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Abstract—Sensitive information leakage is becoming a growing security concern exacerbated by processor’s shared hardware
structures. Recent studies have shown how adversaries can exploit cache timing channel attacks to exfiltrate secret information. To
effectively guard computing systems against such attacks, it is essential to build practical defense techniques that are readily
deployable and introduce only minimal performance overhead. In this work, we propose a new protection framework against cache
timing channel attacks by leveraging Commercial Off-The-Shelf (COTS) hardware support in Last Level Caches (LLC) for cache
monitoring and partitioning. We apply signal processing techniques on per-domain LLC occupancy data (available through LLC
monitor) to identify suspicious contexts. LLC’s dynamic way partitioning is then used to disband domains that are involved in timing
channels. We build a prototype of our proposed framework on a real system, and evaluate our design on a number of cache timing
channel attacks and on virtualized environment. Results show that our framework can thwart several classes of cache timing channels
with negligible performance overheads.
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1 INTRODUCTION

Timing channels are a form of information leakage at-
tacks where adversaries modulate and (or just) observe
access timing to shared resources in order to exfiltrate
secrets. Among various hardware-based information leak-
age attacks, cache timing channels have become notorious,
since caches presenting the largest on-chip attack surface
for adversaries to exploit combined with high bandwidth
transfers [13]. Previously proposed detection and defense
techniques against cache timing attacks either explore hard-
ware modifications or incur non-trivial performance over-
heads [17], [12], [16], [6]. For more effective system pro-
tection and widescale deployment, it is critical to explore
ready-to-use and performance-friendly practical protection
against cache timing channel attacks.

In this article, we propose a new framework that makes
novel use of COTS hardware to thwart cache timing chan-
nels. We observe that cache block replacements by adver-
saries in cache timing channels reveal a distinctive pattern
in their cache occupancy profiles, which could be a strong
indicator for the presence of cache timing channels. We
leverage Intel’s Cache Monitoring Technology (CMT [3])
available in recent server-class processors to perform fine-
grained monitoring of LLC occupancy for individual appli-
cation domains. We then apply signal processing techniques
that characterize the communication strength with spy pro-
cesses in cache timing channels. We further leverage LLC
way allocation (i.e., CAT [3]) and re-purpose it as a secure
cache manager to dynamically partition LLC for suspicious
domains and disband their timing channel activity. Our
mechanism avoids pre-emptively separating domains and con-
sequently, does not result in high performance overheads to
benign application domains.

In comparison to our recent work—COTSknight [19], the
novel contributions of this article are as follows:

1) To defend against sophisticated adversaries that ran-
domize interval times between transmissions, we augment
our COTSKnight design to remove irrelevant occupancy
trace segments using time warping (Section 6.3).

2) We perform new experimental studies on virtualized
environments that are prone to cache timing channel attacks,
and demonstrate the efficacy of our approach (Section 6.4).

3) We identify futuristic threats (like multiple spies and
evidence tampering), and discuss potential defense mecha-
nisms using our proposed defense framework (Section 7).

2 BACKGROUND

There are typically two processes involved in cache timing
channels, namely, the trojan and spy in covert channels, and
victim and spy in side channels. The spy infers secrets from
the trojan or the victim by observing the modulated latency
of cache accesses [2]. To exfiltrate secrets, the spy needs
to determine a communication channel. In case of covert
channels, the trojan and spy may alternate their accesses
to the cache temporally, while in side channels, the spy
has to run in parallel to the victim process [17]. This may
vary along space dimension as well (i.e., access single cache
location or alternate among multiple cache locations).

Recently, Intel’s CMT allows for uniquely identifying
each logical core with a Resource Monitoring ID (RMID) [3],
and track the LLC usage for the mapped domains. CMT
enables flexible monitoring of LLC occupancy at user-
desired domain granularity such as a core, a multi-threaded
application or a virtual machine. With CAT, caches can
be configured to have several different partitions on cache
ways, called Classes of Service (CLOS), where evicting cache
lines from other CLOS is restricted for a given domain.

3 THREAT MODEL

In this work, we focus on the sophisticated form of attacker
that does not rely on any prior memory sharing, and utilizes
Prime+Probe-based techniques to launch attacks on LLC
simply by creating conflict misses (replacement) on cache
sets. Attacks such as Flush+Reload require shared memory
blocks either through shared libraries or data sharing that
may be prohibited in practical settings. Therefore, we do not
consider such forms of attacks. However, for evict+reload
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Fig. 1: LLC occupancy changes for trojan/victim and spy.

attacks, where cache replacements alter access latencies, our
design would still be applicable (See Section 7 for details).

4 WHY CACHE OCCUPANCY PATTERNS MATTER?
Regardless of whether a trojan intentionally communicates
or a victim unintentionally leaks secrets to a spy, cache
timing channels use one of the following encoding schemes:
1) on-off encoding (where spy uses timing profile of a single
cache set group to infer bits/symbols [13]), and 2) pulse-
position encoding (where spy leverages access timing of
distinct cache set groups for inferring each bit/symbol [14]).

Figure 1 illustrates the changes in cache occupancy un-
der the two encoding methods. In on-off encoding, when
trojan/victim accesses cache and fetches its blocks, the tro-
jan’s cache occupancy should first increase and then decrease
during spy’s probe when trojan/victim-owned blocks are
replaced. Similarly, the spy’s cache footprint would first
decrease due to trojan/victim’s filling in the cache blocks
and then increase when spy probes and fills the cache with
its own data. When trojan/victim doesn’t access the cache,
neither of the processes change their respective cache oc-
cupancies. Under pulse-position encoding with two distinct
cache set groups used by trojan/victim (e.g., odd and even
sets), we observe swing patterns in their cache occupancies.

We make the following key observation here: Cache
timing channels fundamentally rely on cache block replace-
ments, that create swing patterns in participating domain’s
cache occupancy regardless of the specific timing channel
protocols. By analyzing these repetitive swing patterns,
there is a potential to uncover the communication strength
in such attacks. We note that merely tracking cache misses
on an adversary will not be sufficient as an attacker may
inflate cache misses (through issuing additional cache loads
that create self-conflicts) on purpose to evade detection.

5 SYSTEM DESIGN

Here, we first discuss CMT-based cache occupancy moni-
toring and trace analysis for cache timing channel detection,
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Fig. 2: LLC occupancy traces, autocorrelogram and power
spectrum for a cache timing channel channel (with parallel,
pulse-position) [13].

and then outline cache partitioning strategy to prevent
information leakage.

5.1 Cache Occupancy Monitor and Pattern Analyzer
We leverage Intel CMT [10] to obtain LLC occupancy data
for each domain/context, that allows the system administra-
tors to flexibly define monitoring granularity, e.g., hardware
threads, applications or even VMs.

The occupancy pattern analyzer performs the following
steps to determine whether there is a cache timing channel
between two domains:

First, the analyzer generates the time-differentiated
cache occupancy changes for each domain. Assume that
xi and yi are the cache occupancy sample vectors ob-
tained within the ith window, we can then get the time-
differentiated cache occupancy traces for each domain, de-
noted as ∆xi,j and ∆yi,j (i.e., the LLC occupancy difference
between two consecutive samples). Figure 2a shows time-
differentiated LLC occupancy traces for a timing channel
that implements parallel protocol with pulse-position en-
coding.

In the second step, to capture the unique pair-wise cache
occupancy swing pattern in timing channels, we compute
the product of ∆xi and ∆yi as zi. Based on the discussion
in Section 4, negative values of zi occur when the cache
occupancy patterns of the two processes move in opposite
directions due to mutual cache evictions.

In the third step, our analyzer checks if z series contains
repeating negative pulses that may be caused by intentional
eviction over a longer period of time (denoting illegal
communication activity). To capture the repetitive swing
patterns, we perform power spectrum analysis in frequency
domain on ri, which is the autocorrelogram of z.

Figure 2b illustrates the autocorrelogram and power
spectrum for a (victim, spy) pair in timing channels [13].
We can visually observe a sharp peak around frequency
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of 290 in the power spectrum, which represents a strong
communication strength indicating timing channel activity
(See COTSKnight [19] for further details on this algorithm).

5.2 Cache Way Allocation Manager
After the way allocation manager (allocator) is notified of
identified suspicious domains from the analyzer, it will
configure LLC using CAT to isolate the suspicious pairs by
heuristically assigning non-overlapping cache ways to each
domain based on their ratio of LLC occupancy sizes during
the last observation period. Our allocator evaluates two
candidate policies, namely, 1. Aggressive Policy, that keeps
suspicious domains separated until one of them finishes
execution and 2. Jail Policy, that partitions the two domains
until a timeout period.

5.3 Implementation
We implement our framework prototype on a real system
with Intel Xeon E5-2698 v4 processor. The processor comes
with 16 CLOS and 20 LLC slices, and each LLC slice has
20×2048 64-byte blocks. The LLC occupancy MSR reading
is sampled at 1,000 per second.
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Fig. 3: Power Spectrum in attack variants including
trojan/victim-spy pairs

6 EVALUATION

6.1 Power Spectra for Cache Timing Channels
We setup attack variants of cache timing channels [14], [2],
[15], [13] that utilize on-off and pulse-position encoding for
spy reception and perform accesses to cache either serially
(trojan and spy) or in parallel (victim and spy) as described
in Section 4. In each case, we also ran along side with at least
two SPEC2006 benchmarks with high LLC activity [8]. The
analyzer performs power spectrum analysis based on time-
differentiated LLC occupancy traces for 6 combination pairs
of processes. In all cases, our framework correctly identi-
fied trojan/victim-spy processes since the pair consistently
had the highest power in the frequency domain. In fact,
our experiments show that the attacker pair’s peak power
spectrum values are at least an order of magnitude higher
than benign application pairs.

Figure 3a and Figure 3b show the analyzer’s results on
representative windows for two trojan/victim-spy pairs. In
the serial-onoff attack, we observe a single concentrated and
sharp peak with the power value in the frequency domain,
while the other data points are almost all zeros. This indi-
cates the existence of a dominating signal in the time domain

corresponding to the repetitive gain-loss occupancy pulses
due to timing channel activity (Figure 3a). We also observe a
similar isolated peak for the trojan/victim-spy pair in para-
pp, as shown in Figure 3b where the signal power is even
higher compared to serial-onoff case.

We repeated several experiments with 60 benign work-
load pairs with high LLC activity time-overlapping at var-
ious random phases, and observed the peak signal power
to be less than 5 about 80% of the time, and around 50 for
only about 2% of the time. This shows that a vast majority
of benign workload samples do not exhibit isolated peaks
in the frequency domain, and the maximum signal power
is significantly less than any known timing channels (that
have signal strengths at well over 100).

6.2 Effectiveness of Our Framework

Defeating cache timing channels. We conservatively set
signal power threshold at 50 to trigger cache partitioning.
Note that we have analyzed the attack variants with differ-
ent transmission bit rates (i.e., ranging from a few bps to
several kbps), numbers of cache sets and probe intervals.
Our results showed that our framework identifies all of
the trojan-spy domain pairs within five consecutive analysis
windows after they start execution.

Partition trigger rate for benign workloads and the cor-
responding performance impact. Among all benign work-
loads (each runs 4 SPEC2006 applications), only 6% of
the domain pair population had LLC partitioning - these
benchmarks covered 2% of the analysis window samples.
Even when there are only two benign applications, it is
worth noting that cache occupancy change patterns are
typically random. Therefore, signal power (that captures
the periodic gain-loss patterns) will not be any higher. Our
experiment shows that the LLC partitioning only minimally
impacts applications that trigger partition (with less than
5% slowdown), and interestingly, we observe performance
boost for many of them (up to 9.2%). The overall average
impact on all the applications that ran with partitioned LLC
was positive (about 1%). This shows that our framework can
even help benign workloads while safeguarding systems
against cache timing channels.

Runtime Overhead. Our framework implements the non-
intrusive LLC occupancy monitoring for only mutually dis-
trusting domains identified by the system administrator.
Overall, the mechanism incurs less than 4% CPU utilization
with 4 active mutually-distrusting domains.

6.3 Defense against Advanced Adversaries

In theory, advanced adversaries may use randomized in-
terval times between bit transmissions. Let us imagine a
trojan and spy that setup a pre-determined pseudo-random
number generator to decide the next waiting period before
bit transmission. Even in such cases, our framework can be
adapted to recognize them through a signal pre-processing
procedure called time warping [5], that removes irrelevant
segments from the occupancy traces (for which ∆x,∆y are
close to 0 and aligns the swing patterns. After this step,
the periodic patterns are reconstructed, and the cadence
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Fig. 4: Analysis of bit transmission at random intervals. In
(a), left half shows a snippet of original trace with random
bit intervals and right half shows time-warped trace.

of cache accesses from adversaries will be recovered. Fig-
ure 4 demonstrates the detection of this attack scenario.
For illustration, we implement a prototype of this attack
by setting up the trojan and spy as two threads within the
same process, and configure the main thread to control the
synchronization. In reality, two separate trojan/victim and
spy need to be synchronized. Figure 4a shows the LLC occu-
pancy trace for this attack with random distances between
the swing pulses. We can see that, with time warping, high
signal power peaks are observed (Figure 4b). Additionally,
when this signal compression pre-processing step is applied
on benign workloads, we do not observe any increase in
partition trigger rate.

6.4 Case Study on Virtualized Environments
To evaluate the efficacy of our proposed framework, we
perform a case study on virtualized environment. This
study is motivated by growing trend in studying timing
channel attacks in the cloud environment. We implement the
para-onoff attack that works cross-VM (similar to Maurice et
al. [14]).

We setup four KVM virtual machines where the trojan
and spy run on two of the VMs, and simultaneously, two
other VMs co-run representative cloud benchmarks, namely
video streaming (stream) and memcached (memcd) from
CloudSuite [7], both of which are highly cache-intensive.
The trojan and spy is set to start the para-onoff attack at a
random time between 0 to 300 seconds.

We configure the allocator to use the Aggressive policy to
demonstrate the effectiveness of LLC partitioning. Figure 5
shows the peak signal power between the trojan and spy
VM pair and the way allocation determination during the
entire execution. We can see that the trojan and spy start
to initiate communication at around 188 s (when we start
to observe increasing signal power). The peak signal power
between the trojan and spy domain pair quickly climbs up
to 126 at time 192.5 s, which is when steady covert com-
munication has began. This quickly triggers the allocator’s
action that splits the LLC ways between trojan and spy VMs.
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Fig. 5: Peak signal power values for the trojan/spy pair and
the allocator’s way allocation for one hour execution.

Consequently, the maximum signal power drops back to
nearly zero for the rest of execution, effectively preventing
any further timing channels. Note that during the one hour
experiment, the peak signal power values for the other
domain pairs (involving Cloudsuite applications) remained
flat at values less than 3.

7 DISCUSSION

We propose a new framework that builds on COTS hard-
ware and can be augmented with a host of signal processing
techniques to eliminate noise, randomness or distortion to
unveil the timing channel activity. In this section, we discuss
additional monitoring support and signal processing to
detect futuristic attacks with sophisticated adversaries.
Using multiple spy processes. A spy may try to evade our
defense through potentially involving multiple processes
that perform either time-multiplexing (each process is active
for a short period of time iteratively) or space multiplexing
(each process touches a sub-region of target sets simul-
taneously) for timing channels. Our proposed framework
can still effectively identify such malicious activities as it
essentially monitors swing patterns in cache occupancy
usage that could purposefully change cache access latencies
for domains as discussed in Section 5. Further, CMT+CAT
allows for dynamically defining security domains that can
best isolate the capability and access boundary for each
party (e.g., threads and processes run by the same user
belong to the same domain). The cumulative LLC occupancy
pattern among all the spy’s processes in the same domain
would preserve the correlated swing pattern that can be
recognized by the analyzer.
Using clflush to deflate LLC occupancy. An adversary may
attempt to tamper evidence of its cache occupancy changes
by compensating the increase in its own cache occupancy
through issuing clflush instruction. To handle such scenar-
ios, clflush’s usage by suspicious domains may be tracked
and the associated memory sizes can be accounted back
to the issuing core, thus restoring original occupancy data
for analysis. Also, many system-level protections against
clflush instruction have been proposed, including constrain-
ing clflush to only be used in kernel space or just disable
it (e.g., Google NaCl). Therefore, clflush-based cache occu-
pancy deflation can be handled easily.
Applicability of our technique to other cache attacks. While
we mainly evaluated the proposed technique using
Prime+Probe-based attacks, our proposed framework can
be applied to other cache attacks using evictions as well. For
instance, in Evict+Reload attacks, the repetitive data loads
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by the victim and subsequent evictions by the spy will also
introduce cache occupancy gain-loss patterns, which can be
detected by our proposed framework.
Current Hardware limitations and opportunities. We observe
that CMT currently supports a minimum precision of 20
cache sets. If attackers were to leverage less number of
sets to carry out attack, they may potentially evade COT-
Sknight’s detection. While such attacks are possible, they
are prone to high noise. As such, the limitations mentioned
above are an artifact of the current CMT hardware, and not
of our analysis approach per se. That said, we note that CMT
was designed for improving performance bottlenecks, and
not to detect cache timing channels. Our study highlights
a novel use case for LLC monitoring, and we strongly
believe that it would motivate processor vendors to support
improved precision and bolster system security.

8 RELATED WORK

Cache-based timing channels have been widely studied [13],
[18], and hardware-based solutions have been proposed.
CC-Hunter [2] detects covert timing channel in caches
by capturing fined-grained cache conflict miss patterns in
hardware. ReplayConfusion [17] records program’s memory
accesses and replays them on a different machine to uncover
covert channels on caches. Hunger et al. [9] observe the de-
structive read property in contention-based covert channel
and propose a solution based on anomaly detection. Demme
et al. [4] apply machine learning techniques on architectural-
level statistics to detect malware including side channels.
Fang et al. [6] use hardware prefetchers to defend against
cache timing channels.

CATalyst [12] utilizes the CAT technology to reserve
static cache partitions where secure pages are pinned
upon request from applications. Differently, our proposed
mechanism successfully defeat cache timing channels with-
out application/user-level inputs and partition reservation.
Bazm el al. [1] leverage cache occupancy information to
detect side channels behavior in conjunction with other
performance counters such as cache misses. However, their
proposed technique makes anomalous behavior determi-
nation based on cache footprint, which is be subject to
high false positive alarms. In contrast, our framework an-
alyzes cache occupancy gain-loss patterns that are shown
to be the unique characteristic for parties involving timing
channel activity, which is both effective and efficient. Re-
cently, DAWG [11] has proposed secure cache partitioning
by strictly isolating both cache hits and misses between
application domains.

9 CONCLUSION

In this article, we proposed a novel framework to protect
caches against timing channel attacks through smartly lever-
aging COTS support for cache monitoring and performance
tuning. We implemented a prototype of our proposed tech-
nique on Intel Xeon v4 server and our experiments showed
that our framework can successfully thwart several classes
of cache timing channels in both native and virtualized
environment with minimal performance overhead. We also
discussed several futuristic threats and mechanisms to de-
feat such timing channels.
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