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Abstract of Dissertation

Learn2Reason: Joint Statistical and Formal learning Approach to
improve the Robustness and Time-to-solution for Software Security

Thesis Statement: Past research have proposed techniques for finding

vulnerabilities in software applications using either statistical analysis

(fast but may be inaccurate) or formal analysis (accurate but may be

slow). In this dissertation, we propose Learn2Reason, a novel joint learn-

ing approach that harnesses the advantages of both statistical analysis

and formal techniques to improve the robustness and time-to-solution

for software security.

With the rapid rise in software sizes and complexity, analyzing and fixing bugs in

large scale applications is becoming increasingly critical, securing such application has

become very challenging due to the growing software complexity. Traditionally, there

are two lines of code analysis techniques that have some fundamental limitations:

Pure statistical methods and Pure formal methods. Using solely either lacks accuracy

or require exhaustive analysis along all paths in the application code.

In this dissertation, we first design a joint learning framework using both tech-

niques to protect unsafe memory accesses in programs. As today, such memory

violation issues have been among the leading causes of software vulnerability. Mem-

ory safety checkers, such as Softbound, enforce memory spatial safety by checking if

accesses to array elements are within the corresponding array bounds. However, such

checks often result in high execution time overhead due to the cost of executing the

instructions associated with the bound checks. To mitigate this problem, techniques

to eliminate redundant bound checks are needed. We propose two novel frameworks,

SIMBER and Clone-Hunter to eliminate redundant memory bound checks in source

code and binaries respectively. In contrast to the existing techniques that primar-

ily rely on static code analysis, our solution leverages learning-based techniques to
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identify redundant bound checks.

Additionally, understanding software and detecting duplicate code fragments is

an important task, especially in large code bases. Detecting similar code fragments,

usually referred to as code clones, can be helpful in discovering vulnerabilities, refac-

toring code and removing unnecessary code segments. In particular, binary code clone

detection can have significant uses in the context of legacy applications that are al-

ready deployed in several critical domains. We present learning based frameworks for

Domain-Specific Code Clone Detection. Our approach first eliminates non-domain-

related instructions through program slicing, and then applies deep learning-based

algorithm to model code samples as numerical vectors for the remaining binary in-

structions. We then use clustering algorithms to aggregate code clones, and use formal

analysis to verify the validity of code clones.

To further illustrate the benefit of our joint learning approach, we leverage machine

learning-based binary code analysis frameworks, combined with dynamic execution

and trace analysis to create customized, self-contained programs, in order to mini-

mize the potential attack surface. It automatically identifies program features (i.e.,

independent, well-contained operations, utilities, or capabilities) relating to applica-

tion binaries and their communication functions, tailors and eliminates the features

to create customized program binaries in accordance with user needs, in a fully un-

supervised fashion.

This dissertation aims to harnesses the advantages of both statistical analysis and

formal techniques to perform rigorous code analysis in both source code and binary

executables while maintaining scalability and swiftness. The main contributions of

this dissertation are to improve the security issues of code analysis by integrating

statistical analysis and formal methods, thereby reducing the time-to-solution.
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Chapter 1 Introduction

1.1 Program Code Analysis for Software Security

With the rapid growth of software systems, securing such applications has become

very challenging due to the growing software complexity. Prior studies have shown

that there are about 5 to 20 bugs per 1,000 lines of software. Exploitation of such

bugs and program vulnerabilities through source code or binary analysis has been a

major threat to computer security and user data safety.

Traditionally, there are two lines of code analysis techniques that have some fun-

damental limitations. 1. Pure statistical methods rely on probabilistic inference and

often fail to guarantee complete accuracy. Any conclusions derived from sampling

the runtime program states can offer only limited visibility, and are prone to false

alarms. As a result, considerable human effort is still required to verify the results

from statistical analysis. 2. Pure formal methods require exhaustive analysis along

all paths in the application code, which can be prohibitively expensive in terms of

time and resources. As such, strict symbolic execution methods can be less effective

in analyzing software at-scale.

1.2 A Joint Learning Approach

In this dissertation, we propose a joint learning approach, an integration of statisti-

cal and formal methods without the unification of the underlying knowledge represen-

tation. We envision that the decision-making models keeps the cognitive (statistical)

and deliberative (formal) levels of reasoning as two separate but interacting modules,

with their separate but partially correlated knowledge representations. We hope that

the novel approach for synergistically integrating statistical and formal knowledge,

in this way enables cross-triggering (prompting), cross-checking and hence allowing

both knowledge bases to grow and adapt to the world in synchrony. This property

is essential toward achieving up-to-date, comprehensive, timely and accurate plan-

ning/decision making. This dissertation harnesses the advantages of both statistical

1



analysis and formal techniques to perform rigorous code analysis in both source code

and binary executables while maintaining scalability and swiftness.

The need for memory protection. Many software bugs and vulnerabilities in

applications (that are especially written using C/C++) occur due to unsafe pointer

usage and out-of-bound array accesses. Security exploits, that take advantage of

buffer overflows or illegal memory reads/writes, have been a major concern over the

past decade.

To protect software from spatial memory/array bound violations, Bound Checker

tools such as Softbound [80, 84, 25, 21, 23] have been developed that maintains

metadata such as array boundaries along with rules for metadata propagation when

loading or storing pointer values. By doing so, Bound Checkers make sure that pointer

accesses do not violate boundaries through runtime checks. While such a tool offers

protection from spatial safety violations in programs, we should also note that they

often incur high performance overheads due to the following reasons. a) Array bound

checking incurs extra instructions in the form of memory loads and stores for pointer

metadata and the propagation of metadata between pointers during assignments.

b) In pointer-intensive programs, such additional memory accesses can introduce

memory bandwidth bottleneck, and further degrade system performance. To mitigate

runtime overheads, static techniques to remove redundant checks have been proposed.,

e.g., ABCD [18] builds and solves systems of linear inequalities among bound and

index variables, and WPBound [92] statically computes the potential range of target

pointer values inside loops to avoid Softbound-related checks. As the relationship

among pointer-affecting variables (i.e., variables, whose values can influence pointers)

and array bounds become more complex, static analysis is less effective and usually

cannot remove a high percentage of redundant array bound checks.

In order to reduce such high performance overheads, redundant bound check elim-

ination approaches have been developed [19, 107, 124, 120, 22, 121]. By eliminat-

ing unnecessary bound checks, their corresponding performance overheads can be

avoided. However, note that such redundant array bound check elimination methods

still need to analyze every single pointer deference to compute the constraints involv-

2



ing pointer-related variables, and verify whether bound checks are redundant and be

removed effectively from that location. In the case of applications involving billions of

pointer dereferences, the task of verifying the redundancy of bound checks can still

be prohibitively expensive or impossible in practice.

The usefulness of detecting code clones. Understanding software and detecting

duplicate code fragments is an important task, especially in large code bases [43,

59, 71]. Detecting similar code fragments, usually referred to as code clones, can

be helpful in discovering vulnerabilities, refactoring code and removing unnecessary

code segments. Prior approaches have been proposed for code clone detection that

take advantage of token subsequence matching, text/tree comparison or control flow

graph analysis [12, 58, 55]. While several existing clone detection algorithms target

source code [61, 99, 15, 26, 24], we note that legacy applications exist in several real-

world domains and have been in deployment for a number of years in production

systems including airspace, military and banking (where only binary executables are

available). Also, binary code clone detection is more difficult compared to source

code-level detectors that leverage rich structural information such as syntax trees

and variable names made available through the source lines of program code.

To improve the application of detecting code clones, we introduce domain-specific

code clone detection, which can be used to detect code clones for certain types of ap-

plications. This approach takes advantage of the knowledge within a specific domain

and tailors code clone detection approach based on that domain.

The growing popularity of machine learning-based program binary analy-

sis. Binary code analysis (BCA) allows software engineers to directly analyze binary

executables without access to source code. It is widely used in various domains where

there is limited availability of source code. Today, BCA has become more important

than ever due to legacy programs that have been installed in a variety of environ-

ments, including the Internet of Things (IoT).

Note that it is difficult to directly analyze binary executables when compared to

program source code. First, it is challenging, if not impossible at all, to recover the

original source code or semantic information from the representation of binary code.

3



Second, commercial software and operating systems are usually slightly obfuscated

to deter reverse engineering and unlicensed use. On the other hand, system and

kernel libraries are often optimized to reduce disk space requirements. That is why

machine learning techniques have been widely employed on this domain, since they

can automatically extract features through large amounts of data and have achieved

significant success in the field of source code analysis. Currently, machine learning-

based BCA has become a significant research topic in vulnerability detection, function

recognition, and other areas [108].

1.3 Overview

This dissertation contains eight chapters.

• Chapter 1 motivates the need for improving the robustness and time-to-solution

for software security. It also identifies the significance of having a joint statistical

and formal learning approach for securing software applications.

• Chapter 2 and Chapter 3 demonstrate two novel techniques that make use of

joint learning frameworks for memory protection. Specifically, SIMBER inte-

grates with statistics-guided inference to remove redundant array bound checks

based on runtime profile. Clone-Hunter uses a machine learning-based binary

code clone detection to speedup the elimination of redundant array bound checks

in binary executables.

• In Chapter 4 and Chapter 5, we develop a domain-specific code clone detection

framework. We first provide a novel deep learning-based technique to detect

pointer-related code clones in binary executables. We further demonstrate how

formal method (e.g., Symbolic Execution) can be used to reduce the false posi-

tives introduced by pure machine learning-based code clone detection.

• Chapter 6 presents a novel technique that deploys a deep learning language

model to reduce attack surface in legacy programs in practice.

4



• Chapter 7 lists some related works and how they compare to our proposed

approaches.

• Chapter 8 presents the conclusions of this dissertation work and discusses future

research directions.

5



Chapter 2 Ameliorating Memory Bound Checks through Joint Learning

In this chapter, we demonstrate SIMBER, a simple, model-based inference to

identify redundant bound checks based on runtime statistics from past program exe-

cutions.

2.1 Background

In order to protect software from spatial mem-

0%
20%
40%
60%
80%
100%

Figure 2.1: Runtime overhead for
Softbound compared to original
application

ory/array bound violations, tools such as Soft-

bound [80] have been developed that maintains

metadata such as array boundaries along with

rules for metadata propagation when loading or

storing pointer values. SoftBound stores the base

and bound information of pointers when they are

initialized, then performs the bound checks when

pointers are dereferenced. For example, for an integer pointer ptr to an integer array

intArray[100], SoftBound stores ptr base = &intArray[0] and ptr bound = ptr base +

sizeof(intArray). When checking pointers before they are dereferenced, Softbound

obtains the base and bound information associated with the target pointer ptr, and

does the following: if the value of ptr is less than ptr base, or, if ptr+size is larger

than ptr bound, then the program terminates. A disadvantage for such an approach

is that, it can add performance overheads to application runtime especially due to

unnecessary metadata tracking and pointer checking for benign pointers. Figure 2.1

shows the runtime overhead of SoftBound over an un-instrumented application as

baseline in SPEC2006 benchmarks [1]. Existing works [18, 92] mainly analyze rela-

tionship between variables in source code, build constraint system based on static

analysis and solve the system to determine redundant checks. In SIMBER, a novel

framework is proposed where the redundant bound check elimination is performed

with the guidance of runtime statistics. Even limited runtime statistics can be quite
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powerful when inferring the safety of pointer dereferences.

Consider the example shown in Figure 2.2, where foo() copies the first ‘n’ char-

acters in string src to dest, and pads each remaining position with a given pattern

‘0000’. Pointer dest is dereferenced in the first for loop as well as the while loop

and pointer src is dereferenced only in the first for loop. Softbound checks (denoted

by CHECK SB) will be added before each pointer dereference, e.g., line 7, 8, 18.

For every iteration of the for and while loops, the CHECK SB will be executed thus

producing intensive checks that could be unnecessary.

A static approach such as ABCD [18] that relies on building constraint systems

at various program points can only eliminate redundant checks of ∗(dest + i) in line

7, by identifying constraints i < j (in line 16) and j < dest bound (when checks

are performed in line 18). Such a static analysis is ineffective for ∗(src + i) and

∗(dest + j), which cannot be removed by only constraint solving. As a result, more

than half bound checks still remain in foo(), and bound information of both pointers

needs to be kept and propagated into foo() at runtime.

In this paper, we show that removing all checks in foo() is indeed possible using

SIMBER, where the solution stems from two key observations. First, eliminating

all checks in foo() requires only comparing the range of indices i and j with base

and bound information for dest and src. In fact, function-level complete elimination

of all checks in foo() can be made if imax ≤ dest bound, imax ≤ src bound and

jmax ≤ dest bound. Next, we find that indices i and j only depend on n and length

of src respectively. Due to this positive dependency, imax and jmax are guaranteed

to decrease if n or len become smaller during a future execution. Hence, the checks

are redundant for executions that have smaller n and len if larger values are already

checked.

2.2 SIMBER System Design

SIMBER consists of five major modules: Dependency Graph, Statistical-guided

Inference, Knowledge Base, Runtime checks removal and Check-HotSpot Identifica-

tion. Figure 2.3 presents our system diagram. Given a target pointer, SIMBER

7



1 foo_SB

2 (char *dest ,char *src ,int n)

3 {

4 int i, j;

5
6 for (i=0; i<n; i++)

7 {

8 CHECK_SB(dest+i);

9 CHECK_SB(src+i);

10 *(dest+i) = *(src+i);

11 //add TC1 here

12 }

13
14 int len=strlen(src);

15
16 while (i<len)

17 {

18 for (j=i; j<i+4; j++)

19 {

20 CHECK_SB(dest+j);

21 *(dest+j) = ‘0’;

22 }

23 i+=4;

24 //add TC2 here

25 }

26 }

27 main()

28 {

29 char *dest , *src;

30 int n;

31 ...

32 foo_SB (dest , src , n);

33 ...

34 }

Figure 2.2: Softbound-instrumented source code

Figure 2.3: SIMBER Overview and Key Componets

aims to determine if the pointer dereference needs to be checked. SIMBER collects

pointer-affecting variables which can affect the value of target pointers. If the data

point representing pointer-affecting variables is inside the safe region inferred from

previous executions, then this dereference is guaranteed to be safe.

2.2.1 Dependency Graph Construction

Dependency Graph (DG) is a bi-directed graph G = (V , E), which represent pro-

gram variables as vertices in V and models the dependency between the variables

and array indices/bounds through edges in E . We construct a DG for each function

including all if its pointers and the pointer-affecting variables that may affect the

value of pointer. We add trip count(number of times a branch is taken) as auxiliary

variables to assist the analysis of loops.

Definition 1 (DG-Node). The nodes in dependency graphs are the variables that can

8



affect the pointers such as a) the variables that determine the base of pointers through

pointer initialization, assignment or casting; b) variables that affect the offset and

bound of pointers like array index, pointer increment and variables affecting memory

allocation size; c) Trip Count (TC): the number of times a branch (in which a target

pointer value changes) is taken.

Definition 2 (DG-Edge). DG-Node v1 will have an out-edge to DG-Node v2 if v1

can affect v2.

To construct dependency graph, we need to know the variable declaration types,

statement types and the dependencies of code. Thus, we use Abstract Syntax Tree

(AST) for code analysis. AST is a type of data structures used in compilers, which

can be used for representing the structure of program code. We instrument AST API

from Joern tool [111], a platform for static code analysis of C and C++, which can

generate code property graphs, to construct AST for each function.

Algorithm 1 Dependency graph construction for a given function foo()

1: Input: source code of function foo()
2: Construct AST of function foo()
3: Initialize V = φ, E = φ
4: for each variable v in AST do
5: V = V + {v}
6: for each statement s in AST do
7: for each pair of variables j, k in s do
8: add edge e(j, k) to E according to Remark 2.2.1

9: Output: Dependency-Graph G = (V, E)

Algorithm 1 shows the pseudo code of dependency graph construction for function

foo(). First, we obtain all pointers and their pointer-affecting variables and represent

them as DG-Nodes. Second, for each pair of identified DG-Nodes, we assign a DG-

Edges according to the rules in Remark 2.2.1.

We traverse dependency graph and identify adjacent DG-Nodes that represent the

pointer-affecting variables associated with each target pointer. Each target pointer

will have an entry in the form of (func : ptr, var1, var2, ...,

varn) where func and ptr is the name of the function and pointer, respectively,
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with vari being the name of pointer-affecting variables associated with pointer ptr in

function func. By logging the values of these variables during program executions,

we next build conditions for redundant bound check elimination.

Remark. Edges added into Dependency Graph:

E1 Assignment statements A := B B→A

E2 Function parameters Func(A,B) B↔ A

E3 Loops for.../while... Add TC to Loops

(1) Assignment inside Loops A := B TC →A

E4 Array Indexing A[i] i→A

2.2.2 Statistical-guided Inference

This module builds safe region based on the pointer-affecting variables identified

by dependency graphs and update the safe region through statistical inference from

previous execution. Once the pointer-affecting variables for the target pointer are

extracted in Section 2.2.1, SIMBER collects the value of pointer-affecting variables

from previous execution and produces a data point in Euclidean space with the

coordinates of data point being the value of pointer-affecting variables. The dimension

of the Euclidean space is the number of pointer-affecting variables for the target

pointer. The inference about pointer safety can be derived as follows. Suppose a

data point p from prior execution with pointer-affecting variables vp1, vp2, ..., vpd, is

checked and deemed as safe. Another data point q for the same target pointer but

from another execution, is collected with pointer-affecting variables vq1, vq2, ..., vqd.

If each pointer-affecting variable of q is not larger than that of p, e.g., vq1 ≤ vp1,

vq2 ≤ vp2, ..., vqd ≤ vpd, then the bound checks on the target pointer can be removed

in the execution represented by q.

Intuitively, positively correlated pointer-affecting variables such as array index are

safe when they are smaller and negatively correlated pointer-affecting variables such
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as array bound are safe when they are larger. To apply such inference to negatively

correlated variables, we unify the representation of pointer-affecting variables by con-

verting the variable bound to C-bound where C is a large constant that could be the

maximum value of an unsigned 32-bit integer.

Definition 3 (False Positive). A false positive occurs if a bound check identified as

redundant is indeed necessary and cannot be safely removed.

Definition 4 (Safe Region (SR)). Safe region is an area that is inferred and built from

given data points, such that for any input points within the region, the corresponding

target pointer is guaranteed to have only safe memory access, e.g., all bound checks

related to the pointer can be removed with zero false positive, under the assumption

that point-affecting variables have monotonic linear relationships with pointer bound.

Thus, the Safe Region of a single data point is the enclosed area by projecting

it to each axis, which includes all input points that have smaller (pointer-affecting)

variable values. For example, the safe region of a point (3, 2) is all points with the

first coordinate smaller than 3 and the second coordinate smaller than 2 in E2. We

can obtain the Safe Region of multiple data points by taking the union of the safe

regions generated by each data point.

Given a set S which consists of N data points in ED, where D is the dimension of

data points, we first project point si, i = 1, 2, ..., N , to each axis and build N enclosed

area in ED, e.g., building safe region for each data point. The union of these N safe

regions is the safe region of S, denoted by SR(S). Thus, if a new data point snew

falls inside SR(S), we can find at least one existing point sk from S that dominates

snew. That is to say, the enclosed projection area of sk covers that of snew, which

means for every pointer-affecting variable, the vari of sk is larger than vari of snew.

Hence snew is guaranteed to be safe when accessing the memory. Generally, when the

index/offset variables of new data points are smaller than existing data points or the

bound variable of new data point is larger than existing data point, the new data point

will be determined as safe.

There are data points that can not be determined as safe or not by current safe
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region but later verified as legitimate. Such data points can be used to dynamically

update the safe region. Given current safe region SR(S) and the new coming data

point snew, SR(S) will be updated to SR(S)′ by:

SR′ = SR(S ∪ snew) = SR(S) ∪ SR(snew) = SR(S) ∪ T , (2.1)

where T is the set of safe points inside SR(snew) but outside SR(S). If T is empty

which means SR(snew) is contained by SR(S), then there is no need to update the

safe region SR(S). Otherwise the update of safe region encapsulates two scenarios:

• There are positively correlated pointer-affecting variables (such as array index)

of snew that have larger values than corresponding pointer-affecting variables of

all points in SR(S),

• There are negatively correlated pointer-affecting variables (such as bound of

pointers) of snew that are smaller than those of all points in SR(S)

When one or both of above scenarios occur, the safe region will be enlarged to

provide a higher percentage of redundant bound check elimination.

2.2.3 Knowledge Base

SIMBER stores the safe regions for target pointers in a disjoint memory space

- Knowledge Base. The data in Knowledge Base, in the format of (key, value),

represents the position and the sufficient conditions for removing the redundant bound

checks for each target pointer. Statistical Inference can be triggered to compute

the Safe Region by Knowledge Base when we detect redundant checks, then the

Knowledge Base can be updated as more execution logs are available.

We use SQLite [2] to store our Knowledge Base. We created RemovalCondition

table, which has fields including function names, pointer names and the corresponding

conditions for redundant checks elimination.

If the data points are of one dimension, we store a threshold of pointer-affecting

variable as the safe region for checks elimination. For higher dimensional data points,
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in case the safe region becomes too complex, we can store a pareto optimal safe region

of less data points instead of the union of safe regions.

2.2.4 Runtime Bound Check Elimination

We instrument source code of benchmark programs to add SIMBER() function

which verifies the condition of bound check elimination by comparing pointer-affecting

variables collected from new executions with statistics from knowledge base before

function calls. If the new data point is inside the built safe region, the propagation

of bound information and the bound checks can be removed from this function.

We maintain two versions of Check-Hotspot functions: the original version (which

contains no bound checks) and the softbound instrumented version that has bound

checks. By choosing one of the two versions of the function to be executed based

on the result of SIMBER() verification, we can either skip all bound checks inside

the function (if the condition holds) or proceed to call the original function (if the

condition is not satisfied) where bound checks would be performed as illustrated in

figure 2.2. We avoid bound checks in function level by utilizing the compiling option

“-blacklist” provided by softbound. We put the original names of Check-Hotspot

functions in blacklist and copy each of these functions to another identical function

but with a different name in the source code. SIMBER() verification leads to a tiny

increase of code size by 1.7% since we only do runtime checks removal for Check-

Hotspot functions. Also, the runtime overhead introduced by SIMBER() verification

is small comparing to Softbound checks overhead.

2.2.5 Check-HotSpot Identification

In order to maximize the benefit of our runtime check elimination, we focus on

program Check-Hotspots to minimize SIMBER overhead. Check-Hotspots are func-

tions with high levels of pointer activity that can contribute to high overheads of

bound checks.

We identify Check-HotSpots as follows: a) Program profiling: We use Perf profil-

ing tool [33] to profile two versions of programs: non-instrumented, original version

and softbound-instrumented source code. b) Function-level overhead: We compute
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1 // original foo() function

2 foo

3 (char *dest ,char *src ,int n)

4 {...}

5
6 // softbound instrumented foo()

7 foo_SB

8 (char *dest ,char *src ,int n)

9 {...}

10 main()

11 {

12 char *dest , *src;

13 int n;

14 ...

15 /* determine whether it’s

16 inside the safe region */

17 if(SIMBER(dest ,src ,n))

18 {

19 foo(dest , src , n);

20 }

21 else

22 {

23 foo_SB (dest , src , n)

24 }

25 ...

26 }

Figure 2.4: SIMBER optimized code that checks if bound checks can be removed at
function level

the difference in absolute execution time spent on different functions between non-

instrumented source programs and softbound-instrumented programs to capture the

extra time spent on Softbound-related code. For every function, we calculate the

function-level overhead as the ratio of the time spent on softbound-related code to the

total execution time spent in non-instrumented, original version. c) Identify Check-

HotSpots: In our analysis, we list all of the functions with function-level overhead of

at least 5% as the Check-HotSpots.

2.2.5.1 Example

SIMBER modifies the source code by adding two branches as shown in figure

2.4. The function SIMBER() verifies if the inputs satisfy the condition for check

elimination and choose one of the branches accordingly.

Recall the SoftBound instrumented foo() function from figure 2.2 . We add trip

counts TC1 and TC2 for the for loop in line 5 and while loop in line 14. According to

the construction rules of dependency graph, there should be edges from node TC1 to

both pointer nodes and an edge from TC2 to pointer node dest. Further, the values

of TC1 and TC2 are determined by the exit condition of the loops they are recording,

producing edges from len to TC2 and from n to TC1 in the dependency graph. The

pointer-affecting variables of dest is (len, n, C − dest bound). Suppose C is defined

as 1024 and we have three previous runs with pointer-affecting variables as follows:

(200, 160, 1024 − 256), (180, 120, 1024 − 256) and (150, 140, 1024 − 512), denoted by
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p1, p2, p3 respectively. The safe region for check elimination will be built based on

above three points in a E3 space according to the approach described in section 2.2.2.

In future executions, new data point p with pointer-affecting variables (plen, pn,

pdest bound) are verified by SIMBER() to determine if point p is inside this safe region

in order to make bound check elimination decisions. As long as we can find one point

from p1, p2 and p3 that has pointer-affecting variables larger than those in point p, then

the memory access of pointer foo SB : dest is safe. Safe points could have but are

not limited to the following pointer-affecting values: (190, 150, 512), (140, 130, 512).

SIMBER investigates the relationship among pointer bound and variables that

can affect bound as the same in [18]. It can also be extended to analyze the base

information of pointers.

2.3 Evaluation

We use Softbound as the baseline to evaluate the effectiveness of SIMBER in re-

moving redundant bound checks. All measurements are preformed on a 2.54 GHz Intel

Xeon(R) CPU E5540 8-core server with 12 GByte of main memory. The operating

system is ubuntu 14.04 LTS.

We select several applications from SPEC 2006 benchmark suite [1], which have

high Softbound-overheads, including bzip2, hmmer from SPECint and lbm, sphinx3

from SPECfp. In the evaluation, we first instrument the applications using Softbound

and employ Perf to identify the Check-HotSpot functions in all applications. Similar

to [18], we consider the optimization of upper- and lower-bound checks as two separate

problems. In the following, we focus on eliminating redundant upper-bound checks

while the dual problem of lower-bound checks can be readily solved with the same

approach. For our proposed SIMBER solution, the inputs we used for testing are

from the reference workload provided with SPEC benchmarks. In general, for appli-

cations that do not provide developer supplied representative test cases, we note that

fuzzing techniques [76] [102] can be applied to generate test cases. The policies con-

sidered in our evaluation are a) Softbound instrumentation (denoted as Softbound).

b) SIMBER Optimized Softbound with redundant bounds check removal (denoted as

S.O.S).
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Figure 2.5: Comparison of normalized execution time overhead for Softbound and
S.O.S

Our Check-HotSpot identification identifies 8 functions: bzip2::mainGtU, bzip2::gen

-erateMTFValues and bzip2::BZ2 decompress with total 68.35% performance over-

head in bzip2, hmmer::P7Viterbi with 98.01% performance overhead in hmmer, lbm::

LBM performStreamCollide with 86.19% performance overhead in lbm and sphinx3::

vector gautbl eval logs3, sphinx3::mgau eval and sphinx3::subvq mgau shortlist with

62.58% performance overhead in sphinx3 for Softbound respectively. We note that

some Check-HotSpot functions contribute to high softbound overhead mainly because

they are executed frequently, e.g., bzip2::mainGtU is called more than 8 million times,

despite having small code footprint.

2.3.1 Redundant Checks Removal Evaluation

Figure 2.5 shows the comparison of execution time overhead under Softbound and

S.O.S, normalized by the execution time of original applications without performing

bound checks. In particular, using the same inputs provided by SPEC benchmarks,

we measure the runtime overhead for each benchmark application/Check-HotSpot

functions, before and after SIMBER is enabled. Due to the ability to eliminate re-

dundant bound checks, S.O.S. achieves significant overhead reduction. The highest

reduction achieved by SIMBER is hmmer, with a 86.94% execution time reduction

compared to Softbound. For bzip2, lbm and sphinx3, softbound overheads are de-

creased from 39% to 8%, 55% to 18%, and 31% to 11% with SIMBER overhead 4%,
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Benchmark::Function Name Total bounds checks Redundant checks removed False Positive

bzip2::generateMTFValues 2,928,640 1,440,891 (49.2%) 0 (0.0%)

bzip2::mainGtU 81,143,646 81,136,304 (99.9%) 0 (0.0%)

bzip2::BZ2 decompress 265,215 196,259 (74.0%) 0 (0.0%)

hmmer::P7Viterbi 176,000,379 124,960,267 (71.0%) 0 (0.0%)

lbm::LBM performStreamCollide 128277886 128277886 (100.0%) 0 (0.0%)

sphinx3::vector gautbl eval logs3 2,779,295 2,779,295 (100.0%) 0 (0.0%)

sphinx3::mgau eval 725,899,332 725,899,332 (100.0%) 0 (0.0%)

sphinx3::subvq mgau shortlist 24,704 4,471 (18.1%) 0 (0.0%)

Table 2.1: Number of bounds checks required by Softbound and removed by SIMBER
in each Check-HotSpot function

5% and 2% respectively. Overall, SIMBER achieved an average 65.31% execution

time reduction for Check-HotSpots.

To illustrate SIMBER’s efficiency in eliminating redundant bounds checks, Ta-

ble 2.1 shows the number of total bounds checks required by softbound and the

number of redundant checks removed by SIMBER along with rate of false positive

reported under S.O.S. As shown in Section 2.2.2, SIMBER guarantees zero false posi-

tive, since only redundant bound checks are identified through its statistical inference

and safe region construction.

2.3.2 Evaluating memory overhead and code increase in SIMBER

We note that SIMBER’s memory overhead for storing Knowledge Base and ad-

ditional code instrumentation are modest. The Knowledge Base mainly stores the

constructed safe region. Our experiments show that the worst memory overhead is

only 20KB and the maximum code size increased is less than 5% of the Check-HotSpot

functions. Across all applications, SIMBER has an average 5.28KB memory overhead

with an average 1.7% code increase. Overall, we reduce memory overhead by roughly

50% compared to Softbound memory requirements.
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Time spent in

Function name Softbound S.O.S Execution time Reduction

bzip2::generateMTFValues 77.21s 39.46s 48.89%

bzip2::mainGtU 47.94s 6.26s 86.94%

bzip2::BZ2 decompress 35.58s 9.10s 74.42%

hmmer::P7Viterbi 3701.11s 812.91s 78.04%

lbm::LBM performStreamCollide 1201.79s 407.06s 66.13%

sphinx3::vector gautbl eval logs3 1580.03s 318.10s 79.87%

sphinx3::mgau eval 1582.68s 473.10s 70.11%

sphinx3::subvq mgau shortlist 270.84s 221.81s 18.1%

Table 2.2: Execution time of Check-HotSpot functions under Softbound and SIM-
BER, and the resulting execution time reduction.

2.3.3 Case Studies

For the Check-HotSpot functions from our SPEC applications, Table 2.2 presents

the softbound overhead before and after redundant bounds checks removed by SIM-

BER, as well as the resulting execution time reduction.

bzip2 bzip2 is a compression program to compress and decompress inputs files,

such as TIFF image and source tar file. We identified three Check-HotSpot functions

in bzip2 : bzip2::mainGtU, bzip2::generateMTFValues and bzip2::BZ2 decompress.

We use the function bzip2::mainGtU as an example to illustrate how SIMBER re-

moves redundant checks in detail. Using Dependency Graph Construction from

section 2.2.1, we first identify nblock, i1, and i2 as the pointer-affecting variables

in bzip2::mainGtU function. For each execution, the Statistical Inference module

computes and updates the Safe Region, which results in the following (sufficient)
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conditions for identifying redundant bounds checks in bzip2::mainGtU :

nblock > i1 + 20 or nblock > i2 + 20 (2.2)

Therefore, every time this check-hotspot function is called, SIMBER will trigger run-

time checks removal if the inputs variables’ values: nblock, i1, and i2 satisfy the

conditions above. Because its safe region is one dimensional, the calculation of check

removal conditions is indeed simple and only requires program input variables i1 and

i2 (that are the array indexes) and nblock (that is the input array length). If satis-

fied, the conditions guarantee complete removal of bounds checks in bzip2::mainGtU

function. Our evaluation shows that it is able to eliminate over 99% redundant checks.

For the second Check-HotSpot function bzip2::generateMTFValue, we apply bound

-s checks removal to five different target pointers inside of the function. We observed

that three out of five target pointers, with constant array length, are always safe from

out of bounds accesses. Thus, the safe region only involves one single variable and

SIMBER is able to get the exact removal conditions based a few data points. The

other two target variables’ array length are not constant, the number of dimensions

increases and it is more complex for bound checks removal. In this case, SIMBER

optimization reduces execution time overhead from 77.21s to 39.46s and the average

execution time reduction by 48.89%. We can see this number is near proportional to

the number of checks removed by SIMBER in Table 2.1.

The last Check-HotSpot function bzip2::BZ2 decompress has over 200 lines of

code. Similar to function bzip2::generateMTFValue that it also has five target point-

ers under the same check elimination conditions. SIMBER deploys a function-level

removal for function bzip2::BZ2 decompress. As we can see from Table 2.2, SIMBER

obtained a 74.42% execution time reduction, which is consistent with the number of

redundant bound checks identified by SIMBER presenting in Table 2.1.

hmmer hmmer is a program for searching DNA gene sequences, which imple-

ments the Profile Hidden Markov Models algorithms and involves many double point-

ers operations. There is only one Check-HotSpot function, P7Viterbi, which con-
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tributes over 98% of softbound overhead.

Inside of the hmmer::P7Viterbi function, there are four double pointers: xmx,

mmx, imx and dmx. To cope with double pointers in this function, we consider

the row and column array bounds separately and construct a Safe Region for each

dimension. Besides the 4 double pointers, we also identify conditions for identify-

ing redundant bound checks for another 14 one-dimensional arrays and pointers. In

this case, SIMBER is able to eliminate the most redundant checks for these 14 one-

dimensional arrays due to its simplicity of checks removal conditions’ calculation.

However, for these four double pointer, SIMBER is more conservative to ensure no

false positive and the conditions calculation is more complex than one-dimensional

array. Thus, the softbound overhead is significant reduced from 3701.11s to 812.91s,

representing 78.94% execution time reduction.

lbm lbm is developed to simulate incompressible fluids in 3D and has only 1

Check-HotSpot function: lbm::LBM performStreamCollide. The function has two

pointers (as input variables) with pointer assignments and dereferencing inside of

a for-loop. Thus, under Softbound it suffers from high bounds-check overhead, be-

cause pointer dereferencing occurs repeatedly inside the for-loop, resulting in frequent

bound checks. Using SIMBER, we obtain the bounds check removal conditions for

each pointer dereferencing. Further, combining these conditions, we observed that

the pointer dereferencing always access the same memory address, implying that it

is always safe to remove all bound checks in following executions after bound checks

are performed and successfully passed in the first execution. Thus, SIMBER is able

to eliminate 100% redundant checks with a 66.13% execution time reduction.

sphinx3 Sphinx3 is a well-known speech recognition system, it is the third version

of sphinx derived from sphinx2 [52]. For the first Check-HotSpot function sphinx3::vec

-tor gautbl eval logs3, there are four target pointers inside this function. Due to the

identical access pattern, once we derive the bounds check removal conditions for one

single pointer, it can also be used for all the others, allowing all redundant checks

to be eliminated simultaneously in this function. As shows in Table 2.1, SIMBER

eliminates 100% of redundant checks with a resulting execution time of 318.10s, which

20



achieves the optimal performance.

We observed a similar behavior for the second Check-HotSpot function sphinx3

-::mgau eval. SIMBER achieves 100% redundant bounds check removal with overhead

reduction of 70.11%, from 1582.68s required by softbound to 473.10s after SIMBER’s

redundant bound checks elimination.

The last function sphinx3::subvq mgau shortlist also has four target pointers. SIM-

BER optimized softbound overhead is 221.81s, compared to the original softbound

overhead of 270.84s. For this function, SIMBER only removed 18.1% redundant

checks, which is the lowest in our evaluations.The reason is that this function only

contributes 5% softbound overhead with only a few number of redundant checks.

Moreover, one of the pointers: vqdist inside of this function has indirect memory ac-

cess that its index value is from another pointer: map, which means it uses a pointer’s

value as another pointer’s offset. The dependency graph we constructed cannot rep-

resent the indirect memory access relation between these two pointers, since SIMBER

is not able to remove indirect memory access pointers, it only removes about 18%

bound checks. We note that capturing such memory access dependencies is possible

via extending our dependency graph to model complete memory referencing relations.

We will consider this as future work.

2.4 Summary

In this chapter, we propose SIMBER, a framework integrating with statistics-

guided inference to remove redundant array bound checks based on runtime profile.

Its statistical inference adaptively builds a knowledge base using program execution

logs containing variables that affect pointer values, and then uses this information

to remove redundant array bound checks inserted by popular array bound checkers

such as Softbound. SIMBER reduces performance overhead of Softbound by up to

86.94%, and incurs a modest 1.7% code size increase on average to circumvent redun-

dant bound checks inserted by Softbound. Currently, SIMBER works at function-

level granularity. For future work, we will study ways to deploy SIMBER at a finer

granularity to remove redundant bound checks
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Chapter 3 Accelerating Code Analysis through Joint Learning

Approach

In this chapter, we design Clone-hunter, a practical and scalable framework for

redundant bound check elimination in binary executables.

3.1 Background

Our work is motivated by the key observation that software applications usually

have an abundant number of similar code fragments, called code clones [58, 59]. Two

code fragments can be named as code clones if they are similar to each other based

on a given code similarity matrix (e.g., tree-based code similarity [55]). There is

a high possibility that if checking array bounds is deemed redundant for a certain

code fragment, it can also be removed from its corresponding code clones. Effectively,

instead of analyzing every single pointer, we leverage binary code clone detection

techniques and reduce the time-to-solution in terms of eliminating redundant bound

checks in binaries.

Clone-Hunter performs rapid elimination of redundant bound checks in binary

applications through identifying code clones, and forming clusters of such clones, we

pick random seed samples from each cluster, and with the help of a binary symbolic

executor, determine whether bound checks are necessary on the seed. If deemed

unnecessary, the decision to remove bound checks is replicated to all of the other clone

samples, thereby significantly speeding up the redundant bound check elimination

process. We improve the confidence of our decision to replicate bound check removal

through performing random spot-checks. That is, we randomly select a group of clones

within each cluster and determine whether bound checks can be removed through

symbolic execution. This verifies the soundness of our decision to remove bound

checks in the clone samples within the cluster. Our experimental results show that

our approach is powerful, and can significantly reduce the performance overheads in

eliminating redundant bound checks by up to 45.54% in binary applications.
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addl, mov, cmp, jle

…
for (i ; i < len_1 ; i += 1 )
{

buf_1 [ i ] = “A”;
}

…

…
for (j ; j < len_2 ; j += 2 )
{

buf_2 [ j ] = “B”;
}

…

addl $0x1, -0x4(%rbp)
mov -0x4(%rbp),%eax
cmp -0x8(%rbp),%eax
jle 53<main+0x1b>

addl $0x1, -0x8(%rbp)
mov -0x8(%rbp),%eax
cmp -0xe(%rbp),%eax
jle 1b<main2+0x1b>

assembly code

identical instruction sequence 

source code

Figure 3.1: Motivation example for code normalization

We note that Clone-Hunter presents a new approach that combines statistical

methods (such as machine learning to identify code clones) and formal analysis tools

(such as symbolic execution) to preserve array bound checks where necessary, while

eliminating a vast majority of redundant checks. To the best of our knowledge,

Clone-Hunter is the first proposed framework for redundant bound check elimination

in application binaries. This work is significant because most of the critical binary

applications deployed in military and financial domains need effective memory safety,

but should not be adversely affected by the unnecessary performance overheads im-

posed by redundant checks[30].

3.2 Clone-Hunter System Design

3.2.1 Binary Code Clone Detection

Clone-Hunter accelerates redundant bound checks removal by identifying binary

code clones, and replicates the decision to perform removal of bound checks on the

corresponding code clones.

Vector Embedding: We first disassemble the target binaries, and detect code

clones in the assembly code, which are functionally similar. Note that every machine

instruction in binary executables is a combination of instruction type and the corre-

sponding operands, such as memory references, registers and immediate values. Two

code samples are considered as code clones if they can be deemed functionally similar
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except for some certain constant values, offsets in memory locations, or addresses used

as branch targets. For example, Figure 3.1 shows two functionally identical source

code snippets and their corresponding assembly code. As we can see, their assem-

bly codes share the same instruction sequence but different operands. We perform

normalization to abstract out specific addresses and register names, while preserving

the instruction patterns and the logical functionality of the code regions. This en-

ables more effective gathering of functionally similar code snippets using clustering

algorithms.

mov %r10 ,%rdi
sub %eax,%r9d
mov $0x1,% es i
mov %r8 , %rsp

Original Code

mov REG, REG
sub REG, REG
mov VAL, REG
mov REG, REG

Normalized Code

Figure 3.2: An example illustrating normalization for given a given binary code.

We use a sliding window method to select different code regions for code clone

analysis. The method has two parameters: window size and stride. Window size de-

fines the maximum length of code regions for consideration, while stride denotes the

smallest increment of starting instruction address for subsequent sliding windows.

For each code region, normalization is performed, since two code regions that are

syntactically or semantically equivalent may have identical instruction patterns, but

may have different memory references, registers or constants. Specifically, we use an

abstract operand format with three symbols, namely {MEM,REG, V AL}. Memory

references are replaced by symbol MEM , register names by symbol REG or con-

stant values by symbol V AL. Figure 2.2 shows an example how we normalize the

instructions for a given code region.

Next, we cluster these normalized code regions and identify code clones via ma-

chine learning algorithms. The code regions are embedded into a feature vector space.

In particular, we count the number of occurrences of assembly instructions in each

code region after normalization. Let n be the total number of distinct normalized

instructions. The occurrences of different instructions are collectively stored in a fea-
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Figure 3.3: Normalized assembly code embedded into vector space

ture vector, denoted as Ci = (Ci1 , Ci2 , ..., Cin), where Cik (for k = 1, . . . , n) measures

the occurrence of normalized instruction k in code region i. This process is illustrated

in Figure 3.3 for the code region example shown in Figure 3.2.

In Clone-Hunter, we employ IDA Pro binary disassembler [3] and implement in-

struction normalization and vector embedding in Python. The actual instruction

addresses, register names prior to normalization, and code region’s starting and end-

ing addresses are stored as a query table using SQLite database [2]. This is done to

reverse map normalized code samples back to the binary such that the decision of

removing bound checks can be verified (Section 3.2.2).

Machine Learning-based Clone Detector: After embedding the code regions

into feature vectors, we make use of the Affinity Propagation (AP) clustering algo-

rithm for binary code clone detection. AP clustering is able to determine the number

of clusters among the data points without any a priori knowledge. The embedded

vectors corresponding to different code regions, C1, C2, . . . , Cm are referred to as m

different data points in the clustering algorithm.

AP performs an iterative procedure to update the association between data points

and candidate cluster centers. Let S be a similarity matrix. Its off-diagonal compo-

nents S(i, j) for i 6= j quantify the similarity between two distinct data points, Ci

and Cj, represented as the negated value of the squared euclidean distance.

S(i, j) = −||Ci − Cj||22. (3.1)

where || · ||2 denotes the L-2 vector norm. On the other hand, the diagonal values
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S(k, k) are input parameters (known as the preference) reflecting the likelihood of

data point k being chosen as a cluster center. It is easy to see that if S(i, j) > S(i, k),

then Ci is closer to Cj than Ck.

In the AP algorithm, there are two matrices, Responsibility matrix and Availability

matrix, being updated in each iteration. In particular, R(i, k) measures how well data

point Ck is suited to serve as a candidate cluster center for point Ci, while A(i, k)

reflects how appropriate it is for Ci to choose Ck as its cluster center. The AP

algorithm initializes both matrix to zero, and in each iteration, updates both R(i, k)

and A(i, k) in a coupled fashion, according to

R(i, k) = S(i, k)− max
k′:k′ 6=k

{A(i, k′) + S(i, k′)} (3.2)

A(i, k) = min{0, R(k, k) +
∑

i′ 6∈{i,k}

max{0, R(i′, k)}} (3.3)

Note that the A(i, k) is non-positive due to Equation (3.3). It is updated by the

R(k, k) (measuring the preference for point Ck to serve as a cluster center), plus the

aggregate responsibility points that Ck receives from all other data points (reflecting

its overall popularity as a cluster center among other points). The self-availability

A(k, k) is updated differently, i.e., A(k, k) ←
∑

i′ 6∈{i,k}max{0, R(i′, k)}, without de-

pending on the self-responsibility R(k, k). Finally, the iterations are terminated when

the changes of availabilities and responsibilities are smaller than a pre-defined thresh-

old, implying that the cluster assignments have become stable.

We implement our clustering-based code clone detector in Python using a machine

learning tool Scikit-learn [86]. We instrument its AP clustering API - sklearn.cluster

for our clustering module.

Consolidation of Code Clones: Code Clone Consolidation removes duplicate

and pointer-irrelevant code clones from further consideration. Non-pointer related

clones are not useful in removal of array bound check conditions, and hence are not

considered useful in our study.

We first filter out the pointer-irrelevant code clones by checking if they contain

bound check-related instructions. For example, Softbound-instrumen
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-ted bound checks instructions will contain ”softbound spatial checks” symbol in bi-

nary executables. This enables filtering out these instructions using such symbols.

Also, as described in Section 3.2.1, we use a sliding window based analysis ap-

proach for code clone detection. We note that this can create overlapping windows

resulting in partially overlapping or even duplicated code clones. To address this

problem, we consolidate the code clones by computing the union of overlapping code

clones, i.e., the union of their start and end instruction addresses in assembly code.

Each code clone sample is denoted as a vector (s, e) where s is the starting address

and e is the ending address in the code region. Two code clones, (s, e) and (s′, e′), are

overlapping if they have non-empty intersection, i.e., (s, e)∩(s′, e′) 6= φ. Thus, we use

their union to consolidate them and define a maximum-sized, continuous code snip-

pet, (s, e) ∪ (s′, e′). This consolidation procedure is performed until all consolidated

code clones are non-overlapping.

We implement our Code Clone Consolidation module using Python embedded

into ML-Clone Detector.

3.2.2 Symbolic Execution for Bound Verification

Clone-Hunter utilizes clustering algorithms in Machine Learning to identify binary

code clones, that can be used to assist removal of redundant array bound checks.

Based on our observations from a large number of code samples, it is highly likely

that the redundant bound checks in two code samples can be both removed if they

are functionally equivalent code clones. To formally check if the code clones detected

by Clone-Hunter can safely remove array bound checks, we utilize binary symbolic

execution as our verification tool.

There are three major steps for bound check verification and elimination in Clone-

Hunter:

1. Identification of redundant bound checks: First, we pick a random code

clone sample as seed clone sample in each cluster. We determine the pointer

dereference is safe, and that no memory violation can exist. We deploy binary

symbolic execution to execute the seed clone sample and check whether the
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array bound checks are redundant based on the output from symbolic execution.

We perform partial symbolic execution starting from beginning to end of the

seed clone sample based on its instruction addresses. To deal with possibly

incomplete program state while performing partial symbolic execution, we make

the values of unknown variables in this code region as symbolic variables. If

the pointers in seed clone sample turn out to be safe, then array bound checks

in the corresponding code snippet may be safely removed. If not, we terminate

the array bound verification procedure and apply the final decision as ‘Not

redundant’ to the other code clones in the cluster. That is, the array bound

checker tool-inserted code is kept intact and are not removed.

2. Verification of bound identification: Clustering algorithm cannot offer any

guarantees in terms of ensuring safe bound check removal from all detected code

clones. It is possible that two code snippets are found to be code clones, but

have different bound safety conditions and do not allow simultaneous bound

checks removal. To further improve the accuracy of Clone-Hunter, we select a

random set of code clone samples within the same cluster and perform binary

symbolic execution to check whether the bound checks removal conditions on

these code clones are indeed similar.

3. Applying decision to remove bound checks: If the random code clones

samples turn out to be safe, we apply the final decision as ‘Redundant’ to all of

the code clones within the cluster, and remove the corresponding array bound

checking code inserted by the memory safety tool. On the flip side, if the safety

checks by symbolic executor on random code clones samples fail, then we apply

the final decision as ‘Not redundant’ to all of the clone samples in the cluster.

That is, the array bound checker tool-inserted code is kept intact and are not

removed.

We instrument a binary analysis framework angr [87] for bound verification. We

deploy the binary symbolic executor in angr for a target location to start performing

symbolic execution in binary executables, beginning with the starting address and
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execute instructions within the specific code region.

3.2.3 Removal of Redundant Bound Checks

To delete instructions in binary executables, we deploy a Static Binary Rewriting

tool Dyninst [90]. As we discussed earlier, we store additional information for each

code region including their start and end addresses. We use this information to rewrite

control transfers. We implement our Bound Check Remover in C++ with Dyninst.

Given a code clone as input, we scan each instruction and remove redundant array

bound checks. We obtain optimized binaries as output.

3.3 Evaluation

We provide an overview of our experimental setup, and later present our evaluation

results.

3.3.1 Experiment Setup

We selected 4 different real-world applications: bzip2, hmmer, lbm and sphinx3

from SPEC2006 benchmark suite [1] and use the largest reference input sets to per-

form our study. All experiments are performed on a 2.54 GHz Intel Xeon(R) CPU

E5540 8-core server with 12 GByte of main memory. The operating system is ubuntu

14.04 LTS.

To evaluate the performance of Clone-Hunter, we deploy a runtime bound checker

tool: Softbound [81] that inserts array bound checks into application’s binary exe-

cutable files.

Bench. #Total Static In-
structions

#Clusters #Cloned In-
structions

% Instructions
inside clones

bzip2 14,293 213 4,397 30.76%
sphinx3 203,708 2,771 89,647 44.01%
lbm 2,360 58 712 30.17 %
hmmer 171,376 1,440 69,324 40.45%

Table 3.1: Binary Code Clone Statistics
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Bench. Type Size PSE PSE Clone-Hunter as-
sisted

(Byte) Whole Pro-
gram (sec)

Function-
Level (sec)

SE (sec)

bzip2 File Com-
pression

305K TIME OUT 383.40 153.98

sphinx3 Speech
Recogni-
tion

1.3M TIME OUT 14010.00 6144.30

lbm Comput-
ational
Fluid
Dynmaics

55K 35032.54 1584.40 387.90

hmmer DNA
Sequence
Search

974K TIME OUT 6733.28 957.36

Table 3.2: Comparison of time spent in Clone-Hunter and PSE (Pure Symoblic Exe-
cution), where SE stands for Symbolic Execution time

3.3.2 Effectiveness of Binary Code Clone Detection

We evaluated our binary code clone detector with different window sizes and

stride values. The number of cloned instructions shows the pervasive presence of

code clones throughout the entire program in certain applications. In general, we

observed that there are more code clone samples detected with smaller window sizes.

In particular, our experiments showed that we are able to detect the most code clones

with maximum window size equals to 100 tokens (minimum window size = 2 tokens)

and stride value of 4. Table 3.1 shows, for each benchmark, the statistics about the

number of static instructions, clone clusters, number of instructions in clone samples,

and the overall percentage of program instructions they represent.

As we can see, sphinx3 has the highest coverage of cloned instructions with over

44% and also has the most number of clusters generated from our machine learning

algorithm.

3.3.3 Overhead of Binary Symbolic Execution

We evaluated the overhead of binary symbolic executors for checking redundancy

of array bound checks using Clone-Hunter, and compared the execution time with
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Pure Symbolic Execution over entire binary programs. Our baseline is the binary

analysis framework angr [87].

Table 3.2 presents the runtime overhead due to pure symbolic execution and Clone-

Hunter. We evaluate pure symbolic execution overhead on the entire program and

conduct partial symbolic execution on each function as function-level overhead. We

set up 43,200 seconds (12 hours) as TIME OUT.

In our experiments, we set up a threshold for number of code samples used for

bound verification. Since the smallest cluster contains only 2 code clone samples, we

chose a lower bound as 2 code clone samples. For larger clusters, we pick 30% sampling

rate as upper bound to randomly select code clone samples for spot checks described in

Section 3.2.2. We note that the sampling rate within the cluster is tunable depending

on the user’s needs. The time spent in Clone-Hunter assisted Symbolic Execution is

calculated as the summation of symbolic execution times in the random seed clones

within each cluster. We observe that Clone-Hunter always spends less time than angr

in terms of performance overhead. Notably, angr fails to finish symbolic execution

for bzip2, sphinx3 and hmmer, angr and results in TIME OUT. The time-to-solution

(the time spent to remove bound checks) for Clone-hunter is 90× faster compared to

pure Binary Symbolic Execution in lbm. On the other hand, it is easy to see that

why pure symbolic execution takes more time in Clone-Hunter in sphinx3. Our code

clone detector detected the number of clusters as 2,771, which means we need to pick

at least 5,542 code clones for bound verification. On the other hand, we only need to

pick at least 116 code clones in lbm.

As expected, pure symbolic execution over the entire program results in much

higher runtime for angr, and often results in TIME OUT due to path explosion where

every single program path needs to be explored by the symbolic executor. Some

functions in bzip2 contain more loop operations and function calls, and leads to a

longer symbolic execution time for entire program analysis.
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Figure 3.4: Runtime overhead of softbound-instrumented applications and Clone-
Hunter. The baseline is non-instrumented applications.

3.3.4 Redundant Bound Checks Elimination

Figure 3.4 shows the comparison of Softbound’s runtime execution overhead be-

fore and after using Clone-Hunter (that eliminates redundant bound checks and the

overheads associated with them). Our results show that Clone-Hunter is able to sig-

nificantly reduce the runtime overheads caused by redundant array bound checks in

certain applications such as sphinx3 and lbm to about 20% or less. In other applica-

tions with high runtime overheads, such as hmmer, we observe about 50% reduction

in execution time penalty due to Softbound checks. Clone-Hunter achieves an average

reduction of 34.24% compared to Softbound runtime overheads.

We further evaluate the percentage of false positives in removing redundant bound

checks. We note that a false positive occurs if a bound check is deemed redundant

by Clone-Hunter, but is indeed necessary and cannot be safely removed in reality.

On the flip side, false negatives occur if a bound check is deemed not redundant by

Clone-Hunter but is actually unnecessary. We note that false negatives aren’t security

critical and only results in actually redundant checks being missed by Clone-Hunter.

Therefore, we do not evaluate Clone-Hunter for false negatives in our study.

Table 3.3 shows the percentage of dynamic bound checks eliminated in all 4 bench-

marks, and we observe zero false positives under Clone-Hunter. Clone-Hunter shows
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Benchmark bzip2 hmmer lbm sphinx3
%Dynamic Checks Removed 26.72% 42.31% 30.90% 45.54%

%False Positive Rate 0.00% 0.00% 0.00% 0.00%

Table 3.3: Percentage of Softbound’s dynamic array bound checks removed by Clone-
Hunter

an average 36.37% redundant bound checks elimination ratio, with the highest 45.54%

at sphinx3. Other source code-based redundant bound check elimination approaches,

such as SIMBER [107], report function-level statistics on how many redundant checks

were eliminated. We note that exhaustive analysis of every pointer dereference is still

needed, and may involve high runtime overheads in pointer-intensive applications. To

the best of our knowledge, Clone-Hunter is the first framework for removing redun-

dant array bound checks in binary applications using a scalable machine learning-based

approach.

Note that the percentage of dynamic checks removed by our approach is not

linearly related to runtime overhead. To explain this, we further analyzed the break-

down of Softbound’s execution time. We note that bound checks on load instruction

de-reference has 4× higher runtime penalty compared to the corresponding store in-

struction de-reference check. This is because load instructions are on the critical path

affecting program runtime directly, while store instructions are usually issued and the

processor begins fetching the subsequent instruction even before stores complete. This

is the reason why we observe a better reduction in Softbound overheads if we remove

more load instruction de-reference checks. As we can see, sphinx3 achieves the high-

est reduction in performance overheads than others. We further analyzed sphinx3,

and found that Clone-Hunter removes 62.33% load instruction related checks. Some

functions in lbm are written with a bunch of macro functions within a user defined

switch loop structure. This makes it more burdensome for the source code-based

analyzers, such as SIMBER [107], to expand such macros and unroll the loops within

them.
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3.4 Summary

In this chapter, we presented a novel framework, Clone-Hunter, that integrates

a machine learning based binary code clone detection to speedup elimination of re-

dundant array bound checks in binary executables. We evaluated our approach using

real-world applications from SPEC 2006 benchmark suite. Our results show the time-

to-solution (the time spent to remove bound checks) for Clone-Hunter is 90× faster

compared to pure Binary Symbolic Execution while three out of four applications fail

to finish the execution.

As future work, we plan to explore better ways of finding semantic equivalence

between code clones, and improve the redundant bound check removal capability of

our framework.
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Chapter 4 Domain Specific Code Clone Detection

In this chapter, we introduce Clone-Slicer to identify domain-specific binary code

clones (e.g., pointer-related code) through program slicing. Our approach first elimi-

nates nondomain-related instructions through program slicing, and then applies deep

learning-based algorithm to model code samples as numerical vectors for the remain-

ing binary instructions. We then use clustering algorithms to aggregate code clones,

and use formal analysis to verify validity of code clones.

First, we introduce the definition of code clones and related background.

4.1 Background

Many software engineering tasks, such as refactoring, understanding code quality,

or detecting bugs, require the extraction of syntactically or semantically similar code

fragments (usually referred to as “code clones”). Generally, there are three code clone

types. Type 1: Identical code fragments except for variations in identifier names and

literal values; Type 2: Syntactically similar fragments that differ at the statement

level. The fragments have statements added, modified, or removed with respect to

each other. Type 3: Syntactically dissimilar code fragments that implement the

same functionality.

Code clone detection approaches comprise two phases in general: (i) Transfer

code into an intermediate representation, such as tree-based clone detection declar-

ing feature vectors to represent code fragments [78]; (ii) Deploy suitable similarity

detection algorithms to detect code clones. For instance, clustering algorithms from

machine learning are widely used in code clone detection problems [55]. Some exist-

ing code clone detection techniques apply simple pattern matching (e.g., token-based

code clone detection approach [10, 58, 71]) and leverage a code similarity metric to

measure the amount of similarity between two code samples.
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Figure 4.1: The Kernel of Clone-Slicer

4.2 Clone-Slicer System Design

In this section, we present the overview and details of our system design along with

its modules, and show how our system is implemented. The kernel of Clone-Slicer is

shown in Figure 4.1.

For a given application binary, Clone-Slicer first employs static binary program

slicing and binary rewriting to remove pointer irrelevant instructions. We disassem-

ble binary executables and work with the resulting assembly code (Section 4.2.1). To

detect code clones in binaries, we leverage deep learning-based approach to gener-

ate feature vectors for each instruction sequence and embed them into vector space

(Section 4.2.2). After we obtain feature vectors, we deploy clustering algorithm to

form clusters and find code clone pairs. Note that we also use different code similar-

ity thresholds to further increase the number of detected code clones (more details in

Section 4.2.3). Since we adopt sliding window-based method to generate code regions,

we perform quick post-processing to consolidate overlapping code clones.

We use binary symbolic execution to verify whether the code clone samples are

safe in terms of array bound checks. We deploy a selective sampling method to further

verify the validity of clone detection by selecting a random subset of samples within

the cluster center and boundary regions, and perform binary symbolic execution on

these samples. Section 4.2.4 describes our implementation in more detail.

4.2.1 Domain Specific Program Slicing

In pointer analysis domain, we aim to analyze each pointer in the program to

ensure there is no issue like memory violation. Thus, only some certain types of

instructions are related to the target pointer for further consideration, which can

affect the base, offset or bound information of this pointer. In this paper, we use
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pointer tainting analysis to find such pointer-related instructions at a function-level

granularity. Then, we deploy forward program slicing and binary rewriting to remove

pointer irrelevant instructions.

To address this problem, Clone-Slicer first performs tainting analysis of the binary

code and deploy program slicing in two steps:

1. Lightweight Pointer Tainting. To select pointer related instructions, we

utilize a lightweight pointer tainting mechanism. Typically, there are two types

of instructions need to be tainted: Memory load operations moving data from

memory to register; Store operations moving data from register to memory.We

implemented the pointer tainting based on previous work [27, 96, 97]. Whenever

a program performs memory operations using its data from registers and mem-

ory, such instructions need to be tainted through propagation. In particular,

for each load instruction, the tainting is propagated from memory to register

along the load path. Similarly, for each store instruction, the tainting is propa-

gated from writing to the memory along the store path. Whenever two pointers

are subtracted (e.g., offset computation), the resulting location is un-tainted.

However, addition of two pointers still results in a pointer.

2. Program Slicing. After we obtain all the target pointers and their corre-

sponding pointer-related instructions, we use forward program slicing and bi-

nary rewriting to remove pointer-irrelevant instructions. To build a forward

slice, we utilize control flow graph (CFG) and data dependency graph (DDG)

to understand the dependency among all the tainted instructions. Forward slic-

ing is then constructed starting with tainted targets in the program, and all of

the data flows in this slice end at the target after traversing the entire CFG. We

then are able to select all pointer-related instructions. For those instructions

are pointer irrelevant, we simply rewrite them as nop using binary rewriting

tools.

To remove pointer irrelevant instructions in binary executables, we deployed a Static

Binary Rewriting tool Dyninst [90]. We instrumented a binary analysis framework
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angr [87] and develop a python script to construct CFG and DDG in binaries.

4.2.2 Vector Embedding using Deep Neural Networks

mov %eax 0x40203f push %rbp… …

𝑜"#$ 𝑜" 𝑜"%$ 𝑜"%& 𝑜"%'

𝑈
𝑊

𝑉𝑆"#$

Figure 4.2: An illustration of RNN. The input of each node is a one-hot vector repre-
senting the current term in the disassembly code corpus, and output is a probability
distribution predicting the next term. U , V , W are the parameters in the network,
and st is the hidden layer state vector.

We adopt a sliding window method to select different code regions for code clone

analysis. The approach is implemented with two parameters: window size and stride.

Window size defines the maximum length of code regions for consideration, while

stride denotes the smallest increment of starting instruction address for subsequent

sliding windows. Since we rewrite non-pointer related instructions as nop. We skip

such nop instructions while we generate code regions and only count pointer related

sliced instructions in the code regions.

Next, we leverage Deep Neural Network (DNN) to propose a solution to enable

automated vector embedding. First, to obtain vector embedding for a given code

region (that consists of an instruction sequence), we use Recursive Neural Network

(RNN) to map each term in the binary instructions (e.g., opcodes and operands) to a

vector embedding at lexical level, resulting in a signature vector for the code region.

Embedding binary code at lexical level. Consider a disassembly code corpus

from a target program, with m distinct terms (e.g., different opcodes and operands)

across the whole corpus. We use a RNN with n hidden nodes to convert each term in

the code corpus into an embedding vector U ∈ Rn×m. RNN is known as an effective

approach for modeling sequential information, such as sentences in texts or program
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code. Figure 4.2 presents the training process of our RNN model for binary code. The

input xt ∈ Rm+n at time step t is a one-hot vector representation [94] corresponding

to the current term, e.g., ’exa’. The hidden layer state vector, st ∈ Rn, stores the

current state of the network at step t and captures the information that has already

been calculated. Specifically, it can be obtained using the previous hidden state st−1

at time step t− 1 and the current input xt at time step t:

st = f(Uxt +Wst−1) (4.1)

Function f is a nonlinear function, e.g., tanh.U ∈ Rn×m and W ∈ Rn×n are the shared

parameters in all time steps.

The output, Ot ∈ Rm, is a vector of probabilities predicting the distribution of

the next term in the code corpus [49]. It is calculated based on current state vector

along with another shared parameter V ∈ Rm×n, i.e., :

Ot = softmax(V st) (4.2)

The parameters {U, V,W} are trained using back propagation through time (BPTT)

method in our RNN network [17]. Once RNN training is complete, each term in the

code corpus will have an unique embedding U from Equation (4.1), which comprises

its semantic representation cross the corpus [9]. We compute such embeddings U to

represent the terms of binary instructions at lexical level.

Generating signature at syntax level. We use Autoencoder to combine em-

beddings U ∈ Rnm of the terms from multiple instructions and to obtain a signature

vector for a given code region. Autoencoder is widely used to generate vector space

representations for a pairwise composed terms with two phases: encode phase and

decode phase. It is a simple neural network with one input layer, one hidden layer

and one output layer. As shown in Figure 4.3, we apply Autoencoder recursively

to a sequence of terms, which is known as the Recursive Autoencoder (RAE). Let

x1, x2 ∈ Rnm be the vector embeddings of two different terms, computed using RNN.
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During encode phase, the composed vector embeddings Z(x1, x2) is calculated by:

Z(x1, x2) = f(W1[x1;x2] + b1), (4.3)

where [x1;x2] ∈ R2nm is the concatenation of x1 and x2, W1 ∈ Rnm×2nm is the

parameter matrix in encode phase, and b ∈ Rnm is the offset. Similar to RNN,

f again is a nonlinear function, e.g., tanh. In decode phase, we need to assess if

Z(x1, x2) is well learned by the network to represent the composed terms. Thus, we

reconstruct the the term embeddings by:

O[x1;x2] = g(W2[x1;x2] + b2), (4.4)

where O[x1;x2] is the reconstructed term embeddings , W2 ∈ Rnm×2nm is the pa-

rameter matrix for decode phase, and b2 ∈ Rnm×1 is the offset for decode phase

and the function g is another nonlinear function. For training purpose, the recon-

struction error is used to measure how well we learned term vector embeddings. Let

θ = {W1;W2; b1; b2}. We use the Euclidean distance between the inputs and recon-

structed inputs to measure reconstruction error, i.e.,

E([x1;x2]; θ) = ||[x1;x2]−O[x1;x2]||22 (4.5)

For a given code region with multiple terms and instructions, we adopt a greedy

method [101] to train our RAE and recursively combine pairwise vector embeddings.

The greedy method uses a hierarchical approach – it first combines vector embeddings

of adjacent terms in each instructions, and then combines the results from a sequence

of instructions in an execution path. Figure 4.3 shows an example of how to combine

the vector embeddings to generate a signature vector. It shows a (binary) execution

path with a sequence of 8 instructions. The greedy method is illustrated as a binary

tree. Node 1 gives the vector embedding for the first instruction Inst1 = (push %rbp)

encoded from terms [push; %rbp]. Then, we continue to process the remaining in-

structions, e.g., Nodes 2 and 3, until we derive the final vector embedding (i.e., the
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1  push    %rbp

2  mov %rsp,%rbp

3  sub      $0x10,%rsp

4  lea       -0x4(%rbp),%rax

5  mov %rax,%rsi

6  mov $0x601060,%edi

7  callq 400710

8  mov -0x4(%rbp),%eax 

push

%rbp

mov

%rbp

%rsp

Basic Block Example 

…
…

…
…

Figure 4.3: RAE combines embeddings from different terms and instructions through
a Greedy method.

signature vector) for the instruction sequences of the given execution path.

We used IDA Pro [3] for disassembly and implemented RNN and RAE in python

based on the framework proposed in [68]. For RNN, we develop a python script to

tokenize the disassembly code and use the RNNLM Toolkit [77] to train RNN for

each program, with the hidden layer size equal to 500.

4.2.3 Clustering for Code Clone Detection

We first formally give the definition of code similarity used in our code clone

detection module.

Definition 5. Code Similarity. Given two Abstract Syntax Trees (AST) T1 and

T2, which are representing two code fragments, the code similarity S between them

is defined as following:

S(T1, T2) =
2S

2S + L+R
(4.6)

where S is the number of shared nodes in T1 and T2, L and R are the different nodes

in terms of the node types and number of nodes in T1 and T2 respectively.

Clone Detection: Given a group of feature vectors, we utilize Locality Sensitive
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Hashing (LSH) [32] and near-neighbor querying algorithm based on the euclidean

distance between two vectors to cluster a vector group, where LSH can hash two

similar vectors to the same hash value and helps near-neighbor querying algorithm to

form clusters [55, 46]. Suppose two feature vectors Vi and Vj representing two code

fragments Ci and Cj respectively. The code size (the total number of AST nodes)

are denoted as S(Ci) and S(Cj). The euclidean distance E([Vi;Vj]) and hamming

distance H([Vi;Vj]) between Vi and Vj are calculated as following:

E([Vi;Vj]) = ||Vi − Vj||22 (4.7)

H([Vi;Vj]) = ||Vi − Vj||1 (4.8)

The threshold used for clustering can be approximated using the euclidean dis-

tance and hamming distance between two feature vectors for two ASTs T1 and T2 as

following:

E([Vi;Vj]) ≥
√
H([Vi;Vj]) ≈

√
L+R (4.9)

Based on the definition from Equation 5, we can derive that
√
L+R =√

2(1− S)× (|T1|+ |T2|), where (|T1| + |T2|) ≥ 2 × min(S(Ci), S(Cj)). Then, the

threshold for the clustering procedure is defined as:

T =
√

2(1− S)×min(S(Ci), S(Cj)) (4.10)

Then, given a feature vector group V , the threshold can be simplified as 2(1− S)×

minv∈V ∈ S(v), where we use vector sizes to approximate tree sizes. The S is the

code similarity metric defined from Equation 5. Thus, code fragments Ci and Cj will

be clustered together as code clones under a given code similarity S if E([Vi;Vj]) ≤ T .

Post-Processing: As described in previous section, we deploy a sliding window
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approach to generate code fragments for code clone detection. We note that this

method can potentially create duplicated or overlapping code clones. To address

this problem, we further eliminate such code clones and only preserve the largest

code clones by computing the union of overlapping code clones. Assuming a code

clone sample is denoted as (c1, c2) , where c1 is the starting instruction address of

the code and c2 is the ending instruction address in the code fragment. Give two

code clone samples (c1, c2) and (c′1, c
′
2), we only keep clone sample (c1, c2) iff c′1 ≥ c1

and c′2 ≤ c2. On the other hand, we do not consolidate two code clone samples if

(c1, c2)∩(c′1, c
′
2) 6= (c1, c2)or(c

′
1, c
′
2). This post-processing procedure is performed until

all consolidated code clones are non-overlapping.

We implemented our clustering system with python and provide as a user-friendly

interface in Linux command line, which can provide the options of code similarity S

for users.

4.2.4 Binary Symbolic Execution for Verification

Clone-Slicer makes use of clustering algorithms to identify binary code clones. In

prior work Clone-Hunter [109] , it uses binary code clone detection to assist removal of

redundant array bound checks. Clone-Slicer can be further applied to the same task

to remove redundant bound checks. Similarly, we utilize binary symbolic execution

to formally verify if the code clone samples are memory safe in the same cluster.

There are two major steps for this verification process in Clone-Slicer:

1. Selection of samples for analysis: First, we pick a random code clone sample

from each cluster center as seed code sample. We determine the pointer derefer-

ence is safe, and that no memory violation can exist. We deploy partial binary

symbolic execution to execute the seed code sample, which we perform symbolic

execution starting from beginning to end of the seed code sample based on its

instruction addresses. We check whether the code samples contain memory

violation (e.g. buffer overflow) based on the output from symbolic execution.

Note that this identification process can be further applied to the task like
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redundant bound checks removal. If the pointers in seed code sample turn out

to be safe, then array bound checks may be safely removed. To the contrary,

the bound checks cannot be removed if the output from symbolic execution says

that there are memory violation in the corresponding code snippet. We further

conduct a case study applying the kernel of Clone-Slicer to redundant bound

check removal to show the applications of Clone-Slicer (Section 4.3.4)

2. Verification of memory safety: Since machine learning based clustering

algorithm cannot offer any guarantees in terms of ensuring memory safety from

all detected code clones. It is possible the code clone samples have different

memory safety conditions in the same cluster. To address such issue, Clone-

Slicer further executes a verification process. We select a random set of code

clone samples from the cluster boundary within the same cluster and perform

the same partial binary symbolic execution to check whether the memory safety

conditions on these code clones are indeed similar. If the random code clones

samples also turn out to be safe just as the seed code sample does, then we

assume all the code clone samples are safe in the corresponding cluster.

We instrumented a binary analysis framework angr [87] for our verification mod-

ule. We take advantage of the binary symbolic executor in angr to perform partial

symbolic execution, which is beginning with the starting address and execute instruc-

tions within the specific code region to the end.

4.3 Evaluation

In this section, we provide an overview of our experimental setup. We later present

our evaluation results in terms of the effectiveness of code clone detection using our

approach and the overhead of binary symbolic execution comparing to prior work,

Clone-Hunter [109].
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Bench.
Size

(Byte)
PSE (sec)

Clone-Hunter
SE(sec)

Clone-Slicer
SE(sec)

%Improvem-
ent of time-
to-solution

bzip2 305K 383.4 154.0 103.2 32.96%
lbm 55K 1584.4 387.9 308.5 20.45%
hmmer 974K 6733.3 957.4 710.7 25.76%
sphinx3 1.3M 14010.0 6144.3 5202.2 15.33%

Table 4.1: Comparison of execution time spent in Pure Symbolic Execution, Clone-
Hunter and Clone-Slicer, where PSE stands for Pure Symbolic Execution time and
SE stands for Symbolic Execution time

4.3.1 Experiment Setup

We performed empirical experiments on Clone-Slicer. All experiments are per-

formed on a 2.54 GHz Intel Xeon(R) CPU E5540 8-core server with 12 GByte of

main memory. The operating system is Ubuntu 14.04 LTS. We selected 4 different

real-world applications: hmmer, sphinx3, bzip2 and lbm from SPEC2006 benchmark

suite [1].

4.3.2 Code Clone Detection

We measured the number of code clones that are detected from Clone-Slicer using

domain-specific knowledge (pointer safety, in our case). We conduct experiments

in terms of the following: code clones quantity and the effect of relaxing the code

similarity metric. We use the binary code clone detection algorithm proposed in

Clone-Hunter as our baseline. For a fair comparison, we choose the same configuration

to generate code regions with maximum sliding window size equals to 100 instructions

(minimum window size = 2 instructions) and stride value of 4.

Table 4.4 shows the experiment results for each benchmark, the number of code

clone detected using Clone-Hunter and Clone-Slicer, with code similarity thresholds

equal to 1.00 and 0.90. First, we are able to increase the number of code clone

detection while we relax the code similarity. Second, as we can say, Clone-Slicer is

able to detect more code clones than Clone-Hunter among all the benchmarks, with

the highest up to 43.64% improvement than Clone-Hunter.

45



Benchmark
#Code Clones

%Improvement
Clone-Hunter Clone-Hunter

bzip2 27 37 37.04%

lbm 10 14 40.00%

hmmer 261 352 34.44%

sphinx3 1,488 1,815 21.98%

Code Similarity Threshold, S = 1.00

Benchmark
#Code Clones

%Improvement
Clone-Hunter Clone-Hunter

bzip2 55 79 43.64%

lbm 32 40 25.00%

hmmer 587 769 31.10%

sphinx3 1,988 2,417 21.58%

Code Similarity Threshold, S = 0.90

Table 4.4: Comparison of number of code clones detected by Clone-Hunter and Clone-
Hunter

4.3.3 Overhead of Binary Symbolic Execution

We evaluated the overhead of binary symbolic executors to check for pointer mem-

ory safety using Clone-Slicer, and compared the execution time with Pure Symbolic

Execution on function-level (performing partial symbolic execution on each function

as function-level overhead) and Clone-Hunter. Similarly, our baseline is the binary

analysis framework angr [87].

For a fair comparison, we set up the same threshold for number of code samples

used for verification as mentioned in Clone-Hunter, with a lower bound as 2 code

clone samples (since the smallest cluster only contains two code clone samples) and

30% sampling rate for larger cluster as upper bound to randomly select code clone

samples described in Section 4.2.4. Table 4.1 presents the runtime overhead due

to pure symbolic execution on function-level, Clone-Hunter and Clone-Slicer. We

observe that Clone-Slicer is able to improve the time-to-solution (the time spent
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to verify pointer memory safety) comparing to Clone-Hunter among all the testing

benchmarks, with the highest up to 32.96% improvement of time-to-solution in bzip2.

4.3.4 Case Study: Removing Redundant Array Bound Checks

Binaries 
Instrumented with 

Bound Checks  
Clone-Slicer Code Clones Bound Check Removal Optimized Binaries

Figure 4.4: Application of Clone-Slicer kernel to remove redundant bound checks

As mentioned in previous sections,Clone-Slicer proposes a memory safety verifi-

cation mechanism after detecting code clones which can be further used in different

engineering tasks. Here, we applied the kernel of Clone-Slicer for redundant bound

checks removal task. We selected two representative benchmarks: bzip2 and sphinx3

to present the results. Figure 4.4 shows the process of redundant bound checks re-

moval. We use Clone-Slicer on the top of binaries instrumented with bound checks

and identify code clones with code similarity equaling to 0.90. Clone-Slicer is able to

automatically verify whether bound checks are redundant in the code clones (if bi-

nary symbolic execution raises no memory violation). Afterwards, we deploy a static

binary rewriter Dyninst [90] to remove bound checks in binaries.

To evaluate the performance of Clone-Slicer, we employ a runtime bound checker

tool: Softbound [81] to insert bound checks in the benchmarks. Figure 4.5 shows the
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Figure 4.5: Runtime overhead of softbound-instrumented applications and Clone-
Slicer. The baseline is non-instrumented applications.
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comparison of Softbound’s runtime execution overhead before and after using Clone-

Slicer. Our results show that Clone-Slicer is able to significantly reduce the runtime

overheads caused by redundant array bound checks in both bzip2 and sphinx3. Clone-

Slicer achieves the highest overhead reduction up to 42.25% in sphinx3.

4.4 Summary

Clone-Slicer, a domain-specific code clone detector for binary executables, that

integrates program slicing and a deep learning based binary code clone modeling

framework to improve the number of code clone detected. In particular, we chose

pointer analysis for memory safety as our example domain to demonstrate the useful-

ness of our approach. We evaluated our approach using real-world applications from

SPEC 2006 benchmark suite. Our results show Clone-Slicer is able to detect up to

43.64% code clones compared to prior work and further cut the time-to-solution (the

time spent to verify memory bound safety) for Clone-Slicer by 32.96% compared to

Clone-Hunter.

As future work, we plan to apply Clone-Slicer to different domains and tasks,

such as vulnerable program path discovery, and further improve the capability for

code clone detection through advanced clustering algorithms. We will also study the

cost-benefit tradeoffs of using such advanced algorithms.
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Chapter 5 Joint Learning Approach for Robust Clone Detection

In this chapter, we develop a machine learning and symbolic execution integrated

reasoning engine, Twin-finder, to detect pointer-related code clones in source code.

5.1 Background

Assuming we want to detect code clones in for pointer-related code clones, existing

code clone detection approaches are inefficient for this purpose, due to the consid-

erable amount of pointer-irrelevant codes coupled with the target pointers. Even

the most advanced deep learning approaches currently fail to extract clone samples

where pointer-related codes are intertwined with other codes. Therefore, we need

better alternatives to the current state of the art solutions.

Another issue from current clone detection approaches is that they cannot guaran-

tee zero false positives. To eliminate false positives, it always requires human efforts

for further verification. Here, we analyzed the true positives and the false positives

detected using conventional tree-based code clone detection approach with different

code similarity thresholds. We select sphinx3 as representative applications and the

results are shown in Table 5.1. As we can see, relaxing code similarity threshold can

benefit detection with more code clone samples. However, the ratio of false positives

also increases at the time. If we can eliminate the false positives as many as possible,

We still can enable a better analysis with more clone samples.

5.1.1 Motivating Example

We use real-world false positive and true positive samples in sphinx3 from SPEC20

-06 benchmark reported from a tree-based code clone detector DECKARD [55] as

motiving examples. First, we give the formal definition of false positive which is

defined in Definition 6.

Definition 6. False Positives. In this paper, we define as false positives occur if

a code clone pair is identified as code clones by code clone detection, but two clone
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Similarity #True Positives #False Positives %False Positives

= 1.00 1,495 0 0.00%

≥ 0.95 2,016 203 9.15%

≥ 0.90 2,637 394 13.00%

≥ 0.85 3,017 585 16.24%

≥ 0.80 3,526 903 20.75%

Table 5.1: Clone statistics of true positives and false positives detected from sphinx3
benchmark using DECKARD

1 void dict2pid dump ( . . . ) {
2 . . .
3 f o r ( i = 0 ; i < mdef−>n sseq ; i++) {
4 fpr intf ( fp , ”%5d ” , i ) ;
5 f o r ( j = 0 ; j < mdef n emit state (mdef) ; j++)
6 fpr intf ( fp , ”%5d” , mdef−>sseq [ i ] [ j ] ) ;
7 . .
8 }

Pointer {mdef− > sseq} is intertwined inside of the function

1 int32 gc compute closest cw ( . . . ) {
2 . . .
3 f o r ( codeid=0; codeid< gs−>n code ; codeid+=2){
4 f o r ( cid=0;cid<gs−>n featlen ; cid++)
5 fpr intf ( fp , ”%5d” , gs−>codeword [ codeid ] [ cid ] ) ;
6 . . .
7 }

Pointer {gs− > codeword} is intertwined inside of the function

Figure 5.1: A true positive example
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samples share different bound safety constraints in terms of pointer analysis.

Conventional clone detections, such as combining tree-based approach with ma-

chine learning techniques, introduce a code similarity measurement S and transferring

the code into intermediate representations (e.g. Abstract Syntax Trees (ASTs)) to

detect more code clones. This can help to detect clones that are not identical but still

sharing a similar code structure. Consider the true positive example in Figure 5.1,

in tree-based clone detection, two source files are first parsed and converted into Ab-

stract Syntax Trees (ASTs), where all identifier names and literal values are replaced

by AST nodes. For example, the initialization and exit conditions in for loops are

replaced as Assignment, BinaryOp, UnaryOp and so on. Then a tree pattern is

generated from post-order tree traversal. After, a pairwise tree pattern comparison

can be used to detect such clones. In Figure 5.2 we plot the ASTs for these two

clone samples correspondingly. Both ASTs share a common tree pattern with only

three different nodes appeared in the first code sample. However, more advanced

clone detection approaches have been proposed, which can be summarized into two

methods: graph matching-based and deep neural network (DNN)-based approach.

Unfortunately, they still have inevitable drawbacks. First, given two pieces of code

that differ in only a few statements but with a similar control flow, in the graph

matching-based clone detection, they may be considered as similar, since the major-

ity of the code is identical. On the other hand, current DNN-based clone detection

is only used to detect identical code clone (e.g., with code similarity S = 1.0). Thus,

if the similarity threshold is set as S < 1.0, the outputs will be similar to traditional

tree-based/token-based approach. It is clear to see that the first code sample has an

extra function call fprintf comparing to the second code sample. If we relax the code

similarity threshold, these two code samples are identified code clones.

To proceed with a dependency analysis process, variables{i, j,mdef− > n sseq,

mdef n emit state(mdef)} are identified as pointer-related variables (that can po-

tentially affect the value of pointers) for target pointer {mdef− > sseq} in the first

example (second code example is applied with the same procedure). However, fprintf

cannot affect any values of those variables. Thus, the bound safety conditions can be
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Assignment

For

BinaryOp UnaryOp Compound

FuncCall For

ID ExprList Assignment BinaryOp UnaryOp FuncCall

fprintf

ID Constant ID StructRef

int, 0i i

mdef

ID ID
n_sseq

ID
i

…… … ……

(a) AST for function sphinx3::dict2pid dump

Assignment

For

BinaryOp UnaryOp Compound

For

Assignment BinaryOp UnaryOp FuncCall

ID Constant ID StructRef

int, 0codeid codeid

gs

ID ID

n_code

ID
codeid

…… … …

(b) AST for function sphinx3::gc compute closest cw

Figure 5.2: ASTs generated from the true positive example in Figure 5.1, where the
shady nodes represent the different nodes between two trees

simply derived as these two equations.

{i < length(mdef− > sseq)} ∧ {j < length(∗mdef− > sseq)} (5.1)

{codeid < length(gs− > codeword)} ∧ {cid < length(∗gs− > codeword)} (5.2)

respectively. As we can see, they are identical because the conditions differ only in

variable names. Thus, they are true positives as they share the same pointer safety

conditions.

Even though a relaxed code similarity is able to detect such clones, it can also

introduce a considerable amount of false positives. Figure 5.3 illustrates two false-

positive examples detected in sphinx3 from SPEC2006 benchmark. For the first

example (showing on the left-hand side of the figure), two for loops are identified

as code clones under a certain code similarity threshold. Figure 5.4 shows the ASTs

generated from those two code samples respectively. As we can see, they indeed share

a common tree pattern but with 2 different nodes in shady color. Even though they are

not identical, they still can be identified as similar looking code clones if we relax the

code similarity threshold. Similarly, the second example (showing on the right-hand

side) are sharing a similar code structure but differs only in identifier names. Thus,
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1 int32 mgau eval ( . . . , int32 ∗active )
2 {
3 . . .
4 f o r ( j = 0 ; active [ j ] >= 0 ; j++)
5 {
6 c = active [ j ] ;
7 . . .
8 }

1 void lextree hmm histbin ( lextree t
∗ lextree , . . . )

2 {
3 . . .
4 f o r ( i = 0 ; i < lextree−>n active ; i

++)
5 {
6 ln = l i s t [ i ] ;
7 . . .
8 }

Code clone samples of func-
tion sphinx3::mgau eval and
sphinx3::lextree hmm histbin as pointer
{active} and {list} are intertwined inside
of the functions

1 void fe spec magnitude ( double ∗data ,
int32 data len , double ∗spec ,

int32 f f t s i z e )
2 {
3 . . .
4 IN = (complex ∗) cal loc ( f f t s i ze ,

s i z e o f (complex) ) ;
5 . . .
6 f o r (wrap=0; j<data len ; wrap++, j++)

{
7 IN [wrap ] . r += data [ j ] ;
8 IN [wrap ] . i += 0 . 0 ;
9 }

10 . . .
11 f o r ( j=0; j<f f t s i z e ; j++) {
12 IN [ j ] . r = data [ j ] ;
13 IN [ j ] . i = 0 . 0 ;
14 }
15 . . .
16 }

Code clone samples of function
sphinx3::fe spec magnitude as pointer
{IN} are intertwined inside of two
different for loops of the function

Figure 5.3: False positive examples from sphinx3
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(a) AST for function sphinx3::mgau eval
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For
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lextree

i

ln

list i

ID ID
n_active

(b) AST for function sphinx3::lextree hmm histbin

Figure 5.4: ASTs generated from the firste false positive example in Figure 5.3, where
the shady nodes represent the different nodes between two trees

they can also be identified as code clones. Assuming the target pointers for analysis

are active and list in the first example, we first to obtain pointer related variables

through dependency analysis. It is easy to see that a solely variable j is related to

pointer active but two variables {i, lextree− > n active} are related to list. Thus,

the bound safety conditions are deemed different. As mentioned in Definition 6, these

two code clones will be defined as false positives since they do not share the same

safety conditions. In the second example, the same dependency analysis procedure is

deployed. Variables {wrap, j, data len} are identified as pointer related variables in

the first for loop (line 6-9) and {j, fftsize} are related to second for loop (line 11-14),

they are also false positives which are similar to the first example. One of the reasons

to cause false positives in both cases are relaxed code similarity threshold to seek non-

identical code clones. To formally verify if two code clones are true positives or false

positives, symbolic execution can be applied to obtain memory safety conditions for

further condition comparison. First, all pointer related variables of target pointers

are made as symbolic variables. Symbolic execution can execute for each pointer

dereference and generate array bounds safety conditions. To further eliminate false
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positives, in this paper, we propose a feedback loop to clone detection module through

formal analysis. Once a false positive occur, we compare the ASTs representing two

clone samples to find the different nodes and add numerical weight to those nodes

so that we can recalculate the code similarity between two trees to reduce the false

positives admitted from code clone detection. For example, we note that the different

nodes are {ID, StrucRef} and {ArrayRef, Constant} for the example showing

in Figure 5.4 respectively. Then we can simply add weight to each of those nodes.

With a fixed code similarity, those two code samples will be eliminated in the future.

5.2 Twin-Finder System Design

Isolated 
Code

Program 
Slicing

Code Clone 
Detection

Clone Verification using 
Symbolic Execution

Feedback to Vector Embedding

Cluster

Clone2
Clone1

CloneN

Closed-loop Code Clone DetectionDomain Specific Slicing

Recursive
SamplingSource Code

Figure 5.5: Twin-Finder Overview

In this section, we present details of our Twin-Finder and show how our system

is designed. Two main components of Twin-Finder are shown in Figure 5.5, namely

Domain Specific Slicing and Closed-loop Code Clone Detection.

5.2.1 Domain Specific Slicing

For pointer analysis, we aim to analyze each pointer in the program to ensure

there is no issue like memory violation. Thus, only some certain types of variables

are related to the target pointer for further consideration, which can affect the base,

offset or bound information of this pointer ( such as array index, pointer increment

and other similar types of variables). Here, we name such variables as pointer-related

variables. In this paper, we use dependency analysis to find such pointer-related

variables for each pointer on a function-level granularity. Then, we deploy both

forward and backward program slicing to select related statements containing pointer

and pointer-related variables.
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Analyzing only pointers in the programs requires unrelated codes to be discarded

automatically. However, this selection of relevant codes requires the knowledge of

control flow and dependency of data between pointer-related variables to be taken into

account. To address this problem, Twin-Finder first performs dependency analysis of

the code and deploy program slicing to isolate pointer related code in three steps:

1. Pointer Selection. Given a source code of a program, we utilize the static

code analysis to select all the pointers and collect related information from the

code, including variable name, pointer declaration type (e.g. global variables,

local variables or structures) and the location in the code (defined and used

in which function). In particular, we use a program parser ANTLR[85] and a

static code analysis tool Joren [111] to analyze program syntax. The types of

selected pointers consist of the pointers/arrays defined as local/global variables,

the elements of structures and function parameters. We generate a pointer list

for each program through such pointer selection process, denoted as PtrList =

{p1, p2, . . . , pm}, where pi represents a target pointer for further analysis (for

i = 1, . . . ,m).

2. Dependency Analysis and Lightweight Tainting A directed dependency

graph DG = (N , E) is created for each pointer pi within the function where it

is originally declared. The nodes of the graph N represent the identifiers in the

function and edges E represent the dependency between nodes, which reflects

array indexing, assignments between identifiers and parameters of functions.

As soon as the dependency graph is constructed, we start with the target pointer

pi and traverse the dependency graph to discover all pointer-related variables

in both top-down and bottom-up directions. This tainting propagation process

stops at function boundaries. In the end, we generate the pointer-related vari-

able list pi = {v1, v2, . . . , vn}, where vi represents a pointer-related variable for

pointer pi.

3. Isolating Code through Slicing. After we obtain all the target pointers and

their corresponding pointer-related variables, we use both forward and backward
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program slicing to isolate code into pointer-isolated code. Given a pointer-

related variable list V = {v1, v2, . . . , vn} for a target pointer pi, we first make

use of backward slicing: we construct a backward slice on each variable vi ∈ V

at the end of the function and slice backwards to only add the statements into

slice iff there is data dependency as vi is on left-hand side of assignments or

parameter of functions, which can potentially affect the value of vi, in the slice.

For example, a line of statement vi = x will be kept, but y = vi will be removed

since it cannot change the value of vi. Whenever vi is in a loop (e.g. while/for

loop) or if − else/switch branches, forward slicing is then used to add those

control dependency statements to the slice. After performing program slicing,

we are able to isolate one single function into several pointer separated functions.

For instance, if there are 10 pointers in one function, then there should be 10

pointer isolated functions derived from this function. Note that it is possible

that one statement involves multiple pointers, this type of statements will be

selected in all the involved pointers. In addition, we also need to preserve the

locations (e.g. line of code ) of any selected statements in the original source

code for further analysis.

5.2.2 Code Clone Detection

Twin-Finder leverages a tree-based code clone detection approach, which is orig-

inally proposed by Jiang et al. [55]. It produces the Abstract Syntax Tree (AST)

representation of the source program to detect code clones by comparing subtrees in

ASTs with a specific similarity metric. AST is commonly used tree representation by

compilers to abstract syntactic structure of the code and to analyze the dependencies

between variables and statements. The source code can be parsed by using the static

code analysis mentioned in Section 4.2.1 and generate AST correspondingly. Here, we

adopt the notions of code similarity, feature vectors and other related definitions from

previous works [16, 55]. We deploy such method on the top of our domain specific

slicing module to only detect code clones among pointer isolated codes.

Given a group of feature vectors, we utilize Locality Sensitive Hashing (LSH) [32]
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and near-neighbor querying algorithm based on the euclidean distance between two

vectors to cluster a vector group, where LSH can hash two similar vectors to the same

hash value and helps near-neighbor querying algorithm to form clusters [55, 46]. Then,

given a feature vector group V , the threshold can be simplified as 2(1−S)×minv∈V ∈

S(v), where we use vector sizes to approximate tree sizes. The S is the code similarity

metric, which we have described all the details of such clone detection process in

Section 4.2.3

5.2.3 Clone Verification

To formally check if the code clones detected by Twin-Finder are indeed code

clones in terms of pointer memory safety, we propose a clone verification mechanism

and utilize symbolic execution as our verification tool.

Recursive Sampling To improve the coverage of code clone samples in the clus-

ters, we propose a recursive sampling procedure to select clone samples for clone

verification.

First, we randomly divide one cluster into several smaller clusters. Then we pick

random code clone samples from each smaller cluster center and cluster boundary.

After, we employ symbolic execution in selected samples for further clone verification.

Note that the code clone samples are pointer isolated code generated from program

slicing. Since symbolic execution requires the code completeness, we map the code

clone samples to the original source code locations to perform partial symbolic exe-

cution.

Clone Verification Clustering algorithm cannot offer any guarantees in terms of

ensuring safe pointer access from all detected code clones. It is possible that two

code fragments are clustered together, but have different bound safety conditions,

especially if we use a smaller code similarity. To further improve the clone detection

accuracy of Twin-finder, we design a clone verification method to check whether the

code clone samples are true clones.
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Let X = {p1, p2, ..., pn} be a finite set of pointer-related variables as symbolic

variables, while symbolic executing a program all possible paths, each path maintains

a set of constraints called the path conditions which must hold on the execution

of that path. First, we define an atomic condition, AC(), over X is in the form

of f(p1, p2, ..., pn), where f is a function that performs the integer operations on

O ∈ {>,<,≥,≤,=}. Similarly, a condition over X can be a Boolean combination of

path conditions over X.

Definition 7. Constraints. An execution path can be represented as a sequence of

basic blocks. Thus, path conditions can be computed as AC(b0)∧AC(b1)...∧AC(bn)

where each AC(bi) in AC represents a sequence of atomic condition in the basic block

bn

Example. Back to the example mentioned in Figure 1. The code fragment of

function sphinx3::dict2pid dump includes two for loops, representing two basic blocks

(b1, b2). Thus, there are two paths in this code fragment. For the first for loop, we can

derive an atomic condition AC(b1) = {i < length(mdef− > sseq)}. Similarly, we can

get the second condition of the second for loop as AC(b2) = {j < length(∗mdef− >

sseq)}. Finally, the path conditions for this code can be computed as AC(b1)∧AC(b2).

Give a clone pair sampled from the previous step, we perform symbolic execution

from beginning to the end of clone samples in original source code based on the

locations information (line numbers of code). The symbolic executor is used to explore

all the possible paths existing in the code fragment. To deal with possibly incomplete

program state while performing partial symbolic execution, we only make the pointer-

related variables in such code fragment as symbolic variables. We collect all the

possible constraints(defined in Definition 7) for each clone sample after symbolic

execution is terminated.

Then the verification process is straightforward. A constraint solver can be used to

check the satisfiability and syntactic equivalence of logical formulas over one or more

theories. In specific, the current state-of-art symbolic execution approaches, such as

KLEE [20], use SMT-Lib string constraints format with BitVector theory [14, 45]. The
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operations in BitVector theory are modeling array and variables on bit-vectors instead

of integer values. For example, (declare − fun a() (Array( BitV ec32)( BitV ec8)))

stands for an array with symbolic variable name a, total length as 32 bits and return

value as 8 bit long. Thus, this array has 32/8 = 4 elements (Here, we omit the details

of BitVector theory as this is not the focus of this verification process.)

The steps of this verification process are summarized as follows:

• Matching the Variables: To verify if two sets of constraints are equal, we

omit the difference of variable names. However, we need to match the variables

between two constraints based on their dependency of target pointers. For

instance, two pointers dereferences a[i] =′ A′ and b[j] =′ B′, the indexing

variables are i and j respectively. During symbolic execution, they both will be

replaced as symbolic variables, and we do not care much about the variables

names. Thus, we can derive a precondition that i is equivalent to j for further

analysis. This prior knowledge can be easily obtained through dependency

analysis mentioned in Section 4.

• Simplification: Given a memory safety condition S, it can contain multi-

ple linear inequalities. For simplicity, the first step is to find possibly sim-

pler expression S ′, which is equivalent to S. For example, a linear inequality

(x− n < 0) ∧ (x− z > 0), after simplification, we can get (z < x < n).

• Checking the Equivalence:To prove two sets of constraints S1 == S2, we

only need to prove the negation of S1 == S2 is unsatisfiable.

Example. Assuming we have two sets of constraints, S1 = (x1 ≥ 4) ∧ (x2 ≥ 5) and

S2 = (x3 ≥ 4) ∧ (x4 ≥ 5), where x1 is equivalent to x2 and x3 is equivalent to x4.

We then can solve that Not(S1 == S2) is unsatisfiable. Thus, S1 == S2.

5.2.4 Formal Feedback to Vector Embedding

While using the formal method to verify if the two clone samples are true clones, we

provide a feedback process to the vector embedding in code clone detection to reduce
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Algorithm 2 Algorithm for Feedback to Vector Embedding

1: Input:: Code Clone Samples Ci, Cj

2: Corresponding AST sub-trees: Si, Sj

3: Corresponding Feature Vectors: Vi, Vj
4: Current Code similarity threshold: S
5: Longest Common Subsequence function: LCS ()
6: Output:: Optimized Feature vectors: Oi, Oj

7: Initialization:
8: Oi, Oj = Vi, Vj
9: D = LCS(Si, Sj)

10: if Ci and Cj share same constraints then
11: Si = RemoveSubtrees(Si −D)
12: Sj = RemoveSubtrees(Sj −D)
13: On∈{i;j} = V ectornize(Sn∈{i;j});
14: else
15: T=[]
16: Uncommon Subtrees = (Si −D) + (Sj −D)
17: T.append(Uncommon Subtrees)
18: for t in T do
19: if EuclideanDistance(Oi, Oj) < S then
20: break;

21: t = d.index
22: On∈{i;j}[t] = On∈{i;j}[t] ∗ δ; where δ > 1.0

false positives. Since the code clone detection is based on the euclidean distance

between data points over a code similarity threshold, the feedback is a mechanism

to tune the feature vectors weights. Based on the constraints we obtained from

symbolic execution, we are able to determine which type of variables or statements

causing different constraints between two clone samples. We use such information to

guide feedback to vector embedding in clone detection module. Now we describe a

feedback mechanism to vector embedding in code clone detection if we observe false

positives verified through the execution in Section 5.2.3.

The general idea of our feedback is that we analyze the difference between two

ASTs by comparing two trees and find the differences between them. Then we add

numerical weights to the feature vectors of two code clones to either increase or

decrease the distance between them based on the outputs from the clone verification

step. Once the weight is added, we re-execute the clustering algorithm in code clone
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detection module over the same code similarity threshold configuration. Note that

this procedure can be executed in many iterations as long as we observe false positives

from clone verification step. Furthermore, we can expect that such false positives are

eliminated due to unsatisfied vector distance and out of cluster boundary.

To tune and adjust the weights in the feature vectors, we design an algorithm

for our feedback. Algorithm 3 shows the steps of feedback in detail. Given a code

similarity threshold S, It takes two clone samples (Ci, Cj), corresponding AST sub-

trees (Si, Sj) and feature vectors (Vi, Vj) representing two code clones as inputs (line

1-4 in Algorithm 2), and we utilize a helper function LCS() to find the Longest

Common Subsequence between two lists of sub-trees.

When the code clone samples are symbolically executed, we start by checking if

the constraints, obtained from previous formal verification step, are equivalent. Then

the feedback procedure after is conducted as two folds:

(1) If they indeed share the same constraints, we remove the uncommon subtrees

(where can be treated as numerical weight as 0) as we now know they will not affect

the output of constraints (line 10-13). This process is to make sure the remaining

trees are identical so that they will be detected as code clones in the future.

(2) If they have different constraints, we obtain the uncommon subtrees from

(Si, Sj)(line 15-17) and add numerical weight, δ > 1.0, one by one. In terms of the

evolution of the weight adjustment, each dimension in the feature vectors represents

a specific type of AST nodes and is the occurrences of this node type. Thus, we

iterate the list and we trace back to the vector using the vector index to adjust by

multiplying the weight δ for that specific location correspondingly (line 18-22). We

initialize the weight δ as a random number which is greater than 1.0 and re-calculate

the euclidean distance between two feature vectors. We repeat this process until the

distance is out of current code similarity threshold S (line 19-20). This is designed

to guarantee that these two code samples will not be considered as code clones in the

future.

Finally, the feedback can run in a loop fashion to eliminate false positives. The

termination condition for our feedback loop is that no more false positives can be
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further eliminated or observed.

Example: Here, we give an example to illustrate how our formal feedback works.

We reuse the false positive example showing in Figure 5.4. As we have described in

Section 5.1.1, these two trees share a common tree pattern but with 2 different nodes

(showing in shady color) out of 17 total nodes. Assuming the feature vectors are

< 7, 2, 2, 2, 0, 1, 1, 1, 1 > and < 8, 1, 1, 2, 1, 1, 1, 1, 1 > respectively, where the ordered

dimensions of vectors are occurrence counts of the relevant nodes: ID, Constant,

ArrayRef, Assignment, StrucRef, BinaryOp, UnaryOp, Compound, and

For. Based on the threshold, these two code fragments will be identified as clones

if S = 0.75. During the feedback loop, we first identify these 2 different nodes in

each tree by finding the LCS. Assuming we initial the weight δ = 2 and add it

to the corresponding dimension in the feature vectors, we can obtain the updated

feature vectors as < 7, 1 + 1 × δ, 1 + 1 × δ, 1 + 1 × δ, 0, 1, 1, 1, 1 > and < 7 + 1 ×

δ, 1, 1, 2, 1 × δ, 1, 1, 1, 1 >. We then re-calculate the euclidean distance of these two

updated feature vectors, and they will be no longer satisfied within the threshold√
2(1− S)×min(S(Ci), S(Cj)). Thus, we can eliminate such false positives in the

future.

It is also worth mentioning that our feedback algorithm has enabled a closed-loop

learning-based operation to improve the scalability of our pointer-related code clone

detection framework. Because this method adds benefits from formal analysis and can

significantly reduce the false positives without human efforts involved. Here, we use

pointer analysis as an example to explain our framework. In addition, our feedback

algorithm can be adjusted to different domains with user-defined policies.
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5.3 Evaluation
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Figure 5.6: The amount of code clones detected in thttpd and links from Twin-
Finder with the number of iterations for feedback until converge after relaxing the
code similarity from 0.70 to 1.00
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Figure 5.7: Accumulated percentage of false positives eliminated by Twin-Finder with
code similarity set to 0.70

This section presents a detailed evaluation results of Twin-Finder against a tree-

based code clone detection tool DECKARD [55] in terms of code clone detection, and

conduct several case studies for applications security analysis.

5.3.1 Experiment Setup

We performed empirical experiments on Twin-Finder. We selected 7 different

benchmarks from real-world applications: bzip2, hmmer and sphinx3 from SPEC2006

benchmark suite [1]; man and gzip from Bugbench [75]; thttpd-2.23beat1 [4], a well-

known lightweight sever and a lightweight browser links-2.14 [95]. All experiments
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are performed on a 2.54 GHz Intel Xeon(R) CPU E5540 8-core server with 12 GByte

of main memory. The operating system is ubuntu 14.04 LTS.

To configure DECKARD, we used the parameter settings proposed by Jiang et

al. [55], setting minimum token number (minT) as 20, stride to infinite, and code

similarity is set between 0.70 and 1.0.

5.3.2 Code Clones Detection

Benchmark Program Size #Code clones #Code clones % Code clones

(LoC) without slicing and feedback Our approach

bzip2 5,904 432 1,084 150.92%

sphinx3 13,207 1,047 3,546 238.68%

hmmer 20,721 1,238 4,391 254.68%

thttpd 7,956 611 1,398 128.80%

gzip 5,225 36 365 913.89%

man 3,028 47 443 842.55%

links 178,441 3,007 9,809 226.21%

Table 5.2: Comparison of number of code clones detected before and after using our
approach

Benchmark
Pointer related Code

LoC

Clone Detection w/ DECKARD Clone Detection w/ Our Approach

# Cloned LoC % Cloned LoC # D.S LoC % D.S LoC

bzip2 3,279 1,066 32.51% 2,038 62.15%

sphinx3 9,519 3,073 32.28% 7,224 75.89%

hmmer 11,635 3,163 27.19% 6,929 59.55%

thttpd 4,390 1,279 29.13% 2,267 51.64%

gzip 2,289 219 9.57% 919 40.15%

man 1,683 248 14.74% 826 49.08%

links 28,334 6,429 22.69% 18,334 64.71%

Table 5.3: Comparison of code clone coverage between DECKARD and our approach
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We measure code clone quantity by the number of code clones that are detected

before and after we use Twin-Finder for pointer analysis purpose. We conduct two

experiments in terms of the following: code clones quantity, the flexibility of code

similarity configuration and false positives analysis.

Benchmark
# True Code Clones # Feedback Iterations

S = 1.0 S = 0.90 S = 0.80 S = 1.0 S = 0.90 S = 0.80

bzip2 683 858 1,084 1 5 10

sphinx3 1,495 2,645 3,546 3 10 16

hmmer 2,725 3,760 4,391 4 12 21

man 102 265 443 1 5 12

gzip 66 183 365 1 4 11

Table 5.4: Statistics of code clones detected from Twin-Finder with the number of
iterations for feedback until converge where S is the code similarity

We evaluated the effectiveness of Twin-Finder to show the optimal results Twin-

Finder is able to achieve. The code similarity is set as 0.80 with feedback enabled

to eliminate false positives until converge (no more false positives can be observed

or eliminated) in the first experiment. Table 5.2 shows the size of the corresponding

percentage of more code clones detected using our approach. As we can see, the

results show that Twin-Finder is able to detect 393.68% more code clones on average

compared to the clone detection without slicing and feedback, with the lowest as

128.80% in thttpd and highest up to 913.89% in gzip. Note that our approach achieves

the best performance in two smaller benchmark gzip and man. That is because the

number of identical code clones is relatively small in both applications (36 in gzip and

47 in man respectively). While using our approach, we harness the power of program

slicing and feedback using formal analysis, which allows us to detect more true code

clones.

Furthermore, we add an additional experiment to address the clone coverage. The
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goal for clone coverage is, with our optimal configuration, what fraction of a program

is detected as cloned code. In this case, we only evaluated the coverage of code

clones detected in terms of pointer-related code. We measured the total number of

pointer-related code lines cross the entire program and the detected clone lines using

DECKARD and our approach as shown in Table 5.3. It presents the total detected

pointer related cloned lines, named as Domain Specific LoC (D.S LoC), using our

approach. The percentage of D.S LoC ranges from 40.15% to 75.89%, while for

DECKARD the number ranges from 9.57% to 32.51%. The results show It is difficult

to directly compare the coverage for different applications, because such results are

usually sensitive to: (1) the type of application, such as sphinx3 has intensive pointer

access, thus it has the highest clone coverage using our approach; (2) the different

configurations may lead to different results, since here we set up code similarity as

0.80. However, this experiment is to show that there is a considerable amount of

code clones in large code bases in general and our approach can effectively detect

such clones and outperforms previous approaches.

In the second experiment, we relaxed the code similarity threshold from 0.70 to

1.00 to show our approach is capable to detect many more code clones within a flexible

user-defined configuration. However, it is reasonable to expect more false positives to

occur while we are using smaller code similarity. Moreover, we implemented our code

clone detection based on DECKARD, which is a syntax tree-based tool and may

report semantically different but syntactically similar code as clones causing more

false positives. Note that false negatives occur if tow clone samples have different

constraints but are actually the same expression after being solved by the constraint

solver. However, false negatives only result in actually true clones being missed by

Twin-Finder and are not critical in security perspective. Thus, we do not evaluate

Twin-Finder for false negatives in our study.

To tackle such false positives issue, we enabled a closed-loop feedback to vector

embedding as mentioned in the previous section. Thus, we analyzed the effective-

ness of our feedback mechanism in terms of eliminating the false positives. In this

experiment, we applied our feedback as soon as we observed two code clone samples

67



having different constraints obtained from symbolic execution through our clone ver-

ification process. We executed several iterations of our feedback until the percentage

of false positives converged (no more false positives can be eliminated or observed).

Figure 5.6 presents the number of true code clones detected in thttpd and links from

our approach (drawn as the red line in each figure) and the number of iterations for

feedback needed to converge (shown as the bar plot in each figure) correspondingly.

We also repeated the same experiments with three different code similarities setups

in other smaller benchmarks. Table 5.4 shows the results. As expected, it takes

more iterations for the feedback to converge with smaller code similarity among all

benchmarks, and we are still able to detect more true code clones while we reduce

the code similarity. However, the results show there is no significant improvement

in terms of the number of true code clones increased after code similarity is set as

smaller than 0.80. As mentioned in previous section, the code similarity is defined as

S(T1, T2) = 2S
2S+L+R

, where S is the number of shared AST nodes in T1 and T2, L and

R are the different nodes in two code clone samples. At least 20% of the AST nodes

are different while the code similarity equal to 0.80.

5.3.3 Feedback for False Positives Elimination

We analyzed the number of false positives that could be eliminated by our ap-

proach. Here, we chose bzip, thttpd and Links as representative applications to show

the results. Figure 5.7 presents the accumulated percentage of false positives elimi-

nated by Twin-Finder in each iteration with Code Similarity set to 0.7. Here, we are

able to eliminate 99.32%, 89.0%, and 86.74% of false positives in bzip2, thttpd and

Links respectively.

The results show our feedback mechanism can effectively remove the majority of

false positives admitted from code clone detection. The performance of our feedback

is sensitive to different programs due to different program behaviors and program

size. As the results show, more feedback iterations are needed for larger programs

in general (e.g. 26 iterations for bzip2 to converge while 48 iterations for Links,

as Links is much larger than bzip2). On the other hand, the number of iterations
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can also be affected by our clone verification module since we use random sampling

approach. Based on the experiment results, we cannot normalize a common removal

ratio pattern across different programs. For instance, 29.83% of false positives can

be eliminated at the first iteration for bzip2, the number is only 13.35% for thttpd

instead. Finally, our feedback may not be able to remove 100% of false positives, that

is because there are several special cases that we cannot remove them using current

implementation, such as multiple branches or indirect memory access with the value

of array index derived from another pointer.

5.3.4 Bug findings

One benefit of our approach is to use a clone-based approach to enable a rapid

security analysis. In this experiment, we use Twin-Finder to detect potential vul-

nerabilities existing in the applications. We use Links version 2.14 and LibreOffice

version 6.0.0.1 as representative benchmarks. In particular, we discovered 6 unique

and unreported bugs in Links, including 3 memory leaks and 3 null dereference vul-

nerabilities. five out of six of the bugs have not been found before, and one of the

memory leaks bug has been silently patched in the newer version of Links.

Table 5.5 shows the details of these bugs found by our method. Here we show

three types of bug examples, null dereference bugs, memory leak and buffer overflow.

5.4 Summary

In this chapter, we presented a novel framework, Twin-Finder, a pointer-related

code clone detector for source code, that can automatically identify related codes

from large code bases and perform code clone detection to enable a rapid security

analysis. We evaluated our approach using real-world applications, such as SPEC

2006 benchmark suite. Our results show Twin-Finder is able to detect up to 9×

more code clones comparing to conventional code clone detection approaches. We

conduct security case studies for memory safety. In particular, we show that using

Twin-Finder we find 6 unreported bugs in Links version 2.14 and one public patched
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Bug
Type

Source
File

Function Name Pointer
Name

Bug Re-
port

Exploitation

Null
Derefer-
ence

Links/l-
anguage.c

get language from lang lang Not
Reported

All three cases use
memory allocation
functions, which
can be return NULL
to indicate an error
status.

Null
Derefer-
ence

Links/l-
anguage.c

get language from lang p Not
Reported

Null
Derefer-
ence

Links/c-
onnect.c

make connection host Not
Reported

This function is being
called in a for loop to
construct network con
-nection, which can p
-otentially be frequent
-ly called and overflow
the memory space.

Memory
Leak

Links/-
ftp.c

ftp logged rb Not
Reported

All those three functi
-ons use dynamic allo
-cations, however ne
-ver being freed after.

Memory
Leak

Links/-
bfu.c

do tab compl items->-
text

Silently
patched

Memory
Leak

Links/-
terminal.c

add empty window ewd Not
Reported

Buffer
Overflow

source/filt
-er/ww8/
-ww8tool
-bar.cxx

SwCTBWrapper::Read rCustom-
izations

Publicly
patched

This is a heap buffer
overflow, which has
been reported by
CVE-2018-10120

Table 5.5: Using Twin-Finder to test Links-1.4 and libreoffice-6.0.0.1

bug in libreOffice-6.0.0.1.
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Chapter 6 Integrated Deep Learning Approach for Attack Surface

Reduction in Program Binaries

In this chapter, we propose Hecate, a framework that leverages dynamic execu-

tion and trace to create customized, self-contained programs to minimize the corre-

sponding attack surface. A key feature of Hecate is that it makes novel use of deep

learning to identify program and communication-related features in binary in an auto-

mated fashion. It employs the test-cases to invoke different program features, applies

trace splicing to extract dynamic execution paths (of invoked features) from the com-

plete instruction trace, maps the paths to owner functions in the binary code, finally

identifies program features (as targets for customization) through their constituent

functions.

6.1 Background

Software customization comprises two tasks: (i) identifying program features from

a binary executable by analyzing and mapping dynamic instruction trace that invokes

different features, and (ii) tailoring and rewriting the binary, in accordance with user

needs, to create customized, self-contained programs.

The goal of Hecate’s feature identification is to map dynamic instruction trace

(relating to different features) to feature-constituent functions in binary. Ideally, it is

possible to log the virtual addresses of each executed instruction. Then we can get

the memory layout of each binary module (e.g., through /proc/pid/ma ps on Linux).

With these two pieces of information, we could uniquely map a dynamic trace back

to static code. However, there are some scenarios in practice where the address is

not available. For example, commercial software and operating system are usually

slightly obfuscated to deter reverse engineering and unlicensed use. Further, system

and kernel libraries are often optimized to reduce disk space requirements[48, 106]. It

may be difficult to even locate function entry points (FEPs) since the full symbol or

debug information is usually not available in optimized binaries [13]. Thus, we have to
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Figure 6.1: An illustrative example of feature identification by mapping dynamic
instruction trace to functions in static code from OpenSSL.

utilize code patterns to match dynamic traces. This is a challenging problem because

dynamic trace and static code often have different patterns and cannot be accurately

matched through techniques such as execution path alignment [79]. Consider the

example shown in Figure 6.1 with dynamic instruction trace and binary code snippet

from OpenSSL. First, as Arrows 1 and 2 indicate, the same basic block from dynamic

instruction trace could have multiple matches in the binary, and cannot be uniquely

mapped to a single function. Second, the same binary instruction can be interpreted

into different verbal presentations, in which case different disassemblers will give

different outputs. As Arrow 3 indicates, the binary value 77H can be translated to the

opcode either “ja” (jump above) or “jnbe” (jump not below), causing direct pattern

matching to fail. Further, when loops and recursive function calls exist in the binary,

it is difficult to correctly identify these structures in dynamic instruction trace. We

conducted an experiment using a substring matching approach to map the opcode

pattern between instruction traces and binary code. Examining two applications,

bzip2 and OpenSSL, function mapping techbniques only achieves an average accuracy

of 76.31% and 73.02%, respectively.
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6.1.1 Problem Statement

To introduce our problem of software customization, we first need a definition of

what a feature is in binary code.

Definition 8. Function. The term function in this paper particularly refers to the

function identified in static binary code, which is a collection of basic blocks with one

entry point (i.e., the next instruction after a call instruction) and possibly multiple

exit points (i.e., a return or interrupt instruction). All code reachable from the entry

point before reaching any exit point constitutes the body of the assembly function.

For a given program, we use F = {fk, ∀k} to denote the set of all functions existing

in the static binary code.

Definition 9. Feature. A program feature is defined as a set of constituent functions

– denoted by Fi = {f 1
i , f

2
i , ..., f

n
i } ⊆ F – which uniquely represent an independent,

well-contained operation, utility, or capability of the program. A feature at the binary

level may not always correspond to a software module at the source level. We use

T = {Fi, ∀i} to denote the set of all available features in the program.

The goal of Hecate is that, given a program binary, test cases invoking program

features, and user’s customization requirement (i.e., a set of desire features T̂ ⊆ T ),

it will produce a modified binary that contains the minimum set of functions to

satisfy the user’s requirement and to support all desired features in T̂ . We perform

the customization after abstracting the program into Control Flow Graph (CFG).

From the perspective of CFG, the customized binary is composed of a CFG that is a

subgraph of the original program CFG.

6.2 Hecate System Design

6.2.1 Approach and System Architecture

Hecate consists of two major modules: feature identification and feature tailoring.

Its system architecture is illustrated in Figure 6.2. Users provide their requirements
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Figure 6.2: Hecate System Diagram

(i.e., a list of features that are needed) as well as test-cases to reach different fea-

tures. Hecate takes the program binary and customization requirement as inputs and

generate a customized binary consisting of only the desired features. For feature iden-

tification, Hecate first builds a function library based on static analysis of program

binary, including dynamically linked libraries. Byteweight, a learning-based binary

analysis tool, is employed to identify function body directly from static program bina-

ries. Next, execute the program using the test-cases provided, analyze the dynamic

instruction trace, extract execution paths relating to different features (or feature

combinations), and maps them to constituent-functions in the program binary.

The feature tailoring module is explained in section 6.2.3. It modularizes pro-

gram features through their constituent functions and modifies the program binary

in accordance with user’s customization requirements. The CFG of the customized

program can be viewed as a sub-graph of that of the original program, which is able

to retain the behavior of only the desired features. At last, a fuzzing engine can be

employed to generate inputs and further test the customized binary.

6.2.2 Feature Identification

Feature Identification uses trace splicing to extract dynamic execution paths and

maps them to owner functions in the binary code, enabling us to identify program

features through their constituent functions. In this paper, we define an execution

path as a sequence of instructions that are executed from a function entry point to
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Figure 6.3: Extracting dynamic execution paths of each individual function through
trace splicing. Boxes stand for basic blocks. A1 and A2 belong to function A while
B1 and B2 belong to function B.

an exit point. The function containing the execution path is known as the owner

function. Our approach leverages deep learning and works in a fully unsupervised,

autonomous fashion.

6.2.2.1 Function Recognition

We first construct the pre-image and image of our function mapping, using trace

splicing and deep-learning tools, respectively. The pre-image is defined as the set of

execution paths obtained from dynamic instruction trace, while the image is defined

as the set of functions recognized in static program binaries.

We run the target executable with provided test cases to invoke different (com-

binations of) program features, and collect instruction trace to capture the dynamic

execution of the program. The trace is then spliced to extract execution paths be-

longing to different functions, which serves as the pre-image of our function mapping.

Consider the illustrative example shown in Figure 6.3, where a sequence of 4 basic

blocks, A1, B1, B2, A2, are captured in dynamic trace, when function fB is called in-

side function fA. Clearly, we cannot directly map the entire sequence to functions in

binary code, because it contains two separate execution path, belonging to functions

fA and fB, respectively. We employ two different methods to splice dynamic trace

and extract different execution paths: (1) We track call stack changes together with

instruction trace. By recognizing push and pop operations on the call stack, we can
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infer function call events, and slice and associate basic blocks that belong to the same

function. (2) From the instruction trace, instructions that perform function calls and

returns will be recognized and put embedded function calls into different layers.

We remove duplicate basic blocks in execution traces to improve the accuracy of

function mapping. Furthermore, every time a function is invoked, a different execution

path may be traversed inside the function. These execution paths will be separated

and mapped to their owner functions independently, minimizing the probability of

false negative in function mapping. In Hecate, we unitize ByteWeight [13], a learning-

based tool that identifies function bodies from binary.

6.2.2.2 Function Mapping

In Hecate, we leverage deep learning approach to propose a solution to enable

automated function mapping. We use the approach, mentioned in 4.2.2, to model

binary instruction sequences using Recursive Neural Network (RNN). The framework

is constructed with two key components. First, to obtain vector embedding for a given

execution path (that consists of an instruction sequence), we use RNN to map each

term in the binary instructions (e.g., opcodes and operands) to a vector embedding

at the lexical level, resulting in a signature vector for the entire execution path.

Second, we consider the mapping problem as a multi-class classification problem,

where each function is considered as a class label, different execution paths obtained

from the function’s binary code as samples of that class, and an execution path

extracted from dynamic instruction trace as the testing sample. We employ a multi-

class Convolutional Neural Network (CNN) classifier to identify the owner functions

of an arbitrary dynamic instruction trace. Our deep learning approach is inspired by

the related work on source code analysis [117, 107, 110, 41]

For a given execution path with multiple terms and instructions, we adopt a greedy

method [101] to train our RAE and recursively combine pairwise vector embeddings.

The greedy method uses a hierarchical approach – it first combines vector embeddings

of adjacent terms in each instruction, and then combines the results from a sequence

of instructions in an execution path.
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Multi-class classification for function mapping. Function mapping aims to

recognize the owner function (in static binary) of a given execution path obtained

from the dynamic trace. We consider each function as a class label, different exe-

cution paths obtained from the function binary code as samples of that class, and

an execution path extracted from dynamic instruction trace as the testing sample.

Then, the mapping becomes a multi-class classification problem, which is solved using

Convolutional Neural Networks (CNN) in this paper. We adopt the sentence classifi-

cation model proposed in [60] for natural language processing and train a multi-class

classifier using CNN for function mapping. Note that another line of work, such as

tainting [118, 96, 116], can be used for feature identification. We consider this as

future work.

To obtain training samples for each class, we use CFG analysis to construct dif-

ferent execution paths for each function identified in the binary code. More precisely,

once the function boundaries and bodies are recognized, we use a Depth First Search

(DFS) to traverse the static CFG of each function and construct related execution

path using a random walk.

6.2.3 Feature Tailoring

Feature tailoring creates customized software that consists of the desired features

and their constituent functions in accordance with user needs. It has to address a

number of challenges. First, a single execution trace may not reach all desired features,

requiring us to merge multiple outputs from feature identification. Second, different

features often share some common constituent functions. If the goal of tailoring is to

remove certain features, we need to identify and retain the shared functions in the

customized binary.

6.2.3.1 Methods for Feature Tailoring

Let F̂ be a set of target program features for tailoring. If the constituent functions

of each feature Fi ∈ F̂ can be successfully identified, we can simply create a superset

of their constituent functions, i.e., F̂ = ∪Fi. Two techniques are developed next to

77



(i) create a customized program by retaining only the features in F̂ (e.g., if user only

needs these features) and (ii) remove the features in F̂ from the binary (e.g., if they

are deemed as unnecessary or vulnerable). When F̂ cannot be directly identified, we

leverage set operations, including union, intersection, and subtraction, to construct

F̂ from available feature combinations, in order to fulfill feature tailoring.

Retaining features. We consider the case where a user only needs a set of

features F̂ . To deliver the tailored program, we execute the original program with

available test-cases to generate dynamic traces that reach each feature in F̂ . Through

feature identification, we identify the set of constituent functions Fi of each feature i

and derive the superset F̂ = ∪Fi, which is the set of functions we need to retain in

the customized binary. Due to possible missing constituent functions during feature

identification and deep learning, the set F̂ may not contain all necessary functions

to execute the resulting binary. We apply static CFG analysis to find an add any

required functions that makes F̂ complete. In particular, each function in F̂ will be

mapped to the pre-built static CFG and the reachability analysis in section 6.2.3.2

will ensure that each mapped node in the CFG can be reachable from the function

start.

Removing features. We consider now removing a set of features F̂ from a given

program binary, which is useful when a user deems these features either unnecessary

or vulnerable. To this end, we again execute the binary with test-cases to reach

each unwanted feature in F̂ . Then, after identifying each Fi from dynamic trace,

the superset of constituent functions F̂ = ∪iFi that correspond to the unwanted

features can be obtained. However, for feature removal, we cannot simply eliminate

all functions in F̂ from the binary, due to the existence of shared functions with other

(desired) features, which are required for the soundness of the customized program.

Let Ŝ be the set of functions/basic blocks shared by other features (which can be

found using the constituent functions of other features). Hecate will only remove

functions/basic blocks in F̂ − Ŝ, which are only needed for the operation of the

unwanted features.
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Tailoring via set operations. When the target features’ constituent functions

F̂ are not directly identifiable, Hecate employs set operations including union, inter-

section, and subtraction to compute F̂ from known feature combinations. Union: A

feature may contain multiple execution paths that cannot be dumped and identified

in a single execution. Hecate will collect traces from different program executions

to identify and compute the union of the related feature-constituent functions. In-

tersection: A program may contain concurrent features that cannot be identified

separately from the available execution trace. For instance, OpenSSL’s choosing ci-

pher suite feature is always coupled with the execution of encryption/hash functions

in dynamic trace. To identify the constituent functions of choosing cipher suite fea-

ture, we can take the intersection of multiple executions with different choices of

encryption/hash functions. Subtraction: This operation allows us to identify the

unique constituent functions of given features. So, we can safely remove them without

affecting the soundness of other features due to shared functions.

6.2.3.2 Reachability Analysis

Algorithm 3 Reachability Analysis

Static CFG: G = {V ,E }
Initial feature set:F = {F0, F1, ..., Fn}
F ′=final feature set
Initialization:F ′ = F
for Fk in F do

Find V f : V f ⊃ Fk && V f ∈ V
Find T = {Thead, T1, ..., Tm, Ttail}: T is the control flow path that contains Fk

if (V f .entry ≥ 2 ‖ V f .exit ≥ 2) && F is for feature removal then
F ′ = F ′ − {V f}

if ∃T then
F ′ = F ′ ∪T

A program’s CFG can be represented as a directed graph, G = {V ,E }, where the

node set V = {v1, v2, ..., vm} represents basic blocks and edge set E = {e1, e2, ..., en}

represents control flows among basic blocks. The customized program can be viewed

as a subgraph G = {V,E}, for V ⊆ V and E ⊆ E . Ideally, for a given set of de-

sired features, Hecate’s feature identification and tailoring modules should obtain
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Figure 6.4: Reachability analysis on LibreOffice: retaining feature

their feature-constituent functions F̂ that meet the following two requirements: (i)

All functions in F̂ should belong to desired features; (ii) The functions in F̂ together

can ensure that the desired features are functional, i.e., the customized binary can

be executed with inputs that can reach the desired features. However, these may

always hold because deep-learning-based algorithm cannot guarantee to always pro-

duce the correct function mapping and feature identification. Necessary functions

for the soundness of the customized binary may be missing, causing the program to

crash and unable to execute the desired program features. We propose a CFG-based

reachability analysis to tackle the issue. We design an algorithm as shown in Algo-

rithm 3 to rectify possible missing functions and ensure the soundness of customized

binary by expanding the identified feature functions. The basic idea is to connect the

missing links in the CFG and preserve the shared code segments. As Algorithm 3

shows, we apply the following methods in the CFG: (i) If the basic block can jump to

multiple targets (V f .exit ≥ 2), or multiple basic blocks can jump to this basic block

(V f .entry ≥ 2), then this basic block is considered as a shared code segment. Hence,

this basic block will not be removed in any case.

In the example shown in figure 6.4 from LibreOffice, where two features are in-

tertwined. The circles represent the basic blocks and gray circles are those identified

by feature identification module. The feature F = {a0, y1, a1, a2, q} is the desired

feature that the user wants to keep. Without reachability analysis, a3 and y2 won’t

be kept in the customized binary since they are not identified by deep learning map-
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ping. According to Algorithm 3, the identified basic blocks that belong to the same

function will be connected by adding the missing nodes along the control flow. We

define T as the control flow path that resides within the scope of one function and

contains all elements in F. In this case, all the basic blocks in T = {y1, a1, a2, a3, y2}

should be included in F ′ even if a3 and y2 are not discovered by feature identification

module. The nodes with red dashed circles are the final elements in the feature set

to be customized.

6.2.3.3 Binary Rewriting

We use feature tailoring to derive a set of functions to eliminate in program bi-

nary. Simply replacing these function bodies with “NOP”s would not generate a valid

executable, because (i) some code segments in the eliminated function body may be

shared with other functions, and (ii) there may exist data segments that are inserted

into the eliminated functions and must be preserved.

To address these issues, Hecate utilizes a static binary rewriter, DynInst, to modify

the program binary by rewriting the binaries in basic blocks level in the CFG. As

DynInst is capable to abstract the program basic blocks in the form of CFG. To remove

the features in the programs, there are two steps in Hecate. First, Hecate removes

the functions that should not be called. The call site of the eliminated functions will

be replaced to redirect the program to exit point. Second, for those functions cannot

be removed from the first step (e.g., For indirect function calls, the address of the

callee function cannot be decided beforehand and can potentially lead to any other

addresses), we replace the rest of the function body with “NOP”. Furthermore, a

verification process is performed using program fuzzing approaches [125] by Hecate

to validate the effectiveness and correctness of feature tailoring. Specifically, the

fuzzing engine generates two sets of test cases: (1) F1 that invoke the desired features

in customized program; (2) F2 that involve at least one of the eliminated features. In

particular, Hecate usesF1 to confirm the integrity of necessary program functionalities,

while F2 helps verify the successful removal and handling of eliminated features.
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6.3 Evaluation

6.3.1 Experiment Setup

Our experiments are conducted on a 2.80 GHz Intel Xeon(R) CPU E5-2680 20-

core server with 16 GByte of main memory. The operating system is Ubuntu 14.04

LTS.

Benchmarks. In our evaluation, we select three sets of real-world applications:

(i) Non-interactive applications including two applications from SPEC 2006 Bench-

mark suite [1], bzip2 and hmmer; two applications from a bug benchmark suite bug-

bench [75], polymorph and man and (ii) Interactive applications including a light-

weight web server thttpd, version beta 2.23, an open source office suite LibreOffice

and a web browser links. (iii) An implementation of Transport Layer Security (TLS)

& Secure Sockets Layer (SSL) protocol, OpenSSL.

Dataset and Training. In our function mapping module, we collect static exe-

cution paths as training dataset and dynamic execution paths as testing dataset for

evaluating the accuracy of the pre-trained models. We selected the highest quality

model and extracted the matrix of embeddings. We have observed that a well trained

function mapping model is with the hidden node size as 500 in RNN and 200 maxi-

mum iterations for RAE, which is chosen as the parameters of deep neural network

in function mapping module.

6.3.2 Accuracy of function mapping

In this section, we evaluate the accuracy of the pre-trained function mapping

module in Hecate and presents the accuracy of five representative applications. We

construct the testing dataset as follows: We collect the dynamic instruction traces

for each identified function in the binary and perform the same random walk process

to generate execution paths as mentioned in Section 6.2.2.2. Table 6.1 shows the

statistics for our subject benchmarks. The testing dataset size is controlled to be

30% as big as the training dataset reported in Table 6.1. We also observed that due

to the different amount of training data we can obtain from different functions, the
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Figure 6.5: Accuracy of function mapping during feature identification

mapping accuracy will be higher if we split functions into large and small categories,

by using the median number of training data sample size. We trained three CNN

classifiers for each application, one is trained cross all the functions as an overall

classifier (Classifier-O), and the other two are trained for large functions (Classifier-

L) and small functions (Classifier-S) respectively.

The function mapping accuracy is plotted in Figure 6.5. We achieve an overall

average accuracy of 92.76%, with the highest up to 96.28% in man from bugbench.

In general, the mapping accuracy of larger programs, such as bzip2 and thttpd, is

higher than smaller programs like polymorph. Because the number of execution traces

used for training our CNN classifiers in those programs is much larger than that in

polymorph, there are 189,855 training execution paths in bzip2 comparing to 10,806

in polymorph). For the applications with more functions, such as OpenSSL that

has 4,023 functions, the overall accuracy can be as low as 88.75% since there are

more classes for classification. We also note that all of the Classifier-Ls outperforms

the Classifier-Os. For instance, in polymorph, the accuracy of Classifier-L is 93.14%

whereas the accuracy of Classifier-O is 91.13%. However, we observe that the accuracy

for Classifier-S is lower than Classifier-L. The reason is that functions trained in

Classifier-Ss are relatively small, with limited training data samples for classification.

In particular, the accuracy of Classifier-S is 63.46% for polymorph, which is the worst

among all the applications. We further analyzed and found that the median number

83



Benchmark #Functions Vocabulary Size #Training Execution paths #Tokens

polymorph 23 201 10,806 460,248

man 77 1,198 346,570 86,008,653

bzip2 79 1,251 135,738 54,809,155

thttpd 129 1,838 189,855 54,162,084

OpenSSL 4,023 10,582 586,817 137,293,197

Table 6.1: Benchmark Profiles

Bench. polymorph bzip2 hmmer thttpd links LibreOffice OpenSSL

Program Size (LoC) 404 5,904 20,721 7,956 178,441 4,485,797 305,279

#Selected Features 6 8 7 12 12 10 14

#Combinations 64 96 48 3,072 6,144 768 4,096

Table 6.2: Number of identified features and customized programs by Hecate.

of training data size is 7 for polymorph, which means almost half of the functions

have only less than 7 training data samples. The lack of training data leads to a bad

performance for classification.

6.3.3 Feature Combinations

In this section, we evaluate the number of customized programs after feature

tailoring. When the features are identified by customers, we can create multiple

customized binaries containing different feature combinations. Table 6.2 shows the

number of selected features for each benchmark and the number of customized pro-

grams we are able to create. Our approach is able to produce numbers of customized

programs to match the customer needs while minimizing unwanted exploitation of the

applications features. The number of customized programs is calculated after feature

tailoring. Since each feature can contain both unique functions and shared functions

as mentioned in Section 6.1, there are some scenarios that several features cannot be

customized separately. For example, the 6 features we selected in polymorph are all

independent to each other and totally separable. Hence we are able to create 26 cus-

tomized programs. However, in LibreOffice, there are 2 selected features: print files

and print files to a specific printer, they both execute print feature and have shared
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Figure 6.6: Number of customized program versions and their sizes normalized to
original program (polymorph benchmark)

functions. They either can be removed or retained together. Thus, Hecate cannot

create a customized version of LibreOffice with arbitrarily feature combinations.

We also evaluate the size of customized program variations. We pick one example

program polymorph(a Win32 to Unix filename converter) to present the result. We

identified 6 features in polymorph as: convert file, convert all hidden files, clean files,

help/usage, trace file path, and program version. Figure 6.6 shows the program size

distribution in terms of normalized program size in polymorph. As we can see, we

generate various combinations of customized programs that contain just-enough soft-

ware features to support specific use-cases and can significantly reduce the program

size up to 85%.

6.3.4 Impact on program security

We evaluate the impact of feature customization on program security here. As

shown previously, the reduction of code size also shrink the attack surface and elim-

inate possible vulnerabilities in programs. We survey the known CVEs of different

programs that can be removed by feature customization. For instance, in OpenSSL,

i) the CVE-2014-0160, known as Heartbleed bug, can be eliminated by removing the

heartbeat extension; ii) the CVE-2016-7054, which can lead to DoS attack can be
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Program # Removed CVEs % Features removed

OpenSSL(2014-2017) 45 44.6

LibreOffice 23 67.6

Thttpd 5 38.5

Bzip2 2 22.2

Table 6.3: Impact on Application and Communication security

neutralized by removing *-CHACHA20-POLY1305 ciphersuites; iii) the CVE-2016-

0701, which can cause information leakage, can be negated by avoiding using DH

ciphersuites; The CVE-2015-5212 in LibreOffice (an integer underflow bug) can be

removed by disabling the printer functionality when users don’t need it.

In total. we found 101 CVEs in OpenSSL distributions during 2014-2017, 34 CVEs

in LibreOffice, 13 CVEs in Thttpd and 9 CVEs in Bzip2. Not all vulnerabilities can

be disabled by our feature customization. Some vulnerabilities are in the functions

that are necessary for program execution. CVE-2010-0405 in Bzip2 is an integer

overflow bug in function BZ2 decompress. In most of the cases, decompression is a

feature that users will not remove. The number and ratio of program features that

can be removed are shown in Table 6.3. We evaluate the security impact of Hecate

using the ratio of CVEs that can be removed by feature customization.

6.4 Summary

We design and evaluate a binary customization framework Hecate that aims to

generate customized program binaries with just-enough features and can satisfy a

broad array of customization demands. Feature identification and feature tailoring

are two major modules in Hecate, with the former one discovering the target features

using both static code and execution traces, and the latter one modifying the fea-

tures to reconstruct a customized program. Our experiment results demonstrate that

Hecate is able to identify features with the highest accuracy up to 96.28% and reduce

the attack surface by up to 67%.

86



Chapter 7 Related Work

7.1 Redundant bound checks elimination

A number of related work including Softbound [80], ABCD [18] and WPBound [92]

have been discussed in previous sections. Besides these, static code analysis has been

widely used for program vulnerabilities discovery, with different approaches and tools

proposed in Chucky [113], Splint [37] and PScan [7]. Nurit et al. [35] targeted string-

manipulation related bugs in C program with a conservative pointer analysis similar to

ABCD, using an abstract constraints expressions for pointer operations. Such static

approaches require extensive program modeling and analysis (e.g., by constructing

constraint systems) and also fall short on dealing with certain vulnerabilities that

occur only at runtime (e.g., due to user input-related bugs). Another line of work

employs machine learning to improve the efficiency of static code analysis. In par-

ticular, Fabian et al. [113] [112] used machine learning to identify the similarity of

code patterns to facilitate vulnerable discovery. In these approaches, the accuracy for

resulting vulnerabilities discovery relies on the choice of machine learning algorithms,

which often cannot guarantee zero false positives. The introduction of alternative

code patterns for infrequently used code can help to reduce false postive [93].

To the best of our knowledge, most of the existing approaches that have been

proposed for bounds violations detection or other bounds-related vulnerabilities are

pure static code analysis, such as [44, 31, 6, 73, 72, 8, 82, 39, 115, 67]. More pre-

cisely, Thomas et al. [103] used dominator tree to maintain the conditions based

on code blocks. But different from ABCD, they do not construct inequality graph

and only keep a condition for every instrumented instruction for each code block.

George et al. proposed CCured [83], which is a type safe system that leverages

rule-based type inference to determine “safe” pointers. It classifies pointers to three

types {safe, seq, dynamic} then applies different checking rules for them. Again,

these works are relying only on static code analysis, while none of them capitalizes

on runtime information for efficient redundant condition inference and bounds check
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elimination.

7.2 Code Clone Detection

Code clone detection techniques can generally be classified into several categories.

String matching-based techniques [36, 11, 12, 65] apply lightweight program transfor-

mations and utilize code similarity measurement through comparing text sequences

of text. Such text-based techniques are limited in scalability for large code bases

and only find exact match code clone pairs. Second, tree- or token-based clone detec-

tion [62, 100, 99, 15, 123, 66] are performed by parsing program into tokens or generate

abstract syntax tree (AST) representation of the source program. Consequently, tree-

or token-based approaches usually more robust against code-specific changes. Some

well-known tools in this category include CC-Finder [58], DECKARD [55] and CP-

Miner [71]. Learning based approaches have also been developed for code similarity

detection. White et al. [101] proposed a deep neural network (DNN) based code clone

detection in source code. Komondoor et al. [61] also make the use of program slicing

and dependence analysis to find non-contiguous code clones. But such approaches

typically find isomorphic subgraphs from program dependency graph in order to iden-

tify code clones, for which computing such graphs is typically more expensive. Also,

the approaches mentioned above are still demonstrated on the source code-level and

not on binaries. Gemini [105] use DNN to detect cross-platform code clones in bina-

ries. But it is limited in scope to detect clones within a single function complied in

different platforms.

7.3 Code analysis and De-bloating:

Several prior works have proposed program customization frameworks only based

one method like de-bloating [56], cross-host tainting [29] and so on. In terms of bi-

nary reuse, it has been studied by several works [109]. The main challenge of reusing

binary code is it only focuses on reusing partial code in the program’s high-level

assembly code. Some existing works try to find memory-related vulnerabilities in
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source code or IR by direct static analysis [114, 97, 98, 21, 51, 28, 70, 119]. Bin-

Rec [63] reconstructs intermediate representation (IR) of program binaries to allow

complex transformations in code and reduce attack surfaces. While our proposed

approach improves the efficiency of customizing binaries through the use of machine

learning, BinRec improves effectiveness using compiler-based tools. As such, the two

approaches are quite complementary and when combined together, can present an

improved framework for eliminating attack surfaces in programs.

7.4 Deep Learning and Language Modeling

The state-of-the-art Deep Learning algorithms have been used as new approaches

for language modeling [57, 40, 69, 5, 64]. Traditionally, natural language processing

(NLP) in particular has utilized deep learning to do software engineering tasks such

as text/code suggestions, text classification and so on [42, 5, 104, 50, 122, 114]. For

instance, recurrent neural network (RNN) is known as a capable approach for model-

ing sequential information [47, 89, 53, 54, 74, 38, 34]. Recently, such techniques have

been applied on modeling program source code fragments. White et al. [101] propose

a deep learning-based detection approach for source code clone detection using RNN.

It develops an automated framework to extract source code features at both lexical

and syntax levels. To the best of our knowledge, we are the first to demonstrate

improved code clone detection in a scalable way using deep learning and clustering

algorithms, while making sure that clones are verified through formal analysis in the

back end.
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Chapter 8 Conclusion and Future Works

With the rapid growth of software systems, securing such applications has become

very challenging due to the growing software complexity. Two traditional lines of code

analysis techniques that have some fundamental limitations. Pure statistical methods

rely on probabilistic inference and often fail to guarantee complete accuracy. Formal

methods require exhaustive analysis along all paths in the application code, which

can be prohibitively expensive in terms of time and resources.

This dissertation proposes Learn2Reason, a novel joint learning approach, an in-

tegration of statistical and formal methods without the unification of the underlying

knowledge representation. The main contributions of this dissertation are to improve

the security issues of code analysis by integrating statistical analysis and formal meth-

ods, thereby reducing the time-to-solution.

We first proposed two novel techniques that aim to secure memory safety in

both source code and binary executables. The SIMBER framework integrates with

statistics-guided inference with spatial memory safety checks to perform a function-

level redundant bounds check removal during runtime. Its statistical inference adap-

tively builds a knowledge base (i.e., a safe region for eliminating redundant bounds

checks). Currently, SIMBER works at function-level granularity. For future work,

it can be applied to finer granularity bound checks removal. SIMBER achieves a

significant redundant bound checks removal rate and guarantees there are no false

positives. We evaluated SPEC benchmarks with high softbound overhead and their

Check-Hotspot functions. Finally, SIMBER obtained an average 76.5% of dynamic

bound checks removal rate and 65.31% execution time reduction. Clone-Hunter tech-

nique integrates a machine learning-based binary code clone detection to speedup

elimination of redundant array bound checks in binary executables. We evaluated

our approach using real-world applications from SPEC 2006 benchmark suite. Our

results show the time-to-solution (the time spent to remove bound checks) for Clone-

Hunter is 90× faster compared to pure Binary Symbolic Execution while three out

of four applications fail to finish the execution.
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Second, we discovered a new type of code clone detection framework Clone-Slicer

that identifies domain specific code clones. In particular, we chose pointer analysis for

memory safety as our example domain to demonstrate the usefulness of our approach.

We evaluated our approach using real-world applications from SPEC 2006 benchmark

suite. Our results show Clone-Slicer is able to detect up to 43.64% code clones

compared to prior work and further cut the time-to-solution (the time spent to verify

memory bound safety) for Clone-Slicer by 32.96% compared to Clone-Hunter. On

the other hand, we introduced a pointer-related code clone detector, Twin-Finder,

that can automatically identify related codes from large code bases and perform code

clone detection to enable a rapid security analysis. We evaluated our approach using

real-world applications, such as SPEC 2006 benchmark suite. Our results show Twin-

Finder is able to detect up to 9× more code clones comparing to conventional code

clone detection approaches. We conduct security case studies for memory safety.

In particular, we show that using Twin-Finder we find 6 unreported bugs in Links

version 2.14 and one public patched bug in libreOffice-6.0.0.1.

Additionally, we design and evaluate a binary customization framework Hecate,

that aims to generate customized program binaries with just-enough features and can

satisfy a broad array of customization demands. Feature identification and feature

tailoring are two major modules in Hecate, with the former one discovering the target

features using both static code and execution traces, and the latter one modifying the

features to reconstruct a customized program. Our experiment results demonstrate

that Hecate is able to identify features with the highest accuracy up to 96.28% and

reduce the attack surface by up to 67%.

Lastly, we summarize several critical future research directions. In terms of achiev-

ing fast, deliberative planning and decision making, it is expected that both statistical

and formal approaches are utilized, whereby the statistical inference and formal rea-

soning systems live side-by-side and interact, prompt, inform and correct each other.

Integration of statistical inference and formal reasoning should be done in such a

way to allow each of the methods to independently but synergistically cooperate and

potentially enrich each other’s knowledge base.
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As future works, we not that generating test cases to cover all corner cases for

formal verification is a challenging problem in general. To deal with this problem, we

note that some approaches, such as fuzzing techniques [91], can be useful. In terms of

improving the statistical methods, we could increase the training data size and use re-

lated machine learning optimization like cross-validation to split small data set [88] for

further performance improvements. Fundamentally, deep learning approach cannot

guarantee zero false positives. In this case, we can provide feedback to the training

phase of deep learning module as soon as we observe false positives. This will be

helpful to improve the accuracy of our function mapping module. Moreover, more

complex deep learning algorithms can be further tested, such as bi-directional RNN

and long-short-term memory (LSTM), which have been proven a better performance

for modeling longer sequential information.
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