
Next Generation Hardware Monitoring Infrastructure

for Multi-core Resource Auditing

by

Jie Chen

A Dissertation submitted to

The Faculty of

The School of Engineering and Applied Science
of the George Washington University in partial satisfaction
of the requirements for the degree of Doctor of Philosophy

Oct, 2014

Dissertation Advisor:
Dr. Guru Prasadh Venkataramani

Assistant Professor of Engineering and Applied Science

Abstract

Thesis Statement: Performance counters in hardware have been very suc-

cessful in providing feedback about application performance to programmers

and compilers. With the growing relevance of understanding power, energy and

security (information leakage), we envision that the next generation hardware

monitoring infrastructure will support these features. In this work, we study

the design and implementation of such hardware monitors.

Continuous advances in semiconductor technologies have enabled the integration of bil-

lions of transistors in modern multicore processors. This offers software applications with

abundant hardware resources to use. To realize more parallelism and higher performance,

software developers are concerned about characterizing and optimizing their applications

over the usage of hardware resources. At the same time, hardware monitoring infrastructure

in most current processors offers a collection of hardware counters for auditing architectural

events on hardware units. Such counters can be used by programmers and performance

analysts for auditing performance bottlenecks and consequently, optimizing application per-

formance. In recent years, there is a surging demand for improving application power, energy

and information leakage beyond performance, due to increasing complexity in power delivery

within the chip and vast amount of shared hardware resources between applications running

on the processors.

As power budget is limited, it becomes necessary to audit software power usages and

look for power optimizations at all levels to better utilize the limited power. Optimizing the

applications for energy is necessary due to the impact that they have on system operation

and costs. Inefficient software has been often cited as a major reason for wasteful energy

consumption in computing systems. It is essential for programmers to audit the energy

ii

usage of their program code and apply code optimizations for better energy. While power

and energy are already among the top issues that need to be solved, a fast growing concern

is information leakage using shared resource in multi-core hardware. Over the past years, it

has been shown many times that multicore hardware resources are vulnerable and can easily

be exploited as covert timing channels to leak sensitive information at very high bandwidth.

Unfortunately, there is no existing hardware-supported auditing for such information leakage.

As these set of factors such as power, energy and information leakage are becoming more

critical, software developers and system administrators are urgently looking for appropriate

tools to address such challenges, just like they used to rely on performance counters for per-

formance tuning. The next generation hardware monitoring infrastructure should take users’

need into consideration, and provide sufficient and convenient resource auditing support be-

yond just performance. It will not only enable the programmers to improve the scalability of

their softwares by better utilizing power budget and to reduce cost by improving the energy

efficiency of their program code, but also help system administrators enhance the level of

trust of their systems by tracking and removing information leakage sources.

In this dissertation, we proposed and explored the design of three novel resource auditing

techniques as part of the next generation hardware monitoring infrastructure, namely, appli-

cation power auditing, application energy auditing, and covert timing channel auditing. The

design methodologies of these three techniques share the same goal of leveraging hardware

support to enable the gathering of advance resource usage information in an efficient and

cost-effective manner. These hardware support are also equipped with lightweight software

support to maximize flexibility in usage. Overall, our contributions push the hardware mon-

itoring support to the next new level, and enable the programmer to efficiently address a

spectrum of existing and emerging system issues.

Contents

Abstract i

Contents iii

List of Figures v

List of Tables viii

1 Introduction 2

1.1 Need for Next Generation Hardware Monitoring 2

1.2 Multicore Resource Usage Problems– Power, Energy, and Information Leakage 3

1.3 Overview . 6

1.4 Scope of this Dissertation . 7

2 Background 8

2.1 Application Power Auditing . 8

2.2 Application Energy Auditing . 9

2.3 Information Leakage Auditing . 10

3 Watts-inside: Application Power Auditing 13

3.1 Motivation – Understanding Multicore Power 13

3.2 Design Overview . 15

iii

CONTENTS iv

3.2.1 Hardware Support . 15

3.2.2 Software Support . 19

3.3 Implementation . 22

3.3.1 Hardware Support . 22

3.3.2 Software Support . 24

3.4 Experimental Setup . 24

3.5 Evaluation . 26

3.5.1 Adaptive Filter vs. Ideal Filter . 26

3.5.2 Sampling . 27

3.5.3 Scalability of CSPPV Memory Log 28

3.5.4 Area, Power and Latency of Watts-inside Hardware 28

3.5.5 Case study – Improving Load/Store Queue power consumption 29

3.6 Related Work . 33

3.7 Summary . 34

4 enDebug: Application Energy Auditing 35

4.1 Understanding Application Energy . 35

4.2 Fine-grain Energy Profiling . 37

4.2.1 Energy Model Using Performance Counters 38

4.2.2 Attributing Energy to Program Functions 39

4.3 Automated Recommendation System for Energy Optimization 41

4.3.1 Basics of Genetic Programming . 42

4.3.2 Artificial Selection Genetic Programming 43

4.3.3 ASGP Algorithm . 43

4.3.4 Neutral Transforms . 47

4.3.5 Genetic operators and Triggering heuristics 48

4.3.6 System Support for Automated Energy Optimization 53

4.4 enDebug Evaluation . 54

CONTENTS v

4.4.1 Validation on a real system . 58

4.5 Related Work . 60

4.5.1 Energy Estimation . 60

4.5.2 Energy Optimization . 61

4.6 Summary . 62

5 CC-Hunter: Information Leakage Auditing 64

5.1 Understanding Covert Timing Channels . 64

5.2 Threat Model and Assumptions . 65

5.3 Design Overview . 66

5.3.1 Covert Timing Channels on Combinational hardware 67

5.3.2 Recurrent Burst Pattern Detection 69

5.3.3 Covert Timing Channel on Memory 73

5.3.4 Oscillatory Pattern Detection . 74

5.4 Implementation . 77

5.4.1 Hardware Support . 77

5.4.2 Software Support . 80

5.5 Evaluation and Sensitivity Study . 81

5.5.1 Varying Bandwidth Rates . 81

5.5.2 Encoded Message patterns . 84

5.5.3 Varying Cache Channel Implementations 84

5.5.4 Testing for False Alarms . 84

5.6 Related Work . 86

5.7 Summary . 88

6 Conclusions and Future Work 90

List of Figures

2.1 A Covert Timing Channel using timing modulation on a shared resource to

divulge secrets . 11

3.1 Dynamic Power traces for four-threaded applications measured during their

execution . 14

3.2 Design overview of the Watts-inside framework 16

3.3 Code Sequence Power Profile Vector (CSPPV) 18

3.4 Hardware modifications needed for Watts-inside framework 23

3.5 Ideal Filter rate for capture ratios of 0.25, 0.1 and 0.05. The right axis shows

the number of code sequences that are executed across all four threads. . . . 25

3.6 Adaptive Filter rate for capture ratios of 0.25, 0.1 and 0.05. The right axis

shows the number of code sequences that are executed across all four threads. 25

3.7 Average relative error in the mean and standard deviation of power consump-

tion by code sequences (in Splash-2 and Parsec-1.0 applications) due to sam-

pling, relative to a baseline execution without sampling. 27

3.8 Average and worst-case CSPPV Memory log requirements for capture ra-

tio=0.25 for different numbers of cores . 28

3.9 Code snippets from ocean and streamcluster benchmarks where store-to-load

dependencies result in high power . 30

vi

LIST OF FIGURES vii

3.10 Modified code snippets from ocean and streamcluster benchmarks that no

longer have store-to-load dependencies . 31

3.11 Power reduction across the entire chip, scheduler and load/store queue after

removing store-to-load dependencies . 32

4.1 Recording performance counters and PCs at function calls and returns . . . 40

4.2 Storing performance counters and PCs to the hardware buffer 40

4.3 Examples of Genetic operator Applications on CDDG 49

4.4 Fmm code snippet . 55

4.5 Ocean code snippet . 56

4.6 Cholesky code snippet . 57

4.7 Water-sp/Water-n2 code snippet . 57

4.8 Fluidanimate code snippet . 58

4.9 Streamcluster code snippet . 58

5.1 Average latency per memory access (in CPU cycles) in Memory Bus Covert

Channel . 68

5.2 Average loop execution time (in CPU cycles) in Integer Divider Covert Channel 69

5.3 Event Train plots for Memory Bus and Integer Divider showing burst patterns. 70

5.4 Illustration of Event Train and its corresponding Event Density Histogram.

The distibution is compared against the Poisson Distribution shown by the

dotted line to detect presence of burst patterns. 71

5.5 Event Density Histograms for Covert Timing Channels using Memory Bus

and Integer Divider. 71

5.6 Ratios of cache access times between G1 and G0 cache sets in Cache Covert

Channel . 74

5.7 Oscillatory pattern of cache conflict misses between trojan and spy. An auto-

correlogram is shown for the conflict miss event train. 75

LIST OF FIGURES viii

5.8 Hardware Implementation and integration of CC-Hunter into processor hard-

ware . 77

5.9 Bandwidth test using Memory Bus, Integer Divider and Cache Covert Channels 82

5.10 Autocorrelograms for 0.1 bps cache covert channels at reduced observation

window sizes . 83

5.11 Test with 256 randomly generated 64-bit messages on Memory Bus, Integer

Divider and Cache covert channels. Black (thick) bars are the means, and the

red (annotations) arrows above them show the range (min, max). 83

5.12 Autocorrelograms for cache covert channel with varying numbers of cache sets

for communication. 83

5.13 Event Density Histograms and Autocorrelograms in pair combinations of

SPEC2k6, Stream & Filebench . 87

List of Tables

3.1 Performance and Dynamic Power imbalance in SPLASH-2 and PARSEC-1.0

benchmarks with four threads . 15

3.2 Area, Power and Latency Estimates of Watts-inside hardware 29

4.1 Energy and performance profile of functions in Splash-2 and PARSEC-1.0

benchmarks with 8 threads . 35

4.2 Processor Configuration and Power Model 36

4.3 Triggering heuristics for genetic operators . 50

4.4 Number of mutants for the un-guided natural selection GP algorithm 51

4.5 Number of mutant for our ASGP algorithm with triggering heuristics 51

4.6 Execution time overhead comparison between the natural selection GP algo-

rithm and our heuristic-triggered ASGP algorithm 52

4.7 Energy reduction for our benchmark applications in simulator (Baseline: GCC

-O3) . 59

4.8 Energy reduction on a real system (Intel Core i7) 60

5.1 Area, Power and Latency Estimates of CC-Auditor 80

1

Chapter 1

Introduction

1.1 Need for Next Generation Hardware Monitoring

As software is getting more complex, efficiently characterizing and optimizing applications

has posed great challenges for programmers and system administrators. Hardware monitor-

ing has become a very popular option for them to address such challenges. Hardware mon-

itoring infrastructure provides collections of highly efficient on-chip performance counters

that can gather critical architectural statistics at application runtime. These profile-based

data can be used for analyzing program behaviors, identifying performance bottlenecks, and

ultimately, improving the overall system performance. The importance and usefulness of

hardware monitors have already been justified by the popularity of software tools that ac-

cess hardware counters for profiling, such as PAPI [1] and Likwid [2]. In the future, hardware

monitoring infrastructure will continue to play important roles, and that is why major pro-

cessor companies are actively improving their on-chip hardware monitors to enhance user

experience.

Designing hardware monitors to improve application performance is important, but we

should also notice that there is significant demand for improving application power, energy

and information leakage, as hardware platforms and software paradigms have rapidly changed

2

CHAPTER 1. INTRODUCTION 3

in the past years. Today, programmers and system administrators not only care about

performance, but also care about application power consumption, financial cost incurred by

application energy consumption, and whether their applications run in a trustable system

environment. Unfortunately, since existing hardware monitors were originally designed for

just performance, they do not provide direct auditing support to the users about which parts

of the program exhibit high power utilization, which program function consumes a lot of

energy, and what process is leaking information over shared hardware resources. In response

to such growing concerns, modern high performance processor architectures have begun

integrating new counters for gathering processor power and energy usages. For example,

starting from Sandy Bridge, Intel provides a driver interface called RAPL (Running Average

Power Limit) that can let programmers periodically sample processor power/energy usually

at the granularity of a few milliseconds of program execution time. While such counters

could be used to obtain application power trace or total energy consumption, they do not

provide feedback at a granularity that relates the processor power/energy consumption back

to the program source code.

Therefore, we envision that the next generation multicore hardware monitoring infras-

tructure should provide better auditing support for application power, energy, and infor-

mation leakage in an cost-effective manner, and ultimately, help programmers and system

administrators to make actionable improvements.

1.2 Multicore Resource Usage Problems– Power, En-

ergy, and Information Leakage

While the need for the next generation hardware monitoring infrastructure becomes clear,

power, energy, and information leakage that resulted from applications’ usage of hardware

resources need to be understood better. In this section, we will review each resource usage

problem.

CHAPTER 1. INTRODUCTION 4

Power has long been a design constraint in processors. Generations of processors used

to follow Dennard scaling which states that, as transistors get smaller their power density

stays constant, so that power stays constant as long as the dies size remains the same. While

Dennard scaling starts to break down around 2005, the trend of integrating more number

of cores has not been stopped. The consequence is that, due to limited power budget,

only part of chip transistors can switch at full frequency, and many of them have to be

powered off. As a result, software applications are forced to use only a portion of all the

multi-core resources, for example, Intel Turbo Boost Mode runs half of the cores at full

frequency, while shutting off the rest cores. Not appropriate usage of hardware resources

may also trigger other power issues. As instances– (1) An increase in the chip power density

could affect the reliability of operation and result in decreased lifetime of processors [3],

(2) Uneven consumption of power by different cores could complicate heat dissipation and

electric supply in multicores [4]. As processor demands rapidly change the electric current

consumption over a short timeframe, supply voltage perturbations could occur, resulting in

power-delivery subsystem having large parasitic inductance and voltage ripples on the chip’s

supply lines. When voltage ripples exceed a certain tolerance range, CPUs may begin to

malfunction [5]. Such unwanted consequences in applications can be mitigated by optimizing

them for reduced peak power consumption, balancing power across different cores, and by

minimizing the power density that can lead to thermal issues.

Energy is different from power in that it is the integral of power over time. Whenever

a hardware resource is used, it just adds up to the energy cost. That being said, even

after power has been optimized, application energy consumption, which directly translates

to financial cost, does not get automatically reduced. Energy costs incurred by software

applications have grown rapidly in recent years. In 2014, energy is projected to be a major

expense for most major data centers, and is estimated to account for up to 3% of worlds total

energy consumption [6]. However, not all applications are using hardware resources in an

energy-efficient way. As instances– (1) unnecessary branches use branch units but the branch

CHAPTER 1. INTRODUCTION 5

outcome never affects program execution. (2) redundant code repeatedly uses the processor

pipeline but only for computing the same value. Because of that, Inefficient software has

often been cited as a major reason for wasteful energy consumption in computing systems.

To highlight the importance of application energy and its impact on data service efficiency,

companies like eBay have online dashboards for the users to track energy consumption per

transaction in their servers [7]. Such efforts clearly illustrate the motivation of major software

giants in removing the inefficiencies in their applications.

While power and energy are two of the top issues in multi-core resource usages, there is

a growing concern about information leakage on shared hardware resources. As processor

core counts are increasing, more shared hardware resources are being integrated into the

chip. For example, compute logics and execution engines are shared among virtual cores in

processors that support SMT (Simultaneous Multithreading); the last level cache and the

memory bus is shared among physical cores, etc. In recent years, it has been shown many

times these shared resources are vulnerable one type of information leakage, namely, covert

timing channels attacks. The inside malicious users can construct covert timing channels

by intentionally modulating the timing of events on certain shared hardware resources to

illegitimately reveal sensitive information to the outside world. Compared to software-based

information leakage, hardware based approaches are mostly hidden and much harder to

audit. As confinement mechanisms in software improve, such hardware-based information

leakage are more likely to be exploited, and hence put the trust of systems at risk.

Currently, solving these resource usage problems on multicore hardware are of paramount

importance. But, not having the right tools to address such problems just makes such

tasks harder. Therefore, having the next generation hardware monitoring infrastructure to

support auditing application power, energy and information leakage will greatly improve the

productivity of programmers and system administers in addressing these new challenges.

CHAPTER 1. INTRODUCTION 6

1.3 Overview

This dissertation contains six chapters.

• Chapter 1 motivates the need for next generation hardware monitoring infrastructure

for resource auditing, and states the reasons why the existing hardware infrastructure

is not sufficient. It also briefly reviews power, energy, and information leakage problems

resulted from the usage of processor hardware resources.

• Chapter 2 provides necessary background for this dissertation. We introduce specific

problems in individual domains of application energy auditing, application power au-

diting, and covert timing channel auditing.

• Chapter 3 describes Watts-inside, a hardware-software cooperative approach for appli-

cation power auditing. Watts-inside replies on the efficiency of hardware support to

accurately gather application power profiles, and utilizes software support and causa-

tion principles for a more comprehensive understanding of application power.

• Chapter 4 describes enDebug, a hardware software cooperative framework for applica-

tion energy auditing. EnDebug attributes energy consumption by applications to fine

grain regions of program code (say functions), and utilizes an automated recommen-

dation system to explore energy improvements in the program code.

• Chapter 5 describes CC-Hunter, a novel framework for covert timing channel auditing

on shared hardware resources. CC-Hunter detects the presence of covert timing chan-

nels by dynamically tracking conflict patterns on shared processor hardware. It offers

low-cost hardware support that gathers data on certain key indicator events during

program execution, and provides software support to compute the likelihood of covert

timing channels on a specific shared hardware.

• Chapter 6 presents conclusion of this work.

CHAPTER 1. INTRODUCTION 7

1.4 Scope of this Dissertation

The main goal of this work is to motivate the need for the next generation hardware in-

frastructure that is able to audit multicore resource usage problems, such as power, energy

and information leakage. We describe our proposed solutions and the necessary hardware

modifications to modern processors. We quantitatively evaluate our schemes either through

simulators that model the modified processor platforms, or directly through real hardware

machines where possible. For application power and energy auditing, we are interested in op-

timizing power or energy through code modifications. For information leakage auditing, we

are interested in detecting covert timing channel activities on the shared hardware resources,

rather than showing how to robustly construct these channels. Our work shows promising

results that can be achieved from using application power, energy and information leakage

auditing. We envision that this dissertation will stimulate more researches on improving

the next generation hardware monitoring infrastructure to have further enhanced auditing

capabilities that optimize applications for factors beyond just performance.

Chapter 2

Background

2.1 Application Power Auditing

Multicore processors have permeated the computing domains with their promise of higher

performance and power efficiency over single core processors. With the limitations posed by

Dennard scaling, power-related issues will be significant in future multicore chip designs and

limit the scalability of multicore computing [8, 9, 10].

Conventional power saving strategies utilize dynamic, hardware-based solutions such as

Dynamic Voltage-Frequency Scaling, Power and Clock Gating. Recent proposals have stud-

ied power management platforms that are either built as part of the the microprocessor cir-

cuitry [11, 12] or via tight interfacing with the external microcontrollers [13]. Unfortunately,

such mechanisms are limited to dynamic power optimizations and can be cost-ineffective

on applications that are not statically tuned for power. On the other hand, software-only

power profiling tools are mostly disadvantaged by their limited knowledge of the underlying

hardware parameters and complex interactions occurring between various functional units

in multicore processors. Therefore, a more effective strategy is to combine the hardware

efficiency in providing an accurate view of the program behavior with the software flexibil-

ity to effect low-cost, program-level power optimizations, ultimately improving the power

8

CHAPTER 2. BACKGROUND 9

consumption of multicore applications.

Our Watts-inside framework for power auditing combines the best of both hardware and

software. The hardware performs power estimation and identifies the functional unit that

was responsible for higher power in the captured code sequence. The software then does

further analysis with finer grain code blocks (for instance, basic blocks) to figure out which

region of program code was responsible for higher power.

Having information about specific code regions together with the functional units that

are responsible for higher power, offers meaningful feedback to the users about how to ap-

ply power optimizations to the application. Such feedback can especially be more critical

to heterogeneous multicore environment where the individual cores and the threads run-

ning on them have to be carefully tailored to maximize performance while reducing power.

Our integrated approach to understanding multicore power can immensely aid in improving

application-level power awareness and not just having to simply rely on the hardware-only

mechanisms for power optimizations.

2.2 Application Energy Auditing

A plethora of solutions ranging from virtualization to application aware power management

have been proposed to reduce system energy footprint. While such techniques are useful, a

more effective solution is to incorporate energy smartness into the software itself such that

the application performance can be aligned more closely with revenue. Being able to find

the high energy consuming code region, and consequently, automate the process of energy

optimization process would be vital to the future of energy-aware software development.

Conventionally, execution time of applications is a commonly adopted proxy measure for

software developers to identify the energy bottlenecks in their program code. Recent studies

by Hao et al [14] have shown that the execution time and energy consumption do not have a

strong correlation because of several factors such as (1) multiple power states- at two different

frequencies f1 and f2, even if the execution times are the same, the energy drawn will be

CHAPTER 2. BACKGROUND 10

different, (2) asynchronous design of system and API calls- when the application sends data

over the network, the data is handled by the OS which results in the corresponding data-

sending application not being charged for the data transmission time. These necessitate a

dedicated framework for energy auditing.

Further, the application energy profile and optimizations are often specific to the pro-

cessor architecture and hardware configurations. That is, a set of code optimizations that

improve energy in one processor configuration does not necessarily improve the energy in

other platforms. Without having a sound understanding of the underlying hardware details,

many software-level energy models often resort to instruction-based or a specific hardware

event-based (say, cache misses) energy accounting to derive application energy. Such strate-

gies ignore the numerous and complex interactions between shared hardware resources and

overlapped instruction execution that occur during application runtime. To overcome such

problems, it is critical to debug the energy consumption of applications through profiles

generated on the target architecture.

Our solution, enDebug, audits energy consumption by applications to fine grain regions of

program code (say functions), and utilizes an automated recommendation system to explore

energy improvements in the program code. In doing so, we enable the participation of

software developers and toolchains (such as compilers and runtime) in energy-aware software

development without necessarily having them to rely on expensive runtime energy saving

strategies.

2.3 Information Leakage Auditing

Covert timing channels are information leakage channels where a trojan process intentionally

modulates the timing of events on certain shared system resources to illegitimately reveal

sensitive information to a spy process. Note that the trojan and the spy do not communicate

explicity through send/receive or shared memory, but via covertly modulating certain events

(Figure 2.1). In contrast to side channels where a process unintentionally leaks information to

CHAPTER 2. BACKGROUND 11

a spy process, covert timing channels have an insider trojan process (with higher privileges)

that intentionally colludes with a spy process (with lower privileges) to exfiltrate the system

secrets.

Trojan' Spy'

Shared'
Resource'

Modulate'
5ming'

Decode
secret'

Figure 2.1: A Covert Timing Channel using timing modulation on a shared resource to

divulge secrets

To achieve covert timing based communication on shared processor hardware, a funda-

mental strategy used by the trojan process is modulating the timing of events through in-

tentionally creating conflicts1. The spy process deciphers the secrets by observing the dif-

ferences in resource access times. On hardware units such as compute logic and wires

(buses/interconnects), the trojan creates conflicts by introducing distinguishable contention

patterns on the shared resource. On caches, memory and disks, the trojan creates conflicts

by intentionally replacing certain memory blocks such that the spy can decipher the mes-

sage bits based on the memory hit/miss latencies. This basic strategy of creating conflicts

for timing modulation has been observed in numerous covert timing channel implementa-

tions [15, 16, 17, 18, 19, 20, 21, 22, 23].

Recent studies [19, 22] show how popular computing environments like cloud comput-

ing are vulnerable to covert timing channels. Static techniques to eliminate timing channel

attacks such as program code analyses are virtually impractical to enforce on every third-

1We use “conflict” to collectively denote methods that alter either the latency of a single event or the

inter-event intervals.

CHAPTER 2. BACKGROUND 12

party software, especially when most of these applications are available only as binaries. Also,

adopting strict system usage policies (such as minimizing system-wide resource sharing or

fuzzing the system clock to reduce the possibility of covert timing channels) could adversely

affect the overall system performance. Our framework, CC-Hunter, audits the presence of

covert timing channels by dynamically tracking conflict patterns on shared processor hard-

ware. CC-Hunter offers low-cost hardware support that gathers data on certain key indicator

events during program execution, and provides software support to compute the likelihood

of covert timing channels on a specific shared hardware. CC-Hunter’s dynamic detection is

a desirable first step before adopting damage control strategies like limiting resource sharing

or bandwidth reduction. As a lightweight detection framework that audits on-chip hardware

resources, our framework can be extremely beneficial to users as we transition to an era of

running our applications on remote servers that host programs from many different users.

Chapter 3

Watts-inside: Application Power Auditing

3.1 Motivation – Understanding Multicore Power

To understand the power consumption behavior of applications, we perform experiments that

characterize their power when executing on symmetric multicore processors. We note that

more complex multicore environments that are asymmetric or heterogeneous can present even

further challenges. In our studies, we run four-threaded applications on four core processors

without placing any specific constraints on power consumption or voltage-frequency settings,

i.e., the settings are assumed to result in the best possible execution time. We measure

chipwide power during intervals of 10,000 cycles by running our benchmarks on SESC [24],

a cycle-accurate architecture simulator with an integrated dynamic power model that uses

Wattch [25] and Cacti [26] for power estimation. 32 nm technology is assumed in all of

our experiments. Figure 3.1 shows dynamic power traces for a representative subset of our

benchmark applications when executing on four-core processors. Our results indicate that

different multicore applications can exhibit different characteristics during the various phases

of their execution– (1) monotonically increasing power, e.g., cholesky, (2) phases of high and

low power, e.g., ocean, (3) occasional peaks of high power, e.g., volrend, and (4) almost

uniform power, e.g., fluidanimate.

13

CHAPTER 3. WATTS-INSIDE: APPLICATION POWER AUDITING 14

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350 400 450

Po
w

e
r

(W
)

Time (10k cycles)

cholesky

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350 400

Po
w

e
r

(W
)

Time (10k cycles)

ocean

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

Po
w

e
r

(W
)

Time (10k cycles)

volrend

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350

Po
w

e
r

(W
)

Time (10k cycles)

fluidanimate

Figure 3.1: Dynamic Power traces for four-threaded applications measured during their

execution

Even for applications that have been thoroughly debugged for performance and load bal-

anced, our studies show that the parallel sections of multicore applications could still suffer

from uneven power consumption between multiple cores. Table 3.1 shows parallel sections

in some of the well-known Splash-2 and Parsec-1.0 applications that are running on four

cores with four threads and shows the average imbalance in performance and power across

several dynamic instances of the parallel section. Note that average power (or performance)

imbalance in an application’s parallel section is measured as the average difference between

the threads having the highest and lowest power (or execution time). Despite almost perfect

performance balance that can be achieved through hardware optimizations like out-of-order

execution and prefetching, we see significant power imbalance (up to 31.7% in cholesky)

across the different cores because power consumption by the functional units are still deter-

CHAPTER 3. WATTS-INSIDE: APPLICATION POWER AUDITING 15

Table 3.1: Performance and Dynamic Power imbalance in SPLASH-2 and PARSEC-1.0

benchmarks with four threads

Application Parallel Num. of % of Application Average Average

Section Dynamic Execution Performance Power

(File/Function) Instances Time Imbalance Imbalance

Volrend adaptive.c/ray trace(...) 3 44.33% 0.001% 10.21%

(SPLASH-2)

Barnes load.C/maketree(...) 4 72.47% 0.90% 8.89%

(SPLASH-2)

Cholesky solve.C/Go(...) 1 28.09% 2.82% 31.74%

(SPLASH-2)

Bodytrack WorkerGroup.cpp/ 82 50.06% 0.47% 4.32%

(PARSEC-1.0) WorkerGroup::Run()

mined by the amount of work to be done. These results are consistent with a recent survey by

Chen et al [27] and show the necessity to understand the application’s power characteristics

in greater detail in order to accurately effect changes that improve power consumption.

3.2 Design Overview

3.2.1 Hardware Support

To improve power, the user (programmer, compiler or the hardware) should first understand

which parts of the program code suffer from power-related issues and what functional units

are responsible for this effect. We design hardware support that estimates dynamic power

for a string of N consecutively executing basic blocks (which we call Code Sequence), and

log its power information in memory for further analysis. A code sequence is chosen as a

granularity in our hardware design to capture meaningful power information that is relatable

back to program code, while minimizing the hardware implementation complexity. In our

CHAPTER 3. WATTS-INSIDE: APPLICATION POWER AUDITING 16

Power&
Analyzer&&

Adap/ve&
&&Filter&

Power&
Es/mator&

&

&&Code&Sequence&finishes&
execu/on&

Profile&Log&
SoAware&&
Profiler&

&

Hardware&Support&

SoAware&Support&

Feedback&to&users&or&
run/me&op/mizers&

Figure 3.2: Design overview of the Watts-inside framework

experiments, we assume N=5 because it offers a nice trade-off between capturing power infor-

mation at finer granularity and accuracy of power measurement on overlapped instructions.

Sometimes, a code sequence can contain fewer than N basic blocks in cases of a function

call/return and exceptions; we terminate such code sequences prematurely to prevent them

from straddling program function boundaries and exceptions.

Figure 3.2 depicts an overview of our hardware-software design for Watts-inside frame-

work. Conceptually, we divide the hardware support for Watts-inside into three stages,

namely,

Power Estimator

This module is responsible for computing (or estimating) the power consumption of code se-

quences. The processor chip is embedded with activity sense points inside various functional

units which are monitored by a power estimator unit. In our design, this module is concep-

tually similar to the IBM Power7’s power proxy module that has specifically architected and

programmably weighted counter-based architecture to keep track of activities and form an

CHAPTER 3. WATTS-INSIDE: APPLICATION POWER AUDITING 17

aggregate value denoting power [13].

Adaptive Filter

This module is responsible for filtering code sequences that are essentially ‘uninteresting’ with

respect to power and do not warrant a second hardware-level analysis for functional unit-

specific power information. Note that, when needed, the software profiler has the capability

to analyze all code sequences regardless of filtering.

The adaptive filter has two active parameters– (1) maximum power so far (observed from

the start of the application execution), and (2) capture ratio (C), a user-defined parameter

that specifies the threshold for code sequences whose average power fall within the top C% of

highest power (e.g., if the capture ratio is 10% and the highest power for any code sequence

so far is 50 W, then the filter forwards all of the code sequences whose power consumption

is at least 45 W.). In the remaining sections of this Chapter, we refer to high power code

sequences as ones within the capture ratio, and the remaining code sequences as low power

(or NOT high power) for simplicity.

To detect the high power sequences, the filter checks whether the code sequence (Q’s)

power falls within or exceeds the high power range. If true, then the filter forwards Q to the

Power Analyzer for further processing. Whenever Q’s power exceeds the maximum power

observed thus far in the application, maximum power and threshold are updated. We note

that after the maximum power reaches a stable value (i.e., after the highest power consuming

sequence has executed), updates are no longer necessary.

Power Analyzer

This module is responsible for estimating the contribution of individual microarchitectural

(or functional) units for high power code sequences, and then determining the functional

unit that was responsible for the highest amount of power. We forward the output of this

stage to a log that can be further analyzed by software profilers.

CHAPTER 3. WATTS-INSIDE: APPLICATION POWER AUDITING 18

Code Sequence ID Power FU ID
Core
 ID

Execution
 Time

64 bits 7 bits 4 bits 5 bits 9 bits

 FU
Power

7 bits

Figure 3.3: Code Sequence Power Profile Vector (CSPPV)

For design efficiency, we adopt common activity based component power estimation that

can estimate power for a large number of functional units using just a few generic perfor-

mance counters [28]. We identify fourteen functional units (Instruction and Data Translation

Lookaside Buffers, Instruction and Data Level-1 caches, Branch Predictor, Rename logic, Re-

order Buffer, Register File, Scheduler, Integer ALU, Float ALU, Level-2 cache, Level-3 cache

and Load Store Queue) to study the power breakdown by individual units . We chose these

fourteen units based on our analysis of functional unit-level power consumption across our

benchmark suites.

Figure 3.3 shows the output of the Watts-inside hardware. For each code sequence, we

construct a 96-bit long Code Sequence Power Profile Vector (CSPPV) that includes:

• Code Sequence ID: The power estimator generates a unique 64-bit identifier for every

code sequence by folding the 32-bit address of the first basic block, and then concatenating

lower order bits of other constituent basic blocks within the code sequence.

• Code Sequence Power: The power estimator uses 7 bits to store the code sequence

power.

• Core ID: 5 bits are used for the core ID where the code sequence executed, filled by

power estimator.

• Execution time: The power estimator uses 9 bits to store the execution time of the

code sequence. This can be later used for: (1) computing energy, and (2) ranking code

sequences to prioritize longer running blocks.

• FU ID: The power analyzer uses 4 bits to uniquely identify the one of the fourteen

CHAPTER 3. WATTS-INSIDE: APPLICATION POWER AUDITING 19

functional units that consumes the most power.

• FU Power: The power analyzer uses 7 bits to show power consumed by the highest

power consuming functional unit.

The power analyzer module records the CSPPV into a memory log that can later be

utilized by software profilers.

3.2.2 Software Support

Causation probability

To help programmers and compilers apply targeted power-related optimizations to program

code, feedback must be given at the level of fine-grain code blocks (say, a few instructions

within a basic block). Toward this goal, we develop a causation probability model to deter-

mine whether an individual basic block within a code sequence could cause higher power.

Watts-inside quantifies the impact of a certain basic block B on the power of the code

sequence Q using three probability metrics:

• Probability of Sufficiency (PS): If B is present, then Q consumes high power. A higher

range of PS values indicate that the presence of B is a sufficient cause for Q’s high

power consumption.

• Probability of Necessity (PN): Among Qs that consume high power, if B were not

present, then Q would have not consumed high power. A higher range of PN values

indicate that the absence of B would have caused Q to lower its power.

• Probability of Necessity and Sufficiency (PNS): B’s presence is both sufficient and

necessary to infer that Q consumes high power. Higher values of PNS prove that B’s

likeliness to be the reason behind Q’s higher power.

To compute the boundaries of PS, PN and PNS, we define the following additional

probability terms:

CHAPTER 3. WATTS-INSIDE: APPLICATION POWER AUDITING 20

Let b be the event that a basic block B occurs in a code sequence, and h be the event that

the code sequence consumes high power. P (hb) denotes counterfactual relationship between

b and h, i.e., the probability that if b had occurred, h would have been true.

P (h) = (#HighPowerSeq)/(#Seq) (3.1)

P (b, h) = (#HighPowerSeqWithB)/(#Seq) (3.2)

P (b
′
, h

′
) = (#LowPowerSeqWithoutB)/(#Seq) (3.3)

P (hb) = (#HighPowerSeqWithB)/(#SeqWithB) (3.4)

P (hb′) = (#HighPowerSeqWithoutB)/(#SeqWithoutB) (3.5)

P (h
′

b′) = (#LowPowerSeqWithoutB)/(#SeqWithoutB) (3.6)

The boundary values for PS, PN and PNS are defined below:

max

{
0,

P (hb)− P (h)

P (b′ , h′)

}
≤ PS ≤ min

{
1,

P (hb)− P (b, h)

P (b′ , h′)

}
(3.7)

max

{
0,

P (h)− P (hb′)

P (b, h)

}
≤ PN ≤ min

{
1,

P (h
′

b′)− P (b
′
, h

′
)

P (b, h)

}
(3.8)

PNS ≥ max

 0, P (hb)− P (hb′),

P (h)− P (hb′), P (hb)− P (h)

 (3.9)

PNS ≤ min

 P (hb), P (h
′

b′), P (b, h) + P (b
′
, h

′
),

P (hb)− P (hb′) + P (b, h
′
) + P (b

′
, h)

 (3.10)

By using the boundary equations 3.7- 3.10, we present a few test cases below to verify

our causation model:

• If a basic block B appears frequently in high power code sequences and sparsely in

low power sequences, both PS and PN boundary values are very high (closer to 1.0). Con-

sequently, PNS values are also very high. Such blocks are certainly candidates for power

CHAPTER 3. WATTS-INSIDE: APPLICATION POWER AUDITING 21

optimization. For example, if there are 1000 code sequences, of which 200 are classified as

high power (via capture ratio C). Let us assume that B1 appears in 100 of the high power

code sequences, and does not appear in any low power sequences. Using the boundary equa-

tions, we find that 1 ≤ PS ≤ 1 and 0.9 ≤ PN ≤ 1. These high PS and PN values show that

B1 is certainly a candidate for power optimizations.

• If a basic block B appears sparsely in high power code sequences, both PS boundary

values are closer to 0.0, and the PN boundary values are either a widely varying range or are

closer to 0.0. Such blocks cannot be good candidates for power improvement considerations.

Using the same example above, let us assume that the block B2 appears in 5 of the 200 high

power code sequences and B2 appears in 95 of the 800 low power (NOT high power) code

sequences. Using the boundary equations, we find that 0 ≤ PS ≤ 0.06 and 0 ≤ PN ≤ 1.

Low PS values combined with practically unbounded PN values indicate that B2 cannot be

a good candidate for power improvement.

• If a basic block B appears L% of the time in high power code sequences and M% of

the time in low power sequences (where L and M are non-trivial), PNS boundary values

determine the degree to which B’s likeliness in causing higher power in the corresponding

program code sequences. Therefore, higher ranges of PNS values for B indicates higher

benefit in applying power-related optimizations to B. Using the example described above,

let us consider two blocks B3 and B4– (1) B3 appears in 40 of the 200 high power code

sequences and in 200 of the 800 low power code sequences, where 0 ≤ PNS ≤ 0.167, and (2)

B4 appears in 35 of the 200 high power sequences and 20 of the 800 low power sequences,

where 0.462 ≤ PNS ≤ 0.636. Even though B3 appears more frequently in high power code

sequences than B4, there is higher benefit to optimizing B4 because of its larger high power

causation probability.

We find that this approach mathematically helps us to quantify the degree to which a

specific set of instructions result in higher power consumption.

CHAPTER 3. WATTS-INSIDE: APPLICATION POWER AUDITING 22

Code Sequences with varying power consumption between cores

Our software support can improve the quality of feedback information via two mechanisms

– (1) Use clustering algorithms (e.g., k-means) to cluster sequences based on the degree of

power variation, i.e., code sequences that show higher power variation are clustered separately

from the ones that have lower power variation. This can aid runtime systems to do better

scheduling of threads and map them on to cores that satisfy their power needs. (2) Identify

the cause for power variation using the CSPPVs. Since the vector contains information

on functional unit consuming the highest power, it can facilitate targeted optimizations

including code changes and dynamic recompilation.

Predicting potential for Thermal Hotspots

By monitoring a contiguous stream of code sequences executing on the same core where a

functional unit repeatedly contributes to the highest portion of power, we could predict parts

of the chip where thermal hotspots could develop. Also, by having information on the phys-

ical chip floorplan, we can even detect local thermal hotspots resulting out of continuously

high activity in adjacent functional units. Such analysis can effectively help temperature-

aware software development of multicore applications.

3.3 Implementation

In this section, we show how our framework can be integrated with a modern multicore

architecture.

3.3.1 Hardware Support

Figure 5.8 shows the hardware modifications needed to implement Watts-inside framework.

We include the power estimator (similar to the modules found in modern processors like

Intel Sandybridge, IBM Power7) and adaptive filter logic locally in every core. After power

CHAPTER 3. WATTS-INSIDE: APPLICATION POWER AUDITING 23

INT
ALU

FPU

BPU

I-cache

REG

D-cache

L2 cache

Power
Estimator

Adaptive
Filter

INT
ALU

FPU

BPU

I-cache

REG

D-cache

L2 cache

Power
Estimator

Adaptive
Filter

Power
Analyzer

L3 cache
Buffer

Core 0 Core 1

Interconnect

Caus.
Prob.

Figure 3.4: Hardware modifications needed for Watts-inside framework

estimation, our adaptive filter determines whether this block warrants further processing.

To do this, there are two special registers- a programmable register to store the user-desired

capture ratio, and an internal register to hold maximum power observed so far.

We implement the power analyzer module as a centralized resource that is shared by all

cores within a multicore chip. The adaptive filters inside the cores forward only the high

power code sequences to the power analyzer.

To reduce the performance impact of hardware profiling, we consider two more optimizations–

(1) hardware buffer to accumulate the CSPPVs and update memory when the bus is idle,

and (2) sampling of code sequences to minimize the impact on multicore performance.

Additionally, we implement an online hardware causation probability module and a watch

register (that can be programmed by the user with a specific basic block address). This

is conceptually similar to setting watchpoints in program debuggers. The adaptive filter

forwards all of the code sequences that contains the basic block address under watch to the

CHAPTER 3. WATTS-INSIDE: APPLICATION POWER AUDITING 24

hardware causation probability module, that in turn computes the PS, PN and PNS values.

We believe that such a feature shall aid runtime systems like dynamic recompilation or

adaptive schedulers to optimize specific code regions during program execution.

3.3.2 Software Support

We run the software profiler as a separate privileged process in the kernel mode. The

profiler supports APIs for functions such as (1) querying which basic blocks have high power

causation probability (note: this offline software implementation is more comprehensive

and separate from the online hardware causation probability module in Section 3.3.1), (2)

automatically mining the CSPPVs for basic blocks that cause higher power. This software

profiler gets its input from the CSPPV log created by the power analyzer. The memory pages

belonging to CSPPV log are managed by the Operating System and are allocated on demand.

If the OS senses that memory demands of CSPPV log interferes with the performance of

regular applications, the OS pre-emptively deallocates certain memory pages and/or alter

the sampling rate of code sequences to minimize the memory demands of CSPPV log. Also,

we use Lempel-Ziv coding to compress and decompress CSPPV logs [29], that helps us to

reduce memory footprint sizes.

3.4 Experimental Setup

We use SESC, a cycle accurate architectural multicore simulator [24] that has an integrated

power model. We model a four-core Intel Core i7-like processor [30] running at 3 GHz, 4-way,

out-of-order core, each with a private 32 KB, 8-way associative Level 1 cache and a private

256 KB, 8-way associative Level 2 cache. All cores share a 16 MB, 16-way set-associative

Level 3 cache. The Level 2 caches are kept coherent using the MESI protocol. The block size

is assumed to be 64 Bytes in all caches. We use parallel applications from Splash-2 [31] and

PARSEC-1.0 [32] that were compiled by gcc with -O3 flag, and run four-threaded version on

CHAPTER 3. WATTS-INSIDE: APPLICATION POWER AUDITING 25

0!

30!

60!

90!

120!

150!

90%!

92%!

94%!

96%!

98%!

100%!
ba

rn
es
!

fft
!

ch
ol

es
ky
!

fm
m
!

ra
di

os
ity
!

w
at

er
-n

2!
w

at
er

-s
p!

oc
ea

n! lu
!

ra
di

x!
ra

yt
ra

ce
!

vo
lre

nd
!

bl
ac

ks
ch

ol
es
!

bo
dy

tra
ck
!

flu
id

an
im

at
e!

st
re

am
cl

us
te

r!

Fi
lte

r r
at

e!
Capture_Ratio = 0.25! Capture_Ratio = 0.10!
Capture_Ratio = 0.05! Num_of_Code_Seqs!

co

de
 se

qs
 (M

ill
io

ns
)!

Figure 3.5: Ideal Filter rate for capture ratios of 0.25, 0.1 and 0.05. The right axis shows

the number of code sequences that are executed across all four threads.

0!

30!

60!

90!

120!

150!

90%!

92%!

94%!

96%!

98%!

100%!

ba
rn

es
!

fft
!

ch
ol

es
ky
!

fm
m
!

ra
di

os
ity
!

w
at

er
-n

2!
w

at
er

-s
p!

oc
ea

n! lu
!

ra
di

x!
ra

yt
ra

ce
!

vo
lre

nd
!

bl
ac

ks
ch

ol
es
!

bo
dy

tra
ck
!

flu
id

an
im

at
e!

st
re

am
cl

us
te

r!

Fi
lte

r r
at

e!

Capture_Ratio = 0.25! Capture_Ratio = 0.10!
Capture_Ratio = 0.05! Num_of_Code_Seqs!

co
de

 se
qs

 (M
ill

io
ns

)!

Figure 3.6: Adaptive Filter rate for capture ratios of 0.25, 0.1 and 0.05. The right axis shows

the number of code sequences that are executed across all four threads.

CHAPTER 3. WATTS-INSIDE: APPLICATION POWER AUDITING 26

four cores.

3.5 Evaluation

3.5.1 Adaptive Filter vs. Ideal Filter

In this experiment, we compare the effectiveness of our adaptive filter (that adjusts its

threshold dynamically to filter code sequences based on the maximum power seen thus far

and the capture ratio) against an ideal filter (that does not need to adjust the threshold

dynamically because it has prior knowledge of the maximum power consumed by any code

sequence in the multicore application and the capture ratio). Figures 3.5 and 3.6 show the

results of our experiments. For each benchmark, we show the percentage of code sequences

that are filtered for three separate capture ratios namely 0.25 (or code sequences within top

25% of maximum power), 0.10 and 0.05 respectively. On the right axis, we show the total

number of code sequences that are executed by each application. As an example, cholesky

benchmark executes a total of 32.13 million code sequences; at a capture ratio of 0.25, 96.9%

of the code sequences are filtered by ideal filter and 95.5% of the code sequences are filtered

by adaptive filter.

Based on our experiments, we notice that in a majority of benchmarks, except fft, cholesky

and lu, our adaptive filter successfully filters above 99% of the code sequences (for all three

capture ratios) and sends only ≤1% code sequences to the power analyzer module for further

analysis. These filter rates are nearly same as that of the ideal filter. In fluidanimate that

has a large number of code sequences, our adaptive filter performs nearly equal to the ideal

filter in minimizing the number of sequences that are sent to the Power Analyzer. In certain

benchmarks like lu, our adaptive design filters up to 3.8% less than an ideal filter, especially

for capture ratio of 0.25. However, lu has fewer than 12 million code sequences and the

absolute numbers of code sequences that reach power analysis stage are still far fewer than

the benchmarks with hundreds of millions of code sequences. Therefore, we conclude that

CHAPTER 3. WATTS-INSIDE: APPLICATION POWER AUDITING 27

0.0%!
0.2%!
0.4%!
0.6%!
0.8%!
1.0%!
1.2%!
1.4%!
1.6%!
1.8%!
2.0%!

MEAN! STD_DEV!

Av
er

ge
 R

el
at

iv
e

Er
ro

r! Sampling_Rate=50%!

Sampling_Rate=25%!

Sampling_Rate=1%!

Figure 3.7: Average relative error in the mean and standard deviation of power consumption

by code sequences (in Splash-2 and Parsec-1.0 applications) due to sampling, relative to a

baseline execution without sampling.

our adaptive filter design proves effective and is able to perform very close to an ideal filter.

3.5.2 Sampling

Even after filtering, for certain applications, the number of CSPPVs might still be high

enough to cause significant performance overheads. To minimize the traffic of code sequences

that reach the power analyzer module from various cores, we perform periodic sampling, i.e,

one out of every N code sequences is chosen by Watts-inside framework for power estimation

and analysis. Figure 3.7 shows the results of our experiments when we sample code sequences

at the rates of 50%, 25% and 1%, and compare the observed mean and standard deviation of

code sequence power with the baseline execution where we do not have sampling. At 50%, we

note that periodic sampling introduces fairly low relative error of about 1.4% on mean code

sequence power and approximately 0.10% on standard deviation; at lower sampling rates,

these relative errors are slightly worse. One caveat with aggressive sampling (such as 1%)

is that we might only see fewer CSPPV samples, that may result in inability to accurately

assess PNS, PS and PN probability values for certain basic blocks that are omitted due to

CHAPTER 3. WATTS-INSIDE: APPLICATION POWER AUDITING 28

0!
50!

100!
150!
200!
250!
300!
350!
400!
450!

4 core! 8 core! 16 core! 32 core!

Average Case!
Worst Case!

C
SP

PV
 m

em
or

y
fo

ot
pr

in
t (

M
B)
!

Figure 3.8: Average and worst-case CSPPV Memory log requirements for capture ratio=0.25

for different numbers of cores

sampling.

3.5.3 Scalability of CSPPV Memory Log

We study the average and worst-case CSPPV memory footprint sizes for different numbers of

cores after applying Lempel-Ziv compression. In other words, we measure the total memory

needed for all of the CSPPVs from start to end of application execution. We note that the

OS does not need to store the entire log, and could minimize the log size by periodically

deallocating the memory pages that have already been processed by the software profiler.

Figure 3.8 shows that the average-case memory requirements for many of our benchmarks

are between 100 MB and 125 MB due to the efficiency of LZ compression (that offers up to

70% compression ratio). The worst case memory requirements are observed in fluidanimate

benchmark which needs between 250 MB (4 cores) and 395 MB (32 cores).

3.5.4 Area, Power and Latency of Watts-inside Hardware

To obtain the area, power and latency of Watts-inside hardware, we create a Verilog-based

RTL model of the power estimator, power analyzer, and hardware causation probability mod-

CHAPTER 3. WATTS-INSIDE: APPLICATION POWER AUDITING 29

Table 3.2: Area, Power and Latency Estimates of Watts-inside hardware

Power Power Causation Buffer

Estimator Analyzer Prob. (4 KB)

(×4) module

Area(mm2) 0.18 0.11 0.09 0.03

Power(mW) 9.08 8.72 4.53 49.70

Latency† 24 38‡ 26‡ NA∗

(CPU cycles)

†Based on instruction latencies of Intel Core i7 [30]

‡Not significant at runtime due to efficient filtering of code sequences

∗Accessed when memory bus is free

ules. We use Synopsys Design Compiler (ver G-2012.06) [33] and FreePDK 45nm standard

cell library [34] to synthesize each module. Table 3.2 shows the results of our experiments.

We note that the area requirements for Watts-inside are modest and are about 0.2% of total

onchip area of 4-core Intel Core i7 processor (263mm2) [30]. Power requirements are less

than 0.06% of 130 W peak power. Since our hardware is designed to be off the critical path of

the processor pipeline, we did not observe any significant performance impact in applications.

3.5.5 Case study – Improving Load/Store Queue power consump-

tion

In this subsection, we show how our Watts-inside framework offers a hardware-software

cooperative solution in identifying and analyzing program code, and eventually improving

the power consumption of the processor. Specifically, we pick two benchmark applications

(ocean and streamcluster) that suffer from high load/store queue power.

We first modify SESC simulator to implement our framework. We then run our two case-

study benchmarks (4-threaded version), and identify the portions of program code (shown

CHAPTER 3. WATTS-INSIDE: APPLICATION POWER AUDITING 30

in Figure 3.9) that consume high power. In ocean, the measured chip-level power is 73 W,

and the instructions within the identified loop have 0.972 ≤ PS ≤ 1.0, 0.70 ≤ PNS ≤ 0.72.

In streamcluster, the measured chip-wide power is 58 W, and the loop instructions under

study have 0.968 ≤ PS ≤ 1.0, 0.76 ≤ PNS ≤ 0.78. In other words, for both benchmarks,

Watts-inside indicate that the instructions within the loops have very high probabilities of

sufficiency for high power within their corresponding code sequences.

//Ocean(Splash−2):main.cpp:337

...

for (i=numlev−2;i>=0;i−−) {

imx[i] = ((imx[i+1] − 2) / 2) + 2;

jmx[i] = ((jmx[i+1] − 2) / 2) + 2;

lev res[i] = lev res[i+1] ∗ 2;

}

...

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

//Streamcluster(Parsec−1.0):streamcluster.cpp: 657

...

accumweight= (float∗)malloc(sizeof(float)∗points−>num);

accumweight[0] = points−>p[0].weight;

totalweight=0;

for(int i = 1; i < points−>num; i++) {

accumweight[i] = accumweight[i−1]+points−>p[i].weight;

}

...

Figure 3.9: Code snippets from ocean and streamcluster benchmarks where store-to-load

dependencies result in high power

In both of the code sections, we observe a store-to-load dependency that results in a

forwarding operation in load/store queue between the array elements across two iterations

of the loop, i.e, the element that is stored in the previous iteration of the loop is loaded in

the next iteration again. To reduce this unnecessary forwarding between the two iterations,

CHAPTER 3. WATTS-INSIDE: APPLICATION POWER AUDITING 31

//Ocean(Splash−2):main.cpp: 337

//∗∗No more Store−to−Load Dependencies∗∗

...

t1 = imx[numlev−1];

t2 = jmx[numlev−1];

t3 = lev res[numlev−1];

for (i=numlev−2;i>=0;i−−) {

imx[i] = ((t1 − 2) / 2) + 2;

jmx[i] = ((t2 − 2) / 2) + 2;

lev res[i] = t3 ∗ 2;

//Storing array elements in temp

t1 = imx[i];

t2 = jmx[i];

t3 = lev res[i];

}

...

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

//Streamcluster(Parsec−1.0):streamcluster.cpp: 657

//∗∗No more Store−to−Load Dependencies∗∗

...

accumweight= (float∗)malloc(sizeof(float)∗points−>num);

accumweight[0] = points−>p[0].weight;

totalweight=0;

t = accumweight[0];

for(int i = 1; i < points−>num; i++) {

accumweight[i] = t+points−>p[i].weight;

//Storing array elements in temp

t = accumweight[i];

}

...

Figure 3.10: Modified code snippets from ocean and streamcluster benchmarks that no longer

have store-to-load dependencies

we modify the code to include temporary variables that store the value from previous iter-

ation and supply this value to the next iteration [35]. The code modifications are shown in

Figure 3.10.

CHAPTER 3. WATTS-INSIDE: APPLICATION POWER AUDITING 32

0%!
5%!
10%!
15%!
20%!
25%!
30%!
35%!
40%!
45%!
50%!

streamcluster! ocean! streamcluster! ocean! streamcluster! ocean!

Po
w

er
 r

ed
uc

tio
n!

Chip! Scheduler! LD_ST_Q!

Figure 3.11: Power reduction across the entire chip, scheduler and load/store queue after

removing store-to-load dependencies

As a result of this code optimization, we find an improvement in chip-wide power con-

sumption in both benchmarks. An interesting side-effect of our code modification was the

reduction in the number of memory load instructions in each loop iteration due to replace-

ment of memory load with operations on temporary registers, that consequently showed

reduction in scheduler power. Figure 3.11 shows the results of our experiments. In stream-

cluster, we observe an average savings of 2.72% for chip power (and up to 21% reduction

in load/store queue and 7% savings in scheduler power consumption) with a slight 0.25%

speedup in execution time; In ocean, we get an average savings of 4.96% in chip power

(and up to 43% reduction in load/store queue power and 28% savings in scheduler power

consumption) with a slight 0.19% speedup in execution time.

From this case study, we observe the usefulness of understanding application power and

how the feedback information can be utilized in meaningful ways to improve power behavior

of multicore applications. We note that, in this particular case study of removing store-to-

load dependencies, many compilers typically are unable to optimize code in a way that avoids

store-to-load-dependency [35]. In some cases, the language definition prohibits the compiler

from using code transformations that might remove store-to-load dependency. Therefore, a

CHAPTER 3. WATTS-INSIDE: APPLICATION POWER AUDITING 33

framework like Watts-inside, that offers a hardware-software cooperative solution to under-

standing and improving multicore power, can be an invaluable tool for multicore software

developers.

3.6 Related Work

Several prior works have proposed techniques to reduce power consumption of processor

components through hardware optimizations. These studies include caches with variable

associativity or number of banks [36, 37], bypassing expensive tag checks [38], trading cache

capacity for low supply voltage [39], dynamically adjusting issue or load/store queue sizes and

avoiding wasteful wake-up/select checks [40, 41, 42]. Recent works have considered mapping

program computation structures onto dynamically synthesized energy-efficient hardware ac-

celerators [43, 44], as well as designing entire pipelines for low power [45, 46]. Prior works

have employed DVFS-based power optimizations by taking advantage of slack time avail-

able for threads [4, 47, 48] or using compiler-assisted profiling techniques [49, 50, 51]. Our

Watts-inside framework can synergetically work with the above prior techniques to improve

power based on the observed application behavior.

Tiwari et al. [52] developed an instruction-level power model which attributes an en-

ergy number to every program instruction. Such methods are difficult to use in multicore

processors that have complex interactions between functional units during instruction exe-

cution. Profiling tools utilize hardware program counters to provide procedure-level feed-

back [53, 54, 55]. Cycle-accurate simulation tools for energy consumption have been pro-

posed [56, 57]. The disadvantages with the software-only profiling tools and simulators are:

(1) Simulators and software profiling tools can be prohibitively slow for analyzing real-world

applications, (2) Building software simulators that accurately capture all microarchitectural

aspects is nearly impossible, especially without fully understanding of the underlying hard-

ware. In contrast, our Watts-inside proposes a hardware-software cooperative solution, where

hardware provides reliable information of program execution and the software offers flexible

CHAPTER 3. WATTS-INSIDE: APPLICATION POWER AUDITING 34

platform to analyze program power.

Isci et al. [58, 59] have proposed runtime power monitoring techniques for core and

functional units. CAMP [28] and early stage power modeling [60] show how to use limited

number of hardware statistics for power model. Unlike these prior techniques whose primary

goal is developing accurate power models for core and the functional units, our Watts-inside

framework offers application-level feedback to improve power.

3.7 Summary

In this chapter, we showed the necessity to gather fine-grain information about program code

to better characterize application power and effect improvements. We proposed Watts-inside,

a hardware-software cooperative framework that relies on the efficiency of hardware support

to accurately gather application power profiles, and utilizes software support and causation

principles for a more comprehensive understanding of application power. We presented a case

study using two real applications, namely ocean (Splash-2) and streamcluster (Parsec-1.0)

where, with the help of feedback from Watts-inside, we performed relatively straightforward

code changes and realized up to 5% reduction in chip power and slight improvement (≤

0.25%) in execution time.

Chapter 4

enDebug: Application Energy Auditing

4.1 Understanding Application Energy

Table 4.1: Energy and performance profile of functions in Splash-2 and PARSEC-1.0 bench-

marks with 8 threads

Ocean Radiosity Bodytrack

Function % of % of Function % of % of Function % of % of

Energy Time Energy Time Energy Time

relax 30.31% 15.02% v intersect 11.06% 6.60% InsideError 25.38% 9.12%

slave2 18.98% 30.30% compute diff 7.39% 14.07% Exec 19.20% 4.34%

disc formfactor

jacobcal2 14.47% 12.22% traverse bsp 4.83% 5.53% EdgeError 18.53% 6.77%

laplacalc 12.68% 9.85% four center points 3.03% 5.06% ImageProjection 10.66% 3.67%

With increasingly complex interactions between instruction execution and the associated

timing in functional units (due to parallelism and pipelining), execution time can no longer be

considered a good proxy for energy measurement. To illustrate this effect, we conduct experi-

ments on several real-world applications from Splash-2 [31] and PARSEC-1.0 [32] benchmark

suites, where the energy consumption characteristics of individual functions drastically differ

35

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 36

Table 4.2: Processor Configuration and Power Model

Processor 3 GHz, 8-core CMP; 4-wide issue/retire, out-of-order execution; 4096-entry

BTB; hybrid branch Predictor; 8-entry instruction queue; 176-entry ROB;

96 int registers; 90 fp registers; 64-entry LD/ST queues; 48-entry scheduler

Memory 32KB, 4-way, I-cache; 32KB, 4-way, D-cache; 256KB, 8-way, private L2 cache;

Sub-system 16MB, 16-way, shared L3 cache; 64-entry ITLB/DTLB

Interconnect shared bus below private L2 caches

Power Model McPAT, 32 nm, Vdd = 1.25 V

from their corresponding execution time profiles.

Table 4.1 shows the energy and execution time profiles on several applications with 8

threads running on 8 cores. All of our experiments were done using SESC [24], a cycle-

accurate, multi-core architecture simulator that is integrated with McPAT power model [61].

Table 4.1 shows the processor configuration details input to the McPAT power model.

1. Ocean: relax() consumes 30.31% of the total energy but only accounts for 15.02% of

the total execution time. On the other hand, slave2() accounts for 30.30% of execution time,

but only consumes 18.98% energy. Upon further examination, we observed highly overlapped

execution of double-word arithmetic instructions in relax() led to higher energy with lower

execution time. However, slave2() had higher numbers of branch and load/store instructions

leading to longer execution time despite consuming lower energy than relax().

2. Radiosity: v intersect() consumes 11.06% of total energy with only 6.60% of the total

execution time, while compute diff disc formfactor() has 14.07% of the total execution time

with only 7.39% of the total energy. On a closer review, we found that v intersect() heavily

used complex instructions like madd.d (that perform multiply-add of double word values)

leading to higher energy, while compute diff disc formfactor() had a lot of load operations

leading to higher execution time despite consuming lower energy than v intersect().

3. Bodytrack: The top four energy consuming functions account for 74% of the total en-

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 37

ergy, but only account for about 24% of the total execution time. About 64% execution time

is actually spent on lock and barrier synchronizations implemented by pthread cond wait()

that actually puts threads into sleep without consuming much energy.

The examples above clearly show that an energy auditing framework is necessary to

better understand the energy profile of applications beyond just performance, and use this

profile information for energy optimization.

Are Current Hardware Energy Meters Sufficient? Modern high performance processor ar-

chitectures [62, 11] have begun integrating hardware energy meters that can be read through

software driver interfaces. For example, starting from Sandy Bridge, Intel provides a driver

interface called RAPL (Running Average Power Limit) that can let programmers periodi-

cally sample processor energy usually at the granularity of a few milliseconds of program

execution time. While this is going to be a useful first step toward helping programmers

to understand the processor energy consumption, it is still far from providing them with a

more practical feedback at a granularity that relates the processor energy consumption back

to the program source code.

4.2 Fine-grain Energy Profiling

While our power auditor captures short code sequences that cause high power, our energy

auditor cares more about the amount of accumulated energy consumption in code regions.

Due to such different auditing goals, we need to design a separate energy profiler, and based

on that, look for energy optimizations.

To help compilers, runtime optimizers or even programmers effectively apply the energy

optimizations to the right code regions, energy profile information is needed at the level of

fine-grain code, say functions or certain critical loop structures. We note that the current

hardware energy profiling infrastructure such as RAPL interface [62] provide energy infor-

mation at a granularity of several microseconds to a few milliseconds. To bridge the gap

between the current hardware support and the fine-grain energy profile (needed to attribute

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 38

energy back to application source code), we undertake a two step strategy– First, we build a

energy model (regression) using certain well-known hardware performance counters. Second,

we show how fine-grain energy for functions can be obtained using simple hardware support

and the energy regression function from our first step. Essentially, our solution is able to es-

timate energy and attribute them at the granularity of program functions without requiring

extensive hardware support.

We note that the first step (building the energy model) can be done on many current

processor platforms that have support for hardware energy and performance counters (which

can be read using lightweight tools such as likwid [2]) . However, the second step of fine grain

profiling and attribution does not exist in any modern processor platform to the best of our

knowledge. Therefore, to provide an accurate view of our energy profiler, we implement the

entire fine-grain energy profiling framework using SESC [24], an cycle-accurate, out-of-order

issue, multi-core processor simulator with an integrated McPAT energy model [61].

4.2.1 Energy Model Using Performance Counters

Current hardware support to measure energy and power consumption [62] are at a very coarse

granularity that cannot be directly used by code optimizers. Therefore, to attribute energy

consumption to fine grain regions of code (say functions), we first build an energy model

that estimates energy consumption through regression on a set of hardware performance

counters.

Prior works [63, 58, 59, 28, 60] have shown that linear regression techniques can be

effective in estimating processor energy with high accuracy. The energy model builds a

relationship between the processor energy, denoted as E, and a set of key performance met-

rics, denoted as P . Most modern processors have hardware performance counters that can

dynamically capture many critical performance metrics made available through the perfor-

mance monitoring infrastructure. With this existing hardware support, we build our energy

model as follows: We choose a subset of benchmarks from Splash-2 [31] and PARSEC-1.0 [32]

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 39

to train our energy model. In each benchmark run, for every 1 million cycle windows, we

gather CPU clock cycles, Instruction count, L1 Data cache access count, L2 cache access

count, Floating point operation count through hardware performance counters. We also

tabulate the corresponding energy consumption within the observation period from the en-

ergy counters. Using the measured features, the energy consumption E (in nanojoules) is

estimated as a function of the key performance metrics.

E =1.347 ∗ CPUCycles+ 0.484 ∗ InstCount+

0.867 ∗ L1DCacheAccess+ 1.097 ∗ L2CacheAccess+

0.104 ∗ FloatOps

A separate set of Splash-2 and PARSEC-1.0 benchmarks (non-overlapping with the train-

ing set) are used for testing and validation. We calculate the relative error between the

estimated core energy and the ground-truth energy numbers for the core using McPAT [61].

We adopt Ten-fold Cross-validation [64] method where 90% of the samples are used as the

training set and the remaining 10% of them are used for validation. This step is repeated

ten times where a different validation set is selected during each time. In our experiments,

we found that the average cross-validation errors is 2.13%, and the worst-case absolute error

to be less than 12%.

4.2.2 Attributing Energy to Program Functions

To attribute energy back to the program source code, an important question that needs

to be answered is the granularity at which energy should be attributed. Note that the

program code can be analyzed at different granularities, for example, instructions, basic

blocks, functions, or whole programs. Attributing energy to individual instructions and

basic blocks are practically very difficult because modern superscalar processors can execute

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 40

multiple instructions (and basic blocks) in an overlapped fashion. This makes it very hard

to accurately attribute energy back to each of such entities. On the other hand, with the

energy profile information at larger granularities such as whole program level, we may not

have meaningful feedback to effect code changes. Therefore, we attribute energy to program

functions, that already have programmer-defined boundaries and have a more bounded scope

than the entire program.

MAIN()' FOO1()'

Caller'PC'
Resume'PC'

Called'PC'

Caller'PC'
Resume'PC'

FOO2()'
Called'PC'

Read'PMCs'

Read'PMCs'

Read'PMCs'
Read'PMCs'

Return'PC'

Read'PMCs'
Read'PMCs'

Return'PC'
Return'PC'

Figure 4.1: Recording performance counters and PCs at function calls and returns

PMC0%

PMC1%
PMC2%

PMC3%

PMC4%

PC%

Read%

HW%Buffer%

…%

Figure 4.2: Storing performance counters and PCs to the hardware buffer

To attribute the energy profiles to the corresponding functions, during every function

call, we record the (1) performance counters from Section 4.2.1, (2)Program Counter (PC)

at the caller site and the (3) called function address (that can be later attributed back to

program source code using well known tools such as GNU addr2line utility [65]). Similarly,

during function return, we also record (1) the performance counters from Section 4.2.1, (2)

the PC at the return site and (3) the PC at the caller function after return. At the end of the

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 41

program execution, the corresponding energy profiles of function fragments (due to possibly

multiple calls and returns between caller/callee pairs) are accumulated and attributed back

to individual functions in the program code.

We use a 16-entry hardware buffer to record the performance counters and the PCs. The

hardware buffer values are periodically logged into a file that can later be analyzed further

by software modules. In particular, the logged values and the regression coefficients from

Section 4.2.1 can be used to determine the energy consumption by individual functions during

program execution. Since the hardware buffer is off the critical path, and has access latency

of 0.18ns using Cacti 5.1 [26] (less than one CPU clock cycle even on a 3 GHz processor), it is

unlikely to adversely impact the processor performance. We note that not all function calls

are executed through call instructions, for example, compilers may generate function calls

using jmp instructions, e.g., virtual functions are implemented using jump table in C++.

In such cases, we can still correctly identify functions by monitoring the execution of push

instructions (stack pushing operations) before jmp.

4.3 Automated Recommendation System for Energy

Optimization

Once the profiler identifies the application code regions (functions) that are behind high

energy consumption, the next logical step in energy debugging is to explore automated ways

to optimize energy. Frequently, this step lends substantial benefits in large scale software

development that involves a huge code base and numerous input test samples. To automat-

ically modify program code, Genetic programing that mutates program code is one possible

option. However, without guidance, regular genetic programming would randomly mutate

program, and this process normally takes hours to complete. Fortunately, our fine-grained

energy profiler has narrowed down the code optimization regions to only a few top energy

consuming functions. As a result, genetic programming can leverage this information to

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 42

guide program code mutation only inside these energy-hungry functions, which in turn, will

gain huge performance advantages over the un-guided approach.

In summary, our application energy auditor applies genetic programming-based algorithm

to automate the process of energy optimization. This algorithm uses artificial selection or

guided mutation strategy to create energy-improving program code mutants based on the

observed runtime energy profile.

In this section, we will first briefly describe the basics of genetic programming, and then

show the design of our algorithm explaining why artificial selection is necessary.

4.3.1 Basics of Genetic Programming

Genetic programming (GP) [66] is the process of evolving computer program code to induc-

tively find preferable program output given an input program. The process involves a series

of mutations (or code transformations) to the input program such that we eventually arrive

at a preferred output. Similar to animal and plant species evolving through natural selection

process, GP applies a set of powerful genetic operators to randomly alter the “gene” (or code

structure) in the program. These genetic operators range from simple replication of the pro-

gram code to random variations on the inner parts of a program. Once the randomly selected

genetic operators are applied, GP breeds new mutants that may or may not resemble the

original program from which they are mutated. GP usually tests if these new mutants are

qualified to remain in the evolving population using a fitness test. The fitness test is defined

by a function F which measures the error distance between the mutant program output and

the preferred outcome. Examples of fitness tests include testing for functional correctness

(i.e., the mutant has the exact same functional behavior as the original), performance im-

provement, power reduction, or combinations of one or more of such factors. If a mutant is

deemed fit, it is usually retained and allowed to join the evolution population (i.e., allowed

to participate in the next round/generation of mutations). The premise is that, by breeding

new programs from this dynamic pool, GP will find program mutants that will ultimately

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 43

have the preferred program output.

Note that fitness test is usually the most time consuming step in the entire process of

GP evolution. For example, if the fitness test involves checking for functional correctness, a

representative range of possible input values have to supplied to the program to make sure

that the original program and its mutant versions behave alike on all of such representative

inputs. As a result, natural selection or unguided mutation could take several hours to

produce useful mutants, and is popularly dubbed as overnight optimization [67].

4.3.2 Artificial Selection Genetic Programming

To overcome the challenges associated with natural (or un-guided, random) selection based

approach, we propose artificial (or guided) selection for genetic operator selection. In bio-

logical terms, artificial selection (also known as Selective Breeding) refers to the process of

human-controlled mutation and breeding that accelerates the evolution of preferable traits,

instead of relying on slow natural selection. In our approach, we apply a set of code trans-

formations guided by heuristics derived from program code structure or runtime profile. Our

fitness function expects to see lesser energy consumption in the offspring than the parent,

while making sure that functional correctness is preserved on a range of inputs. In this vein,

we name our algorithm as Artificial Selection Genetic Programming (ASGP, for short).

4.3.3 ASGP Algorithm

As a first step, a control data dependency graph (or CDDG) is used to represent the profiler-

identified high energy program functions. Algorithm 1 shows how our CDDGs are con-

structed from the program assembly code. Our graph construction algorithm goes through

every constituent basic block and builds a data dependency subgraph for each of them

starting from the very last instruction (branch) and proceeding backwards until the first in-

struction in the block by tracing the dependency of data values. A directed edge from node A

to node B means that node A depends on node Bs output to compute its own output. After

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 44

constructing data dependency subgraphs, our graph construction algorithm will connect all

of the subgraphs based on control dependencies, that is, each basic block’s branch node will

be connected to all its target nodes in other subgraphs.

To further assist the ASGP algorithm, certain nodes in the CDDG are annotated with

runtime profile information. For example, the branch nodes are annotated with the taken

frequency (from which branch taken vs. non-taken ratio can be derived). We note that these

annotations based on runtime information are simply to guide our ASGP algorithm to make

decisions in an informed manner rather than arbitrary, random choices.

We note that instruction operands can be immediate, register, or memory. Among these,

memory-type operands need special attention due to unknown memory dependences at com-

pile time. In several popular ISAs such as x86 , data is read or stored into a particular memory

address by using different memory addressing modes, such as direct displacement, register

indirect, base indexed. Note that registers are specifically used as base or index registers as

part of the calculation of memory address where data is read or written. In order for CDDG

to track the true dependencies between two memory-type operands, we monitor for changes

to the registers that are used as base and/or index in memory addressing. For example, we

mark that a memory-type Operand dst node from instruction A depends on a memory-type

Operand src node from instruction B only if all the memory address-related registers used

in both A and B do not get updated by any other instructions between A and B. In other

words, if there is any update to a register used as an index/base in another instruction’s

operand, we do not establish dependency between the instructions A and B. In addressing

modes, such as memory indirect, where it is more complex to resolve memory dependencies

prior to runtime, we chose to represent these operands as two separate nodes in CDDG. To

address situations where multiple operands might write to the same memory location using

different base and index registers (memory aliasing problem that are usually unresolved prior

to runtime), our CDDG algorithm flags all of the instructions that have memory operands as

destinations. Our genetic programming algorithm, ASGP, can use this as a guide to prevent

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 45

Algorithm 1: CDDG construction algorithm
input : Assembly code of the profiler-identified function

output: A Graph G that shows data and control dependencies

1 //Construct data dependency subgraphs for every basic block;

2 foreach basic block in the identified function do

3 Create an empty set S;

4 //Go through instructions in reverse order;

5 foreach instruction in the basic block do

6 //This if-else only applies to instructions that has destination operand;

7 if Operand dst is not in S then

8 Create a new node with label Operand dst;

9 Add Operand dst to S;

10 else

11 Delete Operand dst from the S;

12 Delete memory operands derived from Operand dst from S;

13 end

14 Include Opcode in the node labeled with Operand dst;

15 foreach Operand src in the instruction do

16 if Operand src is not in S then

17 Create a new node with label Operand src;

18 Add Operand src to S;

19 end

20 Create a directed data dependency edge from Operand dst to Operand src;

21 end

22 end

23 end

24 //Connecting sub-graphs through branch nodes;

25 foreach branch node (with branch Opcode) do

26 Locate all target nodes in the graph;

27 Create a control dependency edge from target nodes to this branch node;

28 end

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 46

reordering of instructions past these instruction boundaries and potentially avoid memory

conflicts. Note that our fitness test acts as a safety net, and will fail if ASGP unintentionally

created any memory conflicts.

Based on the information contained in the CDDG, the first generation mutants are

evolved using neutrally transformed program mutants from CDDG. Neutrally transformed

mutant refer to a program version that preserves the functional equivalence derived either

by applying algebraic rules or via merging opcodes already available from the ISA (see Sec-

tion 4.3.4). This step helps initialize the evolution population with multiple mutant samples

(with functionally equivalent versions to the original program) such that the ASGP algorithm

can do a more effective exploration by applying its genetic operators on this population. Suc-

cessive generations of mutants are created by applying genetic operators on the evolution

population guided by triggering heuristics (see Section 4.3.5). The fitness function tests

whether the new mutant preserves the functional equivalency on all of the available input

sets while potentially optimizing energy consumption over its parent mutant, and then is

added to the evolution population. In other words, if the mutant is not functionally equiva-

lent to the original program or does not show the potential to improve energy over its parent,

the mutant is discarded from further consideration. We determine functional equivalency by

comparing all of the registers (data, flags and program counters) and the set of all memory

locations modified by the original program and the mutant in the region of interest (i.e.,

where the mutation operation was applied). The potential for energy optimization is defined

as the mutant that already lowers energy consumption of the parent or is within 5% above

the parent’s energy consumption. We allow this slight increase in energy consumption among

the mutants to avoid being stuck in local minimas and being unable to find more energy

optimizing mutants in the future without exploring slightly more energy-expensive mutants.

However, to avoid the mutant population from being polluted with higher energy consuming

variations, we periodically (after every five generations in our implementation) remove the

mutants that consume energy higher than the original input program.

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 47

After reaching a maximum number of generations starting from all of the initial mutants,

the algorithm stops. The maximum number of generations is input by the user based on the

number of tries (or cost) that she is willing to pay for the ASGP algorithm to explore the

program mutants.

Algorithm 2: Artificial Selection Genetic Programming Algorithm

input : Original program (assembly)

output: Lesser energy consuming program mutants

1 Initialize the population with the original program code and mutants derived using

neutral transforms;

2 Run the initial mutants and obtain their energy consumption;

3 repeat

4 Randomly select one mutant from the evolution population as parent;

5 Mutate using one or more genetic operators with triggering heuristics;

6 Apply fitness test on the evolved mutant code;

7 if the mutant passes the fitness test then

8 Replace its parent in the evolution population;

9 else

10 Discard the mutant from the evolution population;

11 end

12 At every fifth generation, discard mutants with energy greater than original program;

13 until maximum number of generations is reached from all of the initial mutants;

14 Output the mutant that consumes the least energy in the evolution population;

4.3.4 Neutral Transforms

If unguided or natural selection process is used to create initial mutants, most of them will

likely not be functionally equivalent to the original program, thus failing the fitness test.

As a result, a significant amount of computational time is wasted in evolving these random

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 48

programs. To avoid wasting time on evolving such “pure random” programs, our current

implementation of enDebug uses the following set of neutral transforms on the original

CDDG to populate the set of initial program mutants, and hence increase the efficiency of

our approach.

1. Sign Conversion– This helps generate complements of numbers that can be primarily

exploited to cluster certain types of operations and reduce energy if such operations are

supported by the underlying ISA. For example, a − b + c + d can also be represented a +

(−b) + c + d that can be utilized by vector operations to cluster operands with the same

operator.

2. Commutativity– Commutativity applies on arithmetic operations such as add and

multiply nodes, for example, a+b = b+a, a×b = b×a. This can be used to group clusters of

operands in nearby memory locations and potentially improve spatial locality to save energy.

3. Distributivity– Distributivity also applies on arithmetic operations that helps to

reduce the number of multiplication/division operations in the program. For example, a ×

b+a×c = a×(b+c), a/b+c/b = (a+c)/b, (a/b)/(c/d) = (a×d)/(b×c), (a/b)/c = a/(b×c).

4. Merge– This serves to optimize energy consumption by combining certain operations

into ISA-supported more complex types. Energy savings can be had from lesser number of

instruction fetches and execution. Examples of merge operation include: 1. when nearby

nodes in CDDG have mul.d and add.d, the ASGP algorithm can consider replacing the node

with madd.d in certain ISAs, 2. when nearby nodes in the CDDG have load and address

increment/decrement, a vector load can be applied.

4.3.5 Genetic operators and Triggering heuristics

We first describe the four standard genetic operators [66] that are used in our genetic algo-

rithm, and then summarize the heuristics that guide the usage of such operators on program

mutants.

1. Delete–Delete operator serves to eliminate the CDDG nodes that unnecessarily in-

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 49

bne$SG1$

bne$SG2$ bne$SG3$

bne$SG1$

bne$SG2$

(a) Delete

bneSG

SG1$ bne$SG2$

(b) Copy

bne$SG1$

bne$SG2$

bne$SG2$

bne$SG1$

(c) Swap

bne$SG1$

bne$SG2$ bne$SG3$

bne$SG4$

bne$SG5$ bne$SG6$

bne$SG1$

bne$SG2$ bne$SG3$

bne$SG4$

bne$SG5$bne$SG6$

MutantA MutantB

Mutant$A’$ Mutant$B’$

(d) Crossover

Figure 4.3: Examples of Genetic operator Applications on CDDG

crease the program energy consumption. As examples, 1. when a branch is always not taken

for all inputs, the branch instruction and all instructions that compute the condition value

for the branch can be deleted (see Figure 4.3a), 2. certain subexpressions or instructions can

be removed that may be eventually moved to another place in the program code.

2. Copy– Copy operator works either on the block level or individual instruction level.

At the block level, copy operator can potentially increase the ratio of useful code while

reducing energy spent on meta code and the related control transfer instructions. When copy

operator is applied, the subgraphs need to be properly replicated (similar to loop unrolling)

- memory indices should be correctly adjusted, common registers should be renamed, and

the dependency edges be connected to the right node. Potential example applications of

this operator include the loop structures that were not able to be unrolled by the optimizing

compiler at static time; at the instruction level, copy operator helps achieve physically moving

an instruction to another place. This movement of instruction requires copy to be jointly

used with delete operator.

3. Swap– Swap operator swaps the positions of two nodes (instructions) or subgraphs

(blocks). This can be used to accomplish useful transforms such as code reordering. As

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 50

examples: 1. If consecutive nodes exhibit long latencies due to stalls in integer execution

unit (resource contention), swapping this node with an another node (that has a different set

of operations not competing for the integer execution unit) would alleviate the energy wasted

over stall time. 2. In a if..elsif..else code, let us say that the percentage of execution of if{},

elsif{} and else{} blocks are 10%, 10% and 80% respectively. A swap of the else{} and if{}

blocks would save the unnecessary control transfer through two basic blocks a majority of

the time.

4. Crossover– Crossover operator takes subgraphs from two parent mutants, and cre-

ates two new offsprings. For example, between two parent mutants A and B, exchanging

subgraphs SG3 and SG6 results in an improved offspring, A (see Figure 4.3d). Specifically,

we look for mutants that show reduced energy consumption compared to their parents, and

mark the mutated subgraphs (the portion of program code that was mutated in the parent).

Then a crossover operation is performed to check if two mutants with having marked sub-

graphs from different program locations will create a new mutant that combines the energy

savings from both of its parental mutants.

Table 4.3: Triggering heuristics for genetic operators

Operator/Transform Triggering Heuristics

Delete Always taken/not taken branches, redundant instruction

Copy High branch to non-branch instruction ratios, Known iterator

count values

Swap Skewed frequencies of execution in branch chains, cluster

of instructions of similar type

Crossover Energy optimized mutants in two separate subgraphs

among two different mutants

Table 4.3 summarizes some of the possible heuristics that were used by our ASGP algo-

rithm to find program mutants that can lead to better energy consumption. We note that

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 51

this table shows a list of heuristics used in our current implementation rather than being

exhaustive.

Table 4.4: Number of mutants for the un-guided natural selection GP algorithm

Application # discarded mutants # kept mutants

Fmm 558 15

Ocean 440 20

Cholesky 40 19

Water-sp 290 33

Water-n2 290 33

Fluidanimate 275 11

Streamcluster 486 14

Table 4.5: Number of mutant for our ASGP algorithm with triggering heuristics

Application # discarded mutants # kept mutants

Fmm 13 11

Ocean 14 17

Cholesky 0 14

Water-sp 31 8

Water-n2 31 9

Fluidanimate 11 19

Streamcluster 5 7

Tables 4.4 and 4.5 show the number of distinct mutants generated by the unguided

(natural selection) and guided (artificial selection) algorithms assuming that the user has no

limit on the maximum number of generations. We found that the energy-optimized mutants

found by both the GP and the ASGP algorithms were identical for each of our benchmark.

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 52

In each experiment, the mutants that are not deemed fit by the fitness function either due to

functional incorrectness or not exhibiting the capability to reduce energy are considered as

discarded mutants (refer Section 4.3.3). Functional correctness was determined by comparing

the outputs of the original and the mutant codes on all of the input sets made available by

the benchmark developers. All of the mutants that pass the fitness test are kept mutants, i.e.,

considered part of the evolution population. As seen in our experiments, the ASGP reduces

the total number of mutants anywhere from 4× (in cholesky) to over 40× (in streamcluster).

This helps to speedup the process of choosing energy optimized mutants of the program

code.

Table 4.6: Execution time overhead comparison between the natural selection GP algorithm

and our heuristic-triggered ASGP algorithm

Application GP ASGP Speedup

(secs) (secs) (times)

Fmm 701.6 28.1 25.1×

Ocean 705.1 47.6 14.8×

Cholesky 19.5 4.7 4.1×

Water-sp 145.7 17.6 8.3×

Water-n2 936.6 116.3 8.1×

Fluidanimate 1354.9 142.1 9.5×

Streamcluster 2881.5 69.2 41.7×

Table 4.6 shows the execution time (in seconds) for a un-guided natural selection GP

algorithm and our guided, artificial selection GP algorithm. We note that the execution

time includes the time to run the algorithm and fitness test for each of the benchmarks. In

every benchmark, functional correctness was determined through multiple runs of all of the

input sets made available by the benchmark developers. We observe a speedup of 4.1× (in

cholesky) and up to 41.7× (in streamcluster).

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 53

4.3.6 System Support for Automated Energy Optimization

The energy regression function can derive its inputs from the already available hardware

performance counters. To attribute the energy back to functions, we need to log informa-

tion about the performance counters and the corresponding program counters in a separate

hardware buffer.

Our ASGP algorithm can be implemented in software as a standalone post-compile opti-

mizer. On the hardware side, the algorithm needs support for three modules, energy meter

and functional correctness (fitness test) and heuristics. For energy metering, an off-the-shelf

energy measurement interface such as Intels RAPL would suffice since the objective is to

reduce overall program energy. However, for verifying functional equivalence, we need sys-

tem support that will compare the values produced by mutated regions of program code

and the original code. This requires hardware support to track all of the registers (including

data, flags and Program Counter) and the set of memory locations altered by the program

in the mutated region of program code. To this end, we design a small hardware structure,

hardware shadow buffer, that maintains a shadow copy of the registers and the modified

memory locations. Empirically, we determined that the maximum number of memory lo-

cations that were modified in energy critical code sequences were typically less than 4 KB.

Therefore, we design our shadow buffer to store up to 4 KB memory locations. Using Cacti

5.3, we found that the area overhead was 0.31mm2 and the shadow buffers per-access latency

was 0.26ns. Start log and Stop log instructions are added to the ISA for recording values.

Finally, most of our heuristics can be derived in a relatively straightforward manner using

existing performance counters in most modern architectures such as branch taken/not taken

profile, resource stalls [68].

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 54

4.4 enDebug Evaluation

We evaluate over 20 Splash-2 and PARSEC-1.0 applications, and summarize the energy-

related code optimizations that we found using our enDebug framework on six such repre-

sentative cases below. We perform our first round of experiments on SESC simulator with an

integrated McPAT model. This is due to ease of verifying the functional correctness of the

mutants through comparing all of the register and memory values produced by the mutant

with the original code. We were unable to turn on profile guided optimizations (PGO) on

our GCC cross compiler infrastructure for MIPS. Table 4.4 summarizes the observed energy

savings on two different reference input sets with -O3 settings without PGO.

1. Fmm– Figure 4.4 shows the high energy consuming code region found by our energy

profiler. Using our profiler-guided heuristics, the ASGP algorithm applied the copy operator

based on high branch to non-branch instruction ratio inside the tight loop. After a few

rounds of delete and some swap operations among instructions, the algorithm output a

mutant with least amount of energy consumption. We found that the final mutant produced

by ASGP algorithm did not have the if..else.. control part, and the energy consumption had

dropped at least 3.7% during our fitness test. This code is functionally equivalent since the

COMPLEX SUB works on odd j, and COMPLEX ADD on even j values that is replaced

by j and j + 1 during copy operation.

2. Ocean– Figure 4.5 shows the high energy consuming code region found by our energy

profiler. Within this dense loop, eight local variables (f1 to f8) are calculated, and then

all of them are added together to find t1c[iindex]. ASGP found that there was a single

node (load of t1a[iindex]) that was connected to another 8 nodes. After applying a few

neutral transforms, deletions and a crossover operation, the mutated program reduced the

instruction count by 13, and consumed up to 4.3% less energy than the original program.

3. Cholesky– Figure 4.6 shows the high energy consuming code region found by our

energy profiler. In this case, our ASGP algorithm was able to make effective use of merge (a

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 55

1 //Fmm (Splash−2): interaction.C

2 for (j = 1; j < Expansion Terms; j++) {

3 temp.r = C[i + j − 1][j − 1];

4 temp.i = (real) 0.0;

5 COMPLEX MUL(temp, temp, temp exp[j]);

6 if ((j & 0x1) == 0x0) {

7 COMPLEX ADD(result exp, result exp, temp);

8 } else {

9 COMPLEX SUB(result exp, result exp, temp);

10 }

11 }

Figure 4.4: Fmm code snippet

neutral transform) and delete operators to find energy-optimized mutant. The original code

was written in a way that prevented the compiler to generate more compact instructions

like msub.d (in MIPS). After applying algebraic laws on the original CDDG, the resulting

neutral transforms were more conducive to merging the adjacent nodes and forming madd.d.

ASGP was able to generate a program mutant that primary used madd.d instructions, and

reduced the overall program energy consumption by slightly over 1%.

4. Water-sp and Water-n2– Figure 4.7 shows the high energy consuming code regions

found by our energy profiler. Our runtime profile data indicated that two branches in this

code region (see sign macro in the source code line#2) were never taken for all of the available

program inputs. This was because the values of a were always positive in all of the input

sets. Based on the branch frequency heuristic, the ASGP algorithm generated two separate

mutants by deleting the blocks corresponding to the first two branches, and then a crossover

from these two mutant versions resulted in an energy optimized code. The overall energy

savings in water benchmarks was around 2%.

5. Fluidanimate– Figure 4.8 shows the high energy consuming code region found by

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 56

1 //Ocean (Splash−2): jacobcalc.C

2 for (iindex=firstcol;iindex<=lastcol;iindex++) {

3 indexp1 = iindex+1;

4 indexm1 = iindex−1;

5 f1 = (t1b[indexm1]+t1d[indexm1]−t1b[indexp1]−t1d[indexp1])

6 ∗(t1f[iindex]−t1a[iindex]);

7 f2 = (t1e[indexm1]+t1b[indexm1]−t1e[indexp1]−t1b[indexp1])

8 ∗(t1a[iindex]−t1g[iindex]);

9 f3 = (t1d[iindex]+t1d[indexp1]−t1e[iindex]−t1e[indexp1])

10 ∗(t1a[indexp1]−t1a[iindex]);

11 f4 = (t1d[indexm1]+t1d[iindex]−t1e[indexm1]−t1e[iindex])

12 ∗(t1a[iindex]−t1a[indexm1]);

13 f5 = (t1d[iindex]−t1b[indexp1])∗(t1f[indexp1]−t1a[iindex]);

14 f6 = (t1b[indexm1]−t1e[iindex])∗(t1a[iindex]−t1g[indexm1]);

15 f7 = (t1b[indexp1]−t1e[iindex])∗(t1g[indexp1]−t1a[iindex]);

16 f8 = (t1d[iindex]−t1b[indexm1])∗(t1a[iindex]−t1f[indexm1]);

17

18 t1c[iindex] = factjacob∗(f1+f2+f3+f4+f5+f6+f7+f8);

19 }

Figure 4.5: Ocean code snippet

our energy profiler. This loop contains very intensive arithmetic operations. Note that Vec3

is a structure that has three double elements, for which + = and / = have been overridden.

The energy reduction came from the initial neutral transform and delete operators. Our

ASGP moved the / = around through commutative and distributive rules, which deleted

certain expensive (long pipeline cycles) division instructions. Our experiments show up to

4.3% energy savings.

6. Streamcluster– Figure 4.9 shows the high energy consuming code region found by our

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 57

1 //Cholesky (Splash−2): numLL.C

2 while (srcNZ0 != last) {

3 d0 = ∗dest0; d1 = ∗dest1;

4 tmp0 = ∗srcNZ0++; d0 −= ljk0 0∗tmp0; d1 −= ljk0 1∗tmp0;

5 tmp1 = ∗srcNZ1++; d0 −= ljk1 0∗tmp1; d1 −= ljk1 1∗tmp1;

6 tmp0 = ∗srcNZ2++; d0 −= ljk2 0∗tmp0; d1 −= ljk2 1∗tmp0;

7 tmp1 = ∗srcNZ3++; d0 −= ljk3 0∗tmp1; d1 −= ljk3 1∗tmp1;

8 ∗dest0++ = d0; ∗dest1++ = d1;

9 }

Figure 4.6: Cholesky code snippet

1 //Water−sp/Water−n2 (Splash−2): cshift.C

2 #define sign(a,b) (b < 0) ? ((a < 0) ? a : −a) : ((a < 0) ? −a : a)

3 for (I = 0; I < 14; I++) {

4 /∗ if the value is greater than the cutoff radius ∗/

5 if (fabs(XL[I]) > BOXH) {

6 XL[I] = XL[I] −(sign(BOXL,XL[I]));

7 }

8 }

Figure 4.7: Water-sp/Water-n2 code snippet

energy profiler. Based on the runtime profile data, the ASGP algorithm chose to apply copy

genetic operator. Even at O3 compiler optimization level, this loop could not be unrolled

by the compiler since the range or actual values of iteration count (function parameter

dim is unknown at compile time. We found that dim is a fixed number during program

execution. This mutant version improved the energy savings by about 18% since this loop

was a prominent kernel in streamcluster benchmark.

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 58

1 //Fluidanimate (Parsec−1): parallel.cpp

2 for(int iparNeigh = 0; iparNeigh < numNeighPars; ++iparNeigh) {

3 ...

4 Vec3 acc = disp ∗ pressureCoeff ∗ (hmr∗hmr/dist)

5 ∗ (cell.density[j]+neigh.density[iparNeigh] − doubleRestDensity);

6 acc += (neigh.v[iparNeigh] − cell.v[j]) ∗ viscosityCoeff ∗ hmr;

7 acc /= cell.density[j] ∗ neigh.density[iparNeigh];

8 ...

9 }

Figure 4.8: Fluidanimate code snippet

1 //Streamcluster (Parsec−1): streamcluster.cpp

2 float dist(Point p1, Point p2, int dim)

3 {

4 int i;

5 float result=0.0;

6 for (i=0; i<dim; i++)

7 result += (p1.coord[i]−p2.coord[i])∗(p1.coord[i]−p2.coord[i]);

8 return(result);

9 }

Figure 4.9: Streamcluster code snippet

4.4.1 Validation on a real system

By conducting experiments on a real system, we validate the energy-optimized mutant pro-

grams generated by our prototype enDebug framework implemented on SESC simulator with

McPAT power model. We note that these energy-optimized mutant versions have already

passed the fitness test for both functional accuracy and energy optimization. Our goal is to

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 59

Table 4.7: Energy reduction for our benchmark applications in simulator (Baseline: GCC

-O3)

Application ASGP-evolved code region # code Energy reduction Energy reduction

modifications (with input ref1) (with input ref2)

Fmm interaction.C: line 398 16 3.7% 4.1%

Ocean jacobcalc.C: line 310 15 2.2% 4.3%

Cholesky numLL.C: line 436 & line 473 44 1.2% 1.4%

Water-sp cshift.C: line 58 34 1.9% 2.7%

Water-n2 cshift.C: line 54 34 2.3% 1.3%

Fluidanimate parallel.cpp: line 689 12 4.3% 4.2%

Streamcluster streamcluster.cpp: line 159 31 18.0% 15.5%

see if similar energy savings can be observed on a real-world system. Each benchmark is run

using the largest inputs (native inputs in PARSEC-1.0 and reference inputs in Splash-2).

Our test environment is a Dell Latitude E6520 workstation laptop with 8GB memory, and

4-core Intel(R) Core(TM) i7-2720QM processor (Sandy Bridge) run at 2.2 GHz with turbo

mode at 3.3 GHz using RAPL interface.

Table 4.8 shows the energy savings in our real system experiments on two baseline set-

tings: 1. with -O3 optimizations, 2. with both -O3 and GCC’s PGO. To enable PGO, we use

-fprofile-generate and -fprofile-use flags. Note that -fprofile-generate enables -fprofile-arcs,

-fprofile-values and -fvpt flags that include value profile transformations and program flow

arcs. The flag -fprofile-use enables -fbranch-probabilities, -funroll-loops, -fpeel-loops, -ftracer

that include tracking probabilities of branches and removal of small loops with constant num-

ber of iterations. The results show that, at -O3, the energy savings trend are fairly similar to

our experiments on SESC (Table 4.4). With PGO enabled, we find that ASGP is still able to

achieve fairly high energy savings (above 5%) in benchmarks such as fluidanimate, water-sp

and ocean due to its ability to apply mutations such as deletion, swap and crossover that the

compiler normally does not handle. In other benchmarks such as streamcluster, the savings

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 60

Table 4.8: Energy reduction on a real system (Intel Core i7)

Application Energy reduction Energy reduction

(Baseline: (Baseline:

GCC -O3) GCC -O3 and PGO)

Fmm 7.1% 4.6%

Ocean 4.0% 5.7%

Cholesky N/A N/A

Water-sp 5.1% 5.7%

Water-n2 2.1% 2.2%

Fluidanimate 10.4% 7.0%

Streamcluster 17.6% 1.6%

are diminished due to the advanced optimization settings in the compiler that can achieve

a similar outcome as our ASGP algorithm. Overall, we find that our enDebug framework

can be extremely useful in finding energy-optimized mutants of program code even after

extensive optimizations by the compiler.

4.5 Related Work

We discuss prior works in two broad categories- energy estimation and optimization.

4.5.1 Energy Estimation

Isci et al [59] propose runtime power monitoring techniques for processor core and functional

units. Some recent works demonstrate the feasibility of using a limited set of of metrics

to estimate processor component power [28, 60, 69]. Zhai et al [70] have developed hyper-

thread aware power model that extends the functionality of the current Intel RAPL interface.

These works do not explicitly address how to attribute energy back to the program code. In

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 61

contrast to these prior schemes, we investigate ways to attribute energy to fine-grain code.

Tiwari et al [52] developed an energy model using instruction counts, and assume a pre-

determined cost for various instruction types. This ignores dynamic hardware effects such as

parallelism and interference that occur in most modern architectures. Alternative strategies

that use a specific set of hardware events (such as cache misses) [63, 71] for energy estimation

often fail to include a comprehensive view of application execution and ignore system-level

effects and interactions with other instructions (e.g., pipeline stalls, pipeline flushes due to

mispredicted instructions). In contrast to these prior approaches, our methodology uses

largely existing hardware (with simple modifications) to accurately gather the total energy

consumed by fine grain sections of code (functions).

4.5.2 Energy Optimization

Microarchitecture– Hardware modifications have been proposed to minimize energy con-

sumption by the microarchitectural units. For instance, to reduce cache energy, prior works

have investigated reconfigurable cache with variable associativity or number of banks [36, 37],

bypassing expensive tag check operations [38], trading cache capacity for low supply volt-

age [39]. For issue logic and load/store queues that rely on energy-expensive structures such

as Content Address Memory (CAM), researchers have studied dynamically adjusting issue

or load/store queue sizes and avoiding wasteful wake-up checks [40, 41, 42, 72]. Recent

works have started investigating custom hardware accelerators for specific types of applica-

tions [43, 44, 73]. Prior works also consider optimizing processor pipelines for low power and

energy [45, 46, 74].

Dynamic voltage and frequency scaling (DVFS) Prior works have shown how to exploit

slack time in the running thread to put the processor core in a sleep state [4], or run at a

low voltage/frequency level [47, 48]. Other works have investigated into finding long running

code regions, and then instrumenting these regions with favorable voltage/frequency settings

to reduce energy [75, 49, 50]. DVFS has also been demonstrated to do system-level power

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 62

and energy management [76, 77]. Since our approach is complementary to this line of work,

we may gain even further energy savings by applying DVFS to our energy-optimized program

mutants.

Automated Code Optimization– As software inefficiency increasing becomes the domi-

nant source of wasteful energy consumption, there is a strong urge to develop energy-aware

program code. Recently, Schulte et al [67] proposed a post-compiler software optimization

technique. In this work, authors designed a genetic optimization algorithm that exhaustively

searches for program variant with functional correctness and lesser energy consumption. Al-

though both of our works broadly use genetic programming for mutating program code,

our enDebug differs from [67] in the following ways: 1. enDebug incorporates a fine grain

energy profiler in hardware that is estimates energy for program functions to apply targeted

optimizations, while [67] uses an energy model that estimates energy at the process level.

2. enDebug applies mutant operations only on the most energy consuming code region,

while [67] approach variate the entire program, which may make the search space become

prohibitively expensive for large scale programs 3. enDebug adopts a guided (artificial se-

lection) approach by taking advantage of heuristics derived from program code structure or

runtime profile, while [67] selects mutation operators randomly which is not performance

friendly as shown in Table 4.6.

4.6 Summary

In this chapter, we showed the need to understand application energy profile. We show the

design our solution approach, enDebug, that has two major components- 1. energy profiler,

and 2. automated recommendation system for program energy optimization.

We designed an energy profiler using largely existing hardware support that measures

the energy of program functions. We explored an automated recommendation system that

incorporates artificial selection genetic programming algorithm to generate program mutants

that minimize energy consumption. In contrast to prior approaches, we adopt a guided ap-

CHAPTER 4. ENDEBUG: APPLICATION ENERGY AUDITING 63

proach to mutant generation that reduces the search space and quickens the time (4× - 41×)

to arrive at energy-optimized program mutants. We show case studies from several Splash-

2 and PARSEC-1.0 benchmarks, and demonstrate energy savings of up to 7% beyond the

highest compiler optimization settings when tested on real-world Intel Core i7 processors.

Chapter 5

CC-Hunter: Information Leakage Auditing

5.1 Understanding Covert Timing Channels

Trusted Computer System Evaluation Criteria (or TCSEC, The Orange Book) [78] defines

covert channel as any communication channel that can be exploited by a process to transfer

information in a manner that violates the system’s security policy. In particular, covert

timing channels are those that would allow one process to signal information to another

process by modulating its own use of system resources in such a way that the change in

response time observed by the second process would provide information.

Note that, between the trojan and the spy, the task of constructing a reliable covert

channel is not very simple. Covert timing channels implemented on real systems take sig-

nificant amounts of synchronization, confirmation and transmission time even for relatively

short-length messages. As examples, (1) Okamura et al. [17] construct a memory load-based

covert channel on a real system, and show that it takes 131.5 seconds just to covertly com-

municate 64 bits in a reliable manner achieving a bandwidth rate of 0.49 bits per second; (2)

Ristenpart et al. [19] demonstrate a memory-based covert channel that achieves a bandwidth

of 0.2 bits per second. This shows that the covert channels create non-negligible amounts of

traffic on shared resources to accomplish their intended tasks.

64

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 65

TCSEC points out that a covert channel bandwidth exceeding a rate of one hundred

(100) bits per second is considered “high” based on the observed data transfer rates between

several kinds of computer systems. In any computer system, there are a number of relatively

low-bandwidth covert channels whose existence is deeply ingrained in the system design. If

bandwidth-reduction strategy to prevent covert timing channels were to be applied to all

of them, it becomes an impractical task. Therefore, TCSEC points out that channels with

maximum bandwidths of less than 0.1 bit per second are generally not considered to be very

feasible covert timing channels. This does not mean that it is impossible to construct very

low bandwidth covert timing channel, just that it becomes very expensive and difficult for

the adversary (spy) to extract any meaningful information out of the system.

5.2 Threat Model and Assumptions

Our threat model assumes that the trojan wants to intentionally communicate the secret

information to the spy covertly by modulating timing on certain hardware. We assume that

the spy is able to seek the services of a compromised trojan that has sufficient privileges to

run inside the target system. As confinement mechanisms in software improve, hardware-

based covert timing channels will become more important. So, we limit the scope of our

work to shared processor hardware.

A hardware-based covert timing channel could have noise due to two factors- (1) processes

other than trojan/spy using the shared resource frequently, (2) trojan artificially inflating the

patterns of random conflicts to evade detection by CC-Hunter. In both cases, the reliability

of covert communication is severely affected resulting in loss of data for the spy as evidenced

by many prior studies [79, 80, 23]. For example, on a cache-based covert timing channel, Xu

et al. [23] find that the covert transmission error rate is at least 20% when 64 concurrent users

share the same processor with trojan/spy. Therefore, we point out that it is impossible for a

covert timing channel to just randomly inflate conflict events or operate in noisy environments

simply to evade detection. In light of these prior findings, we model moderate amounts of

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 66

interference by running a few other (at least three) active processes alongside the trojan/spy

processes in our experiments.

In this work, our focus is on the detection of covert timing channels rather than showing

how to actually construct or prevent them. We do not evaluate the robustness of covert

communication itself that has been demonstrated adequately by prior works [19, 22, 23].

We assume that covert timing based communication happen through recurrent patterns

of conflicts over non-trivial intervals of time. CC-Hunter cannot detect the covert timing

attacks that happen instantly where the spy has the ability to gain sensitive information

in one pass. Also, covert timing channels that employ sophisticated combinations of timing

and storage channels at both hardware and software layers are not considered in this work.

Finally, we assume that the system software modules (including the operating system kernel

and security enforcing layers) are trusted.

5.3 Design Overview

From the perspective of covert timing channels that exploit shared processor hardware, there

are two broad categories–

(1) Combinational structures such as logic and wires, relying on patterns of high and

low contention to communicate on the corresponding shared resource. Consequently, a re-

current (yet sometimes irregular) pattern of contention (conflicts) shall be observed in the

corresponding event time series when the trojan covertly communicates the message bits to

the spy.

(2) Memory structures, such as caches, DRAM and disks, using intentional replacement

of memory blocks (previously owned by the spy process) to create misses. As a result, we

observe an recurrent pattern of cache conflict misses between the trojan and the spy.

We design pattern detection algorithms to identify the recurrence patterns in the corre-

sponding event time series1. Our algorithms look for patterns of conflicts, a fundamental

1Our solution is inspired from studies in neuroscience that analyze patterns of neuronal activity to un-

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 67

property of covert timing channels. Hence, even if the trojan/spy dynamically change their

communication protocol, CC-Hunter should still be able to detect them based on conflict

patterns.

To demonstrate our framework’s effectiveness, we use three realistic covert timing channel

implementations, two of which (shared caches [23], memory bus [22]) have been demonstrated

successfully on Amazon EC2 cloud servers. We evaluate using a full system environment by

booting marss [82] with Ubuntu 11.04. The simulator models a quad core processor running

at 2.5 GHz, each core with two hyperthreads, and has a few (at least three) other active

processes to create real system interference effects. We model a private 32 KB L1 and 256

KB L2 caches. Prior to conducting our experiments, we validated the timing behavior of

our covert timing channel implementations on marss against measurements in a real system

environment (dual-socket Dell T7500 server with Intel 4-core Xeon E5540 processors running

at 2.5 GHz, Ubuntu 11.04). Note that the three covert timing channels described below are

randomly picked to test our detection framework. CC-Hunter is neither limited to nor derived

from their specific implementations, and can be used to detect covert timing channels on all

shared processor hardware using recurrent patterns of conflicts for covert communication.

5.3.1 Covert Timing Channels on Combinational hardware

To illustrate the covert timing channels that occur on combinational structures and their

associated indicator events, we choose memory bus and integer divider unit (a similar im-

plementation was shown using multipliers by Wang et al [20]).

In case of the memory bus covert channel, when the trojan wants to transmit a ’1’ to

the spy, it intentionally performs an atomic unaligned memory access spanning two cache

lines. This action triggers a memory bus lock in the system, and puts the memory bus

in contended state for most modern generations of processors including Intel Nehalem and

AMD K10 family. The trojan repeats the atomic unaligned memory access pattern for a

derstand the physiological mechanisms associated with behavioral changes [81].

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 68

��
����
����
����
����

�����
�����

�� ��� ���� ���� ���� ���� �	��

�
��
�
�
��

�����������������������������
Figure 5.1: Average latency per memory access (in CPU cycles) in Memory Bus Covert

Channel

number of times to sufficiently alter the memory bus access timing for the spy to take note

of the ‘1’ value transmission. Even on x86 platforms that have recently replaced the shared

memory bus with QuickPath Interconnect (QPI), the bus locking behavior is still emulated

for atomic unaligned memory transactions spanning multiple cache lines [83]. Consequently,

delayed interconnect access is still observable in QPI-based architectures. To communicate

a ‘0’, the trojan simply puts the memory bus in un-contended state. The spy deciphers the

transmitted bits by accessing the memory bus intentionally through creating cache misses.

It times its memory accesses and detects the memory bus contention state by measuring

the average latency. The spy accumulates a number of memory latency samples to infer the

transmitted bit. Figure 5.1 shows the average loop execution time observed by the spy for a

randomly-chosen 64-bit credit card number. A contended bus increases the memory latency

making the spy to infer ‘1’, and an un-contended bus helps the spy to infer ‘0’.

For integer division unit, both the trojan and the spy processes are run on the same core

as hyperthreads. The trojan communicates ‘1’ by creating a contention on all of the division

units by executing a fixed number of instructions. To transmit a ‘0’, the trojan puts all of

the division units in an un-contended state by simply executing an empty loop. The spy

covertly listens to the transmission by executing loop iterations with a constant number of

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 69

��
���

����
����
����
����
����
����

�� ���� ���� ���� ���� ���� ����

	

��
�
��
��

�����������������������������

Figure 5.2: Average loop execution time (in CPU cycles) in Integer Divider Covert Channel

integer division operations and timing them. A ‘1’ is inferred on the spy side using iterations

that take longer amounts of time (due to contentions on the divider unit created by the

trojan), and ‘0’ is inferred when the iterations consume shorter time. Figure 5.2 shows the

average latency per loop iteration as observed by the spy for the same 64-bit credit card

number chosen for memory bus covert channel. We observe that the loop latency is high for

‘1’ transmission and remains low for ‘0’ transmission.

5.3.2 Recurrent Burst Pattern Detection

The first step in detecting covert timing channels is to identify the event that is behind the

hardware resource contention. In the case of memory bus covert channel, the event to be

monitored is memory bus lock operation. In the case of integer division covert channel, the

event to be monitored is the number of times a division instruction from one process waits

on a busy divider occupied by an instruction from another process. Note that not all division

operations fall in this category.

The second step is to create an Event Train, i.e., a uni-dimensional time series showing

the occurrence of events (see figures 5.3a and 5.3b). We notice a large number of thick bands

(or bursty patterns of events) whenever the trojan intends to covertly communicate a ‘1’.

As the third step, we analyze the event train using our recurrent burst pattern detec-

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 70

�� ��� ���� ���� ����
���	
������	����������	��
���������������	���������

(a) Memory Bus

�� ��� ��� ��� ��� ���� ����
�	
�����������	���	
�	
��	����	
������
������	�������	��������

(b) Integer Divider

Figure 5.3: Event Train plots for Memory Bus and Integer Divider showing burst patterns.

tion algorithm. This step consists of two parts: (1) check whether the the event train has

significant contention clusters (bursts), and (2) determine if the time series pattern exhibits

recurrent patterns of bursts.

Our algorithm is as follows:

1. Determine the interval (∆t) for a given event train to calculate event density. ∆t is

the product of the inverse of average event rate and α, an empirical constant determined

using the maximum and minimum achievable covert timing channel bandwidth rates on a

given shared hardware. In simple terms, ∆t is the observation window to count the number

of event occurrences within that interval. The value of ∆t can be picked from a wide range,

and is tempered by α factor which ensures that ∆t is neither too low (when the probability

of a certain number of events within ∆t follows Poisson distribution) nor too high (when the

probability of a certain number of events within ∆t follows normal distribution). For covert

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 71

3 3 0 0 0 3 1 3
Event Train

Δt time

Event Density Histogram
Fr

eq
ue

nc
y

of
 Δ

t

Event density in Δt

Figure 5.4: Illustration of Event Train and its corresponding Event Density Histogram. The

distibution is compared against the Poisson Distribution shown by the dotted line to detect

presence of burst patterns.

��

���

����

����

����

����

�� �� ��� ��� ��� ��� ���

��
	

�	
�
��
��
��
�

�	��������������	��������������������

(a) Memory Bus

��

����

�����

�����

�����

�� ��� ��� ��� ��� ���� ����

	

��
�
��
��
��
��
�

������
�������
��������������������������
��� ���

�����

(b) Integer Division Unit

Figure 5.5: Event Density Histograms for Covert Timing Channels using Memory Bus and

Integer Divider.

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 72

timing channel with memory bus, ∆t is determined as 100,000 CPU cycles (or 40 µs), and

in the case of covert timing channel with integer divisions, ∆t is determined as 500 CPU

cycles (or 200 ns).

2. Construct the event density histogram using ∆t. For each interval of ∆t, the number of

events are computed, and an event density histogram is constructed to subsequently estimate

the probability distribution of event density. An illustration is shown in Figure 5.4. The

x-axis in the histogram plot shows the range of ∆t bins that have a certain number of events.

Low density bins are to the left, and as we move right, we see the bins with higher numbers

of events. The y-axis shows the number of ∆t’s within each bin.

3. Detect burst patterns. From left to right in the histogram, threshold density is the

first bin which is smaller than the preceding bin, and equal or smaller than the next bin.

If there is no such bin, then the bin at which the slope of fitted curve becomes gentle is

considered as the threshold density. If the event train has burst patterns, there will be

two distinct distributions- (1) one where the mean is below 1.0 showing the non-bursty

periods, and (2) one where the mean is above 1.0 showing the bursty periods present in

the right tail of the event density histogram. Figure 5.5 shows the event density histogram

distributions for covert timing channels involving bursty contention patterns on memory bus

and integer division unit. For both timing channels, we see significant non-burst patterns in

the histogram bin#0. In case of memory bus channel, we see significant bursty pattern at

histogram bin#20. For Integer Division, we see a very prominent second distribution (burst

pattern) between bins#84 and #105 with peak around bin#96.

4. Identify significant burst patterns (contention clusters) and filter noise. To estimate

the significance of burst distribution and filter random (noise) distributions, we compute the

likelihood ratio2 of the second distribution. Empirically, based on observing realistic covert

timing channels [85, 22], we find that the likelihood ratio of the burst pattern distribution

2Likelihood ratio is defined as the number of samples in the identified distribution divided by the total

number of samples in the population [84]. We omit bin#0 from this computation since it does not contribute

to any contention.

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 73

tends to be at least 0.9 (even on very low bandwidth covert channels such as 0.1 bps). On

the flipside, we observe this likelihood ratio to be less than 0.25 among regular programs

that have no known covert timing channels despite having some bursty access patterns. We

set a conservative threshold for likelihood ratio at 0.5, i.e., all event density histograms with

likelihood ratios above 0.5 are considered for further analysis.

5. Determine the recurrence of burst patterns. Once the presence of significant burst

patterns are identified in the event series, the next step is to check for recurrent patterns of

bursts. We limit the window of observation to 512 OS time quanta (or 51.2 secs, assuming

a time quantum of 0.1 secs), to avoid diluting the significance of event density histograms

involved in covert timing channels. We develop a pattern clustering algorithm that performs

two basic steps- (1) discretize the event density histograms into strings, and (2) use k-means

clustering to aggregate similar strings. By analyzing the clusters that represent event density

histograms with significant bursts, we can find the extent to which burst patterns recur, and

hence detect the possible presence of covert timing channel. Our algorithm can detect covert

timing channels regardless of burst intervals (i.e., even on low-bandwidth irregular bursts or

random noise due to interference from the system environment), since it uses clustering to

extract recurring burst patterns.

5.3.3 Covert Timing Channel on Memory

We utilize L2 cache-based timing channel demonstrated by Xu et al [23]. To transmit a

‘1’, the trojan visits the a dynamically determined group of cache sets (G1)
3 and replaces

all of the constituent cache blocks, and for a ‘0’ it visits another dynamically determined

group of cache sets (G0) and replaces all of the constituent cache blocks. The spy infers the

transmitted bits as follows: It replaces all of the cache blocks in G1 and G0, and times the

accesses to the G1 and G0 sets separately. If the accesses to G1 sets take longer than the G0

3The conflict miss causing cache sets participating in covert transmission are chosen during covert channel

synchronization phase.

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 74

��

��

��

�� ��� ��� ��� ��� ��� ���	

��

�
��

��
��
�

���
�
��
�
��
�
��
�
��
��
��

�
�������
������������������
Figure 5.6: Ratios of cache access times between G1 and G0 cache sets in Cache Covert

Channel

sets (that is, all of the G1 sets resulted in cache misses and G0 sets were cache hits), then the

spy infers ‘1’. Otherwise, if the accesses to G0 sets take longer than the G1 sets (that is, all

of the G0 sets resulted in cache misses and G1 sets were cache hits), then the spy infers a ‘0’.

Figure 5.6 shows the ratio of the average cache access latencies between G1 and G0 cache

set blocks observed by the spy for the same 64-bit randomly generated credit card number.

A ‘1’ is inferred for ratios greater than 1 (i.e., G1 set access latencies are higher than G0 set

access latencies) and a ‘0’ is inferred for ratios less than 1 (i.e., G1 set access latencies are

lower than G0 set access latencies).

5.3.4 Oscillatory Pattern Detection

Unlike combinational structures where timing modulation is performed by varying the inter-

event intervals (observed as bursts and non-bursts), cache based covert timing channels rely

on latency of events to perform timing modulation. To transmit a ‘1’ or a ‘0’, the trojan

and the spy create a sufficient number of conflict events (cache misses) alternatively among

each other that lets the the spy decipher the transmitted bit based on the average memory

access times (hit/miss). Note that this leads to oscillatory patterns of conflicts between the

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 75

������

������

� ��� 	�
 ��
 ��

�����������������������

������

������

(a) Event Train (T->S: Trojan’s(S) con-

flict misses with Spy(S) and vice versa)

��
����
����
����
����
	�

	���
	���
	���
	���
	�

	� 	��� 	��� 	��� 	��� 	����

�
�
�
��
��
��
�
�	
�

��
��
��

�

���

(b) Autocorrelogram

Figure 5.7: Oscillatory pattern of cache conflict misses between trojan and spy. An autocor-

relogram is shown for the conflict miss event train.

trojan and spy processes.

Oscillation is defined as a property of periodicity in an event train. This is different from

bursts that are specific periods of high frequency event occurrences in the event train. Oscil-

lation of an event train is detected by measuring its autocorrelation [86]. Autocorrelation is

defined as the correlation coefficient of the signal with a time-lagged version of itself, i.e., it

is the correlation coefficient between two values of the same variable, Xi and Xi+p separated

by a lag p.

In general, given the measurements of a variable X, (X1, X2, ..., XN) at time instances

of t (t1, t2, ..., tN), autocorrelation coefficient rp at a time lag of p and mean of X̄ is defined

as,

rp =

∑n−p
i=1 (Xi − X̄).(Xi+p − X̄)∑n

i=1(Xi − X̄)2

The autocorrelation function is primarily used for two purposes– (1) detecting non-

randomness in data, (2) identifying an appropriate time series model if the data values

are not random [86]. To satisfy #1, computing the autocorrelation coefficient for a lag value

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 76

of 1 (r1) is sufficient. To satisfy #2 and detect oscillation, autocorrelation coefficients for a

sequence of lag values exhibit significant periodicity.

An autocorrelogram is a chart showing the autocorrelation coefficient values for a se-

quence of lag values. An oscillation pattern is inferred when the autocorrelation coefficient

shows significant periodicity with peaks sufficiently high for certain lag values (i.e., the values

of X correlates highly with itself at a lag distances of k1, k2 etc.).

Figure 5.7 shows the oscillation detection method for the covert timing channel on shared

cache. In particular, Figure 5.7a shows the event train (cache conflict misses) annotated by

whether the conflicts happen due to the trojan replacing spy’s cache sets, or vice versa. “T-

>S” denotes Trojan (T) replacing Spy’s(S) blocks because the spy had previously displaced

those same blocks previously owned by the trojan. Since the conflict miss train shows dense

cluttered pattern, we show a legible version of this event train in the inset of Figure 5.7a.

The conflict misses that are observed within each observation window (typically one OS

time quantum) are used to construct conflict miss event train plot. Every conflict miss in

the event train is denoted by an identifier based on the replacer process and the victim

process. Note that every ordered pair of processes have unique identifiers. For example “S-

>T” is assigned ‘0’ and “T->S” is assigned “1”. Autocorrelation function is computed on

this conflict miss event train. Figure 5.7b shows the autocorrelogram of the event train. A

total of 512 cache sets were used in G1 and G0 for transmission of 1/0 bit values. We observe

that, at a lag value of 533 (that is very close to the actual number of conflicting sets in the

shared cache, 512), the autocorrelation value is highest at about 0.893. The slight offset

from the actual number of conflicting sets was observed due to random conflict misses in

the surrounding code and the interference from conflict misses due to other active processes

sharing the cache. At a lag value of 512, the autocorrelation coefficient value was also

high (≈0.85). To evade detection, the trojan/spy may (with some effort) introduce pseudo-

random delays between cache conflicts. This could lead to potentially lower autocorrelation

coefficients, but we note that the trojan/spy may face a much bigger problem in reliable

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 77

INT$
ALU$

FPU$

BPU$
I+cache$

REG$

D+cache$

L2$cache$

CC$Auditor$

INT$
ALU$

FPU$

BPU$
I+cache$

REG$

D+cache$

L2$cache$

Shared$cache/memory$

Core0+SMT Core1+SMT

Interconnect$

Figure 5.8: Hardware Implementation and integration of CC-Hunter into processor hardware

transmission due to higher variability in cache access latencies.

5.4 Implementation

In this section, we show the hardware modifications and software support to implement our

CC-Hunter framework.

5.4.1 Hardware Support

In current microprocessor architectures, we note that most hardware units are shared by

multiple threads, especially with the widespread adoption of Simultaneous Multi-Threading

(SMT). Therefore, all of the microarchitectual units are potential candidates for covert timing

channel mediums.

The Instruction Set is augmented with a special instruction that lets the user to program

the CC-auditor and choose the certain hardware units to audit. This special instruction

shall be a privileged instruction that only a subset of system users (usually the system

administrator) can utilize for system monitoring. The hardware units have a programmable

bit, which when set, places the hardware unit under audit for covert timing channels. The

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 78

hardware units are wired to fire a signal to the CC-auditor on the occurrence of certain key

indicator events seen in covert timing channels (Figure 5.8).

In super-secure environments, where performance constraints can be ignored, CC-auditor

hardware can be enabled to monitor all shared hardware structures. However, this would

incur unacceptable performance overheads in most real system environments. Therefore,

to minimize CC-Hunter implementation complexity, we design CC-auditor with the capa-

bility to monitor up to two different hardware units at any given time. The user (system

administrator) is responsible for choosing the two shared hardware units to monitor based

on her knowledge of the current system jobs. We believe that this hardware design tradeoff

is necessary to prevent unnecessary overheads on most regular user applications.

For most of the core components such as execution clusters and logic, the indicator events

are conflicts detected by a hardware context when another context is already using them.

On certain uncore components such as memory bus, conflicts are created using special events

such as bus locks.

To accumulate the event signals arriving from the hardware units, the CC-Auditor con-

tains (1) two 32-bit count-down registers initialized to the computed values of ∆t based on

the two microarchitecture units under monitor, (2) two 16-bit registers to accumulate the

number of event occurences within ∆t, and (3) two histogram buffers with 128 entries (each

entry is 16-bits long) to record the event density histograms. Whenever the event signal

arrives from the unit under audit, the accumulator register is incremented by one. At the

end of each ∆t, the corresponding 16-bit accumulator value is updated against its entry in

the histogram buffer, and the count-down register is reset to ∆t. At the end of OS time

quantum, the histogram buffers are recorded by the software module.

For memory structures such as caches, conflicts are created using conflict-based replace-

ment misses. Ideally, to detect conflict misses, we need a fully-associative LRU (Least Re-

cently Used policy) stack modeling total cache capacity that tracks the recency of access and

cache block replacements. Our practical scheme approximates the LRU stack through main-

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 79

taining a number of generations (four in our implementation) that are ordered by age [87].

Cache blocks in the youngest generation correspond to the entries at the top of the LRU

stack and the oldest generation corresponds to the blocks at the bottom of the LRU stack.

Note that the blocks within a generation itself are unordered. Each cache block metadata

field is augmented with four bits to track accesses during each of the four generations, and

two more bits are added to track the current owner core (assuming four cores). The youngest

generation bit in the cache block metadata is set upon block access, and during block replace-

ment, the replaced cache tags are placed in a compact three-hash bloom filter corresponding

to the youngest generation. A new generation is started when the number of recently ac-

cessed blocks reaches a threshold, T (#totalcacheblocks/#generations). At this time, the

oldest generation is discarded by flash clearing the corresponding generation column in the

cache metadata and the respective bloom filter. This action represents the removal of en-

tries from the bottom of the LRU stack. The generation tracking bits are reused similar

to circular buffers, and a separate two bit register (per cache) holds the ID of the current

youngest generation. A conflict miss is detected when the incoming cache tag is found in

one of the bloom filters, which implies that the block was replaced before reaching the cache

capacity. Inside our CC-auditor, we maintain two alternating 128-byte vector registers that,

upon every conflict miss, records the two-bit core IDs of the replacer (core requesting the

cache block) and victim (current owner core in the cache block metadata). When one vector

register is full, the other vector register begins to record the data. Meanwhile, the software

module records the vector contents in the background (to prevent process stalling), and then

clears the vector register for future use.

Area, Latency and Power Estimates of CC-auditor

We use Cacti 5.3 [26] to estimate the area, latency and power needed for our CC-auditor

hardware. Table 5.1 show the results of our experiments. For the two histogram buffer, we

model 128-entries that are each 16-bits long. For registers, we model two 128-byte vector

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 80

Table 5.1: Area, Power and Latency Estimates of CC-Auditor

Histogram Registers Conflict Miss

Buffers Detector

Area(mm2) 0.0028 0.0011 0.004

Power(mW) 2.8 0.8 5.4

Latency(ns) 0.17 0.17 0.12

registers, two 16-bit accumulators, and two 4-byte countdown registers. For conflict miss

detector, we model 4 three-hash bloom filters with (4∗#totalcacheblocks) bits, six metadata

bits per cache block (four generation bits plus two bits of owner core). Our experimental

results show that the CC-Hunter hardware area overheads are insignificant compared to the

total chip area (e.g., 263 mm2 for Intel i7 processors [30]). The CC-auditor hardware has

latencies that are less than processor clock cycle time (0.33 ns for 3 GHz). Given that the

CC-auditor hardware is accessed only when conflicts happen, it is unlikely that the CC-

auditor hardware would extend the clock cycle period. Similarly, the dynamic power drawn

by CC-auditor hardware are in the order of a few milliwatts compared to 130 W peak in

Intel i7 processors [30].

5.4.2 Software Support

In order to place a microarchitectural unit under audit, the user requests the CC-auditor

through a special software API exported by the OS, where the OS performs privilege checks.

This is to prevent the sensitive system activity information from being exploited by attackers.

A separate daemon process (part of CC-Hunter software support) accumulates the data

points by recording the histogram buffer contents at each OS time quantum (for contention-

based channels) or 128-byte vector register (for oscillation-based channels). Lightweight code

is carefully added to avoid perturbing the system state, and to record performance counters

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 81

as accurately as possible [88]. To further reduce perturbation effects, the OS scheduler

schedules the CC-Hunter monitors on (currently) un-audited cores.

Since our analysis algorithms are run as background processes, they incur minimal ef-

fect on system performance. Our pattern clustering algorithm is invoked every 51.2 secs

(Section 5.3.2) and takes 0.25 secs (worst case) per computation. We note that further op-

timizations such as feature dimension reduction reduces the clustering computation time to

0.02 secs (worst case). Our autocorrelation analysis is invoked at the end of every OS time

quantum (0.1 secs) and takes 0.001 secs seconds (worst case) per computation.

5.5 Evaluation and Sensitivity Study

5.5.1 Varying Bandwidth Rates

We conduct experiments by altering the bandwidth rates of three different covert timing

channels from 0.1 bps to 1000 bps. The results (observed over a window of OS time quantum,

0.1 secs) are shown in Figure 5.9. While the magnitudes of ∆t frequencies decrease for lower

bandwidth contention-based channels, the likelihood ratios for second (burst) distribution

are still significant (higher than 0.9)4. On low-bandwidth cache covert channels such as 0.1

bps, despite observing periodicity in autocorrelation values, we note that their magnitudes

do not show significant strength. We conduct additional experiments by decreasing the

windows of observation to fractions of OS time quantum on 0.1 bps channel. This fine grain

analysis is especially useful for lower-bandwidth channels that create a certain number of

conflicts per second (needed to reliably transmit a bit) frequently followed by longer periods

4The histogram bins for second distribution (covert transmission) are determined by the number of

successive conflicts needed to reliably transmit a bit and the timing characteristics of the specific hardware

resource. For example, ∆t for memory bus channel is 100,000 cycles and minimum inter-access interval

between successive conflicts is 5,000 CPU cycles. Therefore, the second distribution is clustered around

bin#20.

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 82

��

���

���

���

���

���

�� �� ��� ��� ��� ��� ���

�	

�

�

�
��
��
��
�

�
��	������������
����

����

��

��

��

��

��

���

�� ��� ��� ��� ��� ���� ����
�	

�

�

�
��
��
��
�

��
�
	������
	����
�����
����

������

�����

��

�����

����

�����

��

�� ���� �	�� �
�� ���� ������
��
��
��
��
��
��
��
��

��
��
��

�

���

(a) Bandwidth=0.1bps

��

���

���

���

���

���

�� �� ��� ��� ��� ��� ���

�	

�

�

�
��
��
��
�

�
��	������������
����

����

��

��

��

��

��

���

�� ��� ��� ��� ��� ���� ����

�	

�

�

�
��
��
��
�

��
�
	������
	����
�����
����

������

�����

��

�����

����

�����

��

�� ���� �	�� �
�� ���� ������
��
��
��
��
��
��
��
��

��
��
��

�

���

(b) Bandwidth=10bps

��
����
����
����
����

�����
�����

�� �� ��� ��� ��� ��� �	�

�
�

��
��
��
��
��
�

�����������������������
��

���

���

���

���

����

�� ��� ��� ��� ��� ���� ����

�	

�

�

�
��
��
��
�

��
�
	������
	����
�����
����

������

��
�����
����

�����
��

�����
����

�����
��

�� ���� �	�� �
�� ���� ������
��
��
��
��
��
��
��
��

��
��
��

�

���

(c) Bandwidth=1000bps

Figure 5.9: Bandwidth test using Memory Bus, Integer Divider and Cache Covert Channels

of dormancy. Figure 5.10 shows that, as we reduce the sizes of observation window, the

autocorrelograms show significant repetitive peaks for 0.1 bps channel. Our experiments

suggest that autocorrelation analysis should be periodically done at higher frequency (i.e.,

finer granularity observation windows) to increase the probability of detection for lower-

bandwidth timing channels.

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 83

-0.25

 0

 0.25

 0.5

 0.75

 1

 0 200 400 600 800 1000A
u
to

co
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

Lag

(a) 0.75X OS time quantum

-0.25

 0

 0.25

 0.5

 0.75

 1

 0 200 400 600 800 1000A
u
to

co
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

Lag

(b) 0.5X OS time quantum

-0.75

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

 0 200 400 600 800 1000A
u
to

co
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

Lag

(c) 0.25X OS time quantum

Figure 5.10: Autocorrelograms for 0.1 bps cache covert channels at reduced observation

window sizes

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30

Fr
e
q
u
e
n
cy

 o
f

Δ
t

Memory Bus Lock Density

1648

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

Fr
e
q
u
e
n
cy

 o
f

Δ
t

Integer Divider Contention Density

324992

��
�����
����

�����
��

�����
����

�����
��

�� ���� �	�� �
�� ���� ������
��
��
��
��
��
��
��
��

��
��
��

�

���

Figure 5.11: Test with 256 randomly generated 64-bit messages on Memory Bus, Integer Di-

vider and Cache covert channels. Black (thick) bars are the means, and the red (annotations)

arrows above them show the range (min, max).

-1
-0.75

-0.5
-0.25

 0
 0.25

 0.5
 0.75

 1

 0 200 400 600 800 1000A
u
to

co
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

Lag

(a) #sets for covert channel=256

-1
-0.75

-0.5
-0.25

 0
 0.25

 0.5
 0.75

 1

 0 200 400 600 800 1000A
u
to

co
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

Lag

(b) #sets for covert channel=128

-1
-0.75

-0.5
-0.25

 0
 0.25

 0.5
 0.75

 1

 0 200 400 600 800 1000A
u
to

co
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

Lag

(c) #sets for covert channel=64

Figure 5.12: Autocorrelograms for cache covert channel with varying numbers of cache sets

for communication.

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 84

5.5.2 Encoded Message patterns

To simulate encoded message patterns that the trojan may use to transmit messages, we

generate 256 random 64-bit combinations, and using them as inputs to the covert timing

channels. Our experimental results are shown in Figure 5.11. Mean values of histogram

bins are shown by dark bars that are annotated by the range (maximum, minimum) of

bin values observed across the 128 runs. Despite variations in peak magnitudes of ∆t fre-

quencies (especially in integer divider), we notice that our algorithm still shows significant

second distributions with likelihood ratios above 0.9. For autocorrelograms in cache covert

channels, we notice insignificant deviations in autocorrelation coefficients despite varying bit

combinations.

5.5.3 Varying Cache Channel Implementations

In Figure 5.12, we implement the cache covert timing channels by varying the number of

cache sets used for bit transmission from 64 to 512. We find that the autocorrelograms in all

of the cases show significant periodicity in autocorrelation with maximum peak correlation

values of around 0.95, a key characteristic observed in covert timing channels. For covert

channels that use smaller number of cache sets, note that random conflict misses occurring

on other cache sets and interference from other active processes increase the wavelength of

the autocorrelogram curve beyond the expected values (typically the number of cache sets

used in covert communication).

5.5.4 Testing for False Alarms

We test our recurrent burst and oscillation pattern algorithms on 128 pair-wise combinations

of several standard SPEC2006, Stream and Filebench benchmarks run simultaneously on the

same physical core as hyperthreads. We pick two different types of servers from Filebench-

(1) webserver, that emulates web-server I/O activity producing a sequence of open-read-

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 85

close on multiple files in a directory tree plus a log file append (100 threads are used by

default), (2) mailserver, that stores each e-mail in a separate file consisting of a multi-

threaded set of create-append-sync, read-append-sync, read and delete operations in a single

directory (16 threads are used by default). The individual benchmarks are chosen based on

their CPU-intensive (SPEC2006) and memory- and I/O-intensive (Stream and Filebench)

behavior, and are paired such that we maximize the chances of them creating conflicts on a

particular microarchitectural unit. As examples, (1) both gobmk and sjeng have numerous

repeated accesses to the memory bus, (2) both bzip2 and h264ref have a significant number

of integer divisions. The goal of our experiments is to study whether these benchmark

pairs create similar levels of recurrent bursts or oscillatory patterns of conflicts that were

observed in realistic covert channel implementations (which, if true, could potentially lead

to a false alarm). Despite having some regular bursts and conflict cache misses, all of the

benchmark pairs are known to not have any covert timing channels. Figure 5.13 presents

a representative subset of our experiments5. We observe that most of the benchmark pairs

have either zero or random burst patterns for both memory bus lock (first column) and

integer division contention (second column) events. The only exception is mailserver pairs,

where we observe a second distribution with bursty patterns between histogram bins#5 and

#8. Upon further examination, we find that the likelihood ratios for these distributions was

less than 0.25 (which is significantly less than the ratios seen in all of our covert timing

channel experiments). In almost all of the autocorrelograms (third column), we observe that

the autocorrelation coefficients do not exhibit any noticeable periodicity typically expected

of cache covert timing channels. The only exception was webserver where we see a very brief

period of periodicity between lag values 120 and 180, but becomes non-periodic beyond lag

values of 180. Therefore, we did not observe any false alarms. Also, regardless of the “cover”

programs that embed the trojan/spy, CC-Hunter is designed to catch the covert transmission

program phases that should be already synchronized between trojan/spy to achieve covert

5Due to space constraints, we are unable to show all of our experimental results.

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 86

communication. Hence, we do not believe that the cover program characteristics could lead

to any false negatives.

5.6 Related Work

The notion of covert channel was first introduced by Lampson et al [89]. Hu et al [16]

proposed fuzzing system clock by randomizing interrupt timer period between 1ms and 19

ms. Unfortunately, this approach could significantly affect system’s normal bandwidth and

performance in the absence of any covert timing channel activity. Recent works have primar-

ily focused on covert information transfer through network channels [90, 91] and mitigation

techniques [92, 93, 94]. Among studies that consider processor-based covert timing chan-

nels, Wang et al. [20] identify two new covert channels using exceptions on speculative load

(ld.s) instructions and SMT/multiplier unit. Wu et al. [22] present a high-bandwidth and

reliable covert channel attack that is based on QPI lock mechanism where they demonstrate

their results on Amazon’s EC2 virtualized environment. Ristenpart et al. [19] present a

method of creating cross-VM covert channel by exploiting the L2 cache, which adopts the

Prime+Trigger+Probe [95] to measure the timing difference in accessing two pre-selected

cache sets and decipher the covert bit. Xu et al. [23] construct a quantitative study over

cross-VM L2 cache covert channels and assess their harm of data exfiltration. Our framework

is tested using the examples derived from such prior covert timing channel implementations

on shared hardware.

To detect and prevent covert timing channels, Kemmerer et al. [96] proposed a shared

matrix methodology to statically check whether potential covert communications could hap-

pen using shared resources. Wang et al [97] propose a covert channel model for an abstract

system specification. Unfortunately, such static code-level or abstract model analyses are

impractical on every single third-party application executing on a variety of machine config-

urations in today’s computing environments, especially when most of these applications are

available in binary-only format.

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 87

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30

Fr
e
q
u
e
n
cy

 o
f

Δ
t

Memory Bus Lock Density

2484

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

Fr
e
q
u
e
n
cy

 o
f

Δ
t

Integer Divider Contention Density

601302

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000A
u
to

co
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

Lag

(a) gobmk sjeng

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30

Fr
e
q
u
e
n
cy

 o
f

Δ
t

Memory Bus Lock Density

2449

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

Fr
e
q
u
e
n
cy

 o
f

Δ
t

Integer Divider Contention Density

498209

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000A
u
to

co
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

Lag

(b) bzip2 h264ref

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30

Fr
e
q
u
e
n
cy

 o
f

Δ
t

Memory Bus Lock Density

2499

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

Fr
e
q
u
e
n
cy

 o
f

Δ
t

Integer Divider Contention Density

499992

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000A
u
to

co
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

Lag

(c) stream stream

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30

Fr
e
q
u
e
n
cy

 o
f

Δ
t

Memory Bus Lock Density

2477

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

Fr
e
q
u
e
n
cy

 o
f

Δ
t

Integer Divider Contention Density

499781

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000A
u
to

co
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

Lag

(d) mailserver mailserver

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30

Fr
e
q
u
e
n
cy

 o
f

Δ
t

Memory Bus Lock Density

2490

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

Fr
e
q
u
e
n
cy

 o
f

Δ
t

Integer Divider Contention Density

499528

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000A
u
to

co
rr

e
la

ti
o
n
 C

o
e
ffi

ci
e
n
t

Lag

(e) webserver webserver

Figure 5.13: Event Density Histograms and Autocorrelograms in pair combinations of

SPEC2k6, Stream & Filebench

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 88

Other works have studied side channels and solutions to minimize information leakage.

Side channels are information leakage mechanisms where a certain malware secretly profiles

a legitimate application (via differential power, intentional fault injection etc.) to obtain

sensitive information. Wang et al. [98, 99] propose two special hardware cache designs,

Partition-Locking (PL), Random Permutation (RP) and New cache to defend against cache-

based side channel attacks. Kong et al. [100] show how secure software can use the PL cache.

Martin et al. [101] propose changes to the infrastructure (timekeeping and performance coun-

ters) typically used by side channels such that it becomes difficult for the attackers to derive

meaningful clues from architectural events. Demme et al. [102] introduce a metric called Side

Channel Vulnerability Factor (SVF) to quantify the level of difficulty for exploiting a par-

ticular system to gain side channel information. Many of the above preventative techniques

complement CC-Hunter by serving to provide enhanced security to the system.

Demme et al [103] explore simple performance counters for malware analysis. This strat-

egy is not applicable for a number of covert channels because they use specific timing events to

modulate hardware resources that may not be measurable through the current performance

counter infrastructure. For instance, the integer divider channel should track cycles where

one thread waits for another (unsupported by current hardware). Using simple performance

counters as alternatives will only lead to high number of false positives. Second, our algo-

rithm understands the time modulation characteristics in covert timing channel implementa-

tions. Using machine learning classifiers without considering covert timing channel-specific

behavior could result in high number of false alarms.

5.7 Summary

In this chapter, we describe CC-Hunter, a new microarchitecture-level framework to detect

the possible presence of covert timing channels on shared processor hardware. Our algo-

rithm works by detecting recurrent burst and oscillation patterns on certain key indicator

events associated with the covert timing channels. We test the efficacy of our solution using

CHAPTER 5. CC-HUNTER: INFORMATION LEAKAGE AUDITING 89

example covert timing channels on three different types of processor hardware- wires (mem-

ory bus/QPI), logic (integer divider) and memory (caches). We conduct sensitivity studies

by altering the bandwidth rates, message bit combinations and number of cache sets. Our

results show that, at low bandwidths, more frequent analysis (at finer grain windows of ob-

servation) may be necessary to improve the probability of detection. Through experiments

on I/O, memory, CPU-intensive benchmarks such as Filebench [104], SPEC2006 [105] and

Stream [106] that are known to have no covert channels, we show that our framework does

not have any false alarms.

Chapter 6

Conclusions and Future Work

With the shifting of software landscape and advances of hardware platforms, software de-

velopers and system administrators are facing new challenges, namely, power, energy and

information leakage, beyond just performance. While there are mature and readily available

hardware monitors for optimizing performance, direct hardware monitoring support for au-

diting power, energy, and information leakage, and enabling actionable optimizations is still

lacking.

In this dissertation, we proposed and explored the design of three novel resource auditing

techniques to be implemented as part the next generation hardware monitoring infrastruc-

ture, namely, application power auditing, application energy auditing, and covert timing

channel auditing. Watts-inside provides efficient hardware support to accurately audit ap-

plication power, and utilizes software support and causation principles for a more comprehen-

sive understanding of application power. EnDebug audits application by attributing energy

to fine grain regions of program code, and utilizes an automated recommendation system to

explore energy improvements. CC-Hunter uses low-cost hardware support for auditing and

detecting the presence of covert timing channels by dynamically tracking conflict patterns

on shared processor hardware.

Using the next generation hardware monitors, we can provide valuable feedbacks to the

90

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 91

programmers, and enable them to apply static code optimizations for improving power and

energy. While hardware monitors offer runtime auditing capabilities, a natural next step

is to explore runtime optimization opportunities with hardware monitors. Just-in-time or

JIT compiling is commonly used for runtime optimizations. At runtime, JIT engine may

gather statistics from hardware performance counters. If the profile data reveals performance

bottleneck in a code region, JIT engine may choose to recompile the code to gain better per-

formance. While our next generation hardware monitors offers beyond just performance

auditing, as future work, one attractive extension is to combine power and energy audit-

ing with runtime systems, such as JIT engines, and use auditing feedbacks to dynamically

optimize application code for better power or energy.

In fact, our information leakage auditor is already capable of performing runtime confining

(instead of ”optimizing” as in the case of energy) toward covert timing channels. As future

work, with simple extensions, our information leakage auditor, together with the operating

system, can either migrate the detected processes to an isolated core for further forensic

analyses, or directly kill these processes for immediate damage control. It is also interesting

to study other types of information leakage using hardware resources, and explore the design

of hardware monitors for them.

Bibliography

[1] J. Dongarra, K. London, S. Moore, P. Mucci, and D. Terpstra, “Using papi for hardware

performance monitoring on linux systems,” in Conference on Linux Clusters: The HPC

Revolution, vol. 5, 2001.

[2] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight performance-oriented

tool suite for x86 multicore environments,” in Proceedings of the 2010 39th

International Conference on Parallel Processing Workshops, ser. ICPPW ’10.

Washington, DC, USA: IEEE Computer Society, 2010, pp. 207–216. [Online].

Available: http://dx.doi.org/10.1109/ICPPW.2010.38

[3] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and D. Tarjan,

“Temperature-aware microarchitecture: Modeling and implementation,” ACM Trans.

Archit. Code Optim., 2004.

[4] J. Li, J. F. Martinez, and M. C. Huang, “The thrifty barrier: Energy-aware syn-

chronization in shared-memory multiprocessors,” in Proceedings of IEEE International

Symposium on High Performance Computer Architecture, 2004.

[5] M. S. Gupta, J. L. Oatley, R. Joseph, G. Wei, and D. M. Brooks, “Understanding

voltage variations in chip multiprocessors using a distributed power-delivery network,”

in Proceedings of Design, Automation and Test in Europe (DATE), 2007.

92

BIBLIOGRAPHY 93

[6] A. Rallo, “Data center efficiency trends for 2014,”

http://www.energymanagertoday.com/data-center-efficiency-trends-for-2014-097779/,

2013.

[7] eBay Inc., “Digital service efficiency,” http://dse.ebay.com/, 2013.

[8] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark

silicon and the end of multicore scaling,” in Proceedings of 38th Annual International

Symposium on Computer Architecture, 2011.

[9] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,” Computer, vol. 41,

no. 7, pp. 33–38, Jul. 2008. [Online]. Available: http://dx.doi.org/10.1109/MC.2008.

209

[10] D. H. Woo and H.-H. S. Lee, “Extending amdahl’s law for energy-efficient computing

in the many-core era,” Computer, vol. 41, no. 12, pp. 24–31, Dec. 2008. [Online].

Available: http://dx.doi.org/10.1109/MC.2008.494

[11] R. Jotwani, S. Sundaram, S. Kosonocky, A. Schaefer, V. Andrade, G. Constant, A. No-

vak, and S. Naffziger, “An x86-64 core implemented in 32nm soi cmos,” in Solid-State

Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International,

Feb 2010, pp. 106–107.

[12] B. Stackhouse, S. Bhimji, C. Bostak, D. Bradley, B. Cherkauer, J. Desai, E. Francom,

M. Gowan, P. Gronowski, D. Krueger, C. Morganti, and S. Troyer, “A 65 nm 2-billion

transistor quad-core itanium processor,” Solid-State Circuits, IEEE Journal of, 2009.

[13] M. Floyd, M. Allen-Ware, K. Rajamani, B. Brock, C. Lefurgy, A. Drake, L. Pesantez,

T. Gloekler, J. Tierno, P. Bose, and A. Buyuktosunoglu, “Introducing the adaptive

energy management features of the power7 chip,” Micro, IEEE, 2011.

BIBLIOGRAPHY 94

[14] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, “Estimating mobile

application energy consumption using program analysis,” in Proceedings of

the 2013 International Conference on Software Engineering, ser. ICSE ’13.

Piscataway, NJ, USA: IEEE Press, 2013, pp. 92–101. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2486788.2486801

[15] J. Gray III, “On introducing noise into the bus-contention channel,” in IEEE Computer

Society Symposium on Security and Privacy, 1993.

[16] W.-M. Hu, “Reducing timing channels with fuzzy time,” Journal of Computer Security,

vol. 1, no. 3, pp. 233–254, 1992.

[17] K. Okamura and Y. Oyama, “Load-based covert channels between xen virtual ma-

chines,” in Proceedings of the 2010 ACM Symposium on Applied Computing, ser. SAC

’10, 2010.

[18] C. Percival, “Cache missing for fun and profit,” 2005.

[19] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of my cloud:

exploring information leakage in third-party compute clouds,” in Proceedings of the

16th ACM conference on Computer and communications security. ACM, 2009, pp.

199–212.

[20] Z. Wang and R. B. Lee, “Covert and side channels due to processor architecture,” in

Annual Computer Security Applications Conference. IEEE, 2006, pp. 473–482.

[21] J. C. Wray, “An analysis of covert timing channels,” Journal of Computer Security,

vol. 1, no. 3, pp. 219–232, 1992.

[22] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space: high-speed covert chan-

nel attacks in the cloud,” in Proceedings of the 21st USENIX conference on Security

symposium, ser. Security’12, 2012.

BIBLIOGRAPHY 95

[23] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R. Schlichting, “An explo-

ration of L2 cache covert channels in virtualized environments,” in Proceedings of the

3rd ACM workshop on Cloud computing security workshop, ser. CCSW ’11, 2011.

[24] J. Renau et al., “SESC,” http://sesc.sourceforge.net, 2006.

[25] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for architectural-

level power analysis and optimizations,” in Proceedings of 27th Annual International

Symposium on Computer Architecture, 2000.

[26] N. P. Jouppi et al., “Cacti 5.1,” http://quid.hpl.hp.com:9081/cacti/, 2008.

[27] J. Chen, G. Venkataramani, and G. Parmer, “The need for power debugging in the

multi-core environment,” IEEE Computer Architecture Letters, 2012.

[28] M. D. Powell, A. Biswas, J. Emer, S. Mukherjee, B. Sheikh, and S. Yardi, “Camp: A

technique to estimate per-structure power at run-time using a few simple parameters,”

in Proceedings of IEEE International Symposium on High Performance Computer Ar-

chitecture, 2009.

[29] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE

Trans. Inf. Theor., vol. 23, no. 3, Sep. 2006.

[30] Intel Corporation, “Intel core i7-920 processor,”

http://ark.intel.com/Product.aspx?id=37147, 2010.

[31] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-2 programs:

characterization and methodological considerations,” in Proceedings of 22th Annual

International Symposium on Computer Architecture, 1995.

[32] C. Bienia, S. Kumar, J. Singh, and K. Li, “The PARSEC Benchmark Suite: Char-

acterization and Architectural Implications,” Princeton University Technical Report

TR-811-08, January 2008.

BIBLIOGRAPHY 96

[33] Synopsys Inc., “Design Compiler User Guide,” http:// www.synopsys.com, 2012.

[34] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis, P. D. Fran-

zon, M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal, “Freepdk: An open-source

variation-aware design kit,” in Proceedings of MSE, ser. MSE ’07, 2007.

[35] AMD, “Software optimization guide for the amd64 processors,”

http://support.amd.com/us/Processor TechDocs/25112.PDF, 2008.

[36] C. Zhang, F. Vahid, and W. Najjar, “A highly configurable cache architecture for

embedded systems,” in Proceedings of 30th Annual International Symposium on Com-

puter Architecture, 2003.

[37] M. D. Powell, A. Agarwal, T. N. Vijaykumar, B. Falsafi, and K. Roy, “Reducing set-

associative cache energy via way-prediction and selective direct-mapping,” in Proceed-

ings of the annual ACM/IEEE international symposium on Microarchitecture, 2001.

[38] E. Witchel, C. S. Larsen, S.and Ananian, and K. Asanović, “Direct addressed caches for

reduced power consumption,” in Proceedings of the annual ACM/IEEE international

symposium on Microarchitecture, 2001.

[39] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and S. Lu, “Trading

off cache capacity for low-voltage operation,” IEEE Micro, 2009.

[40] D. Folegnani and A. González, “Energy-effective issue logic,” in Proceedings of 28th

Annual International Symposium on Computer Architecture, 2001.

[41] A. Buyuktosunoglu, T. Karkhanis, D. H. Albonesi, and P. Bose, “Energy efficient

co-adaptive instruction fetch and issue,” in Proceedings of 30th Annual International

Symposium on Computer Architecture, 2003.

BIBLIOGRAPHY 97

[42] D. Ponomarev, G. Kucuk, and K. Ghose, “Reducing power requirements of instruction

scheduling through dynamic allocation of multiple datapath resources,” in Proceedings

of the annual ACM/IEEE international symposium on Microarchitecture, 2001.

[43] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez,

S. Swanson, and M. B. Taylor, “Conservation cores: reducing the energy of mature

computations,” in Proceedings of International Conference on Architectural Support

for Programming Languages and Operating Systems, 2010.

[44] V. Govindaraju, C. H. Ho, and K. Sankaralingam, “Dynamically specialized datapaths

for energy efficient computing,” in Proceedings of IEEE International Symposium on

High Performance Computer Architecture, ser. HPCA ’11, 2011.

[45] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw,

T. Austin, K. Flautner, and T. Mudge, “Razor: A low-power pipeline based on circuit-

level timing speculation,” in Proceedings of the annual ACM/IEEE international sym-

posium on Microarchitecture, 2003.

[46] J. Sartori, B. Ahrens, and R. Kumar, “Power balanced pipelines,” in Proceedings of

IEEE International Symposium on High Performance Computer Architecture, 2012.

[47] K. K. Rangan, G. Wei, and D. Brooks, “Thread motion: fine-grained power manage-

ment for multi-core systems,” in Proceedings of 36th Annual International Symposium

on Computer Architecture, 2009.

[48] A. Bhattacharjee and M. Martonosi, “Thread criticality predictors for dynamic per-

formance, power, and resource management in chip multiprocessors,” in Proceedings

of 36th Annual International Symposium on Computer Architecture, 2009.

[49] G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi, and S. Dropsho, “Profile-based

dynamic voltage and frequency scaling for a multiple clock domain processor,” in

Proceedings of 30th Annual International Symposium on Computer Architecture, 2003.

BIBLIOGRAPHY 98

[50] Q. Wu, D. W. Martonosi, M.and Clark, V. J. Reddi, D. Connors, Y. Wu, J. Lee, and

D. Brooks, “A dynamic compilation framework for controlling microprocessor energy

and performance,” in Proceedings of the annual ACM/IEEE international symposium

on Microarchitecture, 2005.

[51] Y. Zhu, G. Magklis, M. L. Scott, C. Ding, and D. H. Albonesi, “The energy impact of

aggressive loop fusion,” in Proceedings of International Conference on Parallel Archi-

tectures and Compilation Techniques, 2004.

[52] V. Tiwari, S. Malik, A. Wolfe, and M. T. Lee, “Instruction level power analysis and

optimization of software,” J. VLSI Signal Process. Syst., vol. 13, no. 2-3, Aug. 1996.

[53] J. Flinn and M. Satyanarayanan, “Powerscope: A tool for profiling the

energy usage of mobile applications,” in Proceedings of the Second IEEE

Workshop on Mobile Computer Systems and Applications, ser. WMCSA ’99.

Washington, DC, USA: IEEE Computer Society, 1999, pp. 2–. [Online]. Available:

http://dl.acm.org/citation.cfm?id=520551.837522

[54] F. Wolf, , J. Kruse, and R. Ernst, “Segment-wise timing and power measurement in

software emulation,” in Proceedings of Design, Automation and Test in Europe (DATE)

, Designers’ Forum, 2001.

[55] F. Chang, K. I. Farkas, and P. Ranganathan, “Energy-driven statistical sampling:

detecting software hotspots,” in Proceedings of the 2Nd International Conference on

Power-aware Computer Systems, 2003.

[56] T. Simunic, L. Benini, and G. De Micheli, “Energy-efficient design of battery-powered

embedded systems,” in Proceedings of the International Symposium on Low Power

Electronics and Design (ISLPED), 1999.

BIBLIOGRAPHY 99

[57] T. Šimunić, L. Benini, G. De Micheli, and M. Hans, “Source code optimization and

profiling of energy consumption in embedded systems,” in Proceedings of the 13th

International Symposium on System Synthesis, 2000.

[58] C. Isci and M. Martonosi, “Runtime power monitoring in high-end processors: Method-

ology and empirical data,” in Proceedings of the annual ACM/IEEE international

symposium on Microarchitecture, 2003.

[59] C. Isci, G. Contreras, and M. Martonosi, “Live, runtime phase monitoring and predic-

tion on real systems with application to dynamic power management,” in Proceedings

of the annual ACM/IEEE international symposium on Microarchitecture, 2006.

[60] H. Jacobson, A. Buyuktosunoglu, P. Bose, E. Acar, and R. Eickemeyer, “Abstraction

and microarchitecture scaling in early-stage power modeling,” in Proceedings of IEEE

International Symposium on High Performance Computer Architecture, 2011.

[61] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi,

“Mcpat: an integrated power, area, and timing modeling framework for multicore

and manycore architectures,” in Proceedings of the annual ACM/IEEE international

symposium on Microarchitecture, 2009.

[62] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weissmann, “Power-

management architecture of the intel microarchitecture code-named sandy bridge,”

Micro, IEEE, 2012.

[63] F. Bellosa, “The benefits of event: Driven energy accounting in power-sensitive sys-

tems,” in Proceedings of the 9th Workshop on ACM SIGOPS European Workshop:

Beyond the PC: New Challenges for the Operating System, ser. EW 9, 2000.

[64] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation

and model selection,” in Proceedings of the 14th International Joint Conference

BIBLIOGRAPHY 100

on Artificial Intelligence - Volume 2, ser. IJCAI’95. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 1995, pp. 1137–1143. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1643031.1643047

[65] Free Software Foundation, Inc, “GCC, the GNU Compiler Collection,”

http://gcc.gnu.org, 2012.

[66] M. Brameier and W. Banzhaf, Linear Genetic Programming. Springer, 2007.

[67] E. Schulte, J. Dorn, S. Harding, S. Forrest, and W. Weimer, “Post-compiler software

optimization for reducing energy,” in Proceedings of the 19th International Conference

on Architectural Support for Programming Languages and Operating Systems, 2014.

[68] Intel Corporation, Intel R© 64 and IA-32 Architectures Optimization Reference Manual,

March 2009, no. 248966-018.

[69] W. Bircher and L. John, “Complete system power estimation using processor perfor-

mance events,” Computers, IEEE, 2012.

[70] Y. Zhai, X. Zhang, S. Eranian, L. Tang, and J. Mars, “Happy: Hyperthread-aware

power profiling dynamically,” in In Proc. of Usenix Annual Technical Conference, 2014.

[71] K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, and Z. Chen, “Power containers:

An os facility for fine-grained power and energy management on multicore servers,”

in Proceedings of the Eighteenth International Conference on Architectural Support for

Programming Languages and Operating Systems, ser. ASPLOS ’13, 2013.

[72] T. M. Jones, M. F. P. O’Boyle, J. Abella, and A. Gonzalez, “Software directed issue

queue power reduction,” in Proceedings of IEEE International Symposium on High

Performance Computer Architecture, 2005.

[73] V. J. R. Yuhazo Zhu, “Webcore: Architectural support for mobile web browsing,” in

Proceedings of 40th Annual International Symposium on Computer Architecture, 2014.

BIBLIOGRAPHY 101

[74] M. Hayenga, V. Reddy, and M. H. Lipasti, “Revolver: Processor architecture for power

efficient loop execution,” in In Proceedings of the 20th IEEE International Symposium

on High Performance Computer Architecture (HPCA 2014), 2014.

[75] C.-H. Hsu and U. Kremer, “The design, implementation, and evaluation of

a compiler algorithm for cpu energy reduction,” in Proceedings of the ACM

SIGPLAN 2003 Conference on Programming Language Design and Implementation,

ser. PLDI ’03. New York, NY, USA: ACM, 2003, pp. 38–48. [Online]. Available:

http://doi.acm.org/10.1145/781131.781137

[76] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis of fast, per-core

dvfs using on-chip switching regulators,” in High Performance Computer Architecture,

2008. HPCA 2008. IEEE 14th International Symposium on, 2008.

[77] K. Ma, X. Li, M. Chen, and X. Wang, “Scalable power control for many-core archi-

tectures running multi-threaded applications,” in Proceedings of 38th Annual Interna-

tional Symposium on Computer Architecture, 2011.

[78] Department of Defense Standard, Trusted Computer System Evaluation Criteria DoD

5200.28-STD. US Department of Defense, 1983.

[79] H. Okhravi, S. Bak, and S. King, “Design, implementation and evaluation of covert

channel attacks,” in 2010 IEEE International Conference on Technologies for Home-

land Security (HST), 2010.

[80] N. E. Proctor and P. G. Neumann, “Architectural implications of covert channels,” in

Proceedings of the Fifteenth National Computer Security Conference, vol. 13, 1992, pp.

28–43.

[81] Y. Kaneoke and J. Vitek, “Burst and oscillation as disparate neuronal properties,”

Journal of neuroscience methods, vol. 68, no. 2, pp. 211–223, 1996.

BIBLIOGRAPHY 102

[82] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSSx86: A Full System Simulator

for x86 CPUs,” in Design Automation Conference 2011 (DAC’11), 2011.

[83] Intel Corporation, “Intel 7500 chipset,” Datasheet, 2010.

[84] National Institute of Standards and Technology, “Maximum Likelihood,” 2013.

[Online]. Available: http://www.itl.nist.gov/div898/handbook/eda/section3/eda3652.

htm

[85] B. Saltaformaggio, D. Xu, and X. Zhang, “Busmonitor: A hypervisor-based solution

for memory bus covert channels,” in Proceedings of European Workshop on System

Security, 2013.

[86] G. E. Box, G. M. Jenkins, and G. C. Reinsel, Time series analysis: forecasting and

control. Wiley, 2011, vol. 734.

[87] G. P. V. Venkataramani, “Low-cost and efficient architectural support for correct-

ness and performance debugging,” Ph.D. Dissertation, Georgia Institute of Technology,

2009.

[88] J. Demme and S. Sethumadhavan, “Rapid identification of architectural bottlenecks

via precise event counting,” in Proceedings of 38th Annual International Symposium

on Computer Architecture. IEEE, 2011, pp. 353–364.

[89] B. W. Lampson, “A note on the confinement problem,” Commun. ACM, vol. 16, no. 10,

Oct. 1973.

[90] S. Gianvecchio, H. Wang, D. Wijesekera, and S. Jajodia, “Model-based covert timing

channels: Automated modeling and evasion,” in Recent Advances in Intrusion Detec-

tion. Springer, 2008, pp. 211–230.

[91] K. Kothari and M. Wright, “Mimic: An active covert channel that evades regularity-

based detection,” Comput. Netw., vol. 57, no. 3, pp. 647–657, Feb. 2013.

BIBLIOGRAPHY 103

[92] S. Cabuk, C. E. Brodley, and C. Shields, “Ip covert channel detection,” ACM Trans-

actions on Information and System Security (TISSEC), vol. 12, no. 4, p. 22, 2009.

[93] S. Gianvecchio and H. Wang, “Detecting covert timing channels: an entropy-based ap-

proach,” in Proceedings of the 14th ACM conference on Computer and communications

security, ser. CCS ’07, 2007.

[94] A. Shabtai, Y. Elovici, and L. Rokach, A survey of data leakage detection and preven-

tion solutions. Springer, 2012.

[95] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on aes, and counter-

measures,” J. Cryptol., vol. 23, no. 2, Jan. 2010.

[96] R. A. Kemmerer, “Shared resource matrix methodology: An approach to identify-

ing storage and timing channels,” ACM Transactions on Computer Systems (TOCS),

vol. 1, no. 3, pp. 256–277, 1983.

[97] Z. Wang and R. B. Lee, “New constructive approach to covert channel modeling and

channel capacity estimation,” in Proceedings of the 8th International Conference on

Information Security, ser. ISC’05, 2005.

[98] ——, “New cache designs for thwarting software cache-based side channel attacks,”

in Proceedings of the 34th annual international symposium on Computer architecture,

ser. ISCA ’07, 2007.

[99] Z. Wang and R. Lee, “A novel cache architecture with enhanced performance and

security,” in 41st IEEE/ACM International Symposium on Microarchitecture, 2008.

[100] J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou, “Hardware-software integrated ap-

proaches to defend against software cache-based side channel attacks,” in IEEE 15th

International Symposium on High Performance Computer Architecture, 2009.

BIBLIOGRAPHY 104

[101] R. Martin, J. Demme, and S. Sethumadhavan, “Timewarp: rethinking timekeeping and

performance monitoring mechanisms to mitigate side-channel attacks,” in Proceedings

of the 39th International Symposium on Computer Architecture, 2012.

[102] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan, “Side-channel vulnerabil-

ity factor: A metric for measuring information leakage,” in Proceedings of 39th Annual

International Symposium on Computer Architecture, 2012.

[103] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethumadhavan, and

S. Stolfo, “On the feasibility of online malware detection with performance counters,”

in Proceedings of the 40th Annual International Symposium on Computer Architecture,

ser. ISCA ’13, 2013.

[104] File system and Storage Lab, “Filebench,” http://sourceforge.net/apps/mediawiki/filebench,

2011.

[105] Standard Performance Evaluation Corporation, “Spec 2006 benchmark suite,”

http://www.spec.org, 2006.

[106] J. D. McCalpin, “Memory bandwidth and machine balance in current high performance

computers,” IEEE Computer Society Technical Committee on Computer Architecture

(TCCA) Newsletter, 1995.

