
JOP-alarm: Detecting Jump-oriented
Programming-based Anomalies in Applications

Fan Yao, Jie Chen, Guru Venkataramani
Department of Electrical and Computer Engineering,

The George Washington University, Washington, DC, USA
{albertyao, jiec, guruv}@gwu.edu

Abstract—Code Reuse-based Attacks (popularly known as
CRA) are becoming increasingly notorious because of their ability
to reuse existing code, and evade the guarding mechanisms in
place to prevent code injection-based attacks. Among the recent
code reuse-based exploits, Jump Oriented Programming (JOP)
captures short sequences of existing code ending in indirect
jumps or calls (known as gadgets), and utilizes them to cause
harmful, unintended program behavior. In this work, we propose
a novel, easily implementable algorithm, called JOP-alarm, that
computes a score value to assess the potential for JOP attack, and
detects possibly harmful program behavior. We demonstrate the
effectiveness of our algorithm using published JOP code, and test
the false positive alarm rate using several unmodified SPEC2006
benchmarks.

Keywords—Jump-oriented programming, Code reuse attack,

Detection algorithm

I. INTRODUCTION

As software systems become increasingly complex, they
become more vulnerable to malicious users and security ex-
ploits. Among the many different classes of vulnerabilities,
code-based exploits utilize techniques based on code reuse to
achieve their goal of harming program execution. In code reuse
exploits, the adversary typically assembles short segments of
program code called gadgets that end in return, indirect jump
or indirect call instructions. These control transfer instructions
redirect the program flow to instructions that are adversary-
desired targets (gadgets crafted by the malicious user using the
existing program code), ultimately leading them to do arbitrary
computation and produce unintended consequences during pro-
gram execution. Although code reuse based attacks represent
a narrow class of security attacks, their detection/prevention
can be tricky (unless we fully understand their typical attack
behavior), and their consequences post manifestation can be
devastating.

A. Existing code reuse attacks and detections

One typical code reuse based-attack is Return-oriented
programming (ROP). ROP was first demonstrated by Shacham
et al [4] where the program control flow is directed through a
series of gadgets, carefully chosen from GNU libc library code,
each ending with a ret instruction. Preventative techniques
include runtime monitor for integrity checking and compiler-
based solution to eliminate all unaligned free-branch instruc-
tions inside a binary executable.

This material is based upon work supported by the National Science
Foundation under CAREER Award CCF-1149557.

Jump-oriented programming (JOP) are a new class of
code reuse attacks that utilize indirect jmp and indirect call
instructions along with a dispatcher gadget that governs the
control flow among various jump-oriented targets [1]. The
dispatcher gadget internally maintains a dispatch table that
specifies the control flow among the functional gadgets. The
adversary constructs the dispatcher and functional gadgets
using the wealth of code available in the system libraries.
While ROP relies on stack pointer esp for program counter
and ret instructions for control transfer, JOP can use any
register that points into the dispatch table as its program
counter and control flow is driven by the specially identified
dispatcher gadget. Due to the sophisticated nature of JOP,
defense mechanisms against ROP typically do not prevent JOP
attacks.

B. JOP-alarm detection scheme

In this work, we propose a novel, simple, and elegant
scoring-based algorithm, which we call JOP-alarm, to detect
JOP-based code reuse vulnerabilities. We study the most
common characteristics of JOP such as length of functional
gadgets, indirect jump (or call) distances, and tune our al-
gorithm to adjust its scoring based on such details. Our
solution does not maintain any state information for individual
instructions or data, and can be implemented relatively easily
in software with small amounts of code instrumentation or via
simple hardware logic. To reduce the rate of false positives,
we identify certain commonly observed circumstances where
standard compilers emit indirect jumps or calls that may
potentially be misinterpreted as JOP, and incorporate such
cases into scoring methodology to detect JOP.

II. UNDERSTANDING JUMP-ORIENTED PROGRAMMING

A. JOP Example

An overview diagram of a classic JOP attack code with
gadgets and control flow orchestration between them is shown
in Figure 1. We show an example JOP code in Figure 2
based on the JOP code published by Bletsch et al [1]. The
intent of this code is to invoke a system call that results
in unauthorized launch of an interactive shell using gadgets
ending with indirect jump and indirect call instructions.

B. JOP characteristics

To successfully launch a JOP attack, a rigorous gadget dis-
covery algorithm is required that must chain together pieces of
existing code to overwrite some of the architectural registers.

Dispatcher++ Func.+Gad+1++

Func.+Gad+2++

Func.+Gad+3++

+++++++++…++

+++++++++…+
++jmp+[edx]++

+++++++++…+
++jmp+[edx]++

+++++++++…+
++jmp+[esi;4]++

Dispatch+table+

+++++++++…+
++jmp+[edx]++

1
2+

3 4+

5

6+

Fig. 1. JOP Architecture with control flow sequences (shown above arrows).

popa; //initializer gadget
jmp [ebx-0x3e];
add ebp, edi; //dispatcher gadget
jmp [ebp-0x39];
popa; //func. gadget 1
fdivr st(1), st;
jmp [edx];
inc eax; //func. gadget 2
fdivr st(1), st;
jmp [edx];
mov [ebx-0x17bc0000], ah; //func. gadget 3
stc;
jmp [edx];
inc ebx; //func. gadget 4
fdivr st(1), st;
jmp [edx];
popa; //func. gadget 5
cmc;
jmp dword [ecx];
xchg ecx, eax; //func. gadget 6
fdiv st, st(3);
jmp [esi-0xf];
mov eax, [esi+0xc]; //func. gadget 7
mov [esp], eax;
call [esi+0x4];

//At this point, eax is set to
//execve, ebx points to "/bin/bash"
//argv(ecx) and envp(edx) are NULL
sysenter; //func. gadget 8

Fig. 2. Example JOP x86 code snippet that launches unauthorized shell.

Also, since JOP relies on indirect jump and call instructions,
the gadget discovery algorithm has to carefully choose code
segments that end in either indirect jump or indirect call
instructions.

Gadget length is one of the important factors in success-
fully launching JOP. Kayaalp et al. [2] conducted studies on av-
erage gadget lengths that can extracted from standard C library
(libc), and found that a vast majority (⇡85%) of gadgets have
5 or less instructions. This is because lengthier gadgets have
potential side-effects such as having a set of instructions that
cannot be used for meaningful JOP computation, possibility of
unintended change of register values that may ruin a successful
JOP attack and so on.

Another factor to consider is the target distance of indirect
jumps and indirect calls. Note that it is relatively hard to find
gadgets (that are suitable for use) within short distances (or

short range of addresses). In fact, we measured the values of
target distance in the successful JOP code written by Bletsch
et al [1]. Our results showed that the average distance between
functional gadgets from libc code was 227,466 bytes with
the maximum being 1,096,593 bytes and the minimum being
67,010 bytes. Since the gadget discovery algorithms need to
find reasonable gadgets from libc to launch a JOP attack, the
minimum and average target distances for indirect jumps and
indirect calls can also be valuable metrics to capture possible
JOP attack during program execution.

III. THREAT MODEL AND ASSUMPTIONS

Our solution aims to detect JOP-based attack, and does not
prevent JOP. We assume that the underlying system supports
W�X model that prohibits writes to executable memory,
and hence assume that code injection based attacks are not
possible. We assume that the attacker is able to perform a
stack or a heap overflow to overwrite the target address in
the jump buffer (setjmp.h of libc code) and transfer control to
initializer gadget.

We assume that the adversary operates in the user mode
and not in privileged mode. Although the detection of JOP
had no bearing on whether the system is in user or privileged
mode, we note that a sufficiently privileged adversary might be
able to overrule known JOP defenses and render JOP detection
and defense mechanisms useless.

Kayaalp et al. [2] describe stealth-JOP, that uses lengthier
delay gadgets to evade detection. Realistically, such gadgets
are harder to find and integrate into the JOP attack due
to higher likelihood of side effects. Our evaluation includes
modeling of state of the art delay gadgets, and our algorithm
correctly detects JOP attack in this instance.

IV. JOP-ALARM: DETECTING THE PRESENCE OF
JUMP-ORIENTED PROGRAMMING

Based on the discussion of commonly observed character-
istics of JOP in Section II-B, we present our JOP-alarm, a
detection algorithm to assess the possibility of JOP. We note
that our algorithm is completely tune-able and can be adjusted
for more conservative settings based on user preferences.

score

inc

= f

ind jmp/ind call

(jumptarget dist, step up value) (1)

score

dec

= f

otherinst

(step down value) (2)

Our algorithm (shown in Figure 3) uses a scoring-based
approach to detect JOP. The score is incremented by a
step up value every time we encounter an indirect call or
indirect jump instruction as shown in Equation 1. This function
takes distance of the jump target as its input to reduce
the false positive rate that are likely to result from indirect
jumps emitted by compilers in certain common cases). For
all other instructions, we decrement the score by a constant
step down value as shown in Equation 2. This is done to
avoid saturating the score value through repeated additions of
step up value. Intuitively, this decrement operation serves to
slowly forget the effect of indirect jumps and calls, especially
when there are long sequences of instructions between two

At the beginning of the program:
Initialize score_value to 0

//dist_threshold -- set by the user based
//empirically measured minimum
//jump target distance of indirect jumps
//and calls in JOP gadgets

//jop_threshold -- empirically estimated
//score value that may likely indicate
//JOP attack

for every indirect jump or indirect call
instruction:
if (jumptarget_dist >= dist_threshold) {
score += step_up_value;

}
else { //jumptarget_dist < dist_threshold
//not a potential gadget; do nothing

}
if (score >= jop_threshold) {
//potential JOP attack
RAISE_alarm();

}

for every other instruction:
if (score > 0) {
score -= step_down_value;

}

Fig. 3. JOP-Alarm Algorithm

indirect jumps (that are unlikely to be JOP gadgets). On the
other hand, if there are few instructions in between two indirect
jumps or calls (e.g., JOP gadgets), the number of decrement
operations will be fewer in comparison to the increment
operations. This will result in a large score indicating the
presence of frequent indirect jumps/calls interspersed with a
short number of other instructions (potential JOP gadgets).
These increment/decrement operations are necessary to build
the hysteresis information on code execution involving a mix
of indirect jumps/calls and other instructions.

Our algorithm maintains a score variable throughout the
program execution that is initialized to zero at the start of
the program. There are two thresholds that are empirically
determined, and used by our algorithm namely,

• dist threshold, that is set by the user, based on the
empirically measured minimum value of the target dis-
tance in indirect jumps and calls in JOP gadgets. We
conservatively set the dist threshold as 4,196 bytes, a
value actually much lower than the observed minimum
target distance (See Section II-B). We note that we could
set this threshold even lower for a more conservative JOP
assessment.

• jop threshold, that is empirically estimated score value
to indicate potential JOP attack. Through careful analysis
of existing JOP attacks [1], [2], we assume 20 to be the
step up value1 and a step down value of 1, the score

1Realistic JOP gadgets in libc do not have more than 10 instructions [2],
and hence 20 would be a sufficiently conservative step up value needed to
remember the occurrence of indirect jump and indirect call instructions.

value at the end of fifth gadget would be at least 120.
Therefore, we set 120 to be the value of jop threshold.

Standard compiler emits indirect jumps and calls to reach
long distance targets in programs. However, there are two spe-
cial circumstances where the compiler may use indirect jumps
despite short target distance. This includes (1) switch..case..
statements, and (2) virtual function calls.

Fortunately, in the case of switch..case.. statements, we find
that the number of statements within each case statement is
small enough that our preset dist threshold value of 4,196
bytes is sufficient to ignore these benevolent indirect jumps
without treating them as JOP gadgets.

In case of virtual function calls, however, we find that a vast
majority of cases in SPEC2006 applications [5] do not trigger
any false alarms since their jumptarget dist value is observed
to be less than 4,196. To minimize false postive alarms, we
could set the dist threshold value to a higher value such as
8,192 or 16,384.

Our JOP-alarm algorithm can be implemented either com-
pletely in software or using simple hardware at the commit
stage of the processor pipeline.

V. EVALUATION

A. Setup

We used marssx86 [3], a tool for cycle accurate full system
simulation of the x86-64bit archiecture. Our simulated machine
configuration has a single, out-of-order core configuration with
128 KB L1 and 2 MB L2 cache. We run marssx86 on CentOS
6.4 with 3.0 GHZ Intel Xeon CPU. We evaluate our JOP-alarm
algorithm using a number of SPEC2006 benchmarks [5] with
reference input sets. The threshold, step up and step down
values used in our experiments are shown in section IV.

B. Score values in unmodified SPEC 2006 benchmarks

We first conduct experiments to understand the ef-
fect of our scoring approach in regular, unmodified
SPEC2006 applications [5] that have indirect jumps including
switch..case..statements and virtual function calls. We show
some of our results over a wide variety of benchmarks in
Figure 4. The x-axis in each benchmark shows the number of
instructions simulated (in millions) and the y-axis shows the
highest score observed within windows of million instructions,
as calculated by our JOP-alarm algorithm in Figure 3. We
observe that most benchmarks do not trigger any false positives
except xalancbmk which has a short virtual function (with 7
x86 instructions) called frequently.

C. JOP code without and with delay gadgets

We perform experiments to check the functionality of our
algorithm on the code published by Bletsch et al [1]. The
code under test has a total of 10 JOP gadgets and is very
similar to the JOP example presented in Figure 2. The values
of score calculated by our JOP-alarm algorithm is shown in
Figure 5(a), where it reaches a maximum of around 460 at
about 800,000 instruction mark during program execution. This
maximum value of score is well above our jop threshold of

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400 500 600 700 800

sc
or

e

Number of instructions (Millions)

(a) gcc

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 100 200 300 400

sc
or

e

Number of instructions (Millions)

(b) xalancbmk

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400 500 600

sc
or

e

Number of instructions (Millions)

(c) omnetpp

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400 500 600 700 800 900 1000

sc
or

e

Number of instructions (Millions)

(d) sjeng

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400 500 600 700 800 900

sc
or

e

Number of instructions (Millions)

(e) soplex

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400 500 600 700 800 900 1000

sc
or

e
Number of instructions (Millions)

(f) milc

Fig. 4. Highest JOP-alarm score within consecutive windows of one million instructions across Spec2006 benchmarks.

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700 800 900 1000

Sc
or

e

Number of instructions (Thousands)

(a) Without delay gadget

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700 800 900 1000

Sc
or

e

Number of instructions (Thousands)

(b) With delay gadgets

Fig. 5. JOP-alarm score on codes without and with delay gadgets. In case of delay gadgets, we assume a medium length gadget with 15 instructions for every
third JOP gadget. The rest of the JOP gadgets have a maximum of 4 instructions.

120, and hence we are able to reliably detect the presence of
JOP attack.

Kayaalp et al. [2] introduced the notion of delay gad-
gets, where certain medium length gadgets are intentionally
inserted between the regular JOP gadgets to evade detection.
Figure 5(b) shows the results of our experiments where 3 out
of 10 gadgets are assumed to be delay gadgets. Even with
such medium length gadgets, the score value still reaches
to a high score of around 400 due to indirect jumps at the
end of dispatcher and functional gadgets resulting in reliable
discovery of JOP attack.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed JOP-alarm, a novel and elegant
algorithm to detect Jump-oriented programming based code
reuse attacks. The algorithm understands the JOP character-
istics and utilizes this information to accurately assess the
potential for JOP during program execution. We adopt a
scoring based approach to detect JOP and demonstrate the
effectiveness of our algorithm on published JOP code.

As future work, we plan to extend our framework to
other types of code reuse attacks, and develop algorithms by
understanding the common characteristics of such exploits.

REFERENCES

[1] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented pro-
gramming: a new class of code-reuse attack,” in Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security. ACM, 2011, pp. 30–40.

[2] M. Kayaalp, T. Schmitt, J. Nomani, D. Ponomarev, and N. Abu-
Ghazaleh, “Scrap: Architecture for signature-based protection from code
reuse attacks,” in Proceedings of the 2013 IEEE conference on High
Performance Computer Architecture, 2013.

[3] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSSx86: A Full
System Simulator for x86 CPUs,” in Design Automation Conference 2011
(DAC’11), 2011.

[4] H. Shacham, “The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86),” in Proceedings of the
14th ACM conference on Computer and communications security, ser.
CCS ’07. New York, NY, USA: ACM, 2007, pp. 552–561. [Online].
Available: http://doi.acm.org/10.1145/1315245.1315313

[5] Standard Performance Evaluation Corporation, “Spec 2006 benchmark
suite,” http://www.spec.org, 2006.

