
EAI Endorsed Transactions Preprint Research Article/Editorial

AMASS: Automated Software Mass Customization via Feature Identification and Tailoring

Hongfa Xue1,∗, Yurong Chen1, Guru Venkataramani1, Tian Lan1

1The George Washington University, 800 22nd Street NW, Washington, DC, 20009, USA

Abstract

The rapid inflation of software features brings inefficiency and vulnerabilities into programs, resulting in an
increased attack surface with a higher possibility of exploitation. In this paper, we propose a novel framework
for automated software mass customization (AMASS), which automatically identifies program features from
binaries, tailors and eliminates the features to create customized program binaries in accordance with user
needs, in a fully unsupervised fashion. It enables us to modularize program features and efficiently create
customized program binaries at large scale. Evaluation using real-world executables including OpenSSL and
LibreOffice demonstrates that AMASS can create a wide range of customized binaries for diverse feature
requirements, with an average 92.76% accuracy for feature/function identification and up to 67% reduction
of program attack surface.

Keywords: Program customization, Deep learning, Binary analysis.

Copyright © XXXX Hongfa Xue et al., licensed to ICST. This is an open access article distributed under the terms of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/XX.X.X.XX

1. Introduction
Feature creep [11], which refers to the ongoing
expansion and addition of new features (e.g., excessive
capabilities and utilities), is becoming increasingly
commonplace for software development in most
commercial applications. It results in not only larger
installation footprint, but also an increased attack
surface with higher possibility of vulnerabilities and
exploitation, as evidenced by recent security breaches
like attacks related to OpenSSL’s keep-alive feature
(i.e., Heartbleed [7]) and Struts’ file upload feature
(i.e., Jakarta Multipart Parser OGNL Injection [21]). A
commonly adopted solution to counter such security
attacks is to minimize the attack surface by creating
customized software systems that contain just-enough
features and yet satisfy specific customer needs.
However, it is important to note that delivering such
customized software for diverse use-cases is currently
an extremely slow, built-to-order process, and on
occasions, an impossible task.

Main problem and challenges. In this paper, we
propose a new approach for automated software mass
customization (AMASS), which can be defined as the
process of automatically identifying and tailoring
different software features from a binary executable,
so that customized programs can be created in

∗Corresponding author. Email: hongfaxue@gwu.edu

high volume and at relatively low cost to better
match the diverse customer needs while minimizing
unwanted exploitation of the applications features. In
many commercial off-the-shelf and legacy software,
source code may no longer be available. Hence
customization of binary is more relevant. Without
requiring any knowledge of potential exploits, the
customized programs will contain just-enough software
features to support specific use-cases, thus significantly
reducing the attack surface and the exposure to
future exploitation through features (e.g., zero-day
attacks). Our approach goes beyond existing work
on feature separation [22], reduction [11] and code
de-bloating [9, 36, 37], which focus on removing
unused or unnecessary code. We argue that vigilantly
managing and customizing permitted features is crucial
for delivering improved software security [11]. For
example, while system logging and banking utilities
are both necessary, permitted features in an online
banking app, studies show that 40% of iOS banking
apps leak sensitive data through system logs [23].
Further, the usefulness of program features is often
difficult to determine a priori. It is shown that 83%
of available browser features are executed on less than
1% of the most popular 10,000 websites [26]. These
features constitute a significant source of bloat and can
be eliminated through browser customization to match
individual customer needs.

1
EAI Endorsed Transactions Preprint

http://creativecommons.org/licenses/by/3.0/
mailto:<hongfaxue@gwu.edu>

Hongfa Xue et al.

At the core of automated software customization, a
key problem is to identify and modularize software
features directly from the program’s binary, without
access to source code or debug symbol information.
In structured programmings, a function is often the
smallest unit of implementing a program feature.
We define a feature as a collection of program
functions, which uniquely represent an independent,
well-contained operation, utility, or capability of the
program. Identifying features from the program binary
enables the modularization of various program utilities,
to pave the path for feature tailoring and customization.
This can be an extremely challenging problem because
program features often traverse multiple functions
across different regions of the binary, with certain
functions that are referenced using function pointers
that cannot be resolved statically. Furthermore, binary
code is not designed to be modular even if its
corresponding source code adopts a modular structure.
A feature implemented in binary may not correspond to
a unique code fragment/module that is separated from
others, due to shared code.

AMASS solution. We consider that only program
binary is available for customization. If some specific
input is needed to reach a feature, we assume we are
provided with such test-cases to execute the program.
AMASS leverages deep learning to automatically
identify program features in binary. We use the test-
cases to invoke different program features, apply trace
splicing to extract dynamic execution paths (of invoked
features) from the instruction trace, and map them to
owner functions in the binary code, in order to identify
program features through their constituent functions.
In particular, we consider this mapping problem as a
multi-class classification problem, where each function
is considered as a class label, the function’s binary code
as samples of the class, and an execution path extracted
from dynamic instruction trace as the testing sample.
Thus, we employ Recursive Neural Network (RNN) to
obtain binary code vector embeddings at lexical level
and train a multi-class Convolutional Neural Network
(CNN) classifier to identify the feature-constituent
functions. Instead of extracting the instructions of
a limited code fragment (e.g., in binary code reuse
[5, 49]), the approach in this paper enables us to
automatically identify various program features in
large-scale program binaries with an average of 92.7%
accuracy, in a fully unsupervised fashion.

Identifying the feature-constituent functions enables
us to modularize and tailor program features, in
accordance with user needs. We propose program
customization techniques to (i) retain a set of
desired features, (ii) remove a set of unwanted
features, and (iii) tailor program binaries using union,
intersection, and subtraction operations if a target

feature combination is not readily available in the test-
cases. A static binary rewriter, DynInst, is employed to
create the customized binary by eliminating unwanted
feature-constituent functions and redirecting the call
sites toward appropriate exit points. The customized
program can be viewed as a sub-graph of the original
CFG. Finally, to ensure its soundness, we perform
reachability analysis on the customized program’s CFG
to validate the feasibility of customized binary and to
rectify possible inaccuracy during deep-learning-based
feature identification.

Implementation and Evaluation. We design and
implement a prototype of AMASS with two major
modules: feature identification and feature tailoring. It
leverages several open-source tools and deep learning
algorithms. In particular, ByteWeight [3] is used to
identify function boundaries and bodies from binary
executable. We develop a python script to tokenize
the disassembly code and use the RNNLM Toolkit [19]
and TensorFlow [2] to implement and train RNN and
CNN multi-class classifier, respectively. Finally, we
instrumented a binary analysis framework angr [24]
for binary CFG and reachability analysis. Evaluation
using real-world applications, e.g., OpenSSL [33] and
LibreOffice [27], shows that AMASS achieves an
average 92.76 % accuracy for function mapping and
feature identification. It is able to create a wide range
of customized executables and significantly reduces the
program size and attack surface up to 85% and 67.6%
respectively

The main contributions of our work are as follows:
(i) We propose AMASS, an automated framework

for software mass customization using only binaries.
Provided with test-cases for different features, AMASS
automatically identifies program features and cus-
tomizes them in accordance with user needs.

(ii) AMASS leverages a combined method through
deep learning and CFG analysis to identify program
features in an unsupervised fashion. In particular, it
maps dynamic execution paths from the instruction
trace to feature-constituent functions in the executable
using a multi-class CNN classifier, achieving an average
92.76% accuracy.

(iii) We implement a prototype of AMASS using
open-source tools, including ByteWeight [3], RNNLM
Toolkit [19], and Tensor-Flow [2]. Evaluation using
real-world applications, such as OpenSSL, shows that
AMASS can efficiently customize large-scale software,
and significantly reduce the attack surface by up to
67%.

2. AMASS Design Overview
Software customization comprises two tasks: (i) iden-
tifying program features from a binary executable by
analyzing and mapping dynamic instruction trace that

2
EAI Endorsed Transactions Preprint

AMASS: Automated Software Mass Customization via Feature Identification and Tailoring

Figure 1. An illustrative example of feature identification by
mapping dynamic instruction trace to functions in static code from
OpenSSL.

invokes different features, and (ii) tailoring and rewrit-
ing the binary, in accordance with user needs, to create
customized, self-contained programs.

2.1. Challenges
The goal of AMASS’s feature identification is to map
dynamic instruction trace (relating to different features)
to feature-constituent functions in binary. Ideally, it is
possible to log the virtual addresses of each executed
instruction. Then we can get the memory layout of
each binary module (e.g., through /proc/pid/ma ps
on Linux). With these two pieces of information, we
could uniquely map a dynamic trace back to static code.
However, there are some scenarios in practice where
the address is not available. For example, commercial
software and operating system are usually slightly
obfuscated to deter reverse engineering and unlicensed
use. Further, system and kernel libraries are often
optimized to reduce disk space requirements[8]. It
may be difficult to even locate function entry points
(FEPs) since the full symbol or debug information is
usually not available in optimized binaries [3]. Thus,
we have to utilize code patterns to match dynamic
traces. This is a challenging problem because dynamic
trace and static code often have different patterns
and cannot be accurately matched through techniques
such as execution path alignment [20]. Consider the
example shown in Figure 1 with dynamic instruction
trace and binary code snippet from OpenSSL. First, as
Arrows 1 and 2 indicate, the same basic block from
dynamic instruction trace could have multiple matches
in the binary, and cannot be uniquely mapped to a
single function. Second, the same binary instruction
can be interpreted into different verbal presentations,
in which case different disassemblers will give different
outputs. As Arrow 3 indicates, the binary value 77H
can be translated to the opcode either “ja” (jump
above) or “jnbe” (jump not below), causing direct

pattern matching to fail. Further, when loops and
recursive function calls exist in the binary, it is difficult
to correctly identify these structures in dynamic
instruction trace. We conducted an experiment using
a substring matching approach to map the opcode
pattern between instruction traces and binary code.
Examining two applications, bzip2 and OpenSSL,
function mapping techbniques only achieves an average
accuracy of 76.31% and 73.02%, respectively.

2.2. Problem Statement and Scope
To introduce our problem of software customization, we
first need a definition of what a feature is in binary code.

Definition 2.1. Function. The term function in this
paper particularly refers to the function identified in
static binary code, which is a collection of basic blocks
with one entry point (i.e., the next instruction after a
call instruction) and possibly multiple exit points (i.e.,
a return or interrupt instruction). All code reachable
from the entry point before reaching any exit point
constitutes the body of the assembly function. For a
given program, we use F = {fk , ∀k} to denote the set
of all functions existing in the static binary code.

Definition 2.2. Feature. A program feature is defined
as a set of constituent functions – denoted by
Fi = {f 1

i , f
2
i , ..., f

n
i } ⊆ F – which uniquely represent

an independent, well-contained operation, utility, or
capability of the program. A feature at the binary level
may not always correspond to a software module at the
source level. We use T = {Fi , ∀i} to denote the set of all
available features in the program.

Problem Statement: The goal of AMASS is that,
given a program binary, test cases invoking program
features, and user’s customization requirement (i.e., a
set of desire features T̂ ⊆ T), it will produce a modified
binary that contains the minimum set of functions
to satisfy the user’s requirement and to support all
desired features in T̂ . We perform the customization
after abstracting the program into Control Flow Graph
(CFG). From the perspective of CFG, the customized
binary is composed of a CFG that is a subgraph of the
original program CFG.

We provide an illustrative example of software
feature customization, using a partial snapshot of
LibreOffice application [27]. Figure 2 shows the sub-
graph of LibreOffice’s CFG, which contains 3 distinct
features, F1-save as file, F2-email, and F3-print. The
goal of AMASS’s feature identification is to find the
constituent functions of each feature, as shown in
Figures 3-5, respectively. Since now all three features
can now be modularized through their constituent
functions, we can construct a customized program
containing any subset of desired features. For instance,

3
EAI Endorsed Transactions Preprint

Hongfa Xue et al.

a1 b1 c1

c2a2

a3 c3

a4 b2

Figure 2. LibreOffice’s partial CFG

a1 b1 c1

c2a2

a3 c3

a4 b2

Figure 3. Feature F1: save as file

a1 b1 c1

c2a2

a3 c3

a4 b2

Figure 4. Feature F2: email

a1 b1 c1

c2a2

a3 c3

a4 b2

Figure 5. Feature F3: print

a1 b1 c1

c2a2

a3 c3

a4 b2

Figure 6. Feature F2 ∪ F3:
email+print

to eliminate feature F1: save as file, we can tailor a
program that only contains functions inF2 ∪ F3, which
is illustrated in Figure 6.

Scope. In this paper, we assume that only program
binary is available for customization. We use a
previously proposed technique, ByteWeight [3], to
automatically identify function boundaries and bodies
in binary with high accuracy. Features required in
a target use-case is known. If some specific input
is needed to reach a feature, we assume we are
provided with such test-cases to execute the program.
Finally, if two software utilities must always be invoked
simultaneously, we consider them as a single program
feature for the purpose of customization.

2.3. Approach and System Architecture

AMASS consists of two major modules: feature iden-
tification and feature tailoring. Its system architecture
is illustrated in Figure 7. Users provide their require-
ments (i.e., a list of features that are needed) as well
as test-cases to reach different features. AMASS takes
the program binary and customization requirement as
inputs and generates a customized binary consisting
of only the desired features. For feature identifica-
tion, AMASS first builds a function library based on
static analysis of program binary, including dynam-
ically linked libraries. Byteweight, a learning-based
binary analysis tool, is employed to identify function
body directly from static program binaries. Next, exe-
cute the program using the test-cases provided, analyze
the dynamic instruction trace, extract execution paths
relating to different features (or feature combinations),

and maps them to constituent-functions in the program
binary. In particular, the mapping problem is solved
via a multi-class classification. We leverage Recursive
Neural Network (RNN) and train a multi-class Con-
volutional Neural Network (CNN) classifier to identify
the feature-constituent functions. Thus, the output of
feature identification is a set {Fi ,∀i} of features that are
identified, together with the constituent functions of
each feature Fi . The details are discussed in section 3.

The feature tailoring module is explained in sec-
tion 4. It modularizes program features through their
constituent functions and modifies the program binary
in accordance with user’s customization requirements.
The CFG of the customized program can be viewed as
a sub-graph of that of the original program, which is
able to retain the behavior of only the desired features.
To ensure the soundness of our customization, We
perform reachability analysis as described in 4.2 to
validate the feasibility of the customized program by
analyzing its sub-graph CFG. At last, a fuzzing engine
can be employed to generate inputs and further test the
customized binary.

3. Feature Identification

Feature Identification uses trace splicing to extract
dynamic execution paths and maps them to owner
functions in the binary code, enabling us to identify
program features through their constituent functions.
In this paper, we define an execution path as a
sequence of instructions that are executed from a
function entry point to an exit point. The function
containing the execution path is known as the owner

4
EAI Endorsed Transactions Preprint

AMASS: Automated Software Mass Customization via Feature Identification and Tailoring

Binary Disassembly
Code

Function
List

Execution
Trace Trace

Seg-
ments

User’s
requirement

Features
Binary
Rewriting

Reachability
Analysis

Fuzzing

Customized
Binary

Feature Identification Feature Tailoring

Figure 7. AMASS System Diagram

Figure 8. Extracting dynamic execution paths of each individual
function through trace splicing. Boxes stand for basic blocks. A1
and A2 belong to function A while B1 and B2 belong to function
B.

function. In contrast with prior work that requires seed
information to bootstrap the feature identification [10].
Our approach leverages deep learning and works in a
fully unsupervised, autonomous fashion.

3.1. Function Recognition
We first construct the pre-image and image of our
function mapping, using trace splicing and deep-
learning tools, respectively. The pre-image is defined
as the set of execution paths obtained from dynamic
instruction trace, while the image is defined as the set
of functions recognized in static program binaries.

Trace splicing: We run the target executable with
provided test cases to invoke different (combinations
of) program features, and collect instruction trace
to capture the dynamic execution of the program.
The trace is then spliced to extract execution paths
belonging to different functions, which serves as the
pre-image of our function mapping. Consider the
illustrative example shown in Figure 8, where a
sequence of 4 basic blocks, A1, B1, B2, A2, are captured

in dynamic trace, when function fB is called inside
function fA. Clearly, we cannot directly map the
entire sequence to functions in binary code, because
it contains two separate execution path, belonging
to functions fA and fB, respectively. We employ two
different methods to splice dynamic trace and extract
different execution paths: (1) We track call stack
changes together with instruction trace. By recognizing
push and pop operations on the call stack, we can
infer function call events, and slice and associate basic
blocks that belong to the same function. (2) From the
instruction trace, instructions that perform function
calls and returns will be recognized and put embedded
function calls into different layers. Basic blocks will be
reorganized by the layers they reside along with the
control flow. In particular, function entries include call
instruction and longjmp while function exits include
ret, syscall and interruptions. Figure 8 illustrates that
after layers are appropriately identified, we extract two
execution paths, A1, A2 and B1, B2, from the dynamic
trace. Then, each execution path will be separately
mapped to its owner function in binary.

Due to loops or repeated function calls, execution
traces usually contain a large amount of duplicate basic
blocks, which do not provide additional useful informa-
tion for function mapping. We remove duplicate basic
blocks in execution traces to improve the accuracy of
function mapping. Furthermore, every time a function
is invoked, a different execution path may be traversed
inside the function. These execution paths will be sep-
arated and mapped to their owner functions indepen-
dently, minimizing the probability of false negative
in function mapping. Recognizing Static functions:
Functions in program binaries are not as easy to identify
as in high-level languages, where the function bound-
ary and prototype are well defined. Moreover, the var-
ious optimization techniques employed by compilers
can make binary code difficult to construe [3]. Functions
can also be separated by data or code segments from

5
EAI Endorsed Transactions Preprint

Hongfa Xue et al.

other functions, which makes the function bodies non-
contiguous. In this paper, we unitize ByteWeight [3],
a learning-based tool that identifies function bodies
from binary. At a high level, ByteWeight learns the
signatures of function start in a weighted prefix tree
during the training stage. Instructions are abstracted
as nodes in the prefix tree and the edges represent the
flow of instruction sequences. Each edge uses weight to
indicate the confidence of current instruction sequence
(from the tree root to the end node of current edge)
being a function start. Afterwards, the testing code
segments are matched to the signatures to get the
possibility of being a starting point. After function start
identification, ByteWeight utilizes CFG and value set
analysis to extract function bodies corresponding to
the function start points. For each target program, we
build its own training data and perform the function
recognition separately using ByteWeight. This allows us
to better tune the learning parameters for programs that
may have different structures/styles of binary code due
to compilation. After training, ByteWeight operates on
the target program and generates the function body and
boundary information that provides a complete list of
functions, as the image our function mapping.

3.2. Function Mapping
Mapping the execution paths in dynamic instruction
trace to the image functions in static binary is a
challenging problem. A basic block from dynamic
trace could match multiple locations in binary, as they
may share the same opcode sequence/pattern. Since
commercial software and operating system are usually
slightly obfuscated and optimized to deter reverse
engineering, address information and symbol table are
not always available so that we can not map a dynamic
trace back to static code based one memory layout
information. It also requires to cope with different
verbal presentations of instructions and the existence
of diverse execution paths of each function in dynamic
trace. In the paper, we assume that we are provided
with user-guided test-cases to execute the program and
invoke target features for customization. Then we can
get the Input of features execution trace after the test-
cases are executed. Such test-cases can also be obtained
using tools like NeuFuzz [34] and Intel PT technology
with constructed Proof of Concepts (POCs) [13].

The most common approach is using Pin tool [17], a
dynamic instrumentation to extract the execution path.
However, it may incur a high overhead. Here, we adopt
the method proposed in NeuFuzz [34], which uses
Intel PT technology with constructed Proof of Concepts
(POCs), which has shown a better performance in terms
of execution speed.

In this paper, we leverage deep learning to propose a
solution to enable automated function mapping. Deep

neural network, such as Recursive Neural Network
(RNN) is known as an effective approach for modeling
sequential information, such as sentences in texts or
programming language in source code. Similarly, one
single binary instruction code s is a combination of
instruction type and the corresponding operands, such
as memory references, registers and immediate values,
which can be considered as a sequence of tokens.
We propose an approach to model binary instruction
sequences using Recursive Neural Network (RNN). The
framework is constructed with two key components.
First, to obtain vector embedding for a given execution
path (that consists of an instruction sequence), we use
RNN to map each term in the binary instructions (e.g.,
opcodes and operands) to a vector embedding at the
lexical level, resulting in a signature vector for the
entire execution path. Second, we consider the mapping
problem as a multi-class classification problem, where
each function is considered as a class label, different
execution paths obtained from the function’s binary
code as samples of that class, and an execution
path extracted from dynamic instruction trace as the
testing sample. We employ a multi-class Convolutional
Neural Network (CNN) classifier to identify the owner
functions of an arbitrary dynamic instruction trace. Our
deep learning approach is inspired by the related work
on source code analysis [39, 40, 46]

Embedding binary code at the lexical level.
Consider a disassembly code corpus from a target
program, with m distinct terms (e.g., different opcodes
and operands) across the whole corpus. We use an RNN
with n hidden nodes to convert each term in the code
corpus into an embedding vector U ∈ Rn×m. RNN is
known as an effective approach for modeling sequential
information, such as sentences in texts or program code.
Figure 9 presents the training process of our RNN
model for binary code. The input xt ∈ Rm+n at time
step t is a one-hot vector representation corresponding
to the current term, e.g., ’eax’. The hidden layer state
vector, st ∈ Rn, stores the current state of the network
at step t and captures the information that has already
been calculated. Specifically, it can be obtained using
the previous hidden state st−1 at time step t − 1 and the
current input xt at time step t:

st = f (Uxt +Wst−1) (1)

Function f is a nonlinear function, e.g., tanh [18]. U ∈
Rn×m and W ∈ Rn×n are the shared parameters in all
time steps.

The output, Ot ∈ Rm, is a vector of probabilities
predicting the distribution of the next term in the code
corpus. It is calculated based on current state vector
along with another shared parameter V ∈ Rm×n, i.e.,:

Ot = sof tmax(V st) (2)

6
EAI Endorsed Transactions Preprint

AMASS: Automated Software Mass Customization via Feature Identification and Tailoring

mov eax 0x40203f push rbp… …

𝑜"#$ 𝑜" 𝑜"%$ 𝑜"%& 𝑜"%'

𝑈
𝑊

𝑉𝑆"#$

Figure 9. An illustration of RNN.

1 push %rbp

2 mov %rsp,%rbp

3 sub $0x10,%rsp

4 lea -0x4(%rbp),%rax

5 mov %rax,%rsi

6 mov $0x601060,%edi

7 callq 400710

8. mov -0x4(%rbp),%eax

1

2

push

%rbp

mov

%rbp

%rsp

Instruction Sequence
…
…

3

…
…

Figure 10. An Illustration of RAE.

The parameters {U,V ,W } are trained using back-
propagation through time (BPTT) method in our RNN
network (We skip the technical details here and refer
readers to [4]). Once RNN training is complete, each
term in the code corpus will have a unique embeddings
U from Equation (1), which comprises its semantic rep-
resentation cross the corpus. We compute such embed-
dings U to represent the terms of binary instructions at
lexical level.

Generating signature at the syntax level. We
use Autoencoder to combine embedding U ∈ Rnm
of the terms from multiple instructions and to
obtain a signature vector for a given execution path.
Autoencoder is widely used to generate vector space
representations for a pairwise composed term with two
phases: encode phase and decode phase. It is a simple
neural network with one input layer, one hidden layer,
and one output layer. As shown in Figure 10, we apply
Autoencoder recursively to a sequence of terms, which
is known as the Recursive Autoencoder (RAE). Let
x1, x2 ∈ Rnm be the vector embeddings of two different
terms, computed using RNN. During encode phase, the
composed vector embeddings Z(x1, x2) is calculated by:

Z(x1, x2) = f (W1[x1; x2] + b1), (3)

where [x1; x2] ∈ R2nm is the concatenation of x1 and x2,
W1 ∈ Rnm×2nm is the parameter matrix in encode phase,
and b ∈ Rnm is the offset. Similar to RNN, f again is a
nonlinear function, e.g., tanh. In decode phase, we need
to assess if Z(x1, x2) is well learned by the network to
represent the composed terms. Thus, we reconstruct the
the term embeddings by:

O[x1; x2] = g(W2[x1; x2] + b2), (4)

where O[x1; x2] is the reconstructed term embeddings ,
W2 ∈ Rnm×2nm is the parameter matrix for decode phase,
and b2 ∈ Rnm×1 is the offset for decode phase and the
function g is another nonlinear function. For training
purpose, the reconstruction error is used to measure
how well we learned term vector embeddings. Let θ =
{W1;W2; b1; b2}. We use the Euclidean distance between
the inputs and reconstructed inputs to measure
reconstruction error, i.e.,

E([x1; x2];θ) = ||[x1; x2] −O[x1; x2]||22 (5)

For a given execution path with multiple terms
and instructions, we adopt a greedy method [35] to
train our RAE and recursively combine pairwise vector
embeddings. The greedy method uses a hierarchical
approach – it first combines vector embeddings of
adjacent terms in each instruction, and then combines
the results from a sequence of instructions in an
execution path. Figure 10 shows an example of how to
combine the vector embeddings to generate a signature
vector. It shows a (binary) execution path with a
sequence of 8 instructions. The greedy method is
illustrated as a binary tree. Node 1 gives the vector
embedding for the first instruction Inst1 = (push %rbp)
encoded from terms [push; %rbp]. Then, we continue to
process the remaining instructions, e.g., Nodes 2 and
3, until we derive the final vector embedding (i.e., the
signature vector) for the instruction sequences of the
given execution path.

Multi-class classification for function mapping.
Function mapping aims to recognize the owner function
(in static binary) of a given execution path obtained
from the dynamic trace. We consider each function as
a class label, different execution paths obtained from
the function binary code as samples of that class, and
an execution path extracted from dynamic instruction
trace as the testing sample. Then, the mapping becomes
a multi-class classification problem, which is solved
using Convolutional Neural Networks (CNN) in this
paper. We adopt the sentence classification model
proposed in [12, 50] for natural language processing
and train a multi-class classifier using CNN for function
mapping. Note that another line of work, such as
tainting [30, 47], can be used for feature identification.
We consider this as future work.

To obtain training samples for each class, we use
CFG analysis to construct different execution paths
for each function identified in the binary code. More
precisely, once the function boundaries and bodies
are recognized, we use a Depth First Search (DFS) to
traverse the static CFG of each function and construct
related execution path using a random walk. The process
begins at the function entry point, traverse subsequent
basic blocks in the function body, and select each
branch with equal probability when necessary until a

7
EAI Endorsed Transactions Preprint

Hongfa Xue et al.

function exit point is reached. All instructions visited
along the process are collected to construct an (sample)
execution path, and the function name is assigned as
its class label. We also record the branch decisions in
the random walk approach to both eliminate duplicated
paths and improve code coverage. Once trained CNN
classifier enables us to automatically map the execution
path from dynamic instructions trace to function labels,
completing AMASS’s feature identification.

4. Feature Tailoring
Feature tailoring creates customized software that
consists of the desired features and their constituent
functions in accordance with user needs. It has to
address a number of challenges. First, a single execution
trace may not reach all desired features, requiring us
to merge multiple outputs from feature identification.
Second, different features often share some common
constituent functions. If the goal of tailoring is to
remove certain features, we need to identify and retain
the shared functions in the customized binary.

4.1. Methods for Feature Tailoring
Let F̂ be a set of target program features for tailoring.
If the constituent functions of each feature Fi ∈ F̂
can be successfully identified, we can simply create
a superset of their constituent functions, i.e., F̂ = ∪Fi .
Two techniques are developed next to (i) create a
customized program by retaining only the features
in F̂ (e.g., if user only needs these features) and (ii)
remove the features in F̂ from the binary (e.g., if they
are deemed as unnecessary or vulnerable). When F̂
cannot be directly identified, we leverage set operations,
including union, intersection, and subtraction, to
construct F̂ from available feature combinations, in
order to fulfill feature tailoring.

Retaining features. We consider the case where a
user only needs a set of features F̂ . To deliver the
tailored program, we execute the original program with
available test-cases to generate dynamic traces that
reach each feature in F̂ . Through feature identification,
we identify the set of constituent functions Fi of each
feature i and derive the superset F̂ = ∪Fi , which is the
set of functions we need to retain in the customized
binary. Due to possible missing constituent functions
during feature identification and deep learning, the set
F̂ may not contain all necessary functions to execute the
resulting binary. We apply static CFG analysis to find
and add any required functions that make F̂ complete.
In particular, each function in F̂ will be mapped to the
pre-built static CFG and the reachability analysis in
section 4.2 will ensure that each mapped node in the
CFG can be reachable from the function start.

Removing features. We consider now removing
a set of features F̂ from a given program binary,

a0

y1

b0

a1 a2 a3

y2 q

b1 b2 b3 b4

identified from function mapping

to be preserved

Figure 11. Reachability analysis on LibreOffice: retaining
feature

which is useful when a user deems these features
either unnecessary or vulnerable. To this end, we
again execute the binary with test-cases to reach each
unwanted feature in F̂ . Then, after identifying each
Fi from dynamic trace, the superset of constituent
functions F̂ = ∪iFi that correspond to the unwanted
features can be obtained. However, for feature removal,
we cannot simply eliminate all functions in F̂ from
the binary, due to the existence of shared functions
with other (desired) features, which are required for
the soundness of the customized program. Let Ŝ be
the set of functions/basic blocks shared by other
features (which can be found using the constituent
functions of other features). AMASS will only remove
functions/basic blocks in F̂ − Ŝ, which are only needed
for the operation of the unwanted features.

Tailoring via set operations. When the target
features’ constituent functions F̂ are not directly
identifiable, AMASS employs set operations including
union, intersection, and subtraction to compute F̂
from known feature combinations. Union: A feature
may contain multiple execution paths that cannot be
dumped and identified in a single execution. AMASS
will collect traces from different program executions to
identify and compute the union of the related feature-
constituent functions. Intersection: A program may
contain concurrent features that cannot be identified
separately from the available execution trace. For
instance, OpenSSL’s choosing cipher suite feature is
always coupled with the execution of encryption/hash
functions in dynamic trace. To identify the constituent
functions of choosing cipher suite feature, we can take
the intersection of multiple executions with different
choices of encryption/hash functions. Subtraction:
This operation allows us to identify the unique
constituent functions of given features. So, we can
safely remove them without affecting the soundness of
other features due to shared functions.

4.2. Reachability Analysis
A program’s CFG can be represented as a directed
graph, G = {V ,E }, where the node set V = {v1, v2, ..., vm}

8
EAI Endorsed Transactions Preprint

AMASS: Automated Software Mass Customization via Feature Identification and Tailoring

Algorithm 1 Reachability Analysis
Static CFG: G = {V ,E }
Initial feature set:F = {F0, F1, ..., Fn}
F ′=final feature set
Initialization:F ′ = F
for Fk in F do

Find V f : V f ⊃ Fk && V f ∈ V
Find T = {Thead , T1, ..., Tm, Ttail}: T is the control

flow path that contains Fk
if (V f .entry ≥ 2 ‖ V f .exit ≥ 2) && F is for feature

removal then
F ′ = F ′ − {V f }

end if
if ∃T then

F ′ = F ′ ∪T
end if

end for

represents basic blocks and edge set E = {e1, e2, ..., en}
represents control flows among basic blocks. The
customized program can be viewed as a subgraph
G = {V,E}, for V ⊆ V and E ⊆ E . Ideally, for a given
set of desired features, AMASS’s feature identification
and tailoring modules should obtain their feature-
constituent functions F̂ that meet the following two
requirements: (i) All functions in F̂ should belong to
desired features; (ii) The functions in F̂ together can
ensure that the desired features are functional, i.e., the
customized binary can be executed with inputs that
can reach the desired features. However, these may
always hold because deep learning-based algorithm
cannot guarantee to always produce the correct
function mapping and feature identification. Necessary
functions for the soundness of the customized binary
may be missing, causing the program to crash and
unable to execute the desired program features. We
propose a CFG-based reachability analysis to tackle the
issue. We design an algorithm as shown in Algorithm 1
to rectify possible missing functions and ensure the
soundness of customized binary by expanding the
identified feature functions. The basic idea is to connect
the missing links in the CFG and preserve the shared
code segments. As Algorithm 1 shows, we apply the
following methods in the CFG: (i) If the basic block can
jump to multiple targets (V f .exit ≥ 2), or multiple basic
blocks can jump to this basic block (V f .entry ≥ 2), then
this basic block is considered as a shared code segment.
Hence, this basic block will not be removed in any case.

In the example shown in figure 11 from LibreOffice,
where two features are intertwined. The circles
represent the basic blocks and gray circles are those
identified by feature identification module. The feature
F = {a0, y1, a1, a2, q} is the desired feature that the user
wants to keep. Without reachability analysis, a3 and
y2 won’t be kept in the customized binary since they

are not identified by deep learning mapping. According
to Algorithm 1, the identified basic blocks that belong
to the same function will be connected by adding the
missing nodes along with the control flow. We define T
as the control flow path that resides within the scope
of one function and contains all elements in F. In this
case, all the basic blocks in T = {y1, a1, a2, a3, y2} should
be included in F ′ even if a3 and y2 are not discovered
by feature identification module. The nodes with red
dashed circles are the final elements in the feature set
to be customized.

4.3. Binary Rewriting
We use feature tailoring and reachability analysis to
derive a set of functions to eliminate in program binary.
Simply replacing these function bodies with “NOP”s
would not generate a valid executable, because (i) some
code segments in the eliminated function body may be
shared with other functions, and (ii) there may exist
data segments that are inserted into the eliminated
functions and must be preserved.

To address these issues, AMASS utilizes a static
binary rewriter, DynInst, to modify the program binary
by rewriting the binaries in basic blocks level in the
CFG. As DynInst is capable of abstracting the program’s
basic blocks in the form of CFG. To remove the features
in the programs, there are two steps in AMASSḞirst,
AMASS removes the functions that should not be
called. The call site of the eliminated functions will
be replaced to redirect the program to the exit point.
Second, for those functions cannot be removed from the
first step (e.g., For indirect function calls, the address of
the callee function that cannot be decided beforehand
and can potentially lead to any other addresses), we
replace the rest of the function body with “NOP”.
Furthermore, a verification process is performed using
program fuzzing approaches [48] by AMASS to validate
the effectiveness and correctness of feature tailoring.
Specifically, the fuzzing engine generates two sets of
test cases: (1) F1 that invokes the desired features
in customized program; (2) F2 that involves at least
one of the eliminated features. In particular, AMASS
usesF1 to confirm the integrity of necessary program
functionalities, while F2 helps verify the successful
removal and handling of eliminated features.

5. Evaluation
In this section, we evaluate the performance of
each module in AMASS and the impact of feature
customization.

5.1. Experiment Setup
Our experiments are conducted on a 2.80 GHz Intel
Xeon(R) CPU E5-2680 20-core server with 16 GByte of

9
EAI Endorsed Transactions Preprint

Hongfa Xue et al.

91.13%
96.28%

93.36% 94.28%
88.75%

93.14%
97.74% 95.61% 96.89%

90.88%

63.46%

83.39% 81.22%
78.70% 80.01%

0%

20%

40%

60%

80%

100%

polymorph man bzip2 thttpd openssl

A
cc
ur
ac
y

Classifier-O Classifier-L Classifier-S

Figure 12. Accuracy of function mapping during feature
identification

main memory. The operating system is Ubuntu 14.04
LTS.

Benchmarks. In our evaluation, we select three
sets of real-world applications: (i) Non-interactive
applications including two applications from SPEC
2006 Benchmark suite [1], bzip2 and hmmer; two
applications from a bug benchmark suite bugbench [16],
polymorph and man and (ii) Interactive applications
including a light-weight web server thttpd, version beta
2.23, an open source office suite LibreOffice and a web
browser links. (iii) An implementation of Transport
Layer Security (TLS) & Secure Sockets Layer (SSL)
protocol, OpenSSL.

Dataset and Training. In our function mapping
module, we collect static execution paths as training
dataset and dynamic execution paths as testing dataset
for evaluating the accuracy of the pre-trained models.
We selected the highest quality model and extracted the
matrix of embeddings. We have observed that a well
trained function mapping model is with the hidden
node size as 500 in RNN and 200 maximum iterations
for RAE, which is chosen as the parameters of deep
neural network in function mapping module.

5.2. Accuracy of function mapping
In this section, we evaluate the accuracy of the
pre-trained function mapping module in AMASS
and presents the accuracy of five representative
applications. We construct the testing dataset as
follows: We collect the dynamic instruction traces for
each identified function in the binary and perform
the same random walk process to generate execution
paths as mentioned in Section 3.2. The testing dataset
size is controlled to be 30% as big as the training
dataset We also observed that due to the different
amount of training data we can obtain from different
functions, the mapping accuracy will be higher if we
split functions into large and small categories, by using
the median number of training data sample size. We
trained three CNN classifiers for each application, one
is trained cross all the functions as an overall classifier

Benchmark #Functions Vocabulary Size #Training Execution paths #Tokens
polymorph 23 201 10,806 460,248

man 77 1,198 346,570 86,008,653
bzip2 79 1,251 135,738 54,809,155
thttpd 129 1,838 189,855 54,162,084

OpenSSL 4,023 10,582 586,817 137,293,197

Table 1. Benchmark Profiles

(Classifier-O), and the other two are trained for large
functions (Classifier-L) and small functions (Classifier-
S) respectively.

The function mapping accuracy is plotted in
Figure 12. We achieve an overall average accuracy
of 92.76%, with the highest up to 96.28% in man
from bugbench. In general, the mapping accuracy of
larger programs, such as bzip2 and thttpd, is higher
than smaller programs like polymorph. Because the
number of execution traces used for training our CNN
classifiers in those programs is much larger than that in
polymorph, there are 189,855 training execution paths
in bzip2 comparing to 10,806 in polymorph). For the
applications with more functions, such as OpenSSL that
has 4,023 functions, the overall accuracy can be as low
as 88.75% since there are more classes for classification.
We also note that all of the Classifier-Ls outperforms the
Classifier-Os. For instance, in polymorph, the accuracy
of Classifier-L is 93.14% whereas the accuracy of
Classifier-O is 91.13%. However, we observe that the
accuracy for Classifier-S is lower than Classifier-L. The
reason is that functions trained in Classifier-Ss are
relatively small, with limited training data samples for
classification. In particular, the accuracy of Classifier-
S is 63.46% for polymorph, which is the worst among
all the applications. We further analyzed and found
that the median number of training data size is 7 for
polymorph, which means almost half of the functions
have only less than 7 training data samples. The
lack of training data leads to a bad performance for
classification.

5.3. Feature Combinations
In this section, we evaluate the number of customized
programs after feature tailoring. When the features
are identified by customers, we can create multiple
customized binaries containing different feature combi-
nations. Table 2 shows the number of selected features
for each benchmark and the number of customized
programs we are able to create. Our approach is able to
produce numbers of customized programs to match the
customer needs while minimizing unwanted exploita-
tion of the applications features. The number of cus-
tomized programs is calculated after feature tailoring.
Since each feature can contain both unique functions
and shared functions as mentioned in Section 2, there
are some scenarios that several features cannot be

10
EAI Endorsed Transactions Preprint

AMASS: Automated Software Mass Customization via Feature Identification and Tailoring

Bench. polymorph bzip2 hmmer thttpd links LibreOffice OpenSSL
Program Size (LoC) 404 5,904 20,721 7,956 178,441 4,485,797 305,279
#Selected Features 6 8 7 12 12 10 14

#Combinations 64 96 48 3,072 6,144 768 4,096
Table 2. Number of identified features and customized programs by AMASS.

0
1
2
3
4
5
6
7
8
9

10

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

10
0%

#C
us

to
m

iz
ed

 P
ro

gr
am

s

Normalized Program Size

Figure 13. Number of customized program versions and their
sizes normalized to original program (polymorph benchmark)

customized separately. For example, the 6 features we
selected in polymorph are all independent to each other
and totally separable. Hence we are able to create 26

customized programs. However, in LibreOffice, there
are 2 selected features: print files and print files to a
specific printer, they both execute print feature and
have shared functions. They either can be removed or
retained together. Thus, AMASS cannot create a cus-
tomized version of LibreOffice with arbitrarily feature
combinations.

We also evaluate the size of customized program
variations. We pick one example program polymorph(a
Win32 to Unix filename converter) to present the result.
We identified 6 features in polymorph as: convert
file, convert all hidden files, clean files, help/usage,
trace file path, and program version. Figure 13 shows
the program size distribution in terms of normalized
program size in polymorph. As we can see, we generate
various combinations of customized programs that
contain just-enough software features to support specific
use-cases and can significantly reduce the program size
up to 85%.

5.4. Impact on program security
We evaluate the impact of feature customization on
program security here. As shown previously, the
reduction of code size also shrink the attack surface
and eliminate possible vulnerabilities in programs.
We survey the known CVEs of different programs
that can be removed by feature customization. For
instance, in OpenSSL, i) the CVE-2014-0160, known

as Heartbleed bug, can be eliminated by removing the
heartbeat extension; ii) the CVE-2016-7054, which can
lead to DoS attack can be neutralized by removing *-
CHACHA20-POLY1305 ciphersuites; iii) the CVE-2016-
0701, which can cause information leakage, can be
negated by avoiding using DH ciphersuites; The CVE-
2015-5212 in LibreOffice (an integer underflow bug)
can be removed by disabling the printer functionality
when users don’t need it.

In total. we found 101 CVEs in OpenSSL distribu-
tions during 2014-2017, 34 CVEs in LibreOffice, 13
CVEs in Thttpd and 9 CVEs in Bzip2. Not all vulner-
abilities can be disabled by our feature customization.
Some vulnerabilities are in the functions that are nec-
essary for program execution. CVE-2010-0405 in Bzip2
is an integer overflow bug in function BZ2_decompress.
In most of the cases, decompression is a feature that
users will not remove. The number and ratio of program
features that can be removed are shown in Table 3. We
evaluate the security impact of AMASS using the ratio
of CVEs that can be removed by feature customization.

6. Related Work
Binary reuse: Binary reuse has been addressed by sev-
eral works [29, 42, 49]. The reuse of binary code, differ-
ent from source code, carries great difficulty. Methods
proposed in [5] identify self-contained code fragment
from binary with the help of both static disassem-
bling and dynamic execution monitoring. There are also
research works that focus on reconstructing program
binary from dynamic traces, by utilizing instruction
trace and memory dump [14, 43]. However, neither of
the above two methods fits in the context of program
feature customization due to limited degree of flexible
modification, as it only focuses on segment reuse and
high level assembly code. Moreover, even if the code can
be customized, the newly compiled binary may fail to
fulfill the purpose of feature customization.

Code analysis and De-bloating: Several prior works
have proposed program customization frameworks
only based one methods like de-bloating [9], cross-host
tainting [6] and so on. In terms of binary reuse, it has
been studied by several works [38, 41–43]. The main
challenge of reusing binary code is it only focuses on
reusing partial code in the program high-level assembly
code. Some existing works try to find memory-related
vulnerabilities in source code or IR by direct static

11
EAI Endorsed Transactions Preprint

Hongfa Xue et al.

Program # Removed CVEs % Features removed
OpenSSL(2014-2017) 45 44.6

LibreOffice 23 67.6
Thttpd 5 38.5
Bzip2 2 22.2

Table 3. Impact on Application and Communication security

analysis [31, 32, 45]. As such, the two approaches are
quite complementary and when combined together, can
present an improved framework for eliminating attack
surfaces in programs.

Learning-based approach for vulnerability
removal: Prior work has studied bug/vulnerabilities
removal using learning-based approaches. StatSym
[44, 46] and SARRE [15] propose frameworks
combining statistical and formal analysis for vulnerable
path discovery. SIMBER [40] proposes a statistical
inference framework to eliminate redundant bound
checks and improve the performance of applications
without sacrificing security.

7. Conclusion, Future work and Opportunities
In this paper, we design and evaluate a binary cus-
tomization framework AMASS, that aims to generate
customized program binaries with just-enough features
and can satisfy a broad array of customization demands.
Feature identification and feature tailoring are two
major modules in AMASS, with the former one discov-
ering the target features using both static code and exe-
cution traces, and the latter one modifying the features
to reconstruct a customized program. Our experiment
results demonstrate that AMASS is able to identify
features with the highest accuracy up to 96.28% and
reduce the attack surface by up to 67%.

Generating test cases to cover all corner cases of a
feature is a challenging problem in general. To deal
with this problem, we note that some approaches,
such as fuzzing techniques [28], can be useful. As
reported in Section 5, our deep learning-based function
mapping model achieves an average accuracy of 92.7%.
However, we could increase the training data size by
collecting the dynamic execution paths and use related
machine learning optimization like cross-validation
to split small data set [25] for further performance
improvements. Fundamentally, deep learning approach
cannot guarantee zero false positives. In this case, we
can provide feedback to the training phase of deep
learning module as soon as we observe false positives.
This will be helpful to improve the accuracy of our
function mapping module. Moreover, more complex
deep learning algorithms can be further tested, such
as bi-directional RNN and long-short-term memory
(LSTM), which have been proven a better performance

for modeling longer sequential information. We will
consider the above concerns as our future work.

Acknowledgments
This work was supported by the US Office of
Naval Research (ONR) under Awards N00014-15-1-
2210 and N00014-17-1-2786. Any opinions, findings,
conclusions, or recommendations expressed in this
article are those of the authors, and do not necessarily
reflect those of ONR.

References
[1] Spec cpu 2006. https://www.spec.org/cpu2006/
[2] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A.,

Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,
M., et al.: Tensorflow: A system for large-scale machine
learning. In: OSDI (2016)

[3] Bao, T., Burket, J., Woo, M., Turner, R., Brumley, D.:
Byteweight: Learning to recognize functions in binary
code. USENIX (2014)

[4] Bishop, C.M.: Machine learning and pattern recognition.
Information Science and Statistics. Springer, Heidelberg
(2006)

[5] Caballero, J., Johnson, N.M., McCamant, S., Song, D.:
Binary code extraction and interface identification for
security applications. Tech. rep. (2009)

[6] Chen, Y., Sun, S., Lan, T., Venkataramani, G.: Toss:
Tailoring online server systems through binary feature
customization. In: FEAST workshop (2018)

[7] Durumeric, Z., Kasten, J., Adrian, D., Halderman, J.A.,
Bailey, M., Li, F., Weaver, N., Amann, J., Beekman, J.,
Payer, M., et al.: The matter of heartbleed. In: Internet
Measurement Conference (2014)

[8] Harris, L.C., Miller, B.P.: Practical analysis of stripped
binary code. ACM SIGARCH Computer Architecture
News (2005)

[9] Jiang, Y., Wu, D., Liu, P.: Jred: Program customization
and bloatware mitigation based on static analysis. In:
IEEE Computer Software and Applications Conference
(2016)

[10] Jiang, Y., Zhang, C., Wu, D., Liu, P.: Feature-based soft-
ware customization: Preliminary analysis, formalization,
and methods. In: IEEE High Assurance Systems Engi-
neering (HASE)

[11] Jiang, Y., Zhang, C., Wu, D., Liu, P.: Feature-based soft-
ware customization: Preliminary analysis, formalization,
and methods. In: High Assurance Systems Engineering
(2016)

12
EAI Endorsed Transactions Preprint

https://www.spec.org/cpu2006/

AMASS: Automated Software Mass Customization via Feature Identification and Tailoring

[12] Kim, Y.: Convolutional neural networks for sentence
classification. arXiv preprint arXiv:1408.5882 (2014)

[13] Korkin, I., Tanda, S.: Detect kernel-mode rootkits via
real time logging & controlling memory access. arXiv
preprint arXiv:1705.06784 (2017)

[14] Kwon, Y., Wang, W., Zheng, Y., Zhang, X., Xu, D.:
Cpr: cross platform binary code reuse via platform
independent trace program. In: ACM International
Symposium on Software Testing and Analysis (2017)

[15] Li, Y., Yao, F., Lan, T., Venkataramani, G.: Sarre:
semantics-aware rule recommendation and enforcement
for event paths on android. IEEE Transactions on
Information Forensics and Security (2016)

[16] Lu, S., Li, Z., Qin, F., Tan, L., Zhou, P., Zhou, Y.:
Bugbench: Benchmarks for evaluating bug detection
tools. In: Workshop on the evaluation of software defect
detection tools (2005)

[17] Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser,
A., Lowney, G., Wallace, S., Reddi, V.J., Hazelwood,
K.: Pin: building customized program analysis tools
with dynamic instrumentation. In: Acm sigplan notices
(2005)

[18] Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khu-
danpur, S.: Recurrent neural network based language
model. In: Annual Conference of the International
Speech Communication Association (2010)

[19] Mikolov, T., Kombrink, S., Deoras, A., Burget, L.,
Cernocky, J.: Rnnlm-recurrent neural network language
modeling toolkit. In: ASRU Workshop (2011)

[20] Ming, J., Xu, D., Jiang, Y., Wu, D.: Binsim: Trace-based
semantic binary diffing via system call sliced segment
equivalence checking. In: USENIX Security (2017)

[21] Mort, S.: Cve-2017-5638: Anatomy of
the apache struts vulnerability (2017),
https://blog.blackducksoftware.com/

cve-2017-5638-anatomy-apache-struts-vulnerability

[22] Murphy, G.C., Lai, A., Walker, R.J., Robillard, M.P.:
Separating features in source code: An exploratory study.
In: Software Engineering

[23] Sanchez, A.: Personal banking apps leak info through
phone (2014), http://blog.ioactive.com/2014/01/

personal-banking-apps-leak-info-through.html

[24] Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N.,
Polino, M., Dutcher, A., Grosen, J., Feng, S., Hauser, C.,
Kruegel, C., et al.: Sok:(state of) the art of war: Offensive
techniques in binary analysis. In: Security and Privacy
(2016)

[25] Smith, G.C., Seaman, S.R., Wood, A.M., Royston, P.,
White, I.R.: Correcting for optimistic prediction in small
data sets. American journal of epidemiology (2014)

[26] Snyder, P., Ansari, L., Taylor, C., Kanich, C.: Browser fea-
ture usage on the modern web. In: Internet Measurement
Conference (2016)

[27] Source, O.: Libreoffice
[28] Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R.,

Corbetta, J., Shoshitaishvili, Y., Kruegel, C., Vigna, G.:
Driller: Augmenting fuzzing through selective symbolic
execution. In: NDSS (2016)

[29] van der Veen, V., Göktas, E., Contag, M., Pawoloski, A.,
Chen, X., Rawat, S., Bos, H., Holz, T., Athanasopoulos,

E., Giuffrida, C.: A tough call: Mitigating advanced code-
reuse attacks at the binary level. In: Security and Privacy
(2016)

[30] Venkataramani, G., Doudalis, I., Solihin, Y., Prvulovic,
M.: Flexitaint: A programmable accelerator for dynamic
taint propagation. In: IEEE International Symposium on
High Performance Computer Architecture (2008)

[31] Venkataramani, G., Doudalis, I., Solihin, Y., Prvulovic,
M.: Memtracker: An accelerator for memory debugging
and monitoring. ACM Transactions on Architecture and
Code Optimization (TACO) (2009)

[32] Venkataramani, G., Hughes, C.J., Kumar, S., Prvulovic,
M.: Deft: Design space exploration for on-the-fly
detection of coherence misses. ACM Transactions on
Architecture and Code Optimization (TACO) (2011)

[33] Viega, J., Messier, M., Chandra, P.: Network Security with
OpenSSL: Cryptography for Secure Communications. "
O’Reilly Media, Inc." (2002)

[34] Wang, Y., Wu, Z., Wei, Q., Wang, Q.: Neufuzz: Efficient
fuzzing with deep neural network. IEEE Access (2019)

[35] White, M., Tufano, M., Vendome, C., Poshyvanyk, D.:
Deep learning code fragments for code clone detection.
In: IEEE/ACM Intl Conference on Automated Software
Engineering (2016)

[36] Xu, G., Mitchell, N., Arnold, M., Rountev, A., Schonberg,
E., Sevitsky, G.: Finding low-utility data structures. ACM
Sigplan Notices (2010)

[37] Xu, G., Mitchell, N., Arnold, M., Rountev, A., Sevitsky,
G.: Software bloat analysis: finding, removing, and
preventing performance problems in modern large-scale
object-oriented applications. In: FSE/SDP workshop on
Future of software engineering research (2010)

[38] Xue, H., Chen, Y., Venkataramani, G., Lan, T.: Hecate:
Automated customization of program and communica-
tion features to reduce attack surfaces. In: International
Conference on Security and Privacy in Communication
Systems (2019)

[39] Xue, H., Chen, Y., Venkataramani, G., Lan, T., Jin, G.,
Li, J.: Morph: Enhancing system security through inter-
active customization of application and communication
protocol features. In: Poster in ACM Conference on Com-
puter and Communications Security (2018)

[40] Xue, H., Chen, Y., Yao, F., Li, Y., Lan, T., Venkataramani,
G.: Simber: Eliminating redundant memory bound
checks via statistical inference. In: IFIP SEC (2017)

[41] Xue, H., Sun, S., Venkataramani, G., Lan, T.: Machine
learning-based analysis of program binaries: A compre-
hensive study. IEEE Access (2019)

[42] Xue, H., Venkataramani, G., Lan, T.: Clone-hunter:
accelerated bound checks elimination via binary code
clone detection. In: ACM SIGPLAN International
Workshop on Machine Learning and Programming
Languages (2018)

[43] Xue, H., Venkataramani, G., Lan, T.: Clone-slicer:
Detecting domain specific binary code clones through
program slicing. In: FEAST workshop. ACM (2018)

[44] Xue, H., Venkataramani, G., Lan, T.: Twin-finder:
Integrated reasoning engine for pointer-related code
clone detection. arXiv preprint arXiv:1911.00561 (2019)

13
EAI Endorsed Transactions Preprint

https://blog.blackducksoftware.com/cve-2017-5638-anatomy-apache-struts-vulnerability
https://blog.blackducksoftware.com/cve-2017-5638-anatomy-apache-struts-vulnerability
http://blog.ioactive.com/2014/01/personal-banking-apps-leak-info-through.html
http://blog.ioactive.com/2014/01/personal-banking-apps-leak-info-through.html

Hongfa Xue et al.

[45] Yao, F., Chen, J., Venkataramani, G.: Jop-alarm: Detecting
jump-oriented programming-based anomalies in appli-
cations. In: 2013 IEEE 31st International Conference on
Computer Design (ICCD). IEEE

[46] Yao, F., Li, Y., Chen, Y., Xue, H., Lan, T., Venkatara-
mani, G.: Statsym: vulnerable path discovery through
statistics-guided symbolic execution. In: Dependable
Systems and Networks (DSN) (2017)

[47] Yao, F., Venkataramani, G., Doroslovački, M.: Covert
timing channels exploiting non-uniform memory access
based architectures. In: Great Lakes Symposium on
VLSI. ACM (2017)

[48] Zalewski, M.: American fuzzy lop (2007)
[49] Zeng, J., Fu, Y., Miller, K.A., Lin, Z., Zhang, X., Xu,

D.: Obfuscation resilient binary code reuse through
trace-oriented programming. In: ACM conference on
Computer & communications security (2013)

[50] Zhang, K., Wang, M., Cong, X., Huang, F., Xue, H.,
Li, L., Gao, Z.: Personal attributes extraction based
on the combination of trigger words, dictionary and
rules. In: Proceedings of The Third CIPS-SIGHAN Joint
Conference on Chinese Language Processing. pp. 114–
119 (2014)

14
EAI Endorsed Transactions Preprint

	1 Introduction
	2 AMASS Design Overview
	2.1 Challenges
	2.2 Problem Statement and Scope
	2.3 Approach and System Architecture

	3 Feature Identification
	3.1 Function Recognition
	3.2 Function Mapping

	4 Feature Tailoring
	4.1 Methods for Feature Tailoring
	4.2 Reachability Analysis
	4.3 Binary Rewriting

	5 Evaluation
	5.1 Experiment Setup
	5.2 Accuracy of function mapping
	5.3 Feature Combinations
	5.4 Impact on program security

	6 Related Work
	7 Conclusion, Future work and Opportunities

