
MobiQoR: Pushing the Envelope of Mobile Edge
Computing via Quality-of-Result Optimization

Yongbo Li, Yurong Chen, Tian Lan, Guru Venkataramani
George Washington University, Washington, DC
{lib, gabrielchen, tlan, guruv}@gwu.edu

Abstract—Mobile edge computing aims at improving appli-
cation response time and energy efficiency by deploying data
processing at the edge of the network. Due to the proliferation
of Internet of Things and interactive applications, the ever-
increasing demand for low latency calls for novel approaches to
further pushing the envelope of mobile edge computing beyond
existing task offloading and distributed processing mechanisms.
In this paper, we identify a new tradeoff between Quality-of-
Result (QoR) and service response time in mobile edge comput-
ing. Our key idea is motivated by the observation that a growing
set of edge applications involving media processing, machine
learning, and data mining can tolerate some level of quality loss
in the computed result. By relaxing the need for highest QoR,
significant improvement in service response time can be achieved.
Toward this end, we present a novel optimization framework,
MobiQoR, which minimizes service response time and app energy
consumption by jointly optimizing the QoR of all edge nodes and
the offloading strategy. The proposed MobiQoR is prototyped
using Parse, an open source mobile back-end tool, on Android
smartphones. Using representative applications including face
recognition and movie recommendation, our evaluation with real-
world datasets shows that MobiQoR reduces response time and
energy consumption by up to 77% (in face recognition) and
189.3% (in movie recommendation) over existing strategies under
the same level of QoR relaxation.

I. INTRODUCTION

The growing popularity of smartphones, along with the
rapid emergence of applications from big data analytics to
media processing, calls for ever-increasing data processing
capabilities, yet satisfying low response time and energy
consumption in mobile applications. This gives rise to edge
computing [19], [53] (also known as fog computing [9],
[11]), a new computing paradigm that addresses the concerns
by shifting data processing and computation to the edge of
the network. As smartphones and other mobile devices are
becoming both data producers and consumers (e.g., recording
and augmenting a video stream for visual enhancement), edge
computing enables workload processing at the proximity of
data sources and end devices. It not only reduces response
time compared to traditional cloud-based computing platforms
that are constrained by the speed of data transmission, but
also overcomes persistent resource limitations on mobile de-
vices that necessitate computation offloading. Prior work has
demonstrated the potential benefits of edge computing [22],
[60] and developed tools for task offloading [2], [4], [29],
[51].

However, emerging mobile applications on the horizon
require renewed efforts to push the envelope of mobile edge

computing. In particular, ultra-low response time is crucial for
object recognition and image processing algorithms, which
are widely used in popular contemporary virtual reality and
augmented reality systems [56], as well as in interactive and
real-time services [26], [33]. For instance, a wearable camera
offering visual map services has a preferred response time
between 25ms to 50ms [5]. For gaming applications, between
45 and 75 ms latency, there exists a linear correlation between
increased latency and decreased game session length [8], sug-
gesting an inverse relationship between response time and user
experience. Furthermore, battery life has always been a big
concern for mobile users. Exploring energy saving opportuni-
ties requires new engineering artifacts for workload offloading
and processing in this heterogeneous environment [31].

In this paper, we explore a novel dimension - Quality of
Results (QoR) - in mobile edge computing and propose a
systematic optimization framework, MobiQoR, to trade QoR
for reduced response time and extra energy saving. Our key
idea is motivated by the observation that for a growing set
of edge applications involving media processing, machine
learning, and data mining, a perfect result is not always
necessary, while a lower-quality or less-than-optimal result
is sufficient [44]. Thus, relaxing QoR in such applications
alleviates the required computation workload and enables a
significant reduction of response time and energy consumption
in mobile edge computing, beyond the boundary of existing
task offloading and distributed processing mechanisms. The
metric QoR depends on the application domain and the corre-
sponding algorithm. As examples, for online recommendation
algorithms, QoR can be measured by the normalized mean
error between the predicted and actual scores; for object
recognition algorithms, QoR can be defined as the percentage
of correctly identified objects or patterns. In Section III, we
formally define the coherent QoR metric for different classes
of applications.

We consider a mobile edge environment where computing
tasks can be divided, offloaded and processed in parallel by
distributed edge nodes, including neighboring mobile devices,
micro-datacenters, routers and base stations. The edge nodes
are equipped with heterogeneous network and computing
resources. Our MobiQoR optimization aims to minimize the
response time and energy consumption of mobile apps by
jointly optimizing the task offloading and the selection of edge
nodes’ QoR levels. While the focus of this paper is not on
implementing QoR relaxation for different mobile apps, our

MobiQoR framework is easily extensible to different QoR
relaxation techniques [44] that offer varied control knobs
to tune the achievable QoR levels. MobiQoR leverages the
mapping of QoR to tunable control knobs in algorithms of
different applications. Thus, it enables the search for optimal
offloading and QoR decisions, while guaranteeing that the
quality of the computed results meets end users’ expectations.
An efficient optimization algorithm is developed to solve
the proposed MobiQoR optimization. In particular, we show
that the optimization can be cast into linear program (LP)
when the tradeoff between QoR and processing speed is
approximated as a linear function. The proposed MobiQoR
framework and optimization algorithms are prototyped on
Android smartphones using Parse open source back-end and
mobile SDK [4]. We deploy MobiQoR in our edge testbed
consisting of five heterogeneous nodes and build a database
for representative applications including face recognition and
movie recommendation, measuring their QoR tradeoffs and
energy profiles. Using real-world datasets and in realistic net-
work environments, we validate significant improvements in
response time and energy saving for different QoR constraints.

In summary, the contributions of our work are:
1) We exploit a new tradeoff between QoR and computing

speed in mobile edge computing. Taking advantage of
the fact that many mobile applications can tolerate minor
QoR loss, the tradeoff allows us to minimize both
response time and energy consumption for a large set
of applications beyond the conventional boundaries.

2) To leverage this tradeoff, we propose MobiQoR, an
optimization framework that jointly determines task
offloading strategies and edge nodes’ QoR levels for
minimizing response time and energy consumption. It
enables us to tap into heterogeneous resources offered
at network edge in a QoR-aware fashion.

3) We implement and evaluate MobiQoR on Android using
representative applications including face recognition
and movie recommendation. Significant improvements
(up to 77% and 189.3% for the two applications, re-
spectively) are validated using real-world datasets.

II. RELATED WORK

With the proliferation of Internet of Things and interactive
applications, the computing resources are brought closer to
users by a new computing paradigm, edge computing [19],
[53], also known as fog computing [9], [11]. The heterogene-
ity of edge computing environment and mobile users’ ever-
increasing demands for ultra-low latency make the traditional
cloud-assisted mobile computing techniques such as workload
offloading [14], [15], [21], [32], [41], [51], [59], server selec-
tion [18] not directly applicable to this new paradigm. The
energy tradeoff [7], [38] between local and remote computing
has been studied when making mobile offloading decisions.
Our work is proposed to further push the envelope of mo-
bile edge computing beyond existing work by introducing a
new optimization dimension, QoR, and jointly optimizing the
energy consumption and service latency in an online manner.

Especially, an area that attracts enormous research interests
is workload partitioning techniques to allow workload offload-
ing, such as method level offloading [29], VM-based syn-
chronization [20], code refactoring [63], middleware-assisted
method [30], [42], offloading-aware development [28], and
state checkpointing [32]. When determining which portion of
workload to offload, Zhang et al. [62] utilize a graph-based
method, Rong et al. [48] adopt a Markov process approach,
and Chun et al. [14] propose to combine offline analyzer and
dynamic profiler in CloneCloud. Most of these works consider
single traditional remote server as the offloading destination.
Although the focus of our paper is orthogonal to this line of
work, considering different workload partitioning techniques
within the joint optimization framework we propose in Mo-
biQoR opens up interesting avenues for researches in the
context of edge computing.

Existing work has shown the feasibility to save energy
and/or reduce latency by relaxing the workload computation
accuracy requirement [24], [45], either via software-based
techniques [44] (e.g., workload discarding [54], parameter tun-
ing [13], [55]), hardware-based approximation techniques [49],
[58], or combination of both [12]. MobiQoR serves a goal
that is complementary to this direction of work focusing on
approximated computing techniques. The techniques devel-
oped in these works generally give no special consideration
on the unique property of heterogeneous edge computing
environment. In contrast, MobiQoR proposes an algorithmic
solution which makes separate QoR level selection for each
edge node. On the other hand, techniques proposed in these
works can help extend MobiQoR to more ways of QoR tuning.

III. PROBLEM FORMULATION

Consider a mobile edge network with a client device and N
wirelessly connected edge nodes, such as neighboring mobile
devices, micro-datacenters, routers and base stations. To pro-
cess a user request with total workload W (e.g., W images to
tag or W recommendation scores to compute), we partition
the workload into N tasks of size w1, . . . , wN , satisfying∑N

i=1 wi = W , where each task of size wi is offloaded to
edge node i and processed in a distributed fashion. Our goal
in MobiQoR optimization is to minimize both response time
and energy consumption by jointly determining QoR and task
assignments to all edge nodes.
Modeling the QoR-speed Tradeoff. Many emerging applica-
tions in mobile edge computing such as recommendation, data
mining, object recognition, media (e.g., video and image) pro-
cessing and data analytics expose different control knobs that
allow us to exploit the tradeoff between QoR and processing
speed. For example, object recognition algorithms [57] often
require extraction of a given number of layers with different
wavelengths and orientations from the original input images
for analysis. By adjusting the number of layers extracted, we
can relax the achieved QoR to achieve a speedup in the object
recognition. For example, our evaluation in Figure 1 shows
a 1.5× speedup when the QoR measured by recognition ac-
curacy slightly reduces from 0.99 to 0.89. In recommendation

algorithms [50], the amount of reference data used to make the
recommendation can serve as the control knob for achieving
this tradeoff. These methods are referred to as parameter level
substitution in prior work [44]. Other techniques of approx-
imated computing include discarding or substituting certain
different subsets of tasks in non-approximated computation,
to achieve varied QoR-speed tradeoff. Our MobiQoR frame-
work is flexible and can utilize such approximated computing
techniques. With elastic QoR, we can significantly speed up
the processing of user requests, while tolerating slight QoR
degradation if permitted by such applications.

In our proposed framework, we allow each edge node to
select a different QoR level, exploiting the tradeoff between
QoR and processing speed. Let A? be the highest accuracy
that can be achieved by an application, and A be the actual
accuracy achieved with QoR-relaxed (or approximated) com-
putation. We define QoR as “1 minus the normalized error”
or equivalently “normalized accuracy”, i.e.,

q = 1− (A? −A)/A? = A/A? ∈ [0, 1]. (1)

When q = 0, the QoR is the lowest and the approximated
results fully diverge from non-approximated results, whereas
q = 1 means the QoR is the highest and all approximated
results exactly match the non-approximated results. The mea-
suring metric for the accuracy A and A? is specific to the
application domain. For example, for an object recognition
application that identifies the tags for a batch of 50 objects,
A? = 98% means on average only 1 object is falsely identified
out of the 50 objects by the non-approximated algorithm. If by
approximated computing, on average, 45 out of the 50 objects
are correctly identified, A is 90% and the resulted QoR q
is measured by normalized accuracy 90%/98% = 0.9184.
For another example that predicts the score rating for 10
user-movie entries, where the score ranges from 0 to 5, the
prediction error is often quantified by the Normalized Mean
Absolute Error (NMAE). Thus, we define accuracy A and
A? as “1 minus NMAE”. If the NMAE achievable by the
approximated and non-approximated algorithms are 0.1 and
0.05 respectively, we have A? = 1 − 0.05 and A = 1 − 0.1,
resulting in q = 0.9474 in this case.
Formulating the QoR Constraint. For a given application,
we use Q to denote the minimum QoR that is acceptable to an
end client. Let qi ∈ [0, 1] be the QoR level assigned to edge
node i. Based on our workload distribution, the aggregated
QoR collectively achieved by all nodes in the system must be
at least Q, i.e.,

N∑
i=1

wiqi/W ≥ Q, (2)

where wiqi/W is weighted QoR obtained on node i that
processes workload wi (out of total W). In practice, the QoR
constraint Q can vary from one application/context to another
and also depends on user preferences. For example, an average
Q = 0.80 could be sufficient for some Netflix-type movie
recommendation app, whereas a face recognition app may

1 2 3 4 5 6 7

0.5

1

1.5

2
·104

Workload (number of face images)

P
ro
ce
ss
in
g
ti
m
e
(m

s)

QoR: 0.89
QoR: 0.92
QoR: 0.95
QoR: 0.97
QoR: 0.99

Fig. 1. Illustration of the linear relationship between processing time and size
of workload for different QoR values (using object recognition).

need higher QoR. Assigning elastic QoR to different nodes,
we can exploit the tradeoff between QoR and process speed.
More precisely, for a given Q, our goal is to find the optimal
QoR assignment qi and workload share wi for each node, to
minimize both service latency and energy.

To leverage the tradeoff between QoR and processing speed,
we use Ti(qi) to denote the time required to complete a
unit workload (e.g., processing 1 image or calculating 1
recommendation score) by edge node i with desired QoR qi.
Then, the total processing time for wi units of workload can
be simply estimated by wiTi(qi) plus a constant overhead. For
an object recognition app, we run batches of workload with
different sizes on four heterogeneous edge nodes, and record
the average processing time consumed, which are depicted in
Figure 1 for one representative node. It can be seen that for
each given QoR level, the total processing time is a linear
function of the underlying workload. Besides, it is also easy
to see that Ti(qi) is an increasing function - larger qi means
higher QoR, but also requires increased processing time Ti(qi)
per unit workload. In this paper, we profile popular applica-
tions in mobile edge computing, including object recognition
and online recommendation, to measure the tradeoff function
Ti(qi) used in our optimization. Task profiling and execution
time estimation can be assisted by techniques available in [39],
[46].
Modeling the Response Time. The end-to-end response time
for client applications on node i consists of data transfer time,
processing time and a constant overhead τi. The τi captures
the round trip time (RTT) between client device and node i
at the network edge, as well as the setup time for computing
the required tasks on node i, e.g., loading data into memory,
task initialization and launching. Let Di be the required size
of input (and output) data chunk that needs to be sent to nodes
(and mobile device) for a unit workload, Bi the network speed
available for data transfer between client device and node i.
The total data transfer time for workload of size wi is then
wiDi/Bi. A request with total workload W is completed only
if all the tasks of sizes w1, . . . , wN are processed by individual

nodes and the required results are aggregated by the mobile
device. Therefore, the overall workload processing latency T
is defined by the maximum response time of all N nodes:

T = max
∀i=1,...,N

[
wiDi

Bi
+ wiTi(qi) + τi

]
, (3)

where the response time consists of data transfer time
wiDi/Bi, task processing time wiTi(qi), and a constant
overhead τi.
Modeling the Energy Consumption. We consider energy
optimization from an edge client perspective and focus on
the data transmission energy consumed by the client device
for offloading workload and receiving results. Thus, we focus
on energy saving for edge clients and leave system-level
energy optimization, pricing issues [52], and incentive mecha-
nisms [27] to future work. Based on prior study [61], for cel-
lular networks, when transmission data size and rate are larger
than certain thresholds, the cellular network interface’s power
consumption can be estimated by a constant that depends only
on the phone model and network operator. For Wi-Fi, the
power consumption during data transmission only depends on
the channel rate and packet rate. Although the channel rate and
packet rate may vary, for a single batch of workload in edge
computing, of which the data transmission normally finishes in
milliseconds or seconds, we can assume that the channel rate
and the transmission protocol remain stable and are known to
our optimization. Further, data transmission for a single batch
of workload normally lasts for a duration which is smaller than
network interface switch period [17]. We can simply use Pi to
denote the average transmission power of the active network
interface being used on the client mobile device. The total
energy consumption is then determined by Pi and active time
for transmission to each edge node:

E =

N∑
i=1

PiwiDi

Bi
. (4)

Formulating the MobiQoR Optimization. Our goal is to
jointly minimize mobile energy consumption and response
time. We consider an objective function E + αT , which
combines the two objectives through a tradeoff factor (or
weight) α, a commonly-used method for multi-objective opti-
mization problems in networking [35]. The weight α reflects
clients’ preferences towards the relative importance of energy
consumption and latency. It offers a control knob to be tuned
by edge providers or edge clients to adjust the optimization
for different applications and scenarios. In particular, we can
increase α for latency sensitive applications where faster re-
sponse is more critical than energy saving. A smaller α should
be chosen for green computation where energy reduction is
the main objective. We will investigate different application
scenarios and the impact of α values in Section VII.

We formulate the MobiQoR optimization to minimize total
energy consumption and response time under QoR and work-
load constraints in mobile edge computing. The optimization
must determine two sets of closely coupled decision variables:

(i) assigning QoR level qi separately to each edge to achieve
the optimal tradeoff between computation quality and process-
ing speed, and (ii) load-balancing among different nodes with
respect to their new processing speed under QoR relaxation.
The MobiQoR optimization problem is formulated as follows:

min E + αT (5)

s.t. E =

N∑
i=1

PiwiDi

Bi
, (6)

T = max
∀i=1,...,N

[
wiDi

Bi
+ wiTi(qi) + τi

]
, (7)

N∑
i=1

wi =W, (8)

N∑
i=1

wi

W
qi ≥ Q, (9)

0 ≤ qi ≤ 1, ∀i = 1, . . . , N (10)
var. {qi, wi,∀i = 1, . . . , N}. (11)

IV. OUR PROPOSED SOLUTION

It is obvious that MobiQoR optimization is non-convex
since constraint (7) contains a non-convex component
wiTi(qi). While it can be numerically computed using solvers
such as the genetic algorithm [6], [10], we propose an efficient
algorithm to solve the optimization when the tradeoff function
Ti(qi) is approximated by a linear function and the QoR
optimization can be cast into linear programming (LP).

We consider a linear approximate tradeoff function Ti(qi) =
αiqi+βi for some constants αi, βi ∀i. While such an approxi-
mation may be difficult for the entire range of QoR qi ∈ [0, 1],
we can identify different regions of interest on the QoR-speed
tradeoff curve and use piecewise linear functions to provide an
accurate estimate for different portions of Ti(qi). For example,
our later evaluation results in Section VII-B show that when
considering a feasible range of QoR level qi ∈ [0.89, 1], the
linear approximation can be very accurate (Seen in Figure 4).
Our main result to recast the QoR optimization into a LP
program is stated in the following theorem.

Theorem 1: When Ti(qi) = αiqi + βi for some constants
αi, βi ∀i, the QoR optimization is equivalent to the following
LP:

min

N∑
i=1

(PiDi/Bi)wi + αT (12)

s.t. (Di/Bi)wi + αiyi + βiwi + τi ≤ T, ∀i (13)
N∑
i=1

wi =W, (14)

N∑
i=1

yi ≥ QW, (15)

0 ≤ yi ≤ wi, ∀i (16)
var. {yi, wi, T} (17)

where yi = qiwi is an auxiliary variable, representing the
quality-workload product of node i.

Proof 1: Plugging yi = qiwi into the QoR optimization (5),
it is easy to see that constraints (15) and (16) are equivalent to
(9) and (10), respectively. Next, due to the minimization over
T , we can show that at optimum, at least one of inequalities
in (13) must be satisfied with equality (otherwise, a smaller T
is feasible and will further reduce the objective). This implies
that T must be equal to the highest latency on the left-hand-
side, which is equivalent to the max over i in (7). Thus, the
two optimization problems, (5) and (12), are equivalent.

Theorem 1 shows that the QoR optimization can be solved
via LP using a new variable, quality-workload product yi. Let
w∗i and y∗i be the optimal solution of (12). The optimal QoR
level for each node is given by q∗i = y∗i /w

∗
i . Furthermore,

when only discrete QoR levels are allowed, we can first solve a
relaxed, continuous problem (with continuous QoR levels) and
then quantize the result to map optimal q∗i to discrete levels,
satisfying the constraints in the MobiQoR optimization. Using
the analysis of LP algorithms in [37], we obtain the complexity
of the proposed algorithm:
Remark 1: To solve the MobiQoR optimization via the
equivalent LP, we need to consider an optimization over
2N + 1 variables (i.e., wi, yi, T ∀i), which has a complexity
of O[

√
2N + 1 · log(1/ε)] for a given tolerance ε using the

well-known Homogeneous Self-Dual Algorithm [34].

V. SYSTEM DESIGN

MobiQoR includes 5 key modules: Workload Manager, Op-
timization Engine, Decision History Database, Energy Meter,
and Workload History Database. Figure 2 shows the major
modules and workflow.

The Workload Manager plays the coordinator role between
mobile apps and our framework. The workload generated
by the applications on mobile devices are first submitted
to Workload Manager 1©. Upon receiving the workload, the
Workload Manager performs the following set of tasks: (i) pre-
processes workload by organizing the data that can be later
submitted to other edge nodes, (ii) handles the app-specific
mapping for the required QoR level (defined by Equation (1)),
(iii) records important timestamps such as the workload arrival
time, transmission finished time, and result receiving time.

To make workload offloading decisions, the Workload Man-
ager first queries the Decision History Database to leverage
any similarity in offloading decisions made previously 2©. If
there exists a history entry that matches both current workload
size and offloading environment (e.g., network condition and
numbers of different types of available edge nodes), the
decision is directly used and the following steps (3©, 4©, and
5©) are skipped. Otherwise, the Workload Manager requests

an optimal decision from Optimization Engine 3©, which will
query Workload History Database 4© for the statistics about
past offloaded workload, such as energy consumed for data
transmission, and processing time taken by different types of
edge nodes for various QoR levels. This step is to estimate the
parameters needed for solving the QoR optimization problem

Applications

Workload
Manager

Optimization
Engine

Energy
Meter

Workload
History DB

1

9

8

4

6

7

Edge nodes with varied
computing speed and bandwidth/RTT

Decision
History DB

2

3 510 11

Fig. 2. MobiQoR architecture overview and workflow

in (5). By solving the problem, Optimization Engine deter-
mines (i) the assignment of workload, and (ii) the selection
of QoR level for each edge node, thereby, jointly optimizing
energy and latency. The optimal decisions are fed back to
Workload Manager 5©, which will dispatch the workload to
different edge nodes with selected QoR levels 6©. Once the
computation results are sent back to Workload Manager 7©,
they will be aggregated and made available to the applications
8©. The aggregated QoR level and timestamps for the workload
will be calculated and stored in Workload History Database
11© for future references, along with the transmission energy
measured by software-based Energy Meter 10©.

Our MobiQoR system incorporates various types of devices
in a distributed mobile edge environment, ranging from remote
powerful workstations to nearby smart devices with less com-
puting capacities. Two tradeoffs exist in the QoR optimization:
(i) for a selected edge node, processing a certain workload
with higher QoR level generally requires more resources or
computing iterations, thus generating longer processing time;
(ii) submitting the workload to remote edge nodes can intro-
duce larger data transmission latency and energy consumption,
however, remote edge nodes with high computing capacities
are potential to reduce the time consumed for workload
processing, thus reducing the overall time latency before the
results become available to the applications.

VI. IMPLEMENTATION

Parse [4] is an open source mobile back-end framework,
which consists of Parse back-end and Parse mobile SDK.
Developers can write customized code, and deploy on Parse
back-end to process certain workload. Parse mobile SDK is
used to configure the mobile apps to transmit data to Parse
back-end, call remote functions and receive processed results.
Natively, for a given mobile app, only one Parse back-end
instance is supported and all requests from mobile side are
processed by the same instance.

We implement a prototype of our design of the QoR-
aware computing offloading system based on Parse. We first
modify the Parse mobile SDK to support multiple workload
offloading destinations. The mobile SDK is incorporated in
the Workload Manager module of MobiQoR, and the workload

QoR

Pictures taken by
camera or selected

from gallery

Tags of recognized
faces

Fig. 3. Our demo app using mobile edge computing for face recognition

offloading tasks are implemented using the modified Parse mo-
bile SDK. For each application, we implement the workload
processing code in JavaScript on Parse back-end to coordinate
the application’s program. An instance of the Parse back-
end is deployed on each of our edge nodes. These workload
processing functions can be triggered from other edge nodes.
The details of applications we select for evaluations will be
discussed in details later in Section VII-A.

The Energy Meter module uses regression for energy es-
timation, which is similar to the approach adopted in [61].
The energy-related parameters are tuned using training data
obtained from real measurements by external Power Moni-
tor [3]. Based on the tuned parameters and network interface
state transfer patterns for different networks, the Energy Meter
estimates and records the power traces that consist of times-
tamps and power. Since the Workload Manager records the
timestamps for data transmissions and result computations, the
Energy Meter utilizes these to measure the energy consumed
for data transmission of each batch of workload. The measure-
ments are stored in the History Database, and made available
to the Optimization Engine.

VII. EVALUATION

A. Experiment Preparation

1) Evaluation App and Dataset Selection: We use two
representative applications for evaluation: face recognition that
computes a tag for each face image, and movie recommen-
dation to predict users’ rating for movie entries. For evalu-
ation purpose, we design a simple UI for each application,
through which workload is selected and computed results are
displayed. Figure 3 is a screenshot of the face recognition
application. A batch of images (representing total workload
W) are taken by the camera or selected from photo gallery.
Once a user clicks the confirmation button, the images will
be offloaded and processed at edge nodes selected by the

TABLE I
SETUP OF EDGE NODES, TO WHICH WORKLOAD CAN BE OFFLOADED

Node index 1 2 3 4
Type workstation laptop workstation laptop
OS CentOS CentOS CentOS OS X
Bandwidth to
smartphone (Kbps) 751.0 1450.9 3065.4 3559.6

CPU base
frequency (GHz) 3.4 2.4 3.4 2.9

CPU max turbo
frequency (GHz) 3.9 3.4 3.9 3.2

MobiQoR’s Optimization Engine, which will also optimize the
QoR levels at the edge nodes jointly. The results will be shown
below the corresponding images on the UI when available.

Eigenface-based face recognition is a popular approach in
the domain of human face recognition [57], in which each
image is represented by a linear combination of eigenvectors
of the whole vector space with different weights. For face
recognition, the decision is made by referring the distances
between weights of the new image and those of the training
sets. With a smaller number of eigenfaces to represent a
face image, the computation complexity is reduced while the
percentage of correctly identified faces also drops and vice
versa. The number of eigenfaces selected can be used to trade
QoR for computing speed. The test images for face recognition
application are collected from [36].

We implement the movie recommendation application using
item-based collaborative filtering algorithm [50]. By discover-
ing the pairwise similarity of movies, this method predicts
the rating of user-movie pairs according to the ratings of
similar movies. The number of referred user-movie pairs when
predicting a new score can be tuned to achieve varied QoR-
speed tradeoff. A larger number of referred user-movie pairs
results in smaller prediction error (measured by Normalized
Mean Absolute Error) as well as longer computation time.
The test data for movie recommendation application is from
MovieLens [23].

2) Experiment Setup: We use a Samsung Galaxy Note
5 Android smartphone as the end client node that generates
edge computing workload. Taking into account of the high
degree of heterogeneity in edge environments [53], we select
four different devices and configure them as edge nodes in
our testbed. To further tune the level of heterogeneity, we
adopt Linux TC [25] and cpupower [43] tools to change
the computing speed and the bandwidth available at different
edge nodes. The default parameters (except for experiments in
Section VII-E) configured for these edge nodes are listed in
Table I with CPU max turbo option enabled by default.

To minimize environment variation when comparing differ-
ent groups of experiments, we leverage the Android automated
testing framework Espresso [1] to iteratively submit batches of
workload via the app’s UI. The ground-truths for testing data
are pre-configured for later evaluation. Using the onView [1]
method, Espresso can automatically wait until all the results
are returned before proceeding to next testing action. The com-

0.
89

0.
91

0.
92

0.
93

0.
95

0.
96

0.
97

0.
98

0.
99 1

1

1.5

2

2.5

3
·103

QoR (q)

U
n
it
p
ro
ce
ss
in
g
ti
m
e
(m

s)

Fig. 4. The QoR-speed tradeoff for the face recognition app. As target
QoR increases, the processing time of a unit workload increases. A linear
approximation of the tradeoff has less than 11% error on average.

puted results collected via the UI by Espresso are compared
against the ground-truths to calculate the achieved QoR. The
end-to-end response time is measured by the time lapsed from
the confirmation button is clicked to all results are received
by the end device. We focus on energy consumption from
an edge client perspective and develop MobiQoR’s Energy
Meter module at the end client device to measure the energy
consumed for offloading workload and receiving results.

3) Baseline Selection: To evaluate the effectiveness of
MobiQoR, we select and implement four existing workload
offloading strategies from literature as our baselines:
Strategy I: Even workload distribution with highest QoR.
The workload is evenly distributed to available nodes [29], and
processed in a traditional non-approximated fashion, using the
default implementation of the data processing program.
Strategy II: Even workload distribution with reduced QoR.
The workload is evenly distributed [29], but different from
Strategy I, this strategy allows QoR relaxation by the approx-
imated computing techniques [44]. The QoR level assigned to
each node is equal to an edge client’s acceptable, target QoR.
Strategy III: Energy-aware workload assignment. In this
strategy, the workload is partitioned and assigned to each
available node such that the overall energy consumed for
data and results transmission is minimized [16]. Edge nodes
allowing more energy-friendly transmission are assigned more
workload.
Strategy IV: Latency-aware load balancing. This strategy
aims to minimize the overall response time for a batch of
workload. It balances the workload on selected edge nodes in
a way to minimize the maximum latency required to process
all workload at edge nodes. Such strategy is widely formulated
as minimax optimization [40], [47] in distributed workload
processing problem.

B. Quantifying QoR-speed Tradeoff

We run a preliminary experiment to quantify the tradeoff
between QoR and computing speed. We define 10 different
QoR levels and adjust the corresponding parameters in the face
recognition application. We test all the different QoR levels

and for each level we run 20 batches of workload. The results
are plotted in Figure 4. As the QoR (measured by Equation (1))
increases from 0.89 to 1, the processing time per image taken
by this node increases from 1766 ms to 2721 ms. A linear
approximation of the tradeoff curve can be accurate and our
testing results show that the mean absolute percentage error
introduced by linear approximation is only 10.8%.

C. Comparing MobiQoR against Baseline Strategies

The preliminary experiment in Figure 4 shows that there ex-
ists a tradeoff between the computing speed and the achieved
QoR. In the current experiment, we compare the four baseline
strategies and MobiQoR, in terms of the effectiveness to jointly
minimize the energy consumption and response time. We plug
in the four strategies discussed in Section VII-A and strategy
of MobiQoR (Strategy M) into our system to consist of five
experiment setups.

For each group of experiments, we use Espresso to submit
the pre-configured batches of workload for the face recognition
and movie recommendation apps. We consider a minimum
QoR constraint from the applications that are expected by edge
clients. The images for face recognition are submitted in the
batch size of 20. For movie recommendation application, 1000
candidate movie entries are considered each time for a user to
make a recommendation, in other words, each batch of movie
recommendation workload needs to predict the scores given by
a user for 1000 movie entries, so the workload size W is fixed
as 1000. To take into account of different user preferences
towards the relative significance of energy consumption E
and overall latency T , we adjust the tradeoff factor α in the
MobiQoR optimization (5) to capture a range of scenarios
from “energy constrained” (α = 50) to “deadline sensitive”(α
= 500) edge environments.

The results averaged overall multiple runs (40 runs for
face recognition and 100 runs for movie recommendation)
are shown in Figure 5, which demonstrates that MobiQoR
consistently outperforms the other four strategies with respect
to the optimization objective, i.e., the weighted sum of energy
consumption and response time. In particular, the improvement
of Strategy II (with relaxed QoR) over Strategy I (with highest
QoR) illustrates the benefit received from relaxing QoR in
the optimization. More importantly, MobiQoR achieves 13.4%
to 77.0% improvement when comparing with the other four
baseline strategies for face recognition application. For movie
recommendation application, the improvement even reaches
189.3%, and is at least 43.0%.
Breakdown of the Optimized Offloading Decisions: To
provide insights into MobiQoR’s superior performance, we
give in-depth comparisons of the decisions made by different
strategies. We show a breakdown of the workload and QoR
assignment for each edge node, under different strategies.
Because of space limitation, we only present that for face
recognition application as Table II, in which the three different
α values correspond to the three scenarios in Figure 5. Here
qi is the QoR value selected for edge node i and wi is the
amount of workload assigned to node i. We can see that

100%
113.4%

148.2%

116.3%
128.5%

100%
127.5%

119.4%124.4%128.5%

100%

177.0%
124.4%

156.5%153.4%

·107

E
+

a
T

Scenario 1
Energy Constrained

Scenario 2
Balanced

Scenario 3
Deadline Sensitive

a * T (ms) E (µJ)

I II III IV M I II III IV M I II III IV M
0

0.5

1

1.5

2

100.0%

147.1%

173.9%

143.0%

202.6%

100.0%

208.5%
244.7%

179.7%
226.4%

100.0%

231.5%
289.3%

206.9%230.9%

·105

E
+

a
T

a * T (ms) E (µJ)

I II III IV M I II III IV M I II III IV M
0

2

4

6

8

Fig. 5. Weighted sum of response time (patterned with) and energy consumption (patterned with) of 5 strategies when required QoR q is 0.96 for
face recognition application (above) and 0.97 for movie recommendation application (below). The E + αT achieved by other strategies are normalized by
that of MobiQoR (Strategy M).

TABLE II
BREAKDOWN OF WORKLOAD AND SELECTED QOR FOR EACH EDGE NODE

USING DIFFERENT STRATEGIES UNDER VARIOUS SCENARIOS.

Strategy α w1 q1 w2 q2 w3 q3 w4 q4
I any 5 1 5 1 5 1 5 1
II any 5 0.96 5 0.96 5 0.96 5 0.96
III any 2 0.96 4 0.96 6 0.96 8 0.96
IV any 6 0.96 8 0.96 3 0.96 3 0.96

M

50 0 NA 0 NA 10 1 10 0.91
200 0 NA 9 1 6 0.92 5 0.92
500 0 NA 10 0.97 6 0.92 4 0.98

our algorithm (Strategy M) achieves the overall improvement
of energy saving and latency reduction shown in Figure 5
by jointly optimizing the workload assignment and selecting
different QoR values for available edge nodes.

We note that the difference between Strategy I and Strategy
II shows the benefit obtained via approximated computing by
relaxing the QoR constraint from 1 to 0.96. Further, comparing
Strategy II to IV with Strategy M illustrates the improvement
due to the joint optimization of energy and latency that we
proposed in MobiQoR.

D. Evaluating Effects of Weight Factor between Energy and
Latency

As shown in Figure 5, MobiQoR is able to outperform
all other strategies in different scenarios that are modeled by
tuning the weight factor α. In reality, an edge client or operator
may want to understand the entire range of latency-energy
tradeoff that is enabled by MobiQoR framework. Toward
this end, we find the optimal frontier of the latency-energy
tradeoff curve by varying the value of the tradeoff factor α
and solving the corresponding MobiQoR optimization. The
results are shown in Figure 6. It characterizes the best response
time and energy consumption (tradeoff) that can be achieved

3 4 5 6 7

·106

1

1.2

1.4

1.6

1.8

2

2.2
·104

α = 50

α = 135

α = 450

α = 900

α = 1100
α = 1400

Transmission Energy (µJ)

L
at
en
cy

(m
s)

Fig. 6. Using different α values, the measured optimal transmission energy
and overall latency achieved for face recognition application by MobiQoR.

when relaxing the QoR constraint to Q = 0.96 in mobile
edge computing – any further latency improvement beyond
this curve is impossible without causing higher energy con-
sumption. Quantifying the optimal frontier of this tradeoff is
extremely valuable to edge operators and clients, who can not
only derive useful insights on setting the appropriate α value
based on application scenarios and user preferences, but also
impose arbitrary pricing/cost models on top of this energy-
latency tradeoff to determine the optimal operating point.

E. Study of MobiQoR’s Sensitivity to Edge Heterogeneity

Heterogeneity is a key feature of edge computing, especially
in terms of network bandwidths and computing capacities of
different edge nodes. To evaluate the impact of heterogeneity
levels on MobiQoR optimization, we use Linux TC [25] and
cpupower [43] tools to change the default setups for the edge

100%122.2%
161.1%155.1%

171.5%
100%113.4%

148.2%
116.3%

128.5%

·107
E

+
a
T

Default Increasing
Network Heterogeneity

a * T (ms) E (µJ)

I II III IV M I II III IV M
0

1

2

Fig. 7. Impact of different network conditions for the achieved weighted sum
of response time (patterned with) and energy consumption (patterned
with) of 5 strategies when required QoR q is 0.96 for face recognition
application. The E+αT achieved by other strategies are normalized by that
of MobiQoR (Strategy M).

100%122.2%

176.3%

133.6%

183.0%

100%

208.5%
244.7%

179.7%
226.4%

·106

E
+

a
T

Default V arying
Computing Heterogeneity

a * T (ms) E (µJ)

I II III IV M I II III IV M
0

0.5

1

Fig. 8. Impact of varying computing capacities for the achieved weighted sum
of response time (patterned with) and energy consumption (patterned with

) of 5 strategies when required QoR q is 0.95 for movie recommendation
application. The E+αT achieved by other strategies are normalized by that
of MobiQoR (Strategy M).

nodes listed in Table I, and compare the results with the
previous setup.

We first investigate the history traces of experiments con-
ducted in Section VII-C using the default setup listed in
Table I. The traces reveal that for the same selected QoR level
q, the unit processing time taken by the four edge nodes sorted
in ascending order are: T2(q) < T1(q) ≈ T3(q) < T4(q),
where node 1 and node 3 are very close, and node 2 is the
fastest one. Next, we configure two new groups of experiment
setups based on the default one in Table I by either changing
the network bandwidth or the CPU frequency:
Increasing Network Heterogeneity: We keep all other set-
tings in Table I, but change the network bandwidths of edge
nodes to 3484.8, 780.8, 3512.0, 4144.0 Kbps, respectively.
In particular, we pick the one with fastest processing speed
(i.e., node 2), and intentionally decrease its bandwidth to
a smaller value. Then we perform the same 40 batches of
face recognition experiments conducted in Section VII-C. The
comparison of the five strategies is depicted in Figure 7
along with the experiment results using the default setup. As
seen from the figure, after increasing network heterogeneity
by changing the available bandwidth, our MobiQoR strategy
achieves higher (relative) improvements over the other 4
strategies, demonstrating its ability to exploit an increasing
level of network heterogeneity.
Varying Computing Heterogeneity: Similar to the previous

experiment, we keep all other setups in Table I, but disable
the default CPU turbo option, and set the CPU frequency of
the four edge nodes to 2, 2.4, 3.4, 3.2 GHz, respectively. In
this way, we make the CPU processing speed more consistent
with the bandwidth setup in Table I, i.e., the fastest node is
with the largest bandwidth and vice versa. We rerun the same
100 batches of movie recommendation experiments in Sec-
tion VII-C. The comparison of the five strategies is depicted
in Figure 8 along with the experiment results using the default
setup. Even with decreased heterogeneity, MobiQoR performs
22.2% to 83.0% better than all other 4 strategies.

The above groups of experiments not only show that Mo-
biQoR is able to achieve significant latency-energy improve-
ment at different heterogeneity levels in the edge computing
environment. More importantly, its superiority over other
strategies is amplified as the computing environment becomes
more heterogeneous. In terms of the heterogeneity property of
edge computing, it is generally true that remote nodes are more
likely to be equipped with more computing power, but smaller
bandwidth [53]. MobiQoR’s capability to jointly optimize the
energy and response time makes it a perfect candidate to
exploit such unique property of an edge environment.

VIII. CONCLUSION

The enlarging gap between contemporary mobile devices’
resource constraints and the ever increasing user demands for
ultra-low latency calls for rethinking mobile task offloading
and distributed processing mechanisms. Inspired by the fact
that increasing number of edge applications, such as media
processing and machine learning, can tolerate some levels of
quality loss, we propose a new optimization horizon, Quality-
of-Result (QoR), and present MobiQoR for jointly optimizing
the service latency and the mobile energy consumption under
given QoR constraints. The proposed MobiQoR is imple-
mented on real mobile devices. Using representative face
recognition and movie recommendation applications, evalua-
tions with real-world datasets show that MobiQoR outperforms
existing strategies by up to 77.0% for face recognition and
189.3% for movie recommendation. More interestingly, the
heterogeneity of edge computing environments further am-
plifies the benefits of MobiQoR over existing QoR-oblivious
policies.

REFERENCES

[1] Android testing tool - Espresso. https://developer.android.com/training/
testing/ui-testing/espresso-testing.html.

[2] Firebase server. https://www.firebase.com/.
[3] Monsoon powermeter. https://www.msoon.com/LabEquipment/

PowerMonitor/.
[4] Parse open source bankend. https://www.parse.com/.
[5] IDC futurescape: Worldwide internet of things 2016 predictions. Avail-

able at: https://www.idc.com/research/viewtoc.jsp?containerId=259835,
2015.

[6] O. Babaoglu, H. Meling, and A. Montresor. Anthill: A framework for
the development of agent-based peer-to-peer systems. In ICDCS. IEEE,
2002.

[7] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa. To offload or not to
offload? the bandwidth and energy costs of mobile cloud computing. In
INFOCOM. IEEE, 2013.

https://developer.android.com/training/testing/ui-testing/espresso-testing.html
https://developer.android.com/training/testing/ui-testing/espresso-testing.html
https://www.firebase.com/
https://www.msoon.com/LabEquipment/PowerMonitor/
https://www.msoon.com/LabEquipment/PowerMonitor/
https://www.parse.com/

[8] Y. Bernier. Latency compensating methods in client/server in-game
protocol design and optimization. In Game Developers Conference,
2011.

[9] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its
role in the internet of things. In MCC workshop. ACM, 2012.

[10] R. Cheng, M. Gen, and Y. Tsujimura. A tutorial survey of job-
shop scheduling problems using genetic algorithms I. Representation.
Computers & industrial engineering, 30(4):983–997, 1996.

[11] M. Chiang. Fog networking: An overview on research opportunities.
arXiv preprint arXiv:1601.00835, 2016.

[12] V. K. Chippa, S. Venkataramani, S. T. Chakradhar, K. Roy, and
A. Raghunathan. Approximate computing: An integrated hardware
approach. In ASILOMAR. IEEE, 2013.

[13] D. Chu, N. D. Lane, T. T.-T. Lai, C. Pang, X. Meng, Q. Guo, F. Li, and
F. Zhao. Balancing energy, latency and accuracy for mobile sensor data
classification. In SenSys. ACM, 2011.

[14] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud:
elastic execution between mobile device and cloud. In EuroSys. ACM,
2011.

[15] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. MAUI: making smartphones last longer with
code offload. In MobiSys. ACM, 2010.

[16] S. Cui, A. J. Goldsmith, and A. Bahai. Energy-efficiency of MIMO
and cooperative MIMO techniques in sensor networks. IEEE Journal
on selected areas in communications, 22(6):1089–1098, 2004.

[17] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan,
and D. Estrin. Diversity in smartphone usage. In MobiSys. ACM, 2010.

[18] J. Flinn, S. Park, and M. Satyanarayanan. Balancing performance,
energy, and quality in pervasive computing. In ICDCS. IEEE, 2002.

[19] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere. Edge-centric
computing: Vision and challenges. ACM SIGCOMM Computer Com-
munication Review, 45(5):37–42, 2015.

[20] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen.
COMET: code offload by migrating execution transparently. In OSDI.
USENIX, 2012.

[21] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic. Adap-
tive offloading for pervasive computing. IEEE Pervasive Computing,
3(3):66–73, 2004.

[22] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan.
Towards wearable cognitive assistance. In MobiSys. ACM, 2014.

[23] F. M. Harper and J. A. Konstan. The movielens datasets: History and
context. ACM Transactions on Interactive Intelligent Systems (TiiS),
5(4):19, 2016.

[24] H. Hoffmann. Jouleguard: energy guarantees for approximate applica-
tions. In SOSP. ACM, 2015.

[25] B. Hubert, T. Graf, G. Maxwell, R. van Mook, M. van Oosterhout,
P. Schroeder, J. Spaans, and P. Larroy. Linux advanced routing & traffic
control. In Ottawa Linux Symposium, 2002.

[26] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia,
J. Shalf, H. J. Wasserman, and N. J. Wright. Performance analysis of
high performance computing applications on the amazon web services
cloud. In CloudCom. IEEE, 2010.

[27] C. Joe-Wong, Y. Im, K. Shin, and S. Ha. A performance analysis of
incentive mechanisms for cooperative computing. In ICDCS. IEEE,
2016.

[28] R. Kemp, N. Palmer, T. Kielmann, and H. Bal. Cuckoo: a computation
offloading framework for smartphones. In MobiCASE. Springer, 2010.

[29] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang. Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading. In INFOCOM. IEEE, 2012.

[30] D. Kovachev, T. Yu, and R. Klamma. Adaptive computation offloading
from mobile devices into the cloud. In ISPA. IEEE, 2012.

[31] K. Kumar and Y.-H. Lu. Cloud computing for mobile users: Can
offloading computation save energy? Computer, (4):51–56, 2010.

[32] Y.-W. Kwon and E. Tilevich. Energy-efficient and fault-tolerant dis-
tributed mobile execution. In ICDCS. IEEE, 2012.

[33] A. Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp: comparing
public cloud providers. In IMC. ACM, 2010.

[34] D. G. Luenberger and Y. Ye. Linear and Nonlinear Programming.
Springer Science & Business Media, 2008.

[35] R. T. Marler and J. S. Arora. The weighted sum method for multi-
objective optimization: new insights. Structural and Multidisciplinary
Optimization, 41(6):853–862, 2010.

[36] A. M. Martinez. The AR face database. CVC Technical Report, 24,
1998.

[37] N. Megiddo. Linear programming in linear time when the dimension is
fixed. Journal of the ACM, 31(1):114–127, 1984.

[38] A. P. Miettinen and J. K. Nurminen. Energy efficiency of mobile clients
in cloud computing. In HotCloud. USENIX, 2010.

[39] B. C. Mochocki, K. Lahiri, S. Cadambi, and X. S. Hu. Signature-based
workload estimation for mobile 3D graphics. In DAC. ACM, 2006.

[40] R. R. Nadakuditi and M. Liu. Latency-optimizing file splitting for
transmission over a large multi-hop network. In ITA workshop. IEEE,
2011.

[41] V. Namboodiri and T. Ghose. To cloud or not to cloud: A mobile device
perspective on energy consumption of applications. In WoWMoM. IEEE,
2012.

[42] S. Ou, K. Yang, and J. Zhang. An effective offloading middleware for
pervasive services on mobile devices. Pervasive and Mobile Computing,
3(4):362–385, 2007.

[43] V. Pallipadi and A. Starikovskiy. The ondemand governor. In Proceed-
ings of the Linux Symposium, 2006.

[44] P. Pandey and D. Pompili. MobiDiC: Exploiting the untapped potential
of mobile distributed computing via approximation. In PerCom. IEEE,
2016.

[45] J. Park, J. H. Choi, and K. Roy. Dynamic bit-width adaptation in DCT:
an approach to trade off image quality and computation energy. IEEE
transactions on very large scale integration (VLSI) systems, 18(5):787–
793, 2010.

[46] P. Puschner and A. Burns. Guest editorial: A review of worst-case
execution-time analysis. Real-Time Systems, 18(2):115–128, 2000.

[47] S. Ramakrishnan, I.-H. Cho, and L. A. Dunning. A close look at task
assignment in distributed systems. In INFOCOM. IEEE, 1991.

[48] P. Rong and M. Pedram. Extending the lifetime of a network of battery-
powered mobile devices by remote processing: a markovian decision-
based approach. In DAC. ACM, 2003.

[49] J. San Miguel, J. Albericio, A. Moshovos, and N. E. Jerger. Doppel-
ganger: A cache for approximate computing. In MICRO. ACM, 2015.

[50] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative
filtering recommendation algorithms. In WWW. ACM, 2001.

[51] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for
vm-based cloudlets in mobile computing. IEEE pervasive Computing,
8(4):14–23, 2009.

[52] S. Sen, C. Joe-Wong, S. Ha, and M. Chiang. Smart Data Pricing. John
Wiley & Sons, 2014.

[53] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision
and challenges. IEEE Internet of Things Journal, 2016.

[54] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard.
Managing performance vs. accuracy trade-offs with loop perforation. In
FSE. ACM, 2011.

[55] A. Sinha, A. Wang, and A. P. Chandrakasan. Algorithmic transforms
for efficient energy scalable computation. In ISLPED. ACM, 2000.

[56] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzelman.
Cloud-Vision: Real-time face recognition using a mobile-cloudlet-cloud
acceleration architecture. In ISCC. IEEE, 2012.

[57] M. A. Turk and A. P. Pentland. Face recognition using eigenfaces. In
CVPR. IEEE, 1991.

[58] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and
A. Raghunathan. Quality programmable vector processors for approxi-
mate computing. In MICRO. ACM, 2013.

[59] L. Xiang, S. Ye, Y. Feng, B. Li, and B. Li. Ready, set, go: Coalesced
offloading from mobile devices to the cloud. In INFOCOM. IEEE, 2014.

[60] S. Yi, Z. Hao, Z. Qin, and Q. Li. Fog computing: Platform and
applications. In HotWeb workshop. IEEE, 2015.

[61] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and
L. Yang. Accurate online power estimation and automatic battery behav-
ior based power model generation for smartphones. In CODES+ISSS.
ACM, 2010.

[62] W. Zhang, Y. Wen, and D. O. Wu. Energy-efficient scheduling policy
for collaborative execution in mobile cloud computing. In INFOCOM.
IEEE, 2013.

[63] Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, and S. Yang. Refactoring
android java code for on-demand computation offloading. In ACM
SIGPLAN Notices, volume 47, pages 233–248. ACM, 2012.

