
Interference from GPU System Service Requests
Arkaprava Basu∗

Indian Institute of Science
arkapravab@iisc.ac.in

Joseph L. Greathouse
AMD Research

joseph.greathouse@amd.com

Guru Venkataramani∗
George Washington University

guruv@gwu.edu

Ján Veselý∗
Rutgers University

jan.vesely@cs.rutgers.edu

Abstract—Heterogeneous systems combine general-purpose
CPUs with domain-specific accelerators like GPUs. Recent het-
erogeneous system designs have enabled GPUs to request OS
services, but the domain-specific nature of accelerators means
that they must rely on the CPUs to handle these requests.

Such system service requests can unintentionally harm the
performance of unrelated CPU applications. Tests on a real
heterogeneous processor demonstrate that GPU system service
requests can degrade contemporaneous CPU application perfor-
mance by up to 44% and can reduce energy efficiency by limiting
CPU sleep time. The reliance on busy CPU cores to perform the
system services can also slow down GPU work by up to 18%.
This new form of interference is found only in accelerator-rich
heterogeneous designs and may be exacerbated in future systems
with more accelerators.

We explore mitigation strategies from other fields that, in
the face of such interference, can increase CPU and GPU
performance by over 20% and 2×, respectively, and CPU sleep
time by 4.8×. However, these strategies do not always help
and offer no performance guarantees. We therefore describe a
technique to guarantee quality of service to CPU workloads by
dynamically adding backpressure to GPU requests.

I. INTRODUCTION

Heterogeneous systems combine general-purpose CPUs and
domain-specific accelerators to increase performance and en-
ergy efficiency. GPUs are perhaps the most popular and capa-
ble accelerators today [23], [28], [40], but SoCs may dedicate
more than half of their area to dozens of others [13]. These
can include media processors [2], cryptography engines [33],
and accelerators for web search [52], computer vision [18],
machine learning [17], [37], regular expressions [25], and
databases [63].

It is safe to say that future systems will have numerous
highly capable accelerators. As part of this transition to het-
erogeneity, accelerators like GPUs are now first-class citizens
that share a global, coherent view of virtual memory and can
launch tasks both to CPUs and to each other [31], [38], [57].
GPUs have outgrown the coprocessor model, and software can
now use them for more advanced tasks [58].

Recent designs have allowed GPUs to request system ser-
vices from the OS, such as file system accesses, page faults,
and system calls [60], [61]. For instance, GPUs and other
accelerators that support shared virtual memory may take page
faults for tasks such as memory protection, swapping, copy-
on-write, or memory compression [8], [35], [61].

Unfortunately, accelerators cannot directly execute these
system services because they are not fully programmable; their

∗Authors contributed while at AMD Research.

application-specific nature is their raison d’être. Even modern
GPUs lack full support for the types of privileged accesses
needed by OS routines. In addition, it can be dangerous
to run privileged code on unverifiable third-party hardware
designs [46]–[48], [60].

General-purpose CPUs must therefore handle system ser-
vice requests (SSRs) from these GPUs, potentially disrupting
unrelated CPU applications through stolen cycles and polluted
microarchitectural state. We demonstrate that this host interfer-
ence from GPU system services (HISS), coming from even a
single GPU, can degrade the performance of contemporaneous
CPU workloads by up to 44%. Similarly, unrelated CPU-
resident work can delay the handling of GPU SSRs, reducing
accelerator throughput by 18%.

Such SSRs can also prevent idle processors from saving
power by sleeping. A single GPU’s SSRs can reduce CPU
sleep time from 86% to 12%, implying that CPUs may rarely
sleep in future accelerator-rich SoCs.

Unlike the interference that may occur between CPU ap-
plications, the source of this new type of interference is the
system’s heterogeneity. GPUs run semi-independently and are
not subject to the same OS quality of service controls as CPU
tasks. It is thus imperative to take this new interference into
account in accelerator-rich SoCs.

We analyze the efficacy of mitigation techniques inspired
by existing fields: interrupt steering [30], interrupt coalesc-
ing [32], and driver optimizations. These can improve CPU
and accelerator performance by 20% and 2×, respectively, and
they can increase CPU sleep time by 4.8×. Nevertheless, they
do not universally mitigate this interference and provide no
performance guarantees.

We therefore design a mechanism that can control CPU
quality of service (QoS) in the face of HISS. We track
the time spent handling GPU SSRs and dynamically apply
backpressure to these requests. This will eventually stall the
GPU, reducing CPU interference. This allows control of CPU
overheads at the cost of lower GPU performance.

This work explores trade-offs between CPU and GPU
performance and energy in heterogeneous systems making
system calls and makes the following contributions:

• We demonstrate host interference from GPU system
services, a new form of interference between CPUs and
GPUs. Similar interference can happen between CPUs
and any other OS-service requesting accelerators.

• We quantify the performance and power effects of such
interference on a real heterogeneous SoC and study miti-

gation strategies that expose complex trade-offs between
power, CPU performance, and GPU performance in the
face of this interference.

• We demonstrate the need to ensure CPU QoS in the
face of GPU SSRs and evaluate such a technique in the
Linux® kernel.

II. MOTIVATION AND BACKGROUND

We begin by exploring how modern accelerators like GPUs
have enabled system service requests (SSRs). We then give
SSR examples, show how they are performed, and describe
the type of overheads they cause.

A. GPU System Service Requests

While GPUs were once standalone devices [45], they now
interact much more closely with other components. AMD [11]
and Intel [38] support coherent shared virtual memory be-
tween CPUs and GPUs, and Oracle supports the same for
their database accelerators [7], [54]. CCIX [15], Gen-Z [24],
HSA [31], and OpenCAPI [49], [57] allow accelerators to
share coherent virtual memory with the rest of the system.
This allows fine-grained data and pointer sharing and allows
accelerator work launching without going through the OS [12],
[14].

Rather than simply receiving a parcel of work and returning
an answer, modern GPUs can operate in a tightly coupled
manner with CPUs [26], [58] and can launch work to them-
selves [34], [36] or other devices [41]. This paper focuses on
a new feature of advanced accelerators: the ability to request
services from the operating system.

System Service Examples. Table I describes a sample of
the system services that a modern GPU can request and a
qualitative assessment of how complex they are to perform.
Beyond these examples, Veselý et al. provide a more thorough
study of accelerator system calls [60].

Page faults imply accelerators have the same virtual memory
protection and swapping capabilities as traditional CPUs [8],
[27], [35], and Veselý et al. quantitatively showed how GPUs
benefited from demand paging [61]. Spliet et al. demonstrated
that memory management directly from an accelerator could
ease programmability [56], and others showed benefits from
accessing file systems and networks from accelerators [22],
[39], [53]. Finally, Agarwal et al. showed benefits from mi-
grating accelerator data in NUMA systems [5].

The complexity of handling these SSRs varies. Signals
require little more than informing the receiving process of
the request. Page faults, however, could involve disk and
file system accesses. Such I/O requests, as well as network
accesses, can be extremely complex. In all cases, these SSRs
require access to kernel-level data and logic that can vary
wildly between OSs.

B. Performing GPU SSRs

Despite the benefits of SSRs, GPUs or other accelerators
cannot themselves perform these services. Their hardware
specialization prevents them from running the OS; adding

SSR Description Complexity

Signals
Allows GPUs to communicate
with other processes. Low

Page faults
Enables GPUs to use un-pinned
memory [61].

Moderate to
High

Memory
allocation

Allocate and free memory from
the GPU [56]. Moderate

File
system

Directly access/modify files from
GPU [53]. High

Page
migration

GPU initiated memory
migration. [5]. High

TABLE I: Descriptions of various GPU SSRs and a qualitative
estimate of their complexity.

G
PU

❶ Set Up Arguments

System Memory

Queue for
System Service

Requests and Arguments

Core 1 Core 0

Software Work Queue
for Pending Requests

❻ System Service Response

❸ Top Half
Interrupt Handler

❺ Kernel
Work Thread

3b
ACK Request

❷ Send Request

3a
Schedule

Bottom Half

❹ Bottom Half
Interrupt Handler

Core 2

 4a
Set Up Work Queue

⑤
Handle Request

4b
Queue Work

Thread

Fig. 1: Handling GPU system service requests

logic to run general-purpose OS software would negate many
of their performance and efficiency benefits.

In addition, there are potential security concerns with allow-
ing third-party accelerators to directly run OS routines [46]–
[48]. The OS provides security and memory isolation from
buggy and/or malicious devices, so third-party devices cannot
be trusted to run system software. As such, any accelerator
SSRs are thus typically serviced by the host CPUs.

Figure 1 illustrates the basic process of a GPU requesting
an OS service (SSR) in the Linux® kernel. While the specific
steps may differ slightly for other accelerators, this generic
description remains the same.

1 The GPU stores the data needed for the SSR into
a memory buffer; this can include information such as the
system call number and the function arguments.

2 The GPU interrupts a CPU to tell it that there is a new
SSR. The GPU can optionally wait to accumulate multiple
requests before sending this interrupt.

3 The CPU that received the interrupt enters the top half
interrupt handler, which takes place in the hardware interrupt
context with further interrupts disabled. 3a The top half
handler then schedules a bottom half interrupt handler, and
an inter-processor interrupt (IPI) is performed if the bottom
half’s kernel thread is located on a different core. Such split
designs are common in device drivers because they quickly
re-enable interrupts and allow the scheduler to defer the real
work to opportune times [19]. 3b The top half handler then
acknowledges the request and re-enables interrupts.

4 The kernel thread for the bottom half handler is later
scheduled, potentially onto a different core from the top half.
4a It reads information about the SSR from memory and

performs some amount of pre-processing. Kernel threads can
harm the performance of other CPU tasks since they run at
high priority. As such, many drivers further split the bottom
half and 4b queue the bulk of the work to a kernel worker
thread [62].

5 The worker thread is later scheduled by the OS, where it
handles the SSR. Depending on the system service complexity,
a great deal of time may be spent here.

6 Afterwards, the worker thread informs the GPU (or
devices like the IOMMU) that its request has been completed.

C. Example GPU SSRs

This section details two specific examples of GPU SSRs
supported by today’s heterogeneous processors and OSs.

Page faults: The Linux amd_iommu_v2 driver imple-
ments a page fault handler for AMD GPUs [4]. The GPU
requests address translations from the IO Memory Manage-
ment Unit (IOMMU), which walks the page table and can
thus take a page fault. In this case, 1 the IOMMU writes
the information about the request (e.g., the virtual address) to
memory and 2 interrupts a CPU.

3 The top half interrupt handler in the IOMMU driver
3a schedules a bottom half handler kernel thread and 3b

quickly sends an acknowledgement to the IOMMU. 4 Later,
the bottom half kernel thread 4a reads the IOMMU request
buffer and ascertains that this is a page fault. It then 4b queues
the page fault handler.

5 The OS later schedules a kernel thread to read the request
from the work queue and handle the page fault. This may
involve a great deal of work, such as retrieving data from a
swap file. 6 It then notifies the IOMMU of the completion,
and the IOMMU, in turn, tells the GPU.

Signals: AMD GPUs can also signal other processes using
a similar sequence of CPU handlers.

Signals do not make use of the IOMMU. Instead, they
execute the GPU’s S_SENDMSG instruction to accomplish step
2 of Figure 1 [1]. The rest of the steps are similar to page

faults, except that different OS routines are invoked in step 5
(and different memory queues are used for 1 and 4). In the
end, the OS signal handler wakes the target process that is to
receive the signal.

D. System Service Request Overheads

SSRs can cause slowdowns both on the GPU and on poten-
tially unrelated CPU applications, as illustrated in Figure 2.
The solid light blue bars represent useful user-level work on
the GPU and CPUs.

The dark gray sections are time spent in the kernel handling
the SSR; the labels match those from Figure 1. This time is
direct CPU overhead caused by the extra OS instructions that
must be executed to handle the SSR.

Sections labeled ‘a’ (red hatching) and ‘b’ (blue cross-
hatching) are indirect CPU overheads. The former (‘a’) is

response

GPU

Core 0

Core 1

Core 2

a ③
interrupt

a
ACK

b

sched a a④ b

queue a a⑤ b

stall...

Time

Fig. 2: GPU service request overheads. See Section II-D for
details of the bar colors and labels.

time spent transitioning between user and kernel mode. This
takes place before and after all of the handlers. The latter
(‘b’) is user-mode execution running slower due to the kernel’s
pollution of microarchitectural state, which may increase with
larger kernel handlers [55].

The GPU may also eventually stall due to the latency of
handling the SSR. We observe that SSRs can directly and
indirectly affect CPU performance, and CPU’s time to handle
the request can affect GPU’s performance.

III. EXPERIMENTAL SETUP

The following sections demonstrate SSRs interference on a
real heterogeneous processor with a CPU and a GPU.

System Configuration: Table II describes the system used
in our experiments. Our heterogeneous processor, an AMD
A10-7850K, has four CPU cores and an integrated GPU,
which we use as our accelerator.

Methodology: To measure the impact of interference from
the SSRs, we concurrently run independent CPU-only and
GPU-accelerated applications. We focus on independent work-
loads to demonstrate that accelerator SSRs breach performance
isolation between unrelated processes running on separate
processors. Benchmarks that simultaneously utilize CPUs and
GPUs have only recently appeared [26], [58], and they have
yet to utilize SSRs. Nonetheless, SSR interference would also
harm such applications.

Our CPU applications are PARSEC v2.1 running four
threads and native inputs [10], and we use hardware perfor-
mance counters to gather performance measurements.

SSR generating GPU workloads: Commercial processors
only recently added support for SSRs [31]. Thus, applications
directly exploiting SSRs are not yet commonplace. We there-
fore focus on an SSR that has already shown benefits, GPU
page faults [61]. Traditionally, memory that the GPU may
access is pinned before starting the GPU work. Veselý et al.
demonstrated two applications, BPT [20] and XSBench [59],
that could significantly consolidate their memory footprints by
using GPU page faults [61]. We use these workloads in our
tests, and, like that work, we use soft page faults (meaning
that the handler – 5 in Figure 1 – does not access the disk).

In addition, we modified three other benchmarks to also take
advantage of GPU page faults. We modified BFS and SpMV
from SHOC [21] and SSSP from Pannotia [16] to allocate their

SoC AMD A10-7850K
CPU 4× 3.7GHz AMD Family 15h Model 30h

Accelerator 720 MHz AMD GCN 1.1 GPU
Memory 32 GB Dual-Channel DDR3-1866

Software Ubuntu 14.04.3 LTS 64-bit
Linux® 4.0.0 with AMD HSA Driver v1.6.1

TABLE II: Test System Configuration

inputs on demand. When their GPU kernels access this data,
the GPU creates a soft page fault that the host handles, as
described in Section II-C.

Future accelerator-rich SoCs may also cause more SSRs
than we see in our single-accelerator testbed. As such, we
designed a microbenchmark to test what would happen if
our accelerator continually creates SSRs at a high rate. This
microbenchmark (ubench) streams through a data array on the
GPU, and each of its memory accesses generates a page fault.

We ran each combination of CPU and GPU benchmark 3
times to increase confidence in our results.

IV. IMPACT OF GPU SSRS

We here quantify the performance and power effects of
interference due to GPU SSRs.

A. Implication on Performance

CPU Overhead: Figure 3a shows how GPU SSRs affect
the performance of concurrent, but independent, CPU appli-
cations. Each bar represents the performance (1/runtime) of a
CPU application while a GPU application creates SSRs. Each
bar’s height is normalized to the same pair of applications, but
without the GPU application generating any SSRs. Thus, any
bar below 1 shows a performance loss only due to the SSRs.

The performance of unrelated CPU applications can drop
by up to 31% due to SSRs from a single accelerator (flu-
idanimate with SSSP). The average performance loss on the
CPU in this case is 12%. Projecting to future SoCs with our
microbenchmark, the performance of CPU applications could
degrade by up to 44% (x264) and by 28% on average.

These overheads depend both on the CPU application and
how the GPU application requests system services. For in-
stance, the raytrace CPU benchmark sees less interference
in general because much of its execution is single-threaded;
the SSRs can be handled by other idle cores. In contrast,
fluidanimate is affected more by the same SSR patterns since
SSRs harm this benchmark’s L1 cache hit rate, leading to high
indirect overheads (blue cross-hatched segments in Figure 2).

The SSR patterns created by the GPU application have a
strong effect on CPU overhead. BFS, for instance, has a low
SSR rate and its SSRs are clustered near the beginning of
its execution. This limits the interrupts that disturb the CPUs,
yielding less slowdown. Our GPU microbenchmark, on the
other hand, continually creates a large number of SSRs, so
most CPU applications experience significant slowdown.

Accelerator Overhead: Accelerators that request SSRs are
also affected by independent CPU applications. Figure 3b
shows the performance of our SSR-causing GPU applications
running in conjunction with our CPU workloads. This is

normalized to the performance of each application when
the CPUs are idle. Bars lower than 1 indicate performance
degradation due to the CPU application interfering with parts
of the SSR handling chain. For example, the work thread (5
in Figure 1) can be delayed as other user-level work runs. This
host interference leads to slowdowns up to 18% (SSSP and
streamcluster) and an average of 4%.

We also see the interplay between the needs of concurrently
running CPU and GPU applications. BPT, SSSP, and our mi-
crobenchmark are more heavily affected by interference from
the CPUs; their kernels stall whenever CPU workloads delay
SSR handling. The CPU benchmark streamcluster delays SSR
responses so much that accelerator benchmarks suffer; the
average GPU performance drops by 8%.

We note that GPU application performance is slightly higher
than 1 in some cases. In part, this is because these active CPUs
can respond to SSRs slightly faster compared to idle CPUs that
may be asleep when the interrupts arrive.

Summary: GPU SSRs can degrade performance of concur-
rent CPU applications. Furthermore, GPUs requesting system
services can lose performance due to contemporaneous CPU
work. This problem may be exacerbated as future chips include
many such accelerators that request system services at a higher
rate.

B. Implication on Energy Efficiency

Sleep states play a crucial role in energy efficiency. When
a CPU is idle, it can shut down circuits in order to reduce
power. Short periods of sleep can be detrimental, since some
sleep states have overheads like cache flushes that must be
amortized. However, long periods of sleep can significantly
decrease energy usage [9].

Unfortunately, SSRs can leave CPUs with little opportunity
to sleep. We measured the fraction of time our CPUs were
in their lowest-power sleep state, “Core C6” (CC6) [3] while
there is no CPU-only work, but while running GPU applica-
tions both with and without SSRs. The differences between
these show the CC6 residency lost due to SSRs.

Figure 4 shows the percentage of time the CPUs reside
in CC6 (y-axis) while executing our GPU applications. SSRs
always decrease CPU sleep time, but the amount is affected
by the number of SSRs and their pattern. BFS sleep time
decreases 14 percentage points because its SSRs are clustered
early in its execution; the CPUs can sleep afterwards. The
other four applications see a reduction of 23-30 percentage
points. Effectively, these applications have an average of one
more core awake throughout their runs.

Our microbenchmark that constantly requests SSRs reduces
sleep time from 86% to 12%. Nearly all opportunities to sleep
are eliminated, which bodes poorly for future accelerator-rich
SoCs. As their SSR request rate and regularity increases, a
vital mechanism for saving energy may be virtually eliminated.

C. Analysis of SSR Overheads

This section describes some sources of accelerator
SSR overheads. First, SSR interrupts (2 in Figure 1)

0.5
0.6
0.7
0.8
0.9
1

N
or
m
al
iz
ed

 C
PU

ap

pl
ic
at
io
n
pe

rf
or
m
an

ce bfs
bpt
spmv
sssp
xsbench
ubench

CPU application performance while GPU workload makes no SSRs

(a) Normalized performance of CPU-only applications (PARSEC) due to SSRs (page faults) from concurrently
running GPU workloads. Performance normalized to the same GPU applications without SSRs.

0.75
0.8

0.85
0.9

0.95
1

1.05

N
or
m
al
iz
ed

 G
PU

ap
pl
ic
at
io
n
pe

rf
or
m
an

ce

bfs

bpt

spmv

sssp

xsbench

ubench

GPU application performance with idle CPU

(b) Normalized GPU performance when making SSRs and running concurrently with CPU applications.
Performance is normalized to GPU applications running with an idle CPU.

Fig. 3: Performance implications of system service requests (page faults) from an accelerator (GPU)

0
10
20
30
40
50
60
70
80
90

100

n
o

_S
SR

gp
u

_S
R

R

n
o

_S
SR

gp
u

_S
R

R

n
o

_S
SR

gp
u

_S
R

R

n
o

_S
SR

gp
u

_S
R

R

n
o

_S
SR

gp
u

_S
SR

n
o

_S
SR

gp
u

_S
R

R

bfs bpt spmv sssp xsbench ubench

P
e

rc
e

n
ta

ge
 o

f
e

xe
cu

ti
o

n
 t

im
e

 in
lo

w
-p

o
w

e
r

(C
C

6
)

st
at

e

Higher is better

Fig. 4: CPU low-power sleep state residency with and without
GPU system service requests.

are evenly distributed across all CPUs (measured using
/proc/interrupts). This is to balance the work required
of each core, but it causes every core to suffer direct overheads
from the interrupts (as in Figure 2).

Next, there is a 477× increase in inter-processor interrupts
(IPIs) when our microbenchmark creates SSRs due to the top
half of the interrupt handler waking the bottom half (3a in
Figure 1). IPIs cause direct overheads in multiple cores, further
reducing performance.

Servicing these requests also indirectly affects the user-level
CPU applications by polluting the microarchitectural states of
the CPUs. The SSR handlers evict useful user-space data from
structures like caches and branch predictors. Then, when user-
level execution resumes, the application will experience lower
performance [55]. Figure 5 demonstrates how SSRs from our
microbenchmark increase the L1 data cache misses and branch
misprediction rate of unrelated CPU-only applications.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

L1
D

 m
is

s
ra

te

in
cr

ea
se

 fr
om

 G
PU

 S
SR

s

(a) Increase in user-level cache misses from GPU SSRs.

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

Br
an

ch
 m

is
pr

ed
ic

tio
n

in
cr

ea
se

 fr
om

 G
PU

 S
SR

s

(b) Increase in user branch mispredictions due to GPU SSRs.

Fig. 5: Microarchitectural effects of GPU SSRs

V. MITIGATION TECHNIQUES

This section explores interference mitigation strategies from
domains such as high-speed networking. We study each tech-
nique first in isolation and then in combinations.

0.8

1.2

1.6

2

2.4 GPU app. perf. with SSR when monolithic interrupt handler not used

(d) GPU app. performance with SSR when interrupts are coalesced (normalized to no coalescing)

0.45

0.65

0.85

1.05

1.25

1.45
bfs bpt spmv sssp xsbench ubenchCPU app. perf. in face of GPU SSR monolithic intr. handler

0.3
0.5
0.7
0.9
1.1
1.3

0.85

0.95

1.05

1.15

1.25

1.35
bfs bpt spmv sssp xsbench ubench

0.75

0.85

0.95

1.05

0.9

0.95

1

1.05

1.1 bfs bpt spmv sssp xsbench ubench

(a) CPU app. performance in face of GPU SSR with interrupts directed to single core (normalized to interrupts to all cores)

C
P

U
 a

p
p

. p
e

rf
.

(b) GPU app. performance with SSR when interrupts directed to single core (normalized to interrupt spread to all cores)

C
P

U
 a

p
p

.
p

e
rf

.

(c) CPU app. performance in face of GPU SSR with interrupt coalescing (normalized to no coalescing)

C
P

U
 a

p
p

.
P

e
rf

.

(e) CPU app. performance in face of GPU SSR with monolithic interrupt handler (normalized to without monolithic intr. handler)

In
te

rr
u

p
ts

 t
o

 a
 s

in
gl

e
co

re
In

te
rr

u
p

t
co

al
es

ci
n

g
M

o
n

o
lit

h
ic

 b
o

tt
o

m
 h

al
f

h
an

d
le

r

G
P

U
 a

p
p

.
p

e
rf

.

(e) GPU app. performance with SSR using monolithic interrupt handler (normalized to without monolithic intr. handler)

G
P

U
 a

p
p

.
p

e
rf

.
G

P
U

 a
p

p
l.

 p
e

rf
.

Higher is better

CPU app. perf. in face of GPU SSR with intr. spread to all cores

GPU app. perf. with SSR when intr. spread to all cores

CPU app. perf. in face of GPU SSR without interrupt coalescing

GPU app. perf. with SSR when interrupts are not coalesced

Fig. 6: Performance of GPU SSR overhead mitigations. ubench performance is the SSR rate relative to an idle CPU.

A. Steering Interrupts to a Single Core

Section IV-C showed that SSR interrupts were uniformly
distributed across all CPUs. This has also been observed
in network stacks with high packet arrival rates. To isolate
the detrimental effects of these interrupts, we modified the
IOMMU MSI configuration registers to steer the SSR inter-
rupts to a single CPU [30].

Interrupt steering has the potential to reduce overheads
around 3 in Figure 2, but it can also reduce fairness.
Workloads that require performance balance between the cores
(e.g., applications with static input partitioning) may suffer.
This can also stall the GPU while it waits to send interrupts
to the bottlenecked core.

Figure 6a shows the performance of our CPU benchmarks
when steering SSR interrupts to a single core. These results
are normalized to the case where the GPU SSRs are spread
across all of the CPUs.

Interrupt steering neither universally helps nor hurts the
performance of CPU applications. Interrupts from applications
such as SSSP can harm the performance of some CPU appli-
cations (e.g., facesim) because one core is overburdened with
interrupts. However, if the interrupts coming from the GPU
could inundate many cores (e.g., with our microbenchmark),
steering them all to one core reduces the harm.

Figure 6b shows a similar story for the performance of
the GPU applications. Some GPU applications gain a small
amount of performance due to faster handling of the individual
interrupts. However, when there are many continuous SSRs,
the single core that handles the requests becomes a bottleneck.

B. Interrupt Coalescing

While a CPU must be interrupted for GPU SSRs, it is not
necessary to do so immediately. GPUs can request multiple
unrelated SSRs within a short time, and these can be accumu-
lated before sending the interrupt.

Similar to techniques used in high-performance network-
ing [32] and storage [6], we leverage this freedom to perform
interrupt coalescing. Specifically, we configure the IOMMU
(PCIe® register D0F2xF4_x93) to allow it to wait 13 µs (its
maximum wait time) before raising the interrupt; other SSRs
that arrive during this interval are combined into the same
interrupt. This can reduce the number of CPU interrupts, but
it can also add latency to accelerator SSR requests.

Coalescing reduced the number of SSR interrupts by an av-
erage of 16%. Each interrupt handles multiple SSRs, allowing
the direct overheads to be shortened. In addition, there are
fewer switches into kernel mode, so the indirect overheads
are reduced. On the other hand, interrupt coalescing can also
reduce load balancing, since each interrupt can come with a
variable amount of work.

Figures 6c and 6d illustrate the impact of interrupt coalesc-
ing on CPU and GPU applications, respectively. Coalescing
can help when there are continuous interrupts; we see a 13%
increase in CPU performance when running SSSP. However,
the load balancing problem causes a 2% drop in performance
when BFS is running.

For GPU performance, the efficacy of interrupt coalescing
depends on the application’s need for SSR throughput or
latency. Our full applications, such as SSSP, see slowdowns
as high as 50% because the handling of their SSRs can be
significantly delayed while waiting for the coalescing period.
This can happen when handling the SSR is on the GPU
kernel’s critical path.

On the other hand, our microbenchmark sees a performance
increase because it has other parallel work that does not rely
on the SSR results. As such, coalescing the interrupts allows
more of them to be handled before the IOMMU must stall,
raising its throughput.

C. Monolithic Bottom Half Handler

Figure 1 illustrates a split driver design where a top half
handler receives and acknowledges the SSR interrupt (3) and
a bottom half handler (4) pre-processes the data for the SSR.
Finally, a kernel thread can perform the system service for the
GPU (5).

We explore the implications of such a design by modifying
our IOMMU driver. We moved the pre-processing of the
SSR (4) into the top half (3). This removed the extra IPIs
described in Section IV-C, since there is no need to interrupt
another core to wake up the bottom half.

This removes the direct and indirect overheads shown on
Core 1 of Figure 2, while still handling the majority of the SSR
outside hard interrupt context (5). This does not eliminate
the top-half/bottom-half paradigm; it simply moves more work
into the top half. On the other hand, it moves this additional
work into the hard interrupt context.

Figures 6e and 6f show the impact of this change on
CPU and GPU performance, respectively. Figure 6e shows
that this modification can help some applications by reducing
the amount of overhead caused by each SSR. However, the
increased work in the interrupt context means our microbench-
mark causes 35% more overhead.

Figure 6f shows that removing the two-stage bottom half
handler greatly improves the GPU application performance (up
to 2.3×) by eliminating the OS scheduling delay in waking
up the first bottom half handler. This reduces the latency of
handling each SSR.

D. Combining Multiple Techniques

The above-mentioned mechanisms are orthogonal to one
another and may interact in non-obvious ways. As such, this
section studies their effects when combined.

Figure 7 shows a Pareto comparison of the above three
techniques for both CPU and GPU application performance.
The X axis shows the geometric mean (across all applications)
of the CPU overhead caused by our microbenchmark, while
the Y axis shows the geometric mean of the microbenchmark’s
performance across all CPU workloads. Points to the right
have better CPU performance; points to the top have better
GPU throughput.

Figure 8 shows a similar frontier for the other GPU
applications. As demonstrated in Figure 6, the larger GPU

0.5

1

1.5

2

0.4 0.5 0.6 0.7 0.8

G
eo

m
ea

n
of

 u
be

nc
h

pe
rf

or
m

an
ce

ru

nn
in

g
w

/
CP

U
 a

pp
lic

at
io

ns
(H

ig
he

r i
s

be
tt

er
)

Geomean of CPU workload performance running with µbench
(Right is better)

Intr_coalescing

Default

Intr_to_single_core

Monolithic_bottom_half

Intr_to_single_core
+ Monolithic_bottom_half

Intr_to_single_core
+ Intr_coalescing

Intr_to_single_core
+ Monolothic_bottom_half
+ Intr_coalescing

Intr_coalescing +
Monolithic_bottom_half

Fig. 7: Pareto chart showing trade-offs between combinations
of mitigation techniques for our microbenchmark. Bolded
entries are on the Pareto frontier.

0.5

0.75

1

1.25

1.5

1.75

2

2.25

0.4 0.5 0.6 0.7 0.8 0.9 1

G
eo

m
ea

n
of

 G
PU

 p
er

fo
rm

an
ce

ru
nn

in
g

w
/

CP
U

 a
pp

lic
at

io
ns

(H
ig

he
r i

s
be

tt
er

)

Geomean of CPU workload performance w/ all non-µbench GPU apps
(Right is better)

Intr_to_single_core
+ Monolithic_bottom_half

Intr_to_single_core
+ Intr_coalescingMonolithic_bottom_half

Default

Fig. 8: Pareto trade-off between combinations of mitigation
techniques for all non-microbenchmark programs.

benchmarks and our microbenchmark were often affected
differently by the mitigation techniques, so we separated their
analyses. We believe that Figure 8 is more representative of
applications on current systems, while Figure 7 may better
represent future systems with many accelerators. We note that
the default configuration is not Pareto optimal in either chart.

If GPU SSR throughput is the primary goal, the monolithic
SSR handler is a better choice. This design generally increases
CPU overhead, but it increases GPU performance by over 2×.

The combination of interrupt coalescing and steering results
in the best CPU performance in both charts. Coalescing can
reduce the number of SSRs interrupt to the CPU application,
and steering those interrupts to a single core can further reduce
the overhead. That said, this combination’s effect on GPU
performance depends on the GPU workload. Figure 8 shows
that this causes the SSR-generating GPU applications to slow
down by 35% on average in order to gain 10% more CPU
performance. In contrast, Figure 7 shows that coalescing and
steering speeds up our GPU microbenchmark by 45% and the
CPU workloads by 10%. In the latter case, this configuration
is obviously a better choice than the default, while the former
may be better served by other Pareto optimal points.

Various other combinations can also be Pareto optimal,
depending on the GPU benchmark. For example, combining
all three techniques yields a good mix of CPU and GPU
performance when running with the microbenchmark, while
steering and a monolithic bottom half yield slightly better CPU

0

20

40

60

80

100

D
e

fa
u

lt

D
e

fa
u

lt

In
tr

_
to

_s
in

gl
e

_
co

re

In
tr

_
co

al
e

sc
in

g

M
o

n
o

lit
h

ic
_b

o
tt

o
m

_
h

al
f

In
tr

_
to

_s
in

gl
e

_
co

re
 +

In
tr

_
co

al
e

sc
in

g

In
tr

_
to

_s
in

gl
e

_
co

re
 +

M
o

n
o

lit
h

ic
_b

o
tt

o
m

_
h

al
f

In
tr

_
co

al
e

sc
in

g
+

M
o

n
o

lit
h

ic
_b

o
tt

o
m

_
h

al
f

In
tr

_
to

_s
in

gl
e

_
co

re
+

In
tr

_
co

al
e

sc
in

g
+

M
o

n
o

lit
h

ic
_b

o
tt

o
m

_
h

al
f

ubench.D_no_SSR ubench.D

P
er

ce
n

ta
ge

 o
f

ex
ec

u
ti

o
n

 t
im

e
 in

lo
w

-p
o

w
er

 (
C

C
6

)
st

at
e

ubench_no_SSR ubench_gpu_SSR

Fig. 9: Mitigation techniques affect CPU sleep states

and GPU performance for our other GPU benchmarks.
Many configurations yield GPU performance above that

of running with idle CPUs because they reduce the latency
of the SSR handler. However, we note that no mitigation
strategies fully mitigate the problem of host interference from
SSRs. Even the best-performing combination still results in
CPU slowdowns of 5-20% compared to running the same
applications with no SSRs. We return to this in Section VI.

E. Implication on Energy-efficiency

As discussed in Section IV-B, accelerator SSRs can severely
degrade CPU sleep state residency; Figure 9 shows how the
various mitigation techniques affect this.

The first bar shows the fraction of time the CPUs are asleep
when ubench generates no SSRs (86%). The second shows that
this drops to mere 12% when ubench generates SSRs. These
are from Figure 4.

We observe that, except for interrupt coalescing, all other
combinations of mitigation techniques significantly increase
CPU sleep state residency and thus enhance energy efficiency.
For example, deploying all three techniques together increases
sleep time to 57% from 12%.

Sending interrupts to a single core raises the sleep state
residency to 50%, because we send these interrupts to the same
core that handles the bottom half. This essentially forces steps
3 and 4 in Figure 1 to run on the same core. The worker

thread and bottom half handler run on two cores that stay
awake, while the other two cores are able to sleep. Using a
monolithic bottom half handler yields similar results due to
the reduction in IPIs.

Interrupt coalescing by itself has little effect on sleep state
residency, since multiple cores are still interrupted and awoken
with IPIs. In addition, the best sleep state residency is still only
57%. Finding mechanisms that yield lower power in the face
of GPU SSRs is an interesting area for further study.

VI. CPU QOS IN THE PRESENCE OF SSRS

Section IV showed that GPU SSRs degrade the performance
of unrelated CPU-resident applications. Section V-D explored
mitigation strategies that could reduce accelerator SSR inter-
ference, but none of these techniques were able to eliminate

G
PU

❶

System Memory

Queue for
System Service

Requests and Arguments

Core 1 Core 0

Software Work Queue
for Pending Requests

❸ Top Half
Interrupt Handler

❺ Kernel
Work Thread

3b

❷

3a

❹ Bottom Half
Interrupt Handler

Core 2

 4a

4b

Governor
(Fig 11)

Z
Z

Fig. 10: Our QoS mechanism in the SSR handler

slowdown in the CPU applications. Even the best combination
of techniques still resulted in CPU overheads of more than
20% in several cases. Thus, the trend of integrating ever-
increasing numbers of accelerators into future heterogeneous
systems makes SSR interference a potential bottleneck.

Importantly, in the absence of any quality-of-service (QoS)
guarantees, it is possible to incur unbounded overhead due to
SSR interference [44]. Malicious or buggy accelerators can
potentially even use SSRs to mount denial-of-service attacks
on the CPU [47]. It is therefore essential to build a QoS
mechanism that can ensure a desired degree of performance
isolation for CPU applications on a heterogeneous system.

Towards this end, we designed a software-based QoS mech-
anism that can arbitrarily limit CPU performance degradation
from SSRs. Our technique requires no hardware modifications,
and it is also orthogonal to (and can run in conjunction with)
the techniques of Section V. To the best of our knowledge,
we are first to show the need for such a QoS mechanism in
heterogeneous systems and also to build one in the OS.

The key observation behind our QoS mechanism is that each
accelerator has a hardware limit on the number of outstanding
SSRs. This limit stems from the fact that accelerators must
store state related to the SSR until it is serviced. This limit
varies across accelerators, but its existence implies that it is
possible to apply back-pressure to an accelerator by delaying
the service of its SSRs. Ultimately this will stall the GPU
until its SSRs are serviced. Further, if a program running
on the accelerator depends on the results of its SSRs, then
it may stall before reaching this hardware limit. Therefore,
while GPUs run semi-independently from the CPU, this limit
on outstanding SSRs can moderate SSR generation.

We thus extended the OS driver to allow the system admin-
istrator to specify the maximum amount of CPU time that may
be spent processing GPU SSRs. A low value will ensure lower
CPU performance loss at the cost of reduced SSR throughput
and vice versa. Figures 10 and 11 illustrate how this is
implemented (cf. unmodified Figure 3). The key to moderating
the SSR rate is to delay processing of already-arrived SSRs
when the amount of CPU time spent processing SSRs is higher
than the desired rate. This delay will apply back-pressure to

CPU cycles handling
SSRs > Threshold? Delay=0

Sleep ‘Delay’ µsec

N
Delay *= 2 Delay == 0 ?

Delay = 10 µsec

YN

Y

Service SSR and
return results

Fig. 11: Flow chart for the QoS governor

the GPU to stop generation of new SSR requests. Importantly,
by adding delay in servicing SSRs instead of rejecting them
outright, we can implement this technique without requiring
any modification to how accelerators request SSRs. A governor
decides whether to delay processing of SSRs according to the
limit set by the system administrator.

Our QoS mechanism has two parts. First, all OS routines
involved in servicing SSRs are updated to account for their
CPU cycles. This is then used by a kernel background thread
that periodically (e.g., every 10µs) calculates if the fraction of
cycles spent on servicing SSRs is over a specified limit.

Next, we modify the worker thread that processes SSRs as
shown in the flowchart of Figure 10. The new worker thread
first checks if the CPU time spent handling SSRs is above the
specified threshold based on the information gathered by the
background thread. If not, it sets the desired delay to zero and
continues to process the SSR. Otherwise, it delays processing
the SSRs following an exponential back-off starting at 10µs.

As the delay is increased, GPUs will begin to stall and the
SSR rate will eventually drop. When the overhead falls below
the set limit, the SSRs will be once again serviced without
any artificial delay.

Figures 12a and 12b show the effect of this QoS on
the performance of CPU applications and accelerator system
services, respectively. Each cluster has a bar for the default
configuration and for three different throttling values while
running our GPU microbenchmark. The parameter th x means
the governor begins to throttle if more than x% of CPU time is
spent servicing accelerator SSRs. For example, th 1 attempts
to cap the CPU overhead at 1%. The figures show this setting
reduces the average CPU performance loss to less than 4%
from 28%. However, it comes at a heavy cost to the throughput
of the accelerator, which drops to a mere 5% of its unhindered
throughput. Lower throttle values limit CPU overheads, but
also reduce the throughput of the accelerator’s requests. Note
that even when threshold is set to x%, the CPU performance
loss can be slightly more than x% because our driver enforces
the limit periodically, rather than continuously.

Due to space constraints, we do not include data for all com-
binations of CPU applications, GPU workloads and thresholds.
Similarly, we do not utilize any of the orthogonal techniques
from Section V, in conjunction with the QoS. Figure 12
shows that our QoS mechanism is effective in limiting CPU
overheads even when dealing with the aggressive stream of
SSRs from our microbenchmark. This acts as a general proof

0
0.2
0.4
0.6
0.8
1

1.2

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

blackscholes bodytrack canneal dedup facesim ferret fluidanimate freqmine raytrace streamcluster swaptions vips x264 gmean

G
PU

 a
pp

lic
at
io
n
pe

rf
or
m
an

ce

0.5

0.6

0.7

0.8

0.9

1

1.1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

de
fa
ul
t

th
_2

5
th
_5

th
_1

blackscholes bodytrack canneal dedup facesim ferret fluidanimate freqmine raytrace streamcluster swaptions vips x264 gmean

CP
U
 a
pp

lic
at
io
n
pe

rf
or
m
an

ce

(a) CPU application performance in the presence of GPU SSRs while performing backpressure‐based QoS. Higher is better.

(b) GPU application performance when concurrently running CPU application and performing backpressure‐based QoS. Higher is better.

CPU application performance with ubench generating no SSRs

ubench performance with idle CPU

Fig. 12: Impact of different software throttling values

point of efficacy of our proposed QoS mechanism.
In summary, we implemented a simple but effective throt-

tling technique in the OS that can help ensure QoS for
CPU applications in face of GPU SSRs. While we focus on
GPUs, as they are the most mature accelerators today, our
observations and mitigation techniques are similarly applicable
to other accelerators. Our current mechanism needs the system
administrator to set the throttling rate. This can possibly be
avoided by dynamically setting the throttling rate based on
characteristics of the applications running at any given time. A
shortcoming of the current framework is that it only guarantees
performance for CPU applications. Future work can explore
ways to implement QoS for GPU and other accelerators.

VII. RELATED WORK

Networking: The field of high-performance networking
contains related works, since packet arrival interrupts have
long been known to cause performance issues. For example,
Mogul and Ramakrishnan recommend falling back to polling
in the face many interrupts [44]. Polling for accelerator SSRs,
however, could result in much higher relative CPU overheads.

A popular way to reduce interference due to networking is
to use offload engines to process packets [43]. This works for
very constrained tasks like processing packets but would not
allow for generic, complex SSRs. It is infeasible to build an
accelerator like TCP offload engines for all OS services.

A major area of overlap between our studies and networking
is the use of interrupt steering [30] and coalescing [32].
Ahmad et al. determined how much to coalesce interrupts
from networking and storage devices [6]; similar studies for
accelerators are warranted.

We note that our QoS solution (Section VI) would not be
feasible for networking, since incoming network packets are
not necessarily susceptible to backpressure.

Jitter in HPC systems: Perhaps the closest analogue to an
SSR offload engine is the Blue Gene/Q service processor [29].
This core runs the OS and deals with I/O to reduce timing jitter
in scientific workloads. No consumer chip does such over-
provisioning, since dedicating a core for SSRs may not be
economically feasible.

León et al. recently showed that simultaneous multithread-
ing (SMT) could be utilized in a similar way in HPC ap-
plications [42]. By assigning the OS to run on secondary
threads, the authors were able to further reduce user-visible
noise induced by OS routines.

Heterogeneous systems: Our study has implications on
other heterogeneous systems research. Paul et al. showed that
high-powered CPUs could cause nearby accelerators to run at
lower frequencies due to thermal coupling [50]. Arora et al. [9]
studied predicting upcoming CPU idleness in heterogeneous
workloads to allow better sleep decisions. SSRs could affect
both of these, implying that coordinated energy-management
solutions should take SSRs into consideration [51].

VIII. CONCLUSION

We demonstrate that system service requests (SSRs) from a
capable accelerator, like a GPU, can degrade performance of
unrelated CPU applications by as much as 44%. Furthermore,
SSR throughput can decrease by up to 18% due to concurrently
running CPU applications. We then explored interference
mitigation techniques that can reduce CPU overheads to 5%
in the face of SSRs and yield faster SSRs than the default
case with idle CPUs. We also demonstrated QoS techniques
that allow configurable control of CPU overheads.

We believe that interference induced from accelerator-
generated SSRs will become an increasingly important prob-
lem, and that more advanced QoS techniques are warranted.

AMD, the AMD Arrow logo, and combinations thereof
are trademarks of Advanced Micro Devices, Inc. Linux is
a registered trademark of Linus Torvalds. PCIe is a regis-
tered trademark of the PCI-SIG corporation. Other names
used herein are for identification purposes only and may be
trademarks of their respective companies.

REFERENCES

[1] ADVANCED MICRO DEVICES, INC. Sea Islands Series Instruction
Set Architecture. http://developer.amd.com/wordpress/media/2013/07/
AMD Sea Islands Instruction Set Architecture.pdf. Accessed: 2017-
08-11.

[2] ADVANCED MICRO DEVICES, INC. AMD Unified Video Decoder
(UVD). White Paper, June 2012.

[3] ADVANCED MICRO DEVICES, INC. BIOS and Kernel Developer’s
Guide (BKDG) for AMD Family 15h Models 30h-3Fh Processors,
February 2015.

[4] ADVANCED MICRO DEVICES INC. Linux IOMMU driver. http://elixir.
free-electrons.com/linux/latest/source/drivers/iommu, 2017. Accessed:
2017-08-11.

[5] AGARWAL, N., NELLANS, D., O’CONNOR, M., KECKLER, S. W.,
AND WENISCH, T. F. Unlocking Bandwidth for GPUs in CC-NUMA
Systems. In Proc. of the Int’l Symp. on High Performance Computer
Architecture (HPCA) (2015).

[6] AHMAD, I., GULATI, A., AND MASHTIZADEH, A. vIC: Interrupt
Coalescing for Virtual Machine Storage Device IO. In Proc. of the
USENIX Annual Technical Conf. (USENIX ATC) (2011).

[7] AINGARAN, K., JAIRATH, S., AND LUTZ, D. Software in Silicon in
the Oracle SPARC M7 Processor. Presented at Hot Chips, 2016.

[8] APPEL, A. W., AND LI, K. Virtual Memory Primitives for User Pro-
grams. In Proc. of the Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (1991).

[9] ARORA, M., MANNE, S., PAUL, I., JAYASENA, N., AND TULLSEN,
D. M. Understanding Idle Behavior and Power Gating Mechanisms in
the Context of Modern Benchmarks on CPU-GPU Integrated Systems.
In Proc. of the Int’l Symp. on High Performance Computer Architecture
(HPCA) (2015).

[10] BIENIA, C., AND LI, K. PARSEC 2.0: A New Benchmark Suite
for Chip-Multiprocessors. In Proc. of the Workshop on Modeling,
Benchmarking and Simulation (June 2009).

[11] BOUVIER, D., AND SANDER, B. Applying AMD’s “Kaveri” APU for
Heterogeneous Computing. Presented at Hot Chips, 2014.

[12] BRATT, I. HSA Queueing. Tutorial Presented at Hot Chips, 2013.
[13] BROOKS, D., HEMPSTEAD, M., LUI, M., MOKRI, P., NILAKANTAN,

S., REAGEN, B., AND SHAO, Y. S. Research Infrastructures for
Accelerator-Centric Architectures. Tutorial Presented at HPCA, 2015.

[14] BROOKWOOD, N. Everything You Always Wanted to Know About HSA
But Were Afraid to Ask. White Paper, October 2013.

[15] CCIX CONSORTIUM. Cache Coherent Interconnect for Accelerators
(CCIX). http://www.ccixconsortium.com/. Accessed: 2017-08-11.

[16] CHE, S., BECKMANN, B. M., REINHARDT, S. K., AND SKADRON, K.
Pannotia: Understanding Irregular GPGPU Graph Applications. In Proc.
of the IEEE Int’l Symp. on Workload Characterization (IISWC) (2013).

[17] CHEN, T., DU, Z., SUN, N., WANG, J., WU, C., CHEN, Y., AND
TEMAM, O. DianNao: A Small-Footprint High-Throughput Accelerator
for Ubiquitous Machine-Learning. In Proc. of the Int’l Conf. on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS) (2014).

[18] CLEMONS, J., PELLEGRINI, A., SAVARESE, S., AND AUSTIN, T. EVA:
An Efficient Vision Architecture for Mobile Systems. In Proc. of the Int’l
Conf. on Compilers, Architectures and Synthesis for Embedded Systems
(CASES) (2013).

[19] CORBET, J., RUBINI, A., AND KROAH-HARTMAN, G. Linux Device
Drivers, 3rd ed. O’Reilly Media, Inc., 2005, ch. 10, p. 275.

[20] DAGA, M., AND NUTTER, M. Exploiting Coarse-grained Parallelism in
B+ Tree Searches on an APU. In Proc. of the Workshop on Irregular
Applications: Architectures & Algorithms (IA3) (2012).

[21] DANALIS, A., MARIN, G., MCCURDY, C., MEREDITH, J. S., ROTH,
P. C., SPAFFORD, K., TIPPARAJU, V., AND VETTER, J. S. The Scalable
Heterogeneous Computing (SHOC) Benchmark Suite. In Proc. of
the Workshop on General-Purpose Computing on Graphics Processing
Units (GPGPU) (2010).

[22] DAOUD, F., WATAD, A., AND SILBERSTEIN, M. GPUrdma: GPU-
side Library for High Performance Networking from GPU Kernels. In
Proc. of the Int’l Workshop on Runtime and Operating Systems for
Supercomputers (ROSS) (2016).

[23] DITTY, M., MONTRYM, J., AND WITTENBRINK, C. Nvidia’s Tegra K1
System-on-Chip. Presented at Hot Chips, 2014.

[24] GEN-Z CONSORTIUM. Gen-Z. http://genzconsortium.org/. Accessed:
2017-08-11.

[25] GOGTE, V., KOLLI, A., CAFARELLA, M. J., D’ANTONI, L., AND
WENISCH, T. F. HARE: Hardware Accelerator for Regular Expressions.
In Proc. of the Int’l. Symp. on Microarchitecture (MICRO) (2016).

[26] GÓMEZ-LUNA, J., HAJJ, I. E., CHANG, L.-W., GARCÍA-FLORES, V.,
DE GONZALO, S. G., JABLIN, T. B., PEÑA, A. J., AND HWU, W. Chai:
Collaborative Heterogeneous Applications for Integrated-architectures.
In Proc. of the Int’l Symp. on Performance Analysis of Systems and
Software (ISPASS) (2017).

[27] GREATHOUSE, J. L., XIN, H., LUO, Y., AND AUSTIN, T. A Case for
Unlimited Watchpoints. In Proc. of the Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems (ASPLOS)
(2012).

[28] HAMMARLUND, P. 4th Generation Intel® Core™ Processor, codenamed
Haswell. Presented at Hot Chips, 2013.

[29] HARING, R. The Blue Gene/Q Compute Chip. Presented at Hot Chips,
2011.

[30] HERBERT, T., AND DE BRUIJN, W. Scaling in the Linux Networking
Stack. https://www.kernel.org/doc/Documentation/networking/scaling.
txt. Accessed: 2017-08-11.

[31] HSA FOUNDATION. Heterogeneous System Architecture (HSA). http:
//www.hsafoundation.com/. Accessed: 2017-08-11.

[32] INTEL CORPORATION. Interrupt Moderation Using Intel® GbE Con-
trollers, April 2007.

[33] INTEL CORPORATION. Integrated Cryptographic and Compression
Accelerators on Intel® Architecture Platforms. White Paper, 2013.

[34] IOFFE, R., SHARMA, S., AND STONER, M. Achieving Performance
with OpenCL 2.0 on Intel® Processor Graphics.

[35] JENNINGS, S. Linux’s zswap Overview. https://www.kernel.org/doc/
Documentation/vm/zswap.txt. Accessed: 2017-08-11.

[36] JONES, S. Introduction to Dynamic Parallelism. Presented at GPU
Technology Conference (GTC), 2012.

[37] JOUPPI, N. P., YOUNG, C., PATIL, N., PATTERSON, D., AGRAWAL,
G., BAJWA, R., BATES, S., BHATIA, S., BODEN, N., BORCHERS,
A., BOYLE, R., CANTIN, P.-L., CHAO, C., CLARK, C., CORIELL, J.,
DALEY, M., DAU, M., DEAN, J., GELB, B., GHAEMMAGHAMI, T. V.,
GOTTIPATI, R., GULLAND, W., HAGMANN, R., HO, C. R., HOGBERG,
D., HU, J., HUNDT, R., HURT, D., IBARZ, J., JAFFEY, A., JAWORSKI,
A., KAPLAN, A., KHAITAN, H., KILLEBREW, D., KOCH, A., KUMAR,
N., LACY, S., LAUDON, J., LAW, J., LE, D., LEARY, C., LIU, Z.,
LUCKE, K., LUNDIN, A., MACKEAN, G., MAGGIORE, A., MAHONY,
M., MILLER, K., NAGARAJAN, R., NARAYANASWAMI, R., NI, R.,
NIX, K., NORRIE, T., OMERNICK, M., PENUKONDA, N., PHELPS,
A., ROSS, J., ROSS, M., SALEK, A., SAMADIANI, E., SEVERN, C.,
SIZIKOV, G., SNELHAM, M., SOUTER, J., STEINBERG, D., SWING,
A., TAN, M., THORSON, G., TIAN, B., TOMA, H., TUTTLE, E.,
VASUDEVAN, V., WALTER, R., WANG, W., WILCOX, E., AND YOON,
D. H. In-Datacenter Performance Analysis of a Tensor Processing Unit.
In Proc. of the Int’l Symp. on Computer Architecture (ISCA) (2017).

[38] JUNKINS, S. The Compute Architecture of Intel® Processor Graphics
Gen8. Tech. rep., Intel Corporation, 2015.

[39] KIM, S., HUH, S., HU, Y., ZHANG, X., WITCHEL, E., WATED, A.,
AND SILBERSTEIN, M. GPUnet: Networking Abstractions for GPU
Programs. In Proc. of the Conf. on Operating Systems Design and
Implementation (OSDI) (2014).

[40] KRISHNAN, G., BOUVIER, D., ZHANG, L., AND DONGARA, P. Energy
Efficient Graphics and Multimedia in 28nm Carrizo APU. Presented at
Hot Chips, 2015.

[41] KYRIAZIS, G. Heterogeneous System Architecture: A Technical Re-
view. Tech. rep., Advanced Micro Devices, Inc., 2012.

[42] LEÓN, E. A., KARLIN, I., AND MOODY, A. T. System Noise Revisited:
Enabling Application Scalability and Reproducibility with SMT. In

Proc. of the Int’l Parallel and Distributed Processing Symp. (IPDPS)
(2016).

[43] MOGUL, J. C. TCP Offload is a Dumb Idea Whose Time Has Come.
In Proc. of the Workshop on Hot Topics in Operating Systems (2003).

[44] MOGUL, J. C., AND RAMAKRISHNAN, K. K. Eliminating Receive
Livelock in an Interrupt-driven Kernel. In Proc. of the USENIX Annual
Technical Conference (USENIX ATC) (1996).

[45] NACHIAPPAN, N. C., ZHANG, H., RYOO, J., SOUNDARARAJAN, N.,
SIVASUBRAMANIAM, A., KANDEMIR, M. T., IYER, R., AND DAS,
C. R. VIP: Virtualizing IP Chains on Handheld Platforms. In Proc.
of the Int’l Symp. on Computer Architecture (ISCA) (2015).

[46] OLSON, L. E., HILL, M. D., AND WOOD, D. A. Crossing Guard:
Mediating Host-Accelerator Coherence Interactions. In Proc. of Int’l
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (2017).

[47] OLSON, L. E., POWER, J., HILL, M. D., AND WOOD, D. A. Border
Control: Sandboxing Accelerators. In Proc. of the Int’l. Symp. on
Microarchitecture (MICRO) (2015).

[48] OLSON, L. E., SETHUMADHAVAN, S., AND HILL, M. D. Security
Implications of Third-Party Accelerators. IEEE Computer Architecture
Letters (CAL) 15, 1 (Jan 2016), 50–53.

[49] OPENCAPI CONSORTIUM. Open Coherent Accelerator Processor
Interface (OpenCAPI). http://opencapi.org/. Accessed: 2017-08-11.

[50] PAUL, I., MANNE, S., ARORA, M., BIRCHER, W. L., AND YALA-
MANCHILI, S. Cooperative Boosting: Needy Versus Greedy Power
Management. In Proc. of the Int’l Symp. on Computer Architecture
(ISCA) (2013).

[51] PAUL, I., RAVI, V., MANNE, S., ARORA, M., AND YALAMANCHILI,
S. Coordinated Energy Management in Heterogeneous Processors. In
Proc. of the Int’l Conf. on High Performance Computing, Networking,
Storage and Analysis (SC) (2013).

[52] PUTNAM, A., CAULFIELD, A. M., CHUNG, E. S., CHIOU, D., CON-
STANTINIDES, K., DEMME, J., ESMAEILZADEH, H., FOWERS, J.,
GOPAL, G. P., GRAY, J., HASELMAN, M., HAUCK, S., HEIL, S.,
HORMATI, A., KIM, J.-Y., LANKA, S., LARUS, J., PETERSON, E.,
POPE, S., SMITH, A., THONG, J., XIAO, P. Y., AND BURGER, D. A
Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services.
In Proc. of the Int’l Symp. on Computer Architecture (ISCA) (2014).

[53] SILBERSTEIN, M., FORD, B., KEIDAR, I., AND WITCHEL, E. GPUfs:
Integrating a File System with GPUs. In Proc. of the Int’l Conf.
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS) (2013).

[54] SIVARAMAKRISHNAN, R., AND JAIRATH, S. Next Generation SPARC
Processor Cache Hierarchy. Presented at Hot Chips, 2014.

[55] SOARES, L., AND STUMM, M. FlexSC: Flexible System Call Schedul-
ing with Exception-less System Calls. In Proc. of the Conf. on Operating
Systems Design and Implementation (OSDI) (2010).

[56] SPLIET, R., HOWES, L., AND VARBANESCU, A. L. KMA: A Dynamic
Memory Manager for OpenCL. In Proc. of the Workshop on General
Purpose Processing Using GPUs (GPGPU) (2014).

[57] STUECHELI, J., BLANER, B., JOHNS, C. R., AND SIEGEL, M. S. CAPI:
A Coherent Accelerator Processor Interfaces. IBM Journal of Research
and Development 59, 1 (January/February 2015), 7:1–7:7.

[58] SUN, Y., GONG, X., ZIABARI, A. K., YU, L., LI, X., MUKHERJEE,
S., MCCARDWELL, C., VILLEGAS, A., AND KAELI, D. Hetero-Mark,
a Benchmark Suite for CPU-GPU Collaborative Computing. In Proc.
of the IEEE Int’l Symp on Workload Characterization (IISWC) (2016).

[59] TRAMM, J. R., SIEGEL, A. R., ISLAM, T., AND SCHULZ, M. XSBench
- The Development and Verification of a Performance Abstraction for
Monte Carlo Reactor Analysis. In PHYSOR 2014 - The Role of Reactor
Physics toward a Sustainable Future (2014).

[60] VESELÝ, J., BASU, A., BHATTACHARJEE, A., LOH, G. H., OSKIN,
M., AND REINHARDT, S. K. Generic System Calls for GPUs. In Proc.
of the Int’l Symp. on Computer Architecture (ISCA) (2018).

[61] VESELÝ, J., BASU, A., OSKIN, M., LOH, G., AND BHATTACHARJEE,
A. Observations and Opportunities in Architecting Shared Virtual
Memory for Heterogeneous Systems. In Proc. of the Int’l Symp. on
Performance Analysis of Systems and Software (ISPASS) (2016).

[62] WILCOX, M. I’ll Do It Later: Softirqs, Tasklets, Bottom Halves, Task
Queues, Work Queues and Timers. Presented at linux.conf.au, 2003.

[63] WU, L., LOTTARINI, A., PAINE, T. K., KIM, M. A., AND ROSS, K. A.
Q100: The Architecture and Design of a Database Processing Unit.
In Proc. of the Int’l Conf. on Architectural Support for Programming

Languages and Operating Systems (ASPLOS) (2014).

