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ABSTRACT

With the ubiquity of multi-core processors, software must
make effective use of multiple cores to obtain good perfor-
mance on modern hardware. One of the biggest roadblocks
to this is load imbalance, or the uneven distribution of work
across cores. We propose LIME, a framework for analyzing
parallel programs and reporting the cause of load imbalance
in application source code. This framework uses statistical
techniques to pinpoint load imbalance problems stemming
from both control flow issues (e.g., unequal iteration counts)
and interactions between the application and hardware (e.g.,
unequal cache miss counts). We evaluate LIME on applica-
tions from widely used parallel benchmark suites, and show
that LIME accurately reports the causes of load imbalance,
their nature and origin in the code, and their relative im-
portance.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids; D.1.3 [Programming Techniques]: Con-
current Programming— Parallel programming; D.2.8 [Soft-
ware Engineering]: Metrics—Performance measures

General Terms

Performance, Measurement

Keywords

Load imbalance, Performance debugging, Parallel section

1. INTRODUCTION

In recent years, the number of cores available on a pro-
cessor has increased rapidly, while the performance of an in-
dividual core has increased much more slowly. As a result,
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achieving a large performance improvement for applications
now requires programmers to leverage the increased core
count. This is often a very challenging problem, and many
parallel applications end up suffering from performance bugs
caused by scalability limiters. These prevent performance
from improving as much as it should with more cores. Since
we expect core counts to continue increasing for the foresee-
able future, addressing scalability limiters is important for
developing software that will obtain better performance on
future hardware.

Load imbalance is one of the key scalability limiters in
parallel applications. Ideally, a parallel application assigns
an equal amount of work to all cores, keeping all of them
busy for the entire application. Load imbalance occurs when
some cores run out of work and must wait for the remaining
cores to finish their work. Load imbalance is relatively easy
to detect—we can watch for threads waiting at the end of a
parallel section (i.e., at a barrier) or at a thread-join point.
However, it is much more difficult to diagnose the cause of
load imbalance with sufficient precision to help programmers
decide what changes to make to the application to reduce
the imbalance.

The cause of load imbalance can be hard to diagnose be-
cause there are a variety of candidates. For instance, load
imbalance can be caused by assigning an unfair proportion
of tasks to a thread, or by assigning too many long tasks to
the same thread—both of these manifest as control flow dif-
ferences between threads. Diagnosing causes for imbalance
becomes even harder when it occurs due to interactions be-
tween the application and the underlying hardware (e.g.,
threads having different numbers of cache misses). Such
causes cannot be easily detected through code inspection or
static analysis.

Reducing load imbalance has long been an active research
topic. The most common approach to reducing load imbal-
ance is to use dynamic task scheduling, such as that provided
with OpenMP [18] and TBB [8]. Dynamic task scheduling
involves partitioning the parallel work into many more tasks
than threads, and using a run-time system to assign tasks
to threads on-demand. Dynamic scheduling significantly
reduces load imbalance, but introduces significant runtime
overheads, both from executing scheduling code and from
the loss of cache locality among tasks. These overheads in-
crease with the number of cores/threads, and can dominate
performance [12].



Because load imbalance is a major issue in performance
debugging of parallel programs, and because existing solu-
tions do not satisfactorily address this problem, there is a
need for tools to help programmers efficiently find and elim-
inate causes of load imbalance in their code.

This paper presents LIME, a framework that uses profil-
ing, statistical analysis, and control flow graph analysis to
automatically determine the nature of load imbalance prob-
lems and pinpoint the code where the problems are intro-
duced. Unlike prior work that addresses load imbalance,
LIME does not aim to automatically exploit or reduce load
imbalance. Instead, it provides highly accurate information
to programmers about what is causing the imbalance and
where in the code it is introduced, with the goal of mini-
mizing trial-and-error diagnosis and the programming effort
needed to alleviate the problem.

We built and evaluated our LIME framework on 15 par-
allel sections from SPLASH-2 [24] and PARSEC [4] bench-
mark suites, which are commonly used to evaluate perfor-
mance of multi-processor and multi-core machines. Our re-
sults show that LIME is highly accurate in pinpointing load
imbalance problems caused by cache misses and control flow
differences among threads. We confirmed the accuracy of
the tool’s cache miss results by eliminating misses it reports
and confirming that doing so dramatically reduces load im-
balance. We confirmed the accuracy of the tool’s control
flow results by verifying that, when the tool reports control
flow differences as the primary cause of load imbalance, the
reported line of code is the actual location where the load
imbalance is introduced and leads the programmer to the
code where it can be repaired.

2. OVERVIEW OF LIME

To help explain our framework and the problem it ad-
dresses, we use the code example in Figure 1. This is an ac-
tual parallel section from SPLASH-2’s radiz benchmark [24].
The SPLASH-2 benchmark suite was extensively optimized
over a decade ago by experts in both parallel programming
and multi-processor hardware, and has been used to evalu-
ate parallel performance of multi-processor and multi-core
machines ever since.

534 BARRIER(...);
535 if (MyNum !=(...)) {
540 while ((offset & 0x1) 1= 0) { ... }
549 while ((offset & 0x1) !=0) { ... }
557 for 1= 0;i<radix;i++) { ... }
560 Jelse {
562 )
566 while ((offset & 0x1) !1=0) { offset=... }
575 for(i=0; i <radix; i++) { ... }
578 while (offset !=0) {
579 if ((offset & Ox1) 1= 0) {
582 for (i=0; i <radix; i++) { ... }
585 )
589 }
590 for (i=1;1i<radix; i++) { ... }
594 if (MyNum == 0) || (stats)) { ... }
598 BARRIERC(...);
Figure 1: Code for sample parallel section from

radiz. All non-control-flow statements are removed.

This parallel section begins and ends with barriers, where
each thread waits for all others to arrive before proceeding
further. Any load imbalance will result in threads arriv-
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ing at the end barrier (line 598) at different times, forcing
early-arriving threads to wait (i.e., be idle) until the longest-
running thread arrives.

Within the parallel section, each thread uses its private
MyNum and offset values to decide which part of the parallel
computation it should perform. Depending of these values,
the threads may have different execution times, either by ex-
ecuting different code (due to differences in control flow) or
by taking different amounts of time to execute the same code
(due to differences in how the executed code interacts with
the hardware). In Figure 1, there are several examples of
possible control flow differences: if-then-else blocks at lines
535, 579, and 594 may cause only a subset of threads to ex-
ecute the if-path (and for line 560, other threads to execute
the else-path); loops at lines 540, 549, 557, 575, 578, 582, and
590 could all execute a different number of iterations for dif-
ferent threads. Nesting of loops and conditionals (e.g., line
582) can compound these differences. Additionally, threads
may have differences in interacting with the system, such
as branch predictor performance (some threads might have
more predictable branch decision patterns than others) or
cache performance (e.g., threads that access data already in
the cache may have more cache hits). These differences are
too numerous to point out even in our small example code
because every branch, jump, load, store, etc. instruction in
the compiled code may be, at least in theory, a potential
source of these performance differences.

It may seem that a trained programmer can inspect the
source code to identify potential causes of imbalance and
repair them. However, this is a very labor-intensive and
error-prone endeavor because of the sheer number of poten-
tial causes, and because of the complexity of understanding
each cause and determining whether or not each is respon-
sible for imbalance (and then repairing those that are).

An actual example of the threads’ execution times for one
dynamic instance of this parallel section is shown in Figure 2.
The shaded part of each bar represents the useful execution
time of each thread, normalized to the overall execution time
of the parallel section. The white part of each bar represents
the thread’s waiting time at the end of the parallel section
(line 598).
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Figure 2: Execution time, imbalance, and thread
behavior of key points in Figure 1. Points that cause
load imbalance are shown with thicker lines.

Our discussion of possible causes of imbalance included
two types of control flow causes—iteration counts of loops
and decision counts of if-then-else blocks. These event counts
are also shown in Figure 2, with each event’s counts normal-
ized to the maximum count for that event among all threads.



From visual inspection of the graph, the decision at line 535
appears to cause imbalance between the first thread and
the others. The differences in “true” decisions at line 579
appears to account for the remaining imbalance (note how
well the useful execution time tracks this factor for threads
2 through 8). The loops at lines 575 and 590 have identical
iteration counts in all threads, and thus cannot be causing
any imbalance—code inspection reveals the same insight,
because the value of radiz is constant and the same for all
threads. The loops at lines 566 and 578 do produce different
iteration counts in different threads but this does not seem
to correspond to actual imbalance. Finally, loop iteration
counts at lines 540, 549, and 557 (not shown) have the same
relationship with the imbalance that decision count at line
535 has, and loop iteration count at line 582 has the same
behavior as the decision count for line 579.

Our LIME framework performs this kind of analysis auto-
matically and quantitatively. For each thread in each paral-
lel section, LIME measures execution time and various event
counts. The event counts are dynamic decision counts for all
static control flow decision points (control flow events), as
well as dynamic counts for each static code location that
causes machine-interaction events' (hardware events). Us-
ing this data, LIME’s analysis framework determines how
much imbalance exists, which control flow decisions and ma-
chine interaction events are related to the imbalance, and
assigns scores that help programmers decide which cause of
the imbalance to “attack” first.

Our initial implementation of LIME includes two differ-
ent profiling environments. The first implementation uses a
cycle-accurate hardware simulator called SESC [20] that can
be relatively easily extended to collect any desired machine-
interaction event count; however, since it performs detailed
simulation of a computer system, it is very slow and can only
be used for parallel sections that execute quickly (e.g., with
carefully designed small input sets). To overcome the speed
limit, we implemented LIME with Pin [16], which is fast but
can only accurately collect data for analysis of control flow
causes of imbalance. The simulator-based implementation
was designed to let us experiment with collecting different
events, and the Pin-based one to let us test LIME on larger
input sets. For practical use, a purpose-built profiler could
be employed to collect control flow events and key hardware
performance counters more efficiently.

The analysis part of the framework processes profiling
data from either profiling environment. It first clusters to-
gether events whose counts are highly correlated to each
other. The purpose of this step is to group together events
that seem to be related to the same potential cause of im-
balance. For example, this step puts the decision count from
line 535 and the iteration counts from lines 540, 549, and 557
in the same cluster because they are linearly related to each
other (they have zero counts in all threads but one, so one of
these event counts is equal to a constant times the execution
count of another). Similarly, the iteration count from line

! Among machine-interaction events, we only experimented
with cache misses because we expected them to be the only
machine-interaction event that plays a significant role in cre-
ating load imbalance. As will be shown in Section 5.4, this
turned out to not always be true. However, LIME’s analysis
treats all hardware events in the same way and we expect
it to readily extend to other events (as long as they can be
counted efficiently).
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582 and the number of cache misses at lines 580585 are in
the same cluster as the “true” decision count from line 579
(this would not be true if threads had differing cache miss
rates for lines 580-585).

Next, LIME finds the “leader” of each cluster. The pur-
pose of this step is to identify the event that corresponds to
“introducing” a potential cause of imbalance. In our two ex-
ample clusters, the “true” decision counts from lines 535 and
579 are found to be the leaders of their respective clusters.

The next step in LIME uses multiple regression to find
which cluster leaders are related to the imbalance in a sta-
tistically significant way, and to find the strength of that re-
lationship. In our example, the “true” decision counts from
lines 535 and 579 are the only cluster leaders to have a sta-
tistically significant relation to the load imbalance.

Finally, LIME ranks and reports the cluster leaders that
are related to the imbalance. The report includes the score,
the location in the code, and the corresponding cause of im-
balance. In our example, LIME reports only two causes,
both with relatively high scores: (1) threads take differ-
ent paths at line 535, and (2) threads have different biases
(“true” vs. “false” decision) for the if-then-else at line 579.

The following section provides a detailed description of
the analysis framework. Subsequent sections describe the
two profiling implementations, and an experimental evalu-
ation of LIME’s accuracy with examples that provide more
intuition about how LIME works and how its results can be
used by the programmer to reduce load imbalance.

3. LIME ANALYSIS FRAMEWORK

LIME’s analysis starts with data gathered by one of our
profiling implementations (see Section 4). The profiling data
consists of 1) per-thread control flow event counts for each
edge in the static control flow graph and 2) per-thread hard-
ware event counts for each static instruction that can cause
such an event.

3.1 Causality Analysis for Hardware Events

Before entering the main analysis routine, LIME conducts
preprocessing on collected hardware events in order to estab-
lish causal relationships between related events. For exam-
ple, an L1 cache miss can occur only when a memory access
instruction is executed, an L2 cache miss can occur only
when an L1 cache miss happens, etc. If the dynamic count
for a particular hardware event differs among threads, this
hierarchy among events allows us to split the “blame” for the
difference between that event itself and the events that must
precede it. For instance, when threads have different num-
bers of L1 misses at a particular static instruction, this may
due to some threads executing that instruction more times
(and thus having more L1 miss opportunities) or due to
how the application interacts with the L1 cache. In the pre-
processing step, LIME removes from subordinate hardware
events (e.g. L1 misses) the contribution from their “superior”
events (e.g. instruction’s execution count) using the Gram-
Schmidt process [7], leaving each event count only with the
event’s own contribution to variations among threads. This
adjusted hardware event count is used instead of the naive
one throughout the LIME analysis.

3.2 Hierarchical Clustering

The second step in the LIME analysis is to cluster related
events together. There are two commonly used clustering al-



gorithms: hierarchical clustering and K-means clustering [9].
We use hierarchical clustering because it can automatically
find an appropriate number of clusters for a given separation
principle (clustering threshold) between clusters, whereas K-
means yields a predetermined number of clusters. For the
same reason, many projects on workload characterization [3,
11, 19] rely on hierarchical clustering to find benchmarks
that have similar behavior.

Hierarchical clustering is performed in steps. Each step
merges the two clusters that are “closest” according to a
distance metric. Clustering ends when the distance between
the two closest clusters is larger than a preset threshold.

In LIME, each event (control flow event or hardware event)
is initially a cluster. We then compute a proximity matrix in
which an element (%, j) represents the distance between ‘clus-
ter i’ and ‘cluster j°. At each step, we merge the two clos-
est clusters and update the proximity matrix accordingly.
The distance metric LIME uses is Pearson’s correlation be-
tween the event’s per-thread counts, because it effectively
captures similarity in how the event count behaves in dif-
ferent threads. For linkage criteria, we used average link-
age (UPGMA [17]), but other methods (single/complete-
linkage) produced similar results.

LIME stops clustering when the largest correlation is <0.9.
This threshold value provides the best results in most par-
allel sections we tested. The exceptions are fmm and flu-
idanimate, where we used threshold values of 0.8 and 0.6,
respectively. A poorly chosen threshold affects the useful-
ness of the report—too-high of a threshold prevents merging
of correlated event clusters, while too-low of a threshold re-
sults in clusters that contain unrelated events.

Clustering provides several benefits for further analysis:

e It results in a major reduction in the number of sub-
jects for further analysis.

e It gathers highly co-linear events into one cluster, which
improves accuracy of regression® in Section 3.5.

e It helps identify significant decision points in the pro-
gram structure (e.g., branches where control flow dif-
fers between threads), as we explain in Section 3.4.

3.3 C(lassification of Clusters

Clusters are classified into two types: those that contain
control flow events (control-flow clusters), and those with
only hardware events (hardware event clusters).

For hardware event clusters, the absence of highly cor-
related control flow events indicates that different threads
suffer the hardware events differently for the same code.
Therefore, if any load imbalance is eventually attributed to
the cluster, all the hardware events in the cluster are re-
ported as contributing to that portion of the imbalance.

3.4 Finding Cluster Leaders

Within a control-flow cluster, control flow events are typi-
cally interdependent. To improve the usefulness of reported
results, for each cluster, LIME discovers a leader node—a
control flow instruction that steers program execution into
the cluster. Intuitively, if the cluster is related to the imbal-
ance, the leader node represents the code point where this
imbalance is introduced.

2Statistical regression works poorly with collinear vectors.
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Leader nodes are important because they are the decision
points that change thread execution characteristics. They
are the points in the program of most interest to the pro-
grammer: by inspecting the code that affects the leader node’s
decision, the programmer can typically find the high-level
reason for the imbalance.

To formally define a leader node, assume a control flow
graph of a program has vertices V' and edges E. The leader
node of a cluster C is a vertex v in the control flow graph
such that all incoming edges to v except backedges have
source vertices outside the cluster, i.e., v € C such that
V(s,v) € E,s¢C.

B Leader Node O

Clust
l:l Basic Block @ uster

Cluster C; with
multiple leaders

Loop cluster C;
with backedge

if-then-else cluster C;

Figure 3: Example of clusters and leader nodes

Examples of typical clusters and their leader nodes are
shown in Figure 3. The leftmost example shows a clus-
ter whose leader is an if-statement. The middle example
shows why a backedge restriction is needed in the leader
definition—it allows a loop cluster to have a leader (the loop
entry point). The rightmost example shows a cluster with
two leaders (A and G)—this typically occurs when the same
control flow decision is made in more than one code point.

After finding leader nodes for each cluster, each leader
node is assigned a score according to its significance in cre-
ating load imbalance. First, LIME computes, for each edge,
the Pearson’s correlation coefficient between that edge and
the execution time. The score of a leader node is the dif-
ference in this correlation between the node’s incoming and
outgoing edges (again, ignoring backedges). For example, if
n threads have execution times T = (¢1,t2, - ,t,) and a
leader node v has incoming edge counts iey,,2€vy, - , %€y,
and outgoing edge counts oey,,0€y,, - ,0€y;, the score s,
of the leader node v is

sy = max(corr (oey,,T)) — max(corr (iey,, T)) (1)
T Yy

where corr(a,b) is the Pearson’s correlation coefficient be-
tween vectors a and b.

Intuitively, score s, measures the amount of correlation
the leader node incurs in regard to the overall imbalance.
A high score means that the node converts events that are
unrelated to load imbalance into events that are highly cor-
related to the imbalance.



3.5 Multiple Regression

Multiple regression analysis [6] is a statistical technique
that estimates the linear relationships between a dependent
variable and one or more independent variables. In LIME,
the dependent variable is the vector of per-thread execution
times, and the independent variables are the clusters. If a
cluster appears to be a good predictor of execution time, we
can infer with high confidence that the cluster is responsible
for the differences in execution time between threads.

For the regression analysis, we need to combine event
counts of all events in the cluster so that the cluster be-
haves like a single event. For this, LIME uses averaged Z-
scores [13] of events in a cluster. A Z-score standardizes
all events to have the same average and same variation, so
that all events carry equal weight in determining the clus-
ter’s overall “event count”, regardless of the actual absolute
event counts for each event. For each event with a mean
per-thread dynamic count p and a standard deviation o, for
each per-thread dynamic count x, the Z-score is z =k,
After this step, regression proceeds by treating each cluster
as a single “event” whose per-thread “event counts” are the
cluster’s per-thread Z-scores.

During regression analysis, LIME excludes clusters that
are statistically redundant or insignificant in building a re-
gression model to explain the execution time. We use the
forward selection method [6] to choose which clusters to in-
clude in the model. The method selects clusters based on
their unique contribution to the variance in the dependent
variable (execution time). LIME iteratively adds the se-
lected clusters to its regression model until none of the re-
maining clusters is statistically significant (determined by
F-test [15]).

Multiple regression analysis computes a standardized co-
efficient, ¢, for each cluster C, which represents how sensi-
tive execution time is to that cluster. That is, the regression
computes the values of ¢, to best fit T ~ ¥f¢, - C;, where
T is the vector of per-thread execution times and C; is the
vector of averaged Z-scores for cluster ¢ across all events in
the cluster. LIME uses the B¢ values as a measure of a
cluster’s importance for load imbalance as follows.

For each control-flow leader node and hardware event,
LIME computes a final score—an estimate of how responsi-
ble that node/event is for load imbalance. The score is based
on regression results and, for control-flow clusters, on leader
node importance scores. For a leader node v; in control-flow
Cj, the final score fs,, is

(2)

where s, is the score (from Equation 1) for leader node v;,
and fc, is the standardized coefficient (from regression) for
cluster Cj. For a hardware event (e.g., cache miss) h; in a
hardware-event cluster Cj, the final score fsp; is equal to
Be,-

Figure 4 shows an example of computing final scores for
two control-flow clusters. Cluster C; has one leader node A,
while cluster Cy has two leader nodes A and G. Note that
node A is a leader in both clusters.

In this example, node G from cluster Cs has the highest
final score (i.e., a leader node score of 0.82 and a B¢, of 0.91
combine to give a score of 0.7462). Therefore, we conclude
that cluster C2 is important in explaining the imbalance,
and that node G is the prime suspect for introducing the
imbalance.

fsvi = /BCj  Sv;

205

‘ [ Basic Block mmmm Leader Node O Cluster

Pearson’s Correlation
(to the execution time)

—A: 0.1
A—B: 04
A—E: 0.9
D—G: 0.1
G—K:0.92

Multiple Regression
T=0.22-Ci +0.91-C:

pci: 0.22
pca: 0.91

Cluster C;

Leader node score
A:04-0.1=0.3

Cluster C,

Leader node score
A:0.9-0.1=0.8
G:0.92-0.1=0.82

Final score
A:0.8x0.91 =0.728
G :0.82x0.91 =0.7462

Final score
A :0.3x0.22 =0.066

Figure 4: Example of final score computation

3.6 Reporting to the Programmer

In general, a program runs a static parallel section multi-
ple times during its dynamic execution; LIME analysis op-
erates on each dynamic instance independently because im-
balance and other characteristics may vary across instances.
Since programmers prefer feedback on static code, LIME
then combines results from all dynamic instances of each
parallel section using a weighted average, with load imbal-
ance of a dynamic instance serving as its weight. For each
leader node in a control-flow cluster, and for each hardware
event (e.g., cache misses at static code location Y) in a
hardware-only cluster, LIME presents to the programmer
its static code location, type of event, and weighted score.

4. PROFILING IMPLEMENTATION

The LIME framework consists of two parts: (1) collection
of profiling data, and (2) analysis of the data. Our contri-
bution is primarily in the LIME analyzer, and our goal is to
demonstrate the utility of our novel analysis techniques. We
built the analyzer in C++ using the armadillo linear algebra
library [21].

There is a large body of prior work on profilers. Our
framework can make use of any data profiler that can collect
the required control flow and hardware event counts. For our
prototype tool, we implemented two different versions of the
profiler.

Our first profiler is built on Pin [16], a binary instrumen-
tation tool. With this profiler, we can collect control flow
events, but no hardware events. We instrument synchro-
nization points such as barriers to identify parallel sections
in our program. We also instrument all branch instructions,
and gather edge (control flow event) counts using a hashmap
structure. When branch instruction b is executed and the
previous branch was p, we increment the entry for edge (p, b).



| Benchmark ” Suite

Imbalance

| ; | | i
| ” |Parallel Section IType |Input Size |8 Core| 16 Coro | 35 Core | 7 Core|

LU SPLASH-2 | lu.c:604 Barrier | 1024 x 1024 matrix, 64x64 block | 16.1% 35.5% 92.3% 92.3%
volrend SPLASH-2 | main.C:267 Barrier | head 15.3% | 25.8% | 38.8% | 46.9%
fmm SPLASH-2 | fmm.C:283 Barrier | 16,384 particles 10.6% | 13.7%| 22.9%| 26.2%
barnes SPLASH-2 | code.C:715 Barrier | 16,384 particles 10.2% | 11.6%| 13.5%| 16.7%
canneal PARSEC | annealer_thread.cpp:88 [ Barrier | 10000 swaps/step, 32 steps 3.8% 6.9% 12.7% 15.2%
fluidanimate || PARSEC | pthreads.cpp:793 Barrier | 35K particles 8.8% 15.3% 19.5% 13.3%
blackscholes || PARSEC | blackscholes.c:374 T. Join | 4,096 0.2% 1.1% 7.0% 12.7%
water-sp SPLASH-2 | interf.C:205 Barrier | 512 molecules 1.7% 6.6% | 10.7% | 12.0%
radix (small) || SPLASH-2 | radix.C:497 Barrier | 2,097,152 integers (small input) 0.2% 0.5% 3.4% 5.7%
swaptions PARSEC | HIM_Securities.cpp:271 | T. Join | 16 swaptions, 5000 simulations 0.0% 1.2% 1.9% 3.3%
radix SPLASH-2 | radix.C:497 Barrier | 4,194,304 integers 0.0% 0.1% 0.2% 3.3%
ocean SPLASH-2 | slave2.C:812 Barrier | 514x514 grid 1.3% 1.3% 1.5% 1.5%
fft SPLASH-2 | fft.C:623 Barrier | 4,194,304 data points 0.1% 0.7% 1.5% 1.5%
streamcluster || PARSEC | streamcluster.cpp:706 | Barrier | 4,096 points 1.1% 1.4% 1.4% 1.1%
radiosity SPLASH-2 | rad_main.C:810 Barrier | room 0.1% 0.3% 0.4% 0.6%

Average 4.6% 8.1%| 15.2%| 16.8%

Table 1: Description of applications and parallel sections used in our experiments. Parallel section denotes
the location of the pthread_barrier_wait or pthread_join call that delimits the parallel section. Imbalance is
the average percentage of idle time threads spend in the parallel section.

Since dynamic instrumentation severely distorts execution
time, we use instruction count as an approximation to the
execution time. When a dynamic parallel section ends (i.e.,
a thread enters a barrier), recorded data is exported to out-
put files for later processing.

Our second profiler is built on SESC [20], a cycle-accurate
computer system simulator. This simulator functionally em-
ulates an application and uses the instruction stream to
drive a detailed model of the caches, memory, and processor
cores, including the key microarchitectural structures (e.g.,
the instruction queue and reorder buffer, which allow for
out-of-order execution). This simulator is routinely used by
computer architects to evaluate architectural and microar-
chitectural proposals. We use the simulator to collect cache
miss event counts and control flow edge counts simultane-
ously. Event recording and data exporting is very similar to
our Pin-based tool (e.g., control flow edges are counted with
a hashmap). The primary difference is that our SESC-based
tool can accurately measure execution cycles and hardware
event counts, but is much slower than the Pin-based version.

5. EXPERIMENTS AND RESULTS

In this section, we present our experimental setup and
the output of our LIME analysis framework, and then verify
the output to show that LIME reports imbalance-related
performance bugs accurately.

5.1 Experimental Setup

We tested LIME using data gathered from 15 parallel sec-
tions in multithreaded applications from SPLASH-2 [24] and
PARSEC [4] benchmark suites. For runs with the SESC-
based profiler, we simulate a typical multi-core general pur-
pose processor with cores at 1GHz, 16KB each of data and
instruction cache per core, and 4MB of shared cache. Since
the accuracy of LIME depends on the number of threads
(i.e., sample points), we run our analysis on a varying num-
ber of cores (8, 16, 32, and 64) to verify that our scheme
can find performance bugs accurately across a wide range of
available cores. In all configurations, we run one application
thread on each core.

Table 1 summarizes the location and type of each parallel
section. We sort the sections in order of decreasing imbal-
ance on 64 cores. The tested parallel sections cover a wide
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range of imbalance, from almost no imbalance (radix for 8
cores) to over 90% imbalance (LU for 64 cores).

5.2 Simulator-Based Profiling

Table 2 summarizes the results of LIME using the SESC-
based profiler. The “Rpt” columns show the number of “im-
portant” events (those with a report score greater than 0.1)
for both control flow events and cache miss events. The
“Score” column shows the highest score reported among con-
trol flow and among cache miss events. The larger of the two
highest scores is shown in bold font, to emphasize the event
type that is more important according to LIME.

For all but two of the parallel sections, LIME is able to
draw a consistent and clear conclusion on the most impor-
tant event type. For the top nine sections, control flow
events cause the load imbalance, while for the next four,
cache miss events cause the imbalance. For the bottom two
parallel sections, LIME fails to find a consistent cause of
imbalance; this is because, in our current profiling imple-
mentation, we only collected control flow and cache miss
event counts, which do not cause the imbalance for these
benchmarks. We note that this is not a limitation of the
LIME analysis framework, but rather a limitation of the
even count profiling implementation. Section 5.4 explains
the true cause of imbalance for these two parallel sections
and how it affects LIME.

LIME consistently reports a small number of important
events; this is important because it means the programmer
should be able to inspect the spots in the source code that
LIME reports. On average, for benchmarks with imbalance
from control flow, it reports 1.3 important control flow in-
structions per benchmark. For benchmarks with imbalance
from cache misses, on average LIME reports 2.1 important
code points per benchmark.

5.3 Pin-Based Profiling

The limitations of the Pin-based implementation are that
it introduces significant distortion in thread execution times
and that it cannot accurately capture all the hardware inter-
action events that might be causing load imbalance. How-
ever, it can gather control flow edge information at speeds
that allow “real-world” problem sizes.

To circumvent execution time distortion, in Pin-based pro-



8 Cores 16 Cores 32 Cores 64 Cores

Benchmark| Ctrl low | Cache miss Ctrl flow | Cache miss Ctrl flow | Cache miss Ctrl flow | Cache miss

Rpt [Score| Rpt |Score|[ Rpt [Score| Rpt [Score|| Rpt |Score| Rpt |Score|| Rpt |Score| Rpt [Score
LU 2 (8)]0.97|0(1)|0.01[1(4)]0.94]0¢(3)]0.05](1(1)]0.88]3(9)]0.14 |[1(1)]0.72] 3 (9) | 0.29
volrend 1(1)|1.00| 0 (0) - 1(1)|1.00| 0 (0) - 1(1)|1.00| 0 (0) - 1(1)|1.00| 0 (0) -
fmm 1(2)]0.83 |4 (20)] 0.12 ||1 (3)| 0.51 |0 (11)] 0.06 ||1 (5)| 0.50 |0 (25)| 0.06 ||1 (6)| 0.36 |0 (21)| 0.04
barnes 1(1)|1.00 | 0 (0) - 1(1){0.86|0(3) | 0.05|1(5)|0.89|0(3)|0.01(3(3)]0.64|0 (17)| 0.07
canneal 1(4)|0.24 |0 (18)| 0.04 |[1 (4)|0.45 |0 (21)| 0.05 ||1 (2)]|0.39 |1 (12)| 0.21 ||1(2)|0.32 |1 (16)]| 0.12
fluidani. 1(4)|0.69|0(3)]0.03 |1(3)]0.20]0(3)|0.03|[1(1)]0.39|1 (15)] 0.15 |1 (1)| 0.19 |0 (12)| 0.02
water-sp 1(1)[0.93| 0 (0) - 1(1)[0.92| 0 (0) - 1(1)|1.06| 0 (0) - 1(1)|0.86| 0 (0) -
streamcls.  |[3 (3)[0.50|0(0)| - [[3(3)[050|0()| - |3(3)]0.50[0() | - [3(3)|0.50|0()]| -
radiosity 2 (2)]1.00 | 0 (0) - 2(2)[0.99|0(1) | 0.03]2(2)]0.95|0 (1) | 0.03|2(2)]0.78 |0 (1) | 0.06
blackschls. 0] - 4(4)]0.491(0 (0)] - 0 (0) - 00| - [8(19)]0.92]0(0) — [9(14)[1.00
radix (small) [0 (0)| — |1(1)|1.00]0(0)| - |1(@)|1.00]0()| - |1()]|1.00[0()] - |1(1)|1.00
radix 0(0)| - 1(1) |0.99(0(0)]| - 1(1) |1.00|0(0)| - 1(2)10.990(0)| - 1(1) |1.01
ocean 0(0)]| - 1(1) |0.97]0(0)| - 1(3)|0.9810(0)| - 1(1)|1.00(0(0)| - 1(3) | 1.06
swaptions 0(0)] - 0 (0) - 0] - 0(1) |o0.07 0O - 2 (8) [0.41 [0 (0)| - 0 (5) | 0.08
i 0(0)| - 2(2) |1.03 |0 (0) - 3(3)]0.61([0(0) — 4(4) |0.81/0(1)] 0.04 | 2 (2) |0.37

Table 2: Results of LIME analysis. The Rpt columns show the number of reported events with score greater
than 0.1. The number of all reported events is listed in parentheses. The Score columns give the reported

score for the highest-scored event of each type.

filing the instruction count is used as a proxy for execution
time. This eliminates the possibility of identifying hardware-
interaction events as causes of imbalance, but this profiler
does not collect those events anyway. Further, the instruc-
tion count may not accurately represent the execution time.
We validate that this profiler is useful in quickly identifying
control flow sources of load imbalance. If hardware events
trigger additional imbalance, a more expensive simulator-
based approach can be used.

Overall, the control flow results of Pin-based profiling are
very similar to those from the simulator. For brevity, Ta-
ble 3 shows LIME results for only five parallel sections for
“real” inputs (too large for simulation), including one from a
benchmark (PLSA from bioParallel benchmark [10]) that is
infeasible to run in simulation. Also shown are simulation-
size inputs for three benchmarks for comparison, with scores
from simulator-based profiling shown in parentheses. The
profiling is done on an Intel Quad Core Xeon server using 8
threads (four cores, each with support for two threads).

| Benchmark ” Input Size | Slowdown Ctrl Flow
| Il | Rpt Score
o TKx 1K matrix 21.1x_ |3 (10)]0.97 (0.97)
16K x 16K matrix | 23.9x | 3 (6) 0.93
barnes 16,384 particles 84.1% 1 (6) [0.96 (1.00)
1,048,576 particles| 88.7x | 2 (5) 0.97
“troamolustor |[4:096 points 23.0x | 2 (2) [0.75 (0.50)
1 million points 4.2% 2 (2) 0.75
radiosity largeroom 62.6 X 2 (3) 1.00
PLSA 100K sequence 127.0% 1 (13) 1.36

Table 3: Results with Pin-based profiling.

5.4 Verifying Reported Cache Misses

While we have already shown that our framework consis-
tently identifies a programmer-manageable number of causes
of load imbalance, we now verify that our framework (with
the SESC profiler) correctly identifies the causes of load im-
balance, starting with cache misses. To verify that reported
cache miss events are indeed causing load imbalance, one
possible approach would be to try to reorganize the data
structures and algorithms in each application, re-evaluate
parallel performance, and check if load imbalance has been
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Figure 5: Imbalance reduction of each parallel sec-
tion when reported cache misses are eliminated.
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reduced. However, we lack domain expertise and resources
to make such extensive changes in so many applications.
Further, the results would highly depend on how well we
understood each application, data structure, and algorithm.

Instead, we use cycle-accurate simulation to artificially
eliminate the reported cache misses, while leaving all other
aspects of the execution intact. To “erase” misses from re-
ported memory access instructions, we override the simu-
lated cache behavior for that instruction to make each dy-
namic instance of that instruction into a cache hit. If the
reported cache misses are indeed the source of the imbalance
problem, this modified execution should have a dramatically
reduced load imbalance.

Figure 5 shows the results of this simulation for applica-
tions in which LIME reports cache misses as the main cause
of load imbalance. The shaded portion of each bar represents
the imbalance removed when only “erasing” the cache misses
caused by the highest-scoring instructions for each applica-
tion. The black portion represents additional imbalance re-
moved when also “erasing” misses from all memory access
instructions reported with final scores above 0.1. The white
portion is the additional imbalance removed when erasing
all cache misses reported by LIME as statistically signifi-
cant causes of load imbalance.

For the first four applications in Figure 5, load imbalance
is reduced dramatically when LIME-reported cache misses



Report from our analysis

No.  Address
1 0x4018b4

Score
0.880

Code point (func.)
1u.C:668 (lu)

Reported source lines in /u.C

668 if (BlockOwner(I, J) == MyNum) { /* parcel out blocks */
669 B = a[K+J*nblocks];

670 C = a[[+J*nblocks];

671 bmod(A, B, C, strl, strl], strK, strl, strK, strl);

672 }

556

long BlockOwner(long I, long J)
557
558 return((I +J) % P); // P: number of threads
559}

Figure 6: LIME report for LU.

are “erased,” except for configurations that do not have sig-
nificant load imbalance to begin with (8 and 16 core config-
urations for blackscholes). It is important to note that, in
all these simulations, we end up “erasing” misses from only
39.6% of all dynamic memory accesses, and the observed
imbalance reduction is not caused simply by a dramatic re-
duction in execution time—in fact, the speedup in these runs
mostly comes from reducing imbalance (making the slowest
threads finish faster), with little performance benefit for the
fastest threads.

Recall from Section 5.2 that LIME did not find a consis-
tent cause of imbalance for the last two applications because
neither control flow nor cache misses are the true cause. Fur-
ther investigation reveals that imbalance is actually caused
by cores having different success in getting access to the L1-
L2 on-chip (back-side) bus when servicing cache misses—in
these applications, this bus has high utilization and the bus
arbitrator seems to be favoring some cores at the expense of
others. We confirm this by simulating a higher-bandwidth
bus (without “erasing” any misses) and observing a 95% im-
balance reduction. However, unlike cache miss (and many
other) events that can easily be attributed to particular in-
structions, such attribution for bus contention events is an
open problem that is beyond the scope of this paper.

5.5 Verifying Reported Control Flow Causes

To verify that LIME correctly reports control flow events
that cause imbalance, we use a different methodology than
for cache misses—control flow events cannot be “erased”
without affecting many other aspects (including correctness)
of program execution. Thus, in all parallel sections where
LIME reported control flow code locations as a significant
cause of imbalance (Table 2), we manually confirm that the
location and nature of the problem was correct. For lack of
space, we only describe this analysis for three examples, se-
lected to both illustrate different types of imbalance causes
and to only require brief code fragments for explanation.

551 LU

Among the parallel sections used in this paper, LU has
the most imbalance—the last-arriving thread takes over ten
times longer than the first-arriving thread.

For the 32-core configuration, our framework reports only
one static instruction, shown in Figure 6, as statistically
significant cause of imbalance (at line 668). In the other
three configurations, LIME also reports line 668 as the top-
scoring (by a large margin) cause of imbalance.

The corresponding code point for the top-scoring instruc-
tion is also shown in Figure 6. This is an if-statement that
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Report from our analysis
No.  Address
1 0x4068ec

Score
0.999

Code point (func.)
render.C:38 (Render)

Reported source lines in render.C
31 Render(int my_node)
32

/* assumes direction is +Z */

if (my_node == ROOT) {

34 Observer_Transform_Light Vector();
35 Compute_Observer Transformed_Highlight Vector();
36 }
37 Ray_Trace(my_node);
38}
main.C
298  Render(my_node);
300 if (my_node == ROOT) {
307 WriteGrayscaleTIFF(outfile, image len[X], ... );
310 WriteGrayscale TIFF(filename, image_len[X], ... );
312}

Figure 7: LIME report for volrend.

parcels out blocks to threads using function BlockOwner,
which returns the summed block coordinates modulo num-
ber of threads, P. Intuitively, this method of assigning
blocks to threads should produce a balanced load. How-
ever, values of [ and J vary in a range determined by the
program’s inputs—they may be small and/or not a multiple
of P, causing uneven distribution of blocks to threads. For
example, when [ and J take values 1 through 15, the 225
blocks are distributed among 32 threads and ideally each
thread should get about 7 blocks. The actual assignment
using (I+J)%P turns out to assign only one block to threads
2 and 30, 2 blocks to threads 3 and 29, etc., giving 15 blocks
to thread 16.

When line 558 in the BlockOwner function is changed to
“return (J%Ncols)+(I%Nrows)x Ncols;”, where Ncols and
Nrows are 8 and 4, respectively, for a 32-core configuration,
the assignment of blocks to threads becomes more balanced
and results in eliminating 61% of the original load imbalance.
This confirms that imbalance was indeed introduced at the
code point reported by LIME.

5.5.2 Volrend

Our second verification example is from wolrend, which
has up to 46.9% imbalance on 64 cores. The LIME report
for 32 cores, summarized in Figure 7, suggests with high
confidence that the return point of the function Render is
the source of imbalance. At the first glance, this looks like
a false report, but a closer inspection reveals that the prob-
lem is the mapping of the instruction to the line of source
code because the compiler obfuscated the situation via in-
lining and other optimizations. When we examine the code
in a disassembler, the reported control flow instruction is
actually the if-statement at line 300 (immediately after the
callsite for Render). This if-statement assigns extra work
to the main thread. When compiled without optimizations,
LIME reports the if-statement in line 300 correctly.

5.5.3 Barnes

Our third verification example is from Barnes, with 13.5%
imbalance on the 32-core configuration. The LIME report
for 32 cores, summarized in Figure 8, says the control flow
edge from line 116 in grav.C to line 112 accounts for the im-
balance. This edge corresponds to the recursive function call
to walksub—Barnes implements the Barnes-Hut approach
for the N-body problem, and walksub recursively traverses



Report from our analysis

No.  Address Score Code point (func.)

1 0x405470 0.893 grav.C:116 -> grav.C:112
2 0x40548¢ 0.030 grav.C:113 (walksub)

3 0x4055¢cc 0.024 grav.C:136 -> grav.C:114

Reported source lines in grav.C

105 void walksub(nodeptr n, real dsq, long Processld)
106 {
107

nodeptr* nn;

if (subdivp(n, dsq, ProcessId)) { // First branch in walksub
if (Type(n) == CELL) {
for (nn = Subp(n); nn < Subp(n) + NSUB; nn++) {
if (*nn = NULL) {
walksub(*nn, dsq /4.0, Processld);

112
113
114
115
116
117 }
18 4

Figure 8: LIME report for barnes.

the primary data structure, a tree. Since LIME reports the
tree traversal is imbalanced, this suggests that the tree itself
is imbalanced. Further investigation shows that 86.5% of the
total imbalance comes from the first dynamic instance of the
parallel section, because the tree is skewed at the beginning
of the run. The first Barnes-Hut iteration rebalances the
tree and the load imbalance decreases.

5.6 Scalability of LIME

While LIME ran fast enough for this study, two possible
concerns are: (1) what happens to analysis time as the core
count increases, and (2) what happens to analysis time as
event count (i.e., program size) increases?

A single-threaded implementation of LIME analysis took
an average of 1.4, 1.8, 3.2, and 5.0 seconds to analyze the
parallel sections for 8, 16, 32, and 64 cores, respectively,
on a 2.67GHz Intel Quad Core Xeon processor with 12GB
memory. This time includes clustering, leader selection, and
regression. Since the analysis time grows in sub-linear pro-
portion to the core count, we expect that a parallel imple-
mentation of LIME analysis will have a favorable scaling
trend as the number of cores (for both application execu-
tion and analysis) increases.

The most time consuming part of LIME is the cluster-
ing part of the analysis—it accounts for over 76% of the
average analysis time when no optimization is applied. A
naive implementation of our hierarchical clustering method
has asymptotic complexity of O(n®) where n is the num-
ber of event counts—to create a near-constant number of
clusters, LIME does O(n) merges, and for each merge it
recomputes all O(n?) entries in the new cluster proximity
matrix. This would be a major problem for applying LIME
to real applications. To accelerate the clustering algorithm,
we can cache the proximity matrix and perform bulk cluster-
ing. When merging two clusters, only the proximity values
involving those two clusters become useless. Therefore, we
re-use (cache) the proximities and compute only O(n) new
values. The “bulk clustering” optimization merges multiple
clusters per step—as we compute the proximity matrix, we
track clusters that are very close to each other and merge all
of them at once. In this study, we use a proximity thresh-
old of 0.99 for bulk clustering. Bulk clustering reduces the
number of merges, but runs the risk of producing less precise
clustering. We did not experience any imprecise clustering
in our experiments.

Figure 9 compares the speed of the clustering implemen-
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Figure 9: Clustering time vs. number of events.
Each point represents clustering time of one par-
allel section. Note the logarithmic scale markings
on each of the axes.

tation with and without our acceleration technique using a
log—log plot. While our optimized implementation is still
O(n?) (bulk clustering does not reduce the asymptotic com-
plexity), in practice it shows near-linear scaling with n. This
demonstrates that LIME is scalable with program size. Fur-
ther optimizations are certainly possible but we leave them
for future experimentation and fine-tuning.

6. RELATED WORK

Performance debugging has long been studied in distribu-
ted systems. Much work focuses on finding the causal trace,
or the trace with the longest path through a distributed
system; this is analogous to the slowest thread in our study.
The causal trace naturally tells programmers where to fo-
cus optimization efforts. LIME shares the same goal as this
work, but works in a different domain. Among the related
literature, the performance debugging method proposed by
Aguilera et al. [1] draws our attention—they use a black box
approach that finds the causal trace without any knowledge
of the system, and a signal processing technique called con-
volution to infer causal relationships. LIME collects profile
data without a programmer’s intervention, and uses cluster-
ing and regression analysis to infer causal relations between
events and load imbalance.

A number of tools exist to detect and measure parallel
overheads and inefficiency (i.e., idleness). One recent ex-
ample is from Tallent et al. [22]. Their goal is to pinpoint
where parallel bottlenecks occur, and classify bottlenecks
as overhead or idleness. Our work is largely orthogonal to
this—once a programmer knows that a problem exists, they
can use our framework to help find the cause for the bot-
tlenecks they have detected. Tallent et al. also have work
on analyzing lock contention [23]. This has a lot in com-
mon with our work since they try to detect the cause of lock
contention and identify the lockholder to blame. Our work
focuses on barriers rather than locks and provides more di-
rect information about where in the code the problem arises.

There is also significant work on trying to optimize perfor-
mance and energy in the presence of load imbalance. Thrifty
Barrier [14] predicts how much slack (i.e., idle time) each
thread will have using a history-based predictor, and saves
power by putting non-critical threads into a sleep state.
Meeting Points [5] uses a different predictor that counts
thread deviation at checkpoints called meeting points. It
delays non-critical threads using dynamic voltage and fre-
quency scaling to save power. It also attempts to accelerate



the critical thread by prioritizing it. The Thread Criticality
Predictor [2] similarly predicts thread criticality based on
adjusted cache miss rates, and prioritizes threads based on
criticality. While automatically detecting and prioritizing
critical threads requires no programmer effort, it can only
reduce load imbalance by a limited amount. Instead, we help
programmers find and permanently fix imbalance problems
in applications regardless of how severe the problems are;
this can (and usually does) have a dramatic performance
impact.

7. CONCLUSIONS

This paper addresses a major problem in achieving good
performance on multi-core processors: load imbalance. The
existence of load imbalance is relatively easy to detect, but it
is often very challenging to determine the cause of the prob-
lem and the point in the source code where the problem is
introduced. We propose LIME, a framework that automates
this process. LIME first uses profiling to collect counts of
control flow events and hardware events for the different
threads. It then uses clustering and regression to identify
the small set of events that introduce significant amounts
of imbalance. We show that LIME provides accurate and
useful feedback to programmers on a set of popular parallel
benchmarks. We also show that our LIME prototype runs
fast enough to be used on large programs.
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