lag values of 180. Therefore,
we did not observe any false alarms. Also, regardless of
the “cover” programs that embed the trojan/spy, CC-Hunter
is designed to catch the covert transmission phases in the
programs that should be already synchronized between the
trojan and the spy. Hence, we do not believe that the cover
program characteristics could lead to false negatives.

VII. RELATED WORK

The notion of covert channel was first introduced by
Lampson et al [29]. Hu et al [3] proposed fuzzing the system
clock by randomizing interrupt timer period between 1 ms
and 19 ms. Unfortunately, this approach could significantly
affect the system’s normal bandwidth and performance in
the absence of any covert timing channel activity. Recent
works have primarily focused on covert information transfer
through network channels [30], [31] and mitigation tech-
niques [12], [13], [32]. Among the studies that consider
processor-based covert timing channels, Wang and Lee [7]
identify two new covert channels using exceptions on specu-
lative load (ld.s) instructions and SMT/Multiplier unit. Wu et
al. [9] present a high-bandwidth and reliable covert channel
attack that is based on the QPI lock mechanism where
they demonstrate their results on Amazon’s EC2 virtualized
environment. Ristenpart et al. [6] present a method of creat-
ing a cross-VM covert channel by exploiting the L2 cache,
which adopts the Prime+Trigger+Probe [33] to measure the
timing difference in accessing two pre-selected cache sets
and decipher the covert bit. Xu et al. [10] construct a
quantitative study over cross-VM L2 cache covert channels
and assess their harm of data exfiltration. Our framework
is tested using the examples derived from such prior covert
timing channel implementations on shared hardware.

To detect and prevent covert timing channels, Kemmerer
et al. [14] proposed a shared matrix methodology to stati-
cally check whether potential covert communications could
happen using shared resources. Wang and Lee [34] propose

7Due to space constraints, we are unable to show all of our results.

a covert channel model for an abstract system specification.
Unfortunately, such static code-level or abstract model anal-
yses are impractical on every single third-party application
executing on a variety of machine configurations in today’s
computing environments, especially when most of these
applications are available in binary-only format.

Side channels are information leakage mechanisms where
a certain malware secretly profiles a legitimate application
(via differential power, intentional fault injection etc.) to ob-
tain sensitive information. Wang and Lee [16], [35] propose
three secure hardware cache designs, Partition-Locking (PL),
Random Permutation (RP) and Newcache to defend against
cache-based side channel attacks. Kong et al. [15] show how
secure software can use the PL cache. Martin et al. [36]
propose changes to the infrastructure (timekeeping and per-
formance counters) typically used by side channels such that
it becomes difficult for the attackers to derive meaningful
clues from architectural events. Demme et al. [37] introduce
a metric called Side Channel Vulnerability Factor (SVF) to
quantify the level of difficulty for exploiting a particular
system to gain side channel information. Many of the above
preventative techniques complement CC-Hunter by serving
to provide enhanced security to the system.

Demme et al [38] explore simple performance counters
for malware analysis. This strategy is not applicable for a
number of covert channels because they use specific timing
events to modulate hardware resources that may not be
measurable through the current performance counter infras-
tructure. For instance, the integer divider channel should
track cycles where one thread waits for another (unsupported
by current hardware). Using simple performance counters
as alternatives will only lead to a high number of false
positives. Also, using machine learning classifiers without
considering the time modulation characteristics of covert
timing channels could result in false alarms.

VIII. CONCLUSIONS

In this paper, we present CC-Hunter, a new
microarchitecture-level framework to detect the possible
presence of covert timing channels on shared processor
hardware. Our algorithm works by detecting recurrent
burst and oscillation patterns on certain key indicator
events associated with the covert timing channels. We
test the efficacy of our solution using example covert
timing channels on three different types of processor
hardware- wires (memory bus/QPI), logic (integer divider)
and memory (caches). We conduct sensitivity studies by
altering the bandwidth rates, message bit combinations
and number of cache sets. Our results show that, at
low bandwidths, more frequent analysis (at finer grain
windows of observation) may be necessary to improve
the probability of detection. Through experiments on I/O,
memory, CPU-intensive benchmarks such as Filebench [39],
SPEC2006 [40] and Stream [41] that are known to have

no covert channels, we show that our framework does not
have any false alarms.

ACKNOWLEDGMENTS

This material is based upon work supported by the
National Science Foundation under CAREER Award CCF-
1149557. We thank Dr. Ruby Lee and the anonymous re-
viewers for their valuable feedback, and Dr. Milos Doroslo-
vacki for his guidance during the initial phase of this work.

REFERENCES

[1] NIST, “National Vulnerability Database,” 2013.
[2] J. Gray III, “On introducing noise into the bus-contention

channel,” in IEEE Computer Society Symposium on Security
and Privacy, 1993.

[3] W.-M. Hu, “Reducing timing channels with fuzzy time,”
Journal of Computer Security, vol. 1, no. 3, 1992.

[4] K. Okamura and Y. Oyama, “Load-based covert channels be-
tween xen virtual machines,” in ACM Symposium on Applied
Computing, 2010.

[5] C. Percival, “Cache missing for fun and profit,” BSDCan,
2005.

[6] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,
you, get off of my cloud: exploring information leakage in
third-party compute clouds,” in ACM conference on Computer
and communications security, 2009.

[7] Z. Wang and R. B. Lee, “Covert and side channels due to pro-
cessor architecture,” in IEEE Computer Security Applications
Conference, 2006.

[8] J. C. Wray, “An analysis of covert timing channels,” Journal
of Computer Security, vol. 1, no. 3, 1992.

[9] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space:
high-speed covert channel attacks in the cloud,” in USENIX
conference on Security symposium, 2012.

[10] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and
R. Schlichting, “An exploration of L2 cache covert channels
in virtualized environments,” in ACM workshop on Cloud
computing security workshop, 2011.

[11] B. Saltaformaggio, D. Xu, and X. Zhang, “Busmonitor: A
hypervisor-based solution for memory bus covert channels,”
EUROSEC, 2013.

[12] S. Cabuk, C. E. Brodley, and C. Shields, “Ip covert channel
detection,” ACM Transactions on Information and System
Security, vol. 12, no. 4, 2009.

[13] S. Gianvecchio and H. Wang, “Detecting covert timing chan-
nels: an entropy-based approach,” in ACM conference on
Computer and communications security, 2007.

[14] R. A. Kemmerer, “Shared resource matrix methodology: An
approach to identifying storage and timing channels,” ACM
Transactions on Computer Systems, vol. 1, no. 3, 1983.

[15] J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou, “Hardware-
software integrated approaches to defend against software
cache-based side channel attacks,” in IEEE Intl. Symp. on
High Performance Computer Architecture, 2009.

[16] Z. Wang and R. B. Lee, “New cache designs for thwarting
software cache-based side channel attacks,” in ACM Interna-
tional symposium on Computer architecture, 2007.

[17] Department of Defense Standard, Trusted Computer System
Evaluation Criteria. US Department of Defense, 1983.

[18] H. Okhravi, S. Bak, and S. King, “Design, implementation
and evaluation of covert channel attacks,” in International
Conference on Technologies for Homeland Security, 2010.

[19] N. E. Proctor and P. G. Neumann, “Architectural implications
of covert channels,” in National Computer Security Confer-
ence, vol. 13, 1992.

[20] Y. Kaneoke and J. Vitek, “Burst and oscillation as dis-
parate neuronal properties,” Journal of neuroscience methods,
vol. 68, no. 2, 1996.

[21] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSSx86: A
Full System Simulator for x86 CPUs,” in Design Automation
Conference 2011, 2011.

[22] Intel Corporation, “Intel 7500 chipset,” Datasheet, 2010.
[23] NIST Engineering Statistics Handbook, “Maximum Likeli-

hood,” 2013.
[24] G. E. Box, G. M. Jenkins, and G. C. Reinsel, Time series

analysis: forecasting and control. Wiley, 2011, vol. 734.
[25] G. P. V. Venkataramani, “Low-cost and efficient architectural

support for correctness and performance debugging,” Ph.D.
Dissertation, Georgia Institute of Technology, 2009.

[26] HP Labs, “Cacti 5.1,” quid.hpl.hp.com:9081/cacti/, 2008.
[27] Intel Corporation, “Intel core i7-920 processor,”

http://ark.intel.com/Product.aspx?id=37147, 2010.
[28] J. Demme and S. Sethumadhavan, “Rapid identification of

architectural bottlenecks via precise event counting,” in IEEE
International Symposium on Computer Architecture, 2011.

[29] B. W. Lampson, “A note on the confinement problem,”
Commun. ACM, vol. 16, no. 10, Oct. 1973.

[30] S. Gianvecchio, H. Wang, D. Wijesekera, and S. Jajodia,
“Model-based covert timing channels: Automated modeling
and evasion,” in Recent Advances in Intrusion Detection.
Springer, 2008, pp. 211–230.

[31] K. Kothari and M. Wright, “Mimic: An active covert chan-
nel that evades regularity-based detection,” Comput. Netw.,
vol. 57, no. 3, Feb. 2013.

[32] A. Shabtai, Y. Elovici, and L. Rokach, A survey of data
leakage detection and prevention solutions. Springer, 2012.

[33] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache
attacks on aes, and countermeasures,” J. Cryptol., vol. 23,
no. 2, Jan. 2010.

[34] Z. Wang and R. B. Lee, “New constructive approach to
covert channel modeling and channel capacity estimation,”
in International Conference on Information Security, 2005.

[35] Z. Wang and R. Lee, “A novel cache architecture with
enhanced performance and security,” in IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2008.

[36] R. Martin, J. Demme, and S. Sethumadhavan, “Timewarp:
rethinking timekeeping and performance monitoring mecha-
nisms to mitigate side-channel attacks,” in ACM International
Symposium on Computer Architecture, 2012.

[37] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan,
“Side-channel vulnerability factor: A metric for measuring
information leakage,” in ACM International Symposium on
Computer Architecture, 2012.

[38] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman,
S. Sethumadhavan, and S. Stolfo, “On the feasibility of on-
line malware detection with performance counters,” in IEEE
International Symposium on Computer Architecture, 2013.

[39] File system and Storage Lab, “Filebench,”
http://sourceforge.net/apps/mediawiki/filebench, 2011.

[40] Standard Performance Evaluation Corporation, “Spec 2006
benchmark suite,” www.spec.org, 2006.

[41] J. D. McCalpin, “Memory bandwidth and machine balance
in current high performance computers,” IEEE Technical
Committee on Computer Architecture Newsletter, 1995.

