
Clone-Hunter: Accelerated Bound Checks
Elimination via Binary Code Clone Detection

Hongfa Xue
The George Washington University

USA
hongfaxue@gwu.edu

Guru Venkataramani
The George Washington University

USA
guru@gwu.edu

Tian Lan
The George Washington University

USA
tlan@gwu.edu

Abstract
Unsafe pointer usage and illegitimate memory accesses
are prevalent bugs in software. To ensure memory safety,
conditions for array bound checks are inserted into the
code to detect out-of-bound memory accesses. Unfortu-
nately, these bound checks contribute to high runtime
overheads, and therefore, redundant array bound checks
should be removed to improve application performance.

In this paper, we propose Clone-Hunter, a practical
and scalable framework for redundant bound check elim-
ination in binary executables. Clone-Hunter first uses
binary code clone detection, and then employs bound
safety verification mechanism (using binary symbolic
execution) to ensure sound removal of redundant bound
checks. Our results show the Clone-Hunter can swiftly
identify redundant bound checks about 90× faster than
pure binary symbolic execution, while ensuring zero false
positives.

CCS Concepts • Software and its engineering →
Software testing and debugging; • Security and
privacy → Software security engineering;

Keywords Memory safety, Array bound checks, Ma-
chine learning, Binary analysis

ACM Reference Format:
Hongfa Xue, Guru Venkataramani, and Tian Lan. 2018.
Clone-Hunter: Accelerated Bound Checks Elimination via
Binary Code Clone Detection. In Proceedings of 2nd ACM
SIGPLAN International Workshop on Machine Learning and
Programming Languages (MAPL). ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3211346.3211347

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MAPL, 2018, Philadelphia, PA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5834-7/18/06. . . $15.00
https://doi.org/10.1145/3211346.3211347

1 Introduction
Memory-related bugs and buffer overflows are oft-cited
problems leading to software security issues. This con-
cern is exacerbated in legacy applications where only
binary executables are available, and have been in de-
ployment for a number of years in production systems.
Numerous instances of such legacy binary code exist
in domains such as airspace, military and banking [25].
Illegal memory accesses and unsafe pointer usage in such
applications can lead to compromising sensitive user
data. We note that memory safety in applications con-
tinues to remain as a major concern. For instance, in
August 2017, Microsoft identified a flaw in the legacy
JET database program supported by Windows 7 and 10
editions. This bug was reported to have the potential
to take over users private computer full system control
remotely [36].

bzip2 hmmer sphinx3 lbm
0

2x105

4x105

6x105

8x105

St
at

ic
B

ou
nd

C
he

ck
s

0.0

0.2

0.4

0.6

0.8

1.0

R
un

ti
m

e
O

ve
rh

ea
d

Figure 1. Number of array bound checks and the cor-
responding runtime overhead incurred for instrumented
applications from SPEC 2006 benchmark suite [1]. Non-
instrumented applications are used as baseline.

To secure and protect binary executables from mem-
ory and pointer-related problems, techniques that ensure
safety through checking array bounds have been devel-
oped [10, 22, 32]. However, these techniques and tools
still incur high runtime overheads when they are per-
formed exhaustively and such checks turn out to be
redundant for most benign pointer accesses. Note that
such overheads can be dramatically higher in pointer-
intensive programs. Figure 1 shows the total number
of static bound checks and runtime overheads intro-
duced by an array bound checker tool, Softbound [22]
for several representative SPEC2006 benchmarks. In
order to reduce such high performance overheads, re-
dundant bound check elimination approaches have been
developed [6, 37, 42]. By eliminating unnecessary bound

https://doi.org/10.1145/3211346.3211347
https://doi.org/10.1145/3211346.3211347

MAPL, 2018, Philadelphia, PA Hongfa Xue, Guru Venkataramani, and Tian Lan

checks, their corresponding performance overheads can
be avoided. However, note that such redundant array
bound check elimination methods still need to analyze
every single pointer deference to compute the constraints
involving pointer-related variables, and verify whether
bound checks are redundant and be removed effectively
from that location. In case of applications involving bil-
lions of pointer dereferences, the task of verifying the
redundancy of bound checks can still be prohibitively
expensive or impossible in practice.

Our work is motivated by the key observation that
software applications usually have an abundant number
of similar code fragments, called code clones [17, 18].
Two code fragments can be named as code clones if they
are similar to each other based on a given code similarity
matrix (e.g., tree-based code similarity [16]). There is a
high possibility that if checking array bounds is deemed
redundant for a certain code fragment, it can also be
removed from its corresponding code clones. Effectively,
instead of analyzing every single pointer, we leverage
binary code clone detection techniques and reduce the
time-to-solution in terms of eliminating redundant bound
checks in binaries.

We propose a novel approach, Clone-Hunter, in order
to perform rapid elimination of redundant bound checks
in binary applications through identifying code clones,
and forming clusters of such clones, we pick random
seed samples from each cluster, and with the help of
a binary symbolic executor, determine whether bound
checks are necessary on the seed. If deemed unnecessary,
the decision to remove bound checks is replicated to all
of the other clone samples, thereby significantly speeding
up the redundant bound check elimination process. We
improve the confidence of our decision to replicate bound
check removal through performing random spot-checks.
That is, we randomly select a group of clones within
each cluster and determine whether bound checks can
be removed through symbolic execution. This verifies
the soundness of our decision to remove bound checks
in the clone samples within the cluster. Our experimen-
tal results show that our approach is powerful, and can
significantly reduce the performance overheads in elim-
inating redundant bound checks by up to 45.54% in
binary applications.

We note that Clone-Hunter presents a new approach
that combines statistical methods (such as machine learn-
ing to identify code clones) and formal analysis tools
(such as symbolic execution) to preserve array bound
checks where necessary, while eliminating a vast major-
ity of redundant checks. To the best of our knowledge,
Clone-Hunter is the first proposed framework for redun-
dant bound check elimination in application binaries.
This work is significant because most of the critical
binary applications deployed in military and financial

domains need effective memory safety, but should not
be adversely affected by the unnecessary performance
overheads imposed by redundant checks[9].

In summary, the contributions of this paper are:
1. We propose Clone-Hunter, a framework that lever-

ages machine learning to replicate the decision to remove
array bound checks on identical code clones, thereby
reducing the time-to-solution in terms of eliminating
redundant bound checks in application binaries.

2. We demonstrate a novel use of joint statistical-
formal learning where safe removal of redundant bound
checks are identified using binary symbolic execution,
and machine learning-based clone detectors are used in
accelerating the elimination of redundant checks.

3. We implement a prototype of Clone-Hunter and
evaluate using real-world applications from SPEC2006
benchmarks suite [1]. Our results show the time-to-
solution (time spent to remove bound checks) for Clone-
hunter is 90× faster compared to pure binary symbolic
execution, and three out of four applications experienced
time-out when pure binary symbolic executors are used.

The rest of this paper is organized as follows: Sec-
tion 2 gives the overview of our approach. In Section
3, we illustrate how we design and implement our sys-
tem, respectively. We evaluate Clone-Hunter and show
our experimental results in Section 4. Section 5 and 6
discusses some related works and our conclusions.

2 Approach Overview
In this section, we give an overview on how Clone-Hunter
accelerates the removal of redundant bound checks in bi-
nary executables. The main components of Clone-Hunter
is shown in Figure 2.

For a given application binary that is instrumented
with array bound checks, Clone-Hunter first employs a
Binary Code Clone Detector to identify code clone pairs.
We disassemble binary executables and work with the
resulting assembly code. In order to detect code clones,
the assembly code is transformed into normalized in-
struction sequences with intermediate representations in
order to remove instruction-specific details, such as reg-
ister names and memory addresses. This step improves
the performance of machine learning algorithms and
enables Clone-Hunter to find clones at modest runtime
overheads. Note that our clones are more likely than not
to be functionally equivalent as well since two identical
instruction patterns will very likely perform the same
functionally logical operation. This equivalence is further
verified through binary symbolic execution later.

We generate feature vectors for each normalized in-
struction sequence, embed them into vector space and
use clustering algorithms to find code clones (more de-
tails in Section 3.1.1). Note that the detected code clones

Clone-Hunter: Accelerated Bound Checks Elimination via Binary Code Clone Detection MAPL, 2018, Philadelphia, PA

Vector Embedding ML-Based
Clone Detector

Consolidation of
Code Clones

Selective Sampling &
Symbolic Execution for

Bound Verification

Removal of
Redundant Bound

Checks

Binaries
Instrumented with

Bound Checks
Optimized Binaries

Code Normalization
Binary Code Clone Detector

Figure 2. Overview of Clone-Hunter

need to be consolidated, because there could be over-
lapping and duplicated clones as we adopt a sliding
window based analysis approach. Also, we only need to
consider pointer-related code (since bound checks are
only relevant to pointers). Thus, the code clones that are
duplicated or not pointer-related would be removed from
further consideration, during code clone consolidation
(Section 3.1.3).

The next step is to use binary symbolic execution to
verify whether redundant bound checks can be safely
removed. This process is performed as follows: We sample
each cluster of code clones and apply binary symbolic
execution to determine whether array bound checks are
absolutely needed on the selected samples. Array bound
checks will be redundant if the pointer dereference is
guaranteed to be safe and never out of array bounds.
Since all code clones in the same cluster are functionally
equivalent, we replicate the decision of array bound check
removal on all code clones in the cluster. Note that code
clone detection through clustering algorithms are not
guaranteed to be precise, and hence we further verify the
validity of clone detection by selecting a random subset
of samples within the cluster and through performing
binary symbolic execution on all of them.

Finally, we perform redundant bound check elimina-
tion using binary rewriting to remove the corresponding
bound check instructions inserted by an array bound
checker tool such as Softbound. Section 3.3 describes our
implementation of this module in more detail.

3 System Design and Implementation
In this section, we present the design details of our
Clone-Hunter framework, and show how our system is
implemented.

3.1 Binary Code Clone Detection
Clone-Hunter accelerates redundant bound checks re-
moval by identifying binary code clones, and replicates
the decision to perform removal of bound checks on the
corresponding code clones.

addl, mov, cmp, jle

…
for (i ; i < len_1 ; i += 1)
{

buf_1 [i] = “A”;
}

…

…
for (j ; j < len_2 ; j += 2)
{

buf_2 [j] = “B”;
}

…

addl $0x1, -0x4(%rbp)
mov -0x4(%rbp),%eax
cmp -0x8(%rbp),%eax
jle 53<main+0x1b>

addl $0x1, -0x8(%rbp)
mov -0x8(%rbp),%eax
cmp -0xe(%rbp),%eax
jle 1b<main2+0x1b>

assembly code

identical instruction sequence

source code

Figure 3. Motivation example for code normalization

3.1.1 Vector Embedding
We first disassemble the target binaries, and detect code
clones in the assembly code, which are functionally sim-
ilar. Note that every machine instruction in binary ex-
ecutables is a combination of instruction type and the
corresponding operands, such as memory references, reg-
isters and immediate values. Two code samples are con-
sidered as code clones if they can be deemed functionally
similar except for some certain constant values, offsets in
memory locations, or addresses used as branch targets.
For example, Figure 3 shows two functionally identical
source code snippets and their corresponding assembly
code. As we can see, their assembly codes share the same
instruction sequence but different operands. We perform
normalization to abstract out specific addresses and reg-
ister names, while preserving the instruction patterns
and the logical functionality of the code regions. This
enables more effective gathering of functionally similar
code snippets using clustering algorithms.

We use a sliding window method to select different
code regions for code clone analysis. The method has
two parameters: window size and stride. Window size
defines the maximum length of code regions for consid-
eration, while stride denotes the smallest increment of
starting instruction address for subsequent sliding win-
dows. For each code region, normalization is performed,
since two code regions that are syntactically or semanti-
cally equivalent may have identical instruction patterns,

MAPL, 2018, Philadelphia, PA Hongfa Xue, Guru Venkataramani, and Tian Lan

mov %r10 ,%rdi
sub %eax,%r9d
mov $0x1 ,%es i
mov %r8 , %rsp

Original Code

mov REG, REG
sub REG, REG
mov VAL, REG
mov REG, REG

Normalized Code

Figure 4. An example illustrating normalization for
given a given binary code.

Figure 5. Normalized assembly code embedded into
vector space

but may have different memory references, registers or
constants. Specifically, we use an abstract operand for-
mat with three symbols, namely {𝑀𝐸𝑀,𝑅𝐸𝐺, 𝑉 𝐴𝐿}.
Memory references are replaced by symbol 𝑀𝐸𝑀 , regis-
ter names by symbol 𝑅𝐸𝐺 or constant values by symbol
𝑉 𝐴𝐿. Figure 4 shows an example how we normalize the
instructions for a given code region.

Next, we cluster these normalized code regions and
identify code clones via machine learning algorithms.
The code regions are embedded into a feature vector
space. In particular, we count the number of occurrences
of assembly instructions in each code region after normal-
ization. Let 𝑛 be the total number of distinct normalized
instructions. The occurrences of different instructions
are collectively stored in a feature vector, denoted as
𝐶𝑖 = (𝐶𝑖1 , 𝐶𝑖2 , ..., 𝐶𝑖𝑛), where 𝐶𝑖𝑘 (for 𝑘 = 1, . . . , 𝑛)
measures the occurrence of normalized instruction 𝑘 in
code region 𝑖. This process is illustrated in Figure 5 for
the code region example shown in Figure 4.

In Clone-Hunter, we employ IDA Pro binary disassem-
bler [3] and implement instruction normalization and
vector embedding in Python. The actual instruction ad-
dresses, register names prior to normalization, and code
region’s starting and ending addresses are stored as a
query table using SQLite database [2]. This is done to
reverse map normalized code samples back to the binary
such that the decision of removing bound checks can be
verified (Section 3.2).

3.1.2 Machine Learning-based Clone Detector
After embedding the code regions into feature vectors,
we make use of the Affinity Propagation (AP) clustering
algorithm for binary code clone detection. AP clustering

is able to determine the number of clusters among the
data points without any a priori knowledge. The em-
bedded vectors corresponding to different code regions,
𝐶1, 𝐶2, . . . , 𝐶𝑚 are referred to as 𝑚 different data points
in the clustering algorithm.

AP performs an iterative procedure to update the
association between data points and candidate cluster
centers. Let 𝑆 be a similarity matrix. Its off-diagonal
components 𝑆(𝑖, 𝑗) for 𝑖 ≠ 𝑗 quantify the similarity
between two distinct data points, 𝐶𝑖 and 𝐶𝑗 , represented
as the negated value of the squared euclidean distance.

𝑆(𝑖, 𝑗) = −||𝐶𝑖 − 𝐶𝑗 ||22. (1)

where || · ||2 denotes the L-2 vector norm. On the other
hand, the diagonal values 𝑆(𝑘, 𝑘) are input parameters
(known as the preference) reflecting the likelihood of
data point 𝑘 being chosen as a cluster center. It is easy
to see that if 𝑆(𝑖, 𝑗) > 𝑆(𝑖, 𝑘), then 𝐶𝑖 is closer to 𝐶𝑗

than 𝐶𝑘.
In the AP algorithm, there are two matrices, Respon-

sibility matrix and Availability matrix, being updated in
each iteration. In particular, 𝑅(𝑖, 𝑘) measures how well
data point 𝐶𝑘 is suited to serve as a candidate cluster
center for point 𝐶𝑖, while 𝐴(𝑖, 𝑘) reflects how appropriate
it is for 𝐶𝑖 to choose 𝐶𝑘 as its cluster center. The AP
algorithm initializes both matrix to zero, and in each
iteration, updates both 𝑅(𝑖, 𝑘) and 𝐴(𝑖, 𝑘) in a coupled
fashion, according to

𝑅(𝑖, 𝑘) = 𝑆(𝑖, 𝑘)− max
𝑘′:𝑘′ ̸=𝑘

{𝐴(𝑖, 𝑘′) + 𝑆(𝑖, 𝑘′)} (2)

𝐴(𝑖, 𝑘) = min{0, 𝑅(𝑘, 𝑘) +
∑︁

𝑖′ ̸∈{𝑖,𝑘}

max{0, 𝑅(𝑖′, 𝑘)}}(3)

Note that the 𝐴(𝑖, 𝑘) is non-positive due to Equa-
tion (3). It is updated by the 𝑅(𝑘, 𝑘) (measuring the
preference for point 𝐶𝑘 to serve as a cluster center),
plus the aggregate responsibility points that 𝐶𝑘 receives
from all other data points (reflecting its overall popu-
larity as a cluster center among other points). The self-
availability 𝐴(𝑘, 𝑘) is updated differently, i.e., 𝐴(𝑘, 𝑘)←∑︀

𝑖′ ̸∈{𝑖,𝑘} 𝑚𝑎𝑥{0, 𝑅(𝑖′, 𝑘)}, without depending on the
self-responsibility 𝑅(𝑘, 𝑘). Finally, the iterations are ter-
minated when the changes of availabilities and responsi-
bilities are smaller than a pre-defined threshold, implying
that the cluster assignments have become stable.

We implement our clustering-based code clone detector
in Python using a machine learning tool Scikit-learn [23].
We instrument its AP clustering API - sklearn.cluster
for our clustering module.

3.1.3 Consolidation of Code Clones
Code Clone Consolidation removes duplicate and pointer-
irrelevant code clones from further consideration. Non-
pointer related clones are not useful in removal of array

Clone-Hunter: Accelerated Bound Checks Elimination via Binary Code Clone Detection MAPL, 2018, Philadelphia, PA

bound check conditions, and hence are not considered
useful in our study.

We first filter out the pointer-irrelevant code clones by
checking if they contain bound check-related instructions.
For example, Softbound-instrumented bound checks in-
structions will contain "softbound_spatial_checks" sym-
bol in binary executables. This enables filtering out these
instructions using such symbols.

Also, as described in Section 3.1.1, we use a sliding
window based analysis approach for code clone detection.
We note that this can create overlapping windows re-
sulting in partially overlapping or even duplicated code
clones. To address this problem, we consolidate the code
clones by computing the union of overlapping code clones,
i.e., the union of their start and end instruction addresses
in assembly code. Each code clone sample is denoted as
a vector (𝑠, 𝑒) where 𝑠 is the starting address and 𝑒 is
the ending address in the code region. Two code clones,
(𝑠, 𝑒) and (𝑠′, 𝑒′), are overlapping if they have non-empty
intersection, i.e., (𝑠, 𝑒) ∩ (𝑠′, 𝑒′) ̸= 𝜑. Thus, we use their
union to consolidate them and define a maximum-sized,
continuous code snippet, (𝑠, 𝑒) ∪ (𝑠′, 𝑒′). This consolida-
tion procedure is performed until all consolidated code
clones are non-overlapping.

We implement our Code Clone Consolidation module
using Python embedded into ML-Clone Detector.

3.2 Symbolic Execution for Bound Verification
Clone-Hunter utilizes clustering algorithms in Machine
Learning to identify binary code clones, that can be
used to assist removal of redundant array bound checks.
Based on our observations from a large number of code
samples, it is highly likely that the redundant bound
checks in two code samples can be both removed if they
are functionally equivalent code clones. To formally check
if the code clones detected by Clone-Hunter can safely
remove array bound checks, we utilize binary symbolic
execution as our verification tool.

There are three major steps for bound check verifica-
tion and elimination in Clone-Hunter:

1. Identification of redundant bound checks:
First, we pick a random code clone sample as seed
clone sample in each cluster. We determine the
pointer dereference is safe, and that no memory
violation can exist. We deploy binary symbolic exe-
cution to execute the seed clone sample and check
whether the array bound checks are redundant
based on the output from symbolic execution. We
perform partial symbolic execution starting from
beginning to end of the seed clone sample based
on its instruction addresses. To deal with possibly
incomplete program state while performing partial
symbolic execution, we make the values of unknown

variables in this code region as symbolic variables.
If the pointers in seed clone sample turn out to be
safe, then array bound checks in the corresponding
code snippet may be safely removed. If not, we
terminate the array bound verification procedure
and apply the final decision as ‘Not redundant’
to the other code clones in the cluster. That is,
the array bound checker tool-inserted code is kept
intact and are not removed.

2. Verification of bound identification: Cluster-
ing algorithm cannot offer any guarantees in terms
of ensuring safe bound check removal from all de-
tected code clones. It is possible that two code
snippets are found to be code clones, but have
different bound safety conditions and do not allow
simultaneous bound checks removal. To further
improve the accuracy of Clone-Hunter, we select a
random set of code clone samples within the same
cluster and perform binary symbolic execution to
check whether the bound checks removal conditions
on these code clones are indeed similar.

3. Applying decision to remove bound checks:
If the random code clones samples turn out to be
safe, we apply the final decision as ‘Redundant’
to all of the code clones within the cluster, and
remove the corresponding array bound checking
code inserted by the memory safety tool. On the
flip side, if the safety checks by symbolic executor
on random code clones samples fail, then we apply
the final decision as ‘Not redundant’ to all of the
clone samples in the cluster. That is, the array
bound checker tool-inserted code is kept intact and
are not removed.

We instrument a binary analysis framework angr [29]
for bound verification. We deploy the binary symbolic
executor in angr for a target location to start performing
symbolic execution in binary executables, beginning with
the starting address and execute instructions within the
specific code region.

3.3 Removal of Redundant Bound Checks
To delete instructions in binary executables, we deploy
a Static Binary Rewriting tool Dyninst [31]. As we dis-
cussed earlier, we store additional information for each
code region including their start and end addresses. We
use this information to rewrite control transfers. We
implement our Bound Check Remover in C++ with
Dyninst. Given a code clone as input, we scan each in-
struction and remove redundant array bound checks. We
obtain optimized binaries as output.

MAPL, 2018, Philadelphia, PA Hongfa Xue, Guru Venkataramani, and Tian Lan

4 Evaluation
We provide an overview of our experimental setup, and
later present our evaluation results.

4.1 Experiment Setup
We selected 4 different real-world applications: bzip2,
hmmer, lbm and sphinx3 from SPEC2006 benchmark
suite [1] and use the largest reference input sets to per-
form our study. All experiments are performed on a 2.54
GHz Intel Xeon(R) CPU E5540 8-core server with 12
GByte of main memory. The operating system is ubuntu
14.04 LTS.

To evaluate the performance of Clone-Hunter, we de-
ploy a runtime bound checker tool: Softbound [22] that
inserts array bound checks into application’s binary exe-
cutable files.

4.2 Effectiveness of Binary Code Clone
Detection

We evaluated our binary code clone detector with dif-
ferent window sizes and stride values. The number of
cloned instructions shows the pervasive presence of code
clones throughout the entire program in certain applica-
tions. In general, we observed that there are more code
clone samples detected with smaller window sizes. In
particular, our experiments showed that we are able to
detect the most code clones with maximum window size
equals to 100 tokens (minimum window size = 2 tokens)
and stride value of 4. Table 1 shows, for each benchmark,
the statistics about the number of static instructions,
clone clusters, number of instructions in clone samples,
and the overall percentage of program instructions they
represent.

As we can see, sphinx3 has the highest coverage of
cloned instructions with over 44% and also has the most
number of clusters generated from our machine learning
algorithm.

4.3 Overhead of Binary Symbolic Execution
We evaluated the overhead of binary symbolic executors
for checking redundancy of array bound checks using
Clone-Hunter, and compared the execution time with
Pure Symbolic Execution over entire binary programs.
Our baseline is the binary analysis framework angr [29].

Table 2 presents the runtime overhead due to pure
symbolic execution and Clone-Hunter. We evaluate pure
symbolic execution overhead on the entire program and
conduct partial symbolic execution on each function as
function-level overhead. We set up 43,200 seconds (12
hours) as TIME OUT.

In our experiments, we set up a threshold for number
of code samples used for bound verification. Since the

smallest cluster contains only 2 code clone samples, we
chose a lower bound as 2 code clone samples. For larger
clusters, we pick 30% sampling rate as upper bound
to randomly select code clone samples for spot checks
described in Section 3.2. We note that the sampling rate
within the cluster is tunable depending on the user’s
needs. The time spent in Clone-Hunter assisted Symbolic
Execution is calculated as the summation of symbolic
execution times in the random seed clones within each
cluster. We observe that Clone-Hunter always spends
less time than angr in terms of performance overhead.
Notably, angr fails to finish symbolic execution for bzip2,
sphinx3 and hmmer, angr and results in TIME OUT.
The time-to-solution (the time spent to remove bound
checks) for Clone-hunter is 90× faster compared to pure
Binary Symbolic Execution in lbm. On the other hand,
it is easy to see that why pure symbolic execution takes
more time in Clone-Hunter in sphinx3. Our code clone
detector detected the number of clusters as 2,771, which
means we need to pick at least 5,542 code clones for
bound verification. On the other hand, we only need to
pick at least 116 code clones in lbm.

As expected, pure symbolic execution over the entire
program results in much higher runtime for angr, and
often results in TIME OUT due to path explosion where
every single program path needs to be explored by the
symbolic executor. Some functions in bzip2 contain more
loop operations and function calls, and leads to a longer
symbolic execution time for entire program analysis.

4.4 Redundant Bound Checks Elimination
Figure 6 shows the comparison of Softbound’s runtime
execution overhead before and after using Clone-Hunter
(that eliminates redundant bound checks and the over-
heads associated with them). Our results show that
Clone-Hunter is able to significantly reduce the runtime
overheads caused by redundant array bound checks in
certain applications such as sphinx3 and lbm to about
20% or less. In other applications with high runtime
overheads, such as hmmer, we observe about 50% reduc-
tion in execution time penalty due to Softbound checks.
Clone-Hunter achieves an average reduction of 34.24%
compared to Softbound runtime overheads.

We further evaluate the percentage of false positives in
removing redundant bound checks. We note that a false
positive occurs if a bound check is deemed redundant
by Clone-Hunter, but is indeed necessary and cannot be
safely removed in reality. On the flip side, false negatives
occur if a bound check is deemed not redundant by
Clone-Hunter but is actually unnecessary. We note that
false negatives aren’t security critical and only results
in actually redundant checks being missed by Clone-
Hunter. Therefore, we do not evaluate Clone-Hunter for
false negatives in our study.

Clone-Hunter: Accelerated Bound Checks Elimination via Binary Code Clone Detection MAPL, 2018, Philadelphia, PA

Table 1. Binary Code Clone Statistics

Benchmark #Total Static Instructions #Clusters #Cloned Instructions % Instructions inside clones
bzip2 14,293 213 4,397 30.76%

sphinx3 203,708 2,771 89,647 44.01%
lbm 2,360 58 712 30.17 %

hmmer 171,376 1,440 69,324 40.45%

Table 2. Comparison of time spent in Clone-Hunter and Pure Symbolic Execution

Bench. Application Type Program Size Pure Symbolic Execution time Pure Symbolic Execution time Clone-Hunter assisted
(Byte) Whole Program (sec) Function-Level (sec) Symbolic Execution time (sec)

bzip2 File Compression 305K TIME OUT 383.40 153.98
sphinx3 Speech Recognition 1.3M TIME OUT 14010.00 6144.30

lbm Computational Fluid Dynmaics 55K 35032.54 1584.40 387.90
hmmer DNA Sequence Search 974K TIME OUT 6733.28 957.36

 0

 20

 40

 60

 80

 100

bzip2 hmmer lbm sphinx3

%
 o

f R
un

tim
e

O
ve

rh
ea

d

Benchmark

Softbound Clone-Hunter

Figure 6. Runtime overhead of softbound-instrumented
applications and Clone-Hunter. The baseline is non-
instrumented applications.

Table 3 shows the percentage of dynamic bound checks
eliminated in all 4 benchmarks, and we observe zero false
positives under Clone-Hunter. Clone-Hunter shows an av-
erage 36.37% redundant bound checks elimination ratio,
with the highest 45.54% at sphinx3. Other source code-
based redundant bound check elimination approaches,
such as SIMBER [37], report function-level statistics on
how many redundant checks were eliminated. We note
that exhaustive analysis of every pointer dereference is
still needed, and may involve high runtime overheads in
pointer-intensive applications. To the best of our knowl-
edge, Clone-Hunter is the first framework for removing
redundant array bound checks in binary applications us-
ing a scalable machine learning-based approach.

Note that the percentage of dynamic checks removed
by our approach is not linearly related to runtime over-
head. To explain this, we further analyzed the break-
down of Softbound’s execution time. We note that bound

Table 3. Percentage of Softbound’s dynamic array
bound checks removed by Clone-Hunter

Benchmark bzip2 hmmer lbm sphinx3
%Dynamic Checks Removed 26.72% 42.31% 30.90% 45.54%

%False Positive Rate 0.00% 0.00% 0.00% 0.00%

checks on load instruction de-reference has 4× higher
runtime penalty compared to the corresponding store in-
struction de-reference check. This is because load instruc-
tions are on the critical path affecting program runtime
directly, while store instructions are usually issued and
the processor begins fetching the subsequent instruction
even before stores complete. This is the reason why we
observe a better reduction in Softbound overheads if we
remove more load instruction de-reference checks. As
we can see, sphinx3 achieves the highest reduction in
performance overheads than others. We further analyzed
sphinx3, and found that Clone-Hunter removes 62.33%
load instruction related checks. Some functions in lbm
are written with a bunch of macro functions within a
user defined switch loop structure. This makes it more
burdensome for the source code-based analyzers, such
as SIMBER [37], to expand such macros and unroll the
loops within them.

5 Related Work
Prior solutions for eliminating redundant bound checks
are usually based on static source code analysis. WP-
bound [42] and ABCD [6] both reduce redundant bound
checks in Softbound [22] by solving a system of linear
inequalities obtained through static code analysis. In
contrast, SIMBER [37] proposes a learning approach
based on runtime statistics to refine the bound elimina-
tion conditions. These methods are often limited in their
scalability due to the need to derive bound elimination

MAPL, 2018, Philadelphia, PA Hongfa Xue, Guru Venkataramani, and Tian Lan

conditions and to analyze every single bound check loca-
tion. In addition, these techniques are only applicable
to software systems whose source code is available.

To protect memory safety in software systems, various
static code analysis methods [13, 21, 38, 44], have been
developed to analyze program behavior, prior work have
also studied bug/vulnerabilities, such as SECRET [43],
StatSym [41], HOTracer [15] and Sarre [19]. These tech-
niques suffer scalability issues resulting from growing
program size, since the amount of analysis required is
directly proportional to the sizes of software systems.
Another line of work have proposed hardware-based ar-
ray bound checks for memory protection. For instance,
MemTracker [33, 34] provides hardware support to ac-
celerate array bound checks. Shen et al. [28] present a
hardware based framework for flexible and fine-grain
heap memory protection. Such techniques can efficiently
support proper array bound checks and violations using
hardware support, but they may also involve hardware
modifications and the associated costs.

To address the scalability issue, a number of tools have
been developed for source-code clone detection [5, 16,
17, 27, 35]. In particular, Chucky [39] uses context-based
Natural Language Processing for static code analysis.
These techniques, often rely on source code or intermedi-
ate representation, and are intended to identify general
code clones. Pewny et al. [24] has developed a prototype
for binary code clone detection through translating the
binary code to an intermediate representation. Yikun et
al. [14] use advanced Deep Learning techniques to iden-
tify identical code clones within different complied archi-
tectures and configurations. In this paper, we harness
the power of code clone detection and formal analysis
techniques in an integrated framework to enable rapid
bound elimination on binaries at scale. Our code clone
detector is efficient, and can be applied in the future to
deal with problems like cross-platforms and semantically
equivalent code clone detection.

Binary code analysis is particularly important for
legacy software systems, whose source codes are often
not available. Several static binary analysis tools have
been developed to support the safety of lower-level bi-
naries, such as rev.ng [11], vfGuard [26], ByteWeight [4]
and BitBlaze [30]. Over the past decade, binary reverse
engineering has been widely studied. Caballero et al.[7]
summarized various binary code type inference and anal-
ysis methods for improving program security.

Program customization has been studied through rewrit-
ing and program patching against software obfuscation
using tools like BinSim [20], DamGate [8] and Bin-
Hunt [12]. Jop-alarm [40] performs runtime analysis on
binaries to track indirect jumps and detect jump oriented
program-based attacks.

6 Conclusions and Future Work
In this paper, we presented a novel framework, Clone-
Hunter, that integrates a machine learning based binary
code clone detection to speedup elimination of redundant
array bound checks in binary executables. We evaluated
our approach using real-world applications from SPEC
2006 benchmark suite. Our results show the time-to-
solution (the time spent to remove bound checks) for
Clone-Hunter is 90× faster compared to pure Binary
Symbolic Execution while three out of four applications
fail to finish the execution.

As future work, we plan to explore better ways of
finding semantic equivalence between code clones, and
improve the redundant bound check removal capability
of our framework.

Acknowledgments
This work was supported by the US Office of Naval
Research (ONR) under Awards N00014-15-1-2210 and
N00014-17-1-2786. Any opinions, findings, conclusions,
or recommendations expressed in this article are those
of the authors, and do not necessarily reflect those of
ONR.

References
[1] 2006. SPEC CPU 2006. https://www.spec.org/cpu2006/.
[2] 2010. SQLite. https://www.sqlite.org.
[3] 2016. IDA Pro disassembler. https://www.hex-rays.com/

products/ida/.
[4] Tiffany Bao, Johnathon Burket, Maverick Woo, Rafael Turner,

and David Brumley. 2014. Byteweight: Learning to recognize
functions in binary code. USENIX.

[5] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo
Sant’Anna, and Lorraine Bier. 1998. Clone detection us-
ing abstract syntax trees. In Software Maintenance, 1998.
Proceedings., International Conference on. IEEE, 368–377.

[6] Rastislav Bodík, Rajiv Gupta, and Vivek Sarkar. 2000. ABCD:
eliminating array bounds checks on demand. In ACM SIG-
PLAN Notices, Vol. 35. ACM, 321–333.

[7] Juan Caballero and Zhiqiang Lin. 2016. Type inference on
executables. ACM Computing Surveys (CSUR) 48, 4 (2016),
65.

[8] Yurong Chen, Tian Lan, and Guru Venkataramani. 2017.
DamGate: Dynamic Adaptive Multi-feature Gating in Pro-
gram Binaries. In Proceedings of the 2017 Workshop on Form-
ing an Ecosystem Around Software Transformation. ACM,
23–29.

[9] Gary Cokins. 2004. Performance management: finding the
missing pieces (to close the intelligence gap). Vol. 2. John
Wiley & Sons.

[10] Dinakar Dhurjati and Vikram Adve. 2006. Backwards-
compatible array bounds checking for C with very low over-
head. In Proceedings of the 28th international conference on
Software engineering. ACM, 162–171.

[11] Alessandro Di Federico, Mathias Payer, and Giovanni Agosta.
2017. rev. ng: a unified binary analysis framework to recover
CFGs and function boundaries. In Proceedings of the 26th
International Conference on Compiler Construction. ACM,
131–141.

https://www.spec.org/cpu2006/
https://www.sqlite.org
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/

Clone-Hunter: Accelerated Bound Checks Elimination via Binary Code Clone Detection MAPL, 2018, Philadelphia, PA

[12] Debin Gao, Michael Reiter, and Dawn Song. 2008. Binhunt:
Automatically finding semantic differences in binary programs.
Information and Communications Security (2008), 238–255.

[13] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad
Rieck. 2013. Structural detection of android malware us-
ing embedded call graphs. In Proceedings of the 2013 ACM
workshop on Artificial intelligence and security. ACM, 45–54.

[14] Yikun Hu, Yuanyuan Zhang, Juanru Li, and Dawu Gu. 2017.
Binary code clone detection across architectures and compil-
ing configurations. In Proceedings of the 25th International
Conference on Program Comprehension. IEEE Press, 88–98.

[15] Xiangkun Jia, Chao Zhang, Purui Su, Yi Yang, Huafeng
Huang, and Dengguo Feng. 2017. Towards Efficient Heap
Overflow Discovery. (2017).

[16] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and
Stephane Glondu. 2007. Deckard: Scalable and accurate
tree-based detection of code clones. In Proceedings of the
29th international conference on Software Engineering. IEEE
Computer Society, 96–105.

[17] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002.
CCFinder: a multilinguistic token-based code clone detection
system for large scale source code. IEEE Transactions on
Software Engineering 28, 7 (2002), 654–670.

[18] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy.
2005. An empirical study of code clone genealogies. In ACM
SIGSOFT Software Engineering Notes, Vol. 30. ACM, 187–
196.

[19] Yongbo Li, Fan Yao, Tian Lan, and Guru Venkataramani.
2016. Sarre: semantics-aware rule recommendation and en-
forcement for event paths on android. IEEE Transactions on
Information Forensics and Security 11, 12 (2016), 2748–2762.

[20] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu.
2017. BinSim: Trace-based Semantic Binary Diffing via
System Call Sliced Segment Equivalence Checking. In 26th
USENIX Security Symposium.

[21] Lili Mou, Ge Li, Yuxuan Liu, Hao Peng, Zhi Jin, Yan Xu, and
Lu Zhang. 2014. Building program vector representations for
deep learning. arXiv preprint arXiv:1409.3358 (2014).

[22] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and
Steve Zdancewic. 2009. SoftBound: Highly compatible and
complete spatial memory safety for C. ACM Sigplan Notices
44, 6 (2009), 245–258.

[23] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vin-
cent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blon-
del, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.
2011. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research 12, Oct (2011), 2825–2830.

[24] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian
Rossow, and Thorsten Holz. 2015. Cross-architecture bug
search in binary executables. In Security and Privacy (SP),
2015 IEEE Symposium on. IEEE, 709–724.

[25] David A Powner. 2016. Federal agencies need to address
aging legacy systems. Testimony before the Committee on
Oversight and Government Reform, House of Representatives
(2016).

[26] Aravind Prakash, Xunchao Hu, and Heng Yin. 2015. vfGuard:
Strict Protection for Virtual Function Calls in COTS C++
Binaries.. In NDSS.

[27] Chanchal K Roy, James R Cordy, and Rainer Koschke. 2009.
Comparison and evaluation of code clone detection techniques
and tools: A qualitative approach. Science of computer pro-
gramming 74, 7 (2009), 470–495.

[28] Jianli Shen, Guru Venkataramani, and Milos Prvulovic. 2006.
Tradeoffs in fine-grained heap memory protection. In Proceed-
ings of the 1st workshop on Architectural and system support

for improving software dependability. ACM, 52–57.
[29] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick

Stephens, Mario Polino, Andrew Dutcher, John Grosen, Siji
Feng, Christophe Hauser, Christopher Kruegel, et al. 2016.
Sok:(state of) the art of war: Offensive techniques in binary
analysis. In Security and Privacy (SP), 2016 IEEE Sympo-
sium on. IEEE, 138–157.

[30] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan
Jager, Min Kang, Zhenkai Liang, James Newsome, Pongsin
Poosankam, and Prateek Saxena. 2008. BitBlaze: A new ap-
proach to computer security via binary analysis. Information
systems security (2008), 1–25.

[31] Open Source. 2016. Dyninst: An application program
interface (api) for runtime code generation. Online,
http://www.dyninst.org.

[32] Andrew Suffield. 2003. Bounds Checking for C and C++.
BEng dissertation, Imperial College London (2003).

[33] Guru Venkataramani, Ioannis Doudalis, Yan Solihin, and Mi-
los Prvulovic. 2009. MemTracker: An accelerator for memory
debugging and monitoring. ACM Transactions on Architec-
ture and Code Optimization (TACO) 6, 2 (2009), 5.

[34] Guru Venkataramani, Brandyn Roemer, Yan Solihin, and Mi-
los Prvulovic. 2007. Memtracker: Efficient and programmable
support for memory access monitoring and debugging. In
High Performance Computer Architecture, 2007. HPCA 2007.
IEEE 13th International Symposium on. IEEE, 273–284.

[35] Vera Wahler, Dietmar Seipel, J Wolff, and Gregor Fischer.
2004. Clone detection in source code by frequent itemset
techniques. In Source Code Analysis and Manipulation, 2004.
Fourth IEEE International Workshop on. IEEE, 128–135.

[36] Zack Whittaker. 2017. Microsoft fixes ’critical’ security bugs
affecting all versions of Windows. http://www.zdnet.com/
article/critical-security-bugs-affect-all-windows-versions.

[37] Hongfa Xue, Yurong Chen, Fan Yao, Yongbo Li, Tian Lan,
and Guru Venkataramani. 2017. SIMBER: Eliminating Re-
dundant Memory Bound Checks via Statistical Inference. In
Proceedings of the IFIP International Conference on Com-
puter Security. Springer.

[38] Fabian Yamaguchi, Markus Lottmann, and Konrad Rieck.
2012. Generalized vulnerability extrapolation using abstract
syntax trees. In Proceedings of the 28th Annual Computer
Security Applications Conference. ACM, 359–368.

[39] Fabian Yamaguchi, Christian Wressnegger, Hugo Gascon, and
Konrad Rieck. 2013. Chucky: Exposing missing checks in
source code for vulnerability discovery. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communica-
tions security. ACM, 499–510.

[40] Fan Yao, Jie Chen, and Guru Venkataramani. 2013. Jop-alarm:
Detecting jump-oriented programming-based anomalies in
applications. In Computer Design, IEEE 31st International
Conference on. IEEE, 467–470.

[41] Fan Yao, Yongbo Li, Yurong Chen, Hongfa Xue, Venkatara-
mani Guru, and Tian Lan. 2017. StatSym: Vulnerable Path
Discovery through Statistics-guided Symbolic Execution. In
Proceedings of 47th IEEE/IFIP International Conference on
Dependable Systems and Networks. IEEE.

[42] Ding Ye, Yu Su, Yulei Sui, and Jingling Xue. 2014. WPBound:
Enforcing spatial memory safety efficiently at runtime with
weakest preconditions. In Software Reliability Engineering
(ISSRE), IEEE 25th International Symposium on. IEEE,
88–99.

[43] Mingwei Zhang, Michalis Polychronakis, and R Sekar. 2017.
Protecting COTS Binaries from Disclosure-guided Code Reuse
Attacks. (2017).

http://www.zdnet.com/article/critical-security-bugs-affect-all-windows-versions
http://www.zdnet.com/article/critical-security-bugs-affect-all-windows-versions

MAPL, 2018, Philadelphia, PA Hongfa Xue, Guru Venkataramani, and Tian Lan

[44] Alice X Zheng, Michael I Jordan, Ben Liblit, Mayur Naik,
and Alex Aiken. 2006. Statistical debugging: simultaneous
identification of multiple bugs. In Proceedings of the 23rd

international conference on Machine learning. ACM, 1105–
1112.

	Abstract
	1 Introduction
	2 Approach Overview
	3 System Design and Implementation
	3.1 Binary Code Clone Detection
	3.2 Symbolic Execution for Bound Verification
	3.3 Removal of Redundant Bound Checks

	4 Evaluation
	4.1 Experiment Setup
	4.2 Effectiveness of Binary Code Clone Detection
	4.3 Overhead of Binary Symbolic Execution
	4.4 Redundant Bound Checks Elimination

	5 Related Work
	6 Conclusions and Future Work
	References

