
Low-cost Techniques for Enhancing Energy Efficiency and Information
Security in Next Generation Multi-core Server System Design

by Fan Yao

A Dissertation submitted to

The Faculty of
The School of Engineering and Applied Science

of the George Washington University
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

August 31, 2018

Dissertation directed by

Guru Prasadh Venkataramani
Associate Professor of Engineering and Applied Science

The School of Engineering and Applied Science of The George Washington University

certifies that Fan Yao has passed the Final Examination for the degree of Doctor of

Philosophy as of June 7, 2018. This is the final and approved form of the dissertation.

Low-cost Techniques for Enhancing Energy Efficiency and Information
Security in Next Generation Multi-core Server System Design

Fan Yao

Dissertation Research Committee:

Guru Prasadh Venkataramani, Associate Professor of Engineering and Applied
Science, Dissertation Director

Tian Lan, Associate Professor of Engineering and Applied Science, Committee
Member

Suresh Subramaniam, Professor of Engineering and Applied Science, Committee
Member

Ahmed Louri, Professor of Engineering and Applied Science, Committee Mem-
ber

Miloš Doroslovački, Associate Professor of Engineering and Applied Science,
Committee Member

ii

c○ Copyright 2018 by Fan Yao
All rights reserved

iii

Dedicated to my beloved parents

iv

Acknowledgments

First, I would like to thank my advisor, Professor Guru Prasadh Venkataramani

for his tremendous guidance, patience and support throughout my Ph.D. program.

As an advisor, he is always there to inspire interesting research directions, provide

useful feedbacks and offer thinking in unique perspectives. From him, I learned how

to identify important problems, develop effective solutions and more importantly how

to present ideas in a compelling manner. Professor Venkataramani is also an awesome

mentor and friend. He gave me valuable advices that help me stay focused, think big

and keep positive. I really appreciate what I gained from him in both research and

life.

I would like to thank my dissertation committee members, who have truly guided

me for my successes. I really feel fortunate to have collaborated with many of them.

Especially, I have been working with Professor Subramaniam since the beginning of

my Ph.D. program. He has not only given me constructive advices but also pro-

vided outstanding feedback from a different research background. Professor Lan is

extremely supportive, and I was able to get great suggestions from him for almost any

topic. Professor Doroslovački has been a constant source of knowledge and thoughts.

He has offered many inspirations during my problem-solving process. I would like to

also thank Professor Howie Huang, Professor Zhenyu Li and Professor David Nagel

for their instructions and help on various occasions. I want to thank Marco Suarez

and Jason Hurlburt from SEAS facility for their incredible support on the research

facilities.

I also would like to thank my friends and colleagues in GWU, Ming Yao, Jie

Chen, Hang Liu, Yongbo Li, Jingxin Wu, Hongfa Xue, Hongyu Fang, Sai Santosh

Dayapule, Yurong Chen, Bingqian Lu, Juzi Zhao, Yu Xiang, Wenhui Zhang, Shijing

Li, Maotong Xu, Ambaw Ambaw, Sultan Alamro, Hao Zheng, Yuede Ji, Pradeep

Kumar and many others, who have filled my Ph.D. journey with lots of fun and joy.

Finally, I would like to thank my parents, Weibin Yao and Lianhua Wang for their

relentless love and unconditional support. I would not get so far without them and I

v

am deeply grateful to them.

This dissertation is based upon work supported by the National Science Foun-

dation under CAREER Award CCF-1149557, CNS-1718133 and CNS-1618786, and

Semiconductor Research Corp. (SRC) contract 2016-TS-2684.

vi

Abstract of Dissertation

Low-cost Techniques for Enhancing Energy Efficiency and Information
Security in Next Generation Multi-core Server System Design

Thesis Statement: Energy efficiency and information security have be-

come two critical design considerations for multi-core server systems.

This dissertation provides in-depth understandings of these two impor-

tant aspects, and proposes low-cost and effective techniques to improve

energy efficiency and enhance information security for next generation

multi-core server systems.

The rapid advancements in software have necessitated the design of computer plat-

forms with enormous computing capability. To enable modern software paradigms,

multi-core server systems have become the mainstream computing infrastructures as

they offer faster speed and higher parallelism. Traditionally, a huge amount of efforts

are made to optimize the performance of server hardware. With the rapid growth of

multi-core server systems and the surging trend of information management on these

platforms, there is a growing need to consider two critical design aspects beyond

performance: energy efficiency and information security.

Energy consumption contributes significantly to the operational costs as server

systems nowadays are more and more energy-hungry. Unfortunately, existing multi-

core server hardware is extremely energy inefficient, especially under low-utilizations.

As a result, considerable wasteful energy is consumed when the system is idle. Mean-

while, many server workloads have stringent Quality of Service (QoS) constraints to

be satisfied. To meet the QoS constraints, service providers typically over-provision

hardware resources that are often unused under regular operation. This further exac-

erbates the energy inefficiency issue in large-scale server systems. Improving energy

efficiency for multi-core server systems while maintaining various application QoS

constraints is an important yet challenging task.

vii

While higher energy efficiency is undoubtedly beneficial, it is equally important

to sustain an information-secure computing environment. Today’s end users are in-

creasingly relying on server systems for storing and processing their personal data.

Information leakage can lead to huge financial loss to both service users and providers.

In recent years, it has been shown in several studies that the underlying multi-core

processor architectures are vulnerable to information leakage attacks that can pose

significant threats to information security. These attacks are extremely dangerous

as they allow secret data to be exfiltrated between isolated domains at relatively

high bit rates. To enhance information security in multi-core servers, it is essential

to perform a comprehensive investigation of information leakage vulnerabilities and

carefully design countermeasures that guard the server hardware against exploitations

by malicious parties.

As energy efficiency and information security are becoming more critical, computer

architects and system administrators are urgently looking for efficient solutions to

address them. To enable fast adoption in practical settings, it is essential to design

cost-effective techniques that judiciously leverage existing supports and keep the level

of hardware changes as low as possible.

This dissertation aims to tackle the energy efficiency and information security

challenges in multi-core systems with low costs. Three novel techniques that make

smart use of existing hardware supports to offer optimized energy efficiency for QoS

constrained applications are proposed. We build realistic QoS-aware system frame-

works that improve energy savings under various workload characteristics. To enhance

server information security, we systematically explore the information leakage vulner-

abilities in modern multi-core architecture. Our work results in the findings of two new

types of high-speed information leakage exploitations: NUMA-based covert channels

and cache coherence state-based covert channels. We propose low-cost defense tech-

niques that effectively quantify and thwart the newly discovered information leakage

attacks. Our contributions open new directions for computer architects and system

designers to build affordable solutions that will push the envelope of energy efficiency

and address emerging information security issues in multi-core server systems.

viii

Table of Contents

Dedication iv

Acknowledgments v

Abstract of Dissertation vii

List of Figures xii

List of Tables xvii

Chapter 1: Introduction 1

1.1 Multi-core Server Issues beyond Performance 1

1.2 Overview . 3

1.3 Scope of this Dissertation . 5

Chapter 2: Background 6

2.1 Server Energy Efficient Computing 6

2.1.1 The Energy Inefficiency Problem 6

2.1.2 Improving Energy Efficiency with Server Low-power States . . 7

2.2 Information Leakage in Multi-core Server Systems 9

Chapter 3: Low-cost Techniques for Improving Server Energy Effi-

ciency 13

3.1 Understanding Server Low-power States 13

3.2 A Dual Delay Timer Approach Through Leveraging System Sleep . . 15

3.2.1 Server, Job, and Workload Model 15

3.2.2 Motivation . 16

3.2.3 Dual Delay Timers Design Overview 19

3.2.4 Dual Delay Timer Algorithm 21

3.2.5 Experimental Setup . 22

3.2.5.1 Power Model . 22

ix

3.2.5.2 Simulation of Server Farms 23

3.2.5.3 Simulation Configurations 24

3.2.5.4 Workload Generation 24

3.2.5.5 Job Handler . 25

3.2.6 Evaluation . 26

3.2.6.1 Exploration of Dual Timers for Poisson Job Arrivals 26

3.2.6.2 Exploration of Dual Timers for MMPP Job Arrivals 27

3.2.6.3 Exploration of Dual Timers for Wikipedia Trace . . . 27

3.2.7 Scalability with Number of Servers 28

3.3 WASP: Workload Adaptive Energy-Latency Optimization in Server

Farms using Server Low-power States 29

3.3.1 Motivation . 29

3.3.2 WASP Design . 30

3.3.2.1 Workload-adaptive Algorithm 31

3.3.2.2 Adaptive Server Provisioning 34

3.3.3 Experimental Setup . 34

3.3.3.1 Server Power Profile and Low-power State Configuration 34

3.3.3.2 Simulation Platform 35

3.3.3.3 Real System Experiments on Testbed 36

3.3.3.4 Baseline Strategies 36

3.3.4 Energy-Latency Tradeoff Exploration 37

3.3.4.1 Frontier Curves on Random Arrivals 37

3.3.4.2 Frontier Curves on Non-bursty Traces 40

3.3.4.3 WASP Parameter Selections 41

3.3.5 Evaluation on Real System . 42

3.3.5.1 Non-bursty Traces 43

3.3.5.2 Bursty Traces . 44

3.4 TS-Bat: Multi-core Processor Power-aware Scheduling with Temporal-

spatial Batching . 45

3.4.1 Multi-core Processor Power Characteristics 46

x

3.4.2 Motivation for Job Batching 47

3.4.3 TS-Bat Design . 49

3.4.3.1 Design of Temporal Batching 49

3.4.3.2 Design of Spatial Batching 52

3.4.4 Implementation . 53

3.4.5 Experimental Setup . 54

3.4.6 Evaluation . 55

3.4.6.1 Results of Temporal Batching 55

3.4.6.2 Combined Temporal and Spatial Batching 60

3.4.7 Discussions . 61

3.5 Related Work . 62

3.6 Summary . 64

3.6.1 Dual Delay Timer . 64

3.6.2 WASP . 65

3.6.3 TS-Bat . 66

Chapter 4: Information Leakage in Multi-core Server Systems: Char-

acterizations and Defenses 67

4.1 Background . 67

4.1.1 Non-Uniform Memory Architectures 67

4.1.2 Cache Coherence Protocols . 68

4.2 Information Leakage Attack exploiting Non-uniform Memory Architec-

tures . 69

4.2.1 NUMA Latency Profile . 70

4.2.2 Threat Model . 71

4.2.3 NUMA-based Timing Channel Construction 72

4.2.4 NUMA-based Timing Channel Demonstration 74

4.2.5 NUMA-based Timing Channel Analysis 75

4.2.5.1 Time-Intervals between Remote Accesses 76

4.2.5.2 Quantifying NUMA Covert Channels 80

xi

4.2.6 Discussions on Mitigations . 82

4.3 Information Leakage Attack exploiting Cache Coherence States 83

4.3.1 Cache Coherence States and Access Latencies 83

4.3.2 Sharing Physical Memory . 85

4.3.3 Threat Model . 86

4.3.4 Exploiting Cache Coherence 87

4.3.4.1 On-chip Cache Coherence 88

4.3.4.2 Inter-chip Cache Coherence 90

4.3.5 Timing Channel Construction 92

4.3.5.1 Pre-transmission . 92

4.3.5.2 Trojan and Spy . 94

4.3.6 Experimental Results . 97

4.3.6.1 Spy’s Reception . 98

4.3.6.2 Transmission Bandwidth 99

4.3.6.3 External Noise and Error Correction 101

4.3.6.4 Symbols Encoding Multi-bits 103

4.3.7 Vulnerability Analysis on Variants of Coherence Protocols . . 104

4.3.8 Securing Cache Coherence Protocols 106

4.3.8.1 Modifying E→M Transition 106

4.3.8.2 Latency Profiles with the Modified Coherence Protocol 108

4.3.8.3 Implications on Application Performance 109

4.4 Related Work . 110

4.5 Summary . 114

Chapter 5: Conclusions 116

xii

List of Figures

2.1 Actual server energy proportionality (actual EP) vs. ideal server en-

ergy proportionality (ideal EP) . 6

2.2 Information leakage attacks (covert channels) on shared hardware re-

sources . 10

3.1 Hierarchy of server system low-power states and performance state. . 14

3.2 Server power states and their corresponding Transition (TT) and Wakeup

(WT) times (in seconds). 17

3.3 Energy breakdown for various workloads using three different server

power configurations. Average Normalized Latency (N.L.) is shown

above the bars normalized to the workload execution times. 18

3.4 Dual Delay Timer Framework Overview 20

3.5 Energy reduction of Dual-τ compared to A-I in various workloads and

server utilization levels for different numbers of servers – 20, 50, and 100. 29

3.6 WASP Power Management Framework 30

3.7 Power profile of a 10-core Xeon E5 processor with C0-C1 and C0-C6

transition settings whenever the server is idle.1 35

3.8 Pareto-efficiency frontier curves for energy vs. latency for Google and

Apache benchmarks. Job arrivals are modeled as a Poisson Process,

and energy, latency and frequency values are normalized with respect

to the configuration using Active-Idle power management policy. . . . 38

3.9 Pareto-efficiency frontier curves for energy vs. latency for Mail and

DNS benchmarks. Job arrivals are modeled as a Poisson Process, and

energy, latency and frequency values are normalized with respect to

the configuration using Active-Idle power management policy. 39

3.10 Pareto-efficiency frontier curve for Energy-Latency tradeoffs on real-

world Wikipedia traces. 40

xiii

3.11 Energy measured on a server farm with 10 servers with different energy

management policies. The first three groups of bars represent energy

breakdown in each server when Active-Idle, Delay-Doze and WASP

are applied, respectively. The rightmost three bars illustrate the total

server farm energy consumption for Active-Idle (black bar), Delay-Doze

(gray bar) and WASP respectively (white bar). 42

3.12 System utilization for four bursty traces. 44

3.13 Normalized energy consumption relative to peak energy on a 10-server

cluster. 45

3.14 Power range of a 10-core Xeon processor with different numbers of

active cores and various C states configurations.2 46

3.15 Power efficiency of a 10-core Xeon processor with different level of C

states configurations. 47

3.16 (a) Package C state residency breakdown for the processor running a

web server with an average 10% utilization; (b) energy consumption for

baseline (no batching), Batching-5, and Batching-20 that accumulate

5 and 20 jobs, respectively (normalized to energy consumption with C

state disabled). 48

3.17 An illustration of temporal job batching procedure assuming that the

server is equipped with a 4-core processor. (a) shows how the jobs are

batched together before they are dispatched; (b) illustrates how the

batched jobs are serviced at the local server. Note that the first 4 jobs

are processed simultaneously while the other jobs are queued. 50

3.18 Overview of overall TS-Bat scheme. ti is the estimated processor idle

time for server i. t1, t2 and t3 ≥ tcur, which means these servers are cur-

rently busy processing the batched jobs; t4, t5 and t6 ≤ tcur indicating

these three servers are idle. 52

xiv

3.19 Package C state residency breakdown for Bodytrack benchmark. Fig-

ure (a), (b) and (c) correspond to the residency breakdown with base-

line configuration (no batching) under 10%, 20% and 30% system uti-

lization respectively. Figure (d) (e) and (f) are for the same plots under

Temporal Batching with tight QoS (5x). 56

3.20 Package C state residency breakdown for Vips benchmark. Figure

(a), (b) and (c) correspond to the residency breakdown with baseline

configuration (no batching) under 10%, 20% and 30% system utiliza-

tion respectively. Figure (d) (e) and (f) are for the same plots under

Temporal Batching with tight QoS (10x). 57

3.21 Latency CDF for Bodytrack under 10%, 20% and 30% utilization using

TS-Bat’s temporal batching. 58

3.22 Latency CDF for Vips under 10%, 20% and 30% utilization using TS-

Bat’s temporal batching. 59

3.23 Energy savings for various benchmarks with Temporal Batching and

TS-Bat at 30% utilization. Baseline has no batching. 61

4.1 Local and remote cache accesses in NUMA system. 68

4.2 State transitions for the MESI protocol 69

4.3 Cache access patterns and cumulative distribution function for local

(Level 1) and remote/cross-socket (Last Level) cache access latency in

NUMA systems. 71

4.4 Illustration of the communication protocol between the spy and trojan

showing a transmission of bit sequence ‘10’. 72

4.5 Bit pattern (64 bits) transmitted by the trojan. 74

4.6 Latency sequence for load operations measured by the spy. The (taller)

red bar and (shorter) purple bars correspond to remote cache and local

cache hits respectively. 74

4.7 Histograms of time-intervals between remote cache accesses in Body-

track for 4 representative core pairs. 77

xv

4.8 Histograms of time-intervals between remote cache accesses in Dedup

for 4 representative core pairs. 77

4.9 Histograms of time-intervals between remote cache accesses in Flu-

idanimate for 4 representative core pairs. 78

4.10 Histograms of time-intervals between remote cache accesses in Stream-

Cluster for 4 representative core pairs. 78

4.11 Histograms of time-intervals between remote cache accesses in Swap-

tions for 4 representative core pairs. 79

4.12 Histograms of time-intervals between remote cache accesses in x264

for 4 representative core pairs. 79

4.13 Histogram of time-intervals between remote cache accesses in the covert

channel. 80

4.14 Degree of Sparseness for (Source, Destination) pairs for the Parsec-2.1

Benchmarks. 81

4.15 Load operation latency in various (location, coherence state) combina-

tions. 84

4.16 Trojan explicitly controlling Cache Coherence States as E or S by run-

ning on one or two cores within the multi-core processor. The dotted

lines show the service path for a data block residing in E and S states

respectively. 88

4.17 Trojan explicitly controlling Cache Coherence States as E or S by run-

ning on one or two cores within the multi-socket, multi-core processor.

The dotted lines show the service path for a data block residing in E

and S states respectively. 90

4.18 Illustrative example of ‘1’ and ‘0’ transmission protocol between tro-

jan(s) and spy. 96

4.19 Bit pattern (100 bits) covertly transmitted by the trojan. 98

xvi

4.20 Bit Reception by the Spy (corresponding to the bits transmitted in

Figure 4.19) through measuring load latency (in CPU cycles). The top

portion in each subfigure shows the entire reception period, and the

bottom portion shows a magnified view for the reception of first five

bits. 99

4.21 Raw bit accuracy as captured by the spy with increase in transmission

rates. 100

4.22 Raw bit accuracy captured by the spy when co-located with external

processes (kernel-build [1]). 101

4.23 Effective information bit transmission rate with error correction scheme

under medium (4 co-located kernel-build processes) and high (8 co-

located kernel-build) noise levels. 103

4.24 Multi-bit symbol transmission using 4 combination pairs to encode 2-

bit symbols. Magnified view of first 18 bits reception is shown, that

captures all 4 possible symbol values. 104

4.25 Handling E→M transition in directory-based protocols. Coherent Cache

denotes private caches kept coherent using the coherence protocol hard-

ware. 107

4.26 Distributions of latencies for accessing E- and S- state cache blocks

under original MESI protocol and the modified protocol with changes

to E-state cache blocks . 108

4.27 Performance overhead for the modified cache coherence protocol in

PARSEC benchmarks . 109

xvii

List of Tables

3.1 Notations in the Dual Delay Timer Algorithm 20

3.2 Power breakdown for an Intel Xeon-E5 based server. 23

3.3 MMPP ρ values for bursty and non-bursty periods to achieve a certain

overall system utilization level. 26

3.4 Energy reduction for Dual-τ in various workloads and dual delay timer

values compared with A-I and A-I-S (opt τ : lowest energy). Job ar-

rivals are modeled as Poisson Process, and Normalized Latencies (N.L.)

are calculated with workload execution times as baselines. 27

3.5 Energy reduction for Dual-τ in various workloads and dual delay timer

values compared with A-I and A-I-S (opt τ : lowest energy). Job ar-

rivals are modeled as MMPP, and Normalized Latencies (N.L.) are

calculated with workload execution times as baselines. 28

3.6 Energy reduction for Dual-τ in Wikipedia trace for dual delay timer

values compared with A-I and A-I-S (opt τ : lowest energy). Nor-

malized Latency (N.L.) is calculated with workload execution time as

baseline. 28

3.7 Notations in WASP power management algorithm 31

3.8 Power (W) breakdown for a system with na active cores 35

3.9 Processor/System low-power states and wakeup latencies 36

3.10 Power savings for all benchmarks using TS-Bat’s temporal batching.

Energy savings are normalized to the baseline (OS default C state

management) energy consumption. 60

4.1 Load operation latency (CPU Cycles) in various (location, coherence

state) combinations. Location is with respect to Spy. 84

4.2 Trojan implementation along with states used for bit communication

and boundary. ‘Remote’ and ‘Local’ are with respect to the spy’s

location. 97

xviii

4.3 Sequence of coherence controllers that interact in order to service the

cache blocks in E and S state under different classes of cache coherence

protocols. ‘LLC’ and ‘MemCtrl’ denote Last Level Cache and Memory

Controller respectively. 104

4.4 Load operation latency (Cycles) for S- and E- state blocks within the

socket using the modified directory-based protocol. 108

xix

Chapter 1 Introduction

1.1 Multi-core Server Issues beyond Performance

The breakdown of Moore’s law has significantly pushed the wide adoption of multi-

core processor to the computing landscape during the past decade. With the growing

computation demands from modern software paradigms, computing system providers

are rapidly incorporating multi-core processors into their server systems. Conven-

tionally, a tremendous amount of endeavors are put to optimize the performance of

multi-core server systems. While there is no doubt that performance is critical, the

evolution of information technology has been increasingly arousing the attention of

energy efficiency and information security as the key design aspects beyond perfor-

mance.

The need for server energy efficiency. Today’s multi-core servers are increas-

ingly energy-hungry. It is reported that large-scale server systems such as data centers

and server farms account for almost 3% of the US domestic energy consumption [85].

Increasing demand from users for personalized and contextual retrieval of large vol-

umes of data and the associated computations have exacerbated the energy issues.

Maximizing server energy efficiency is the key to saving energy and amortizing op-

erational costs. Unfortunately, contemporary server systems are extremely energy

inefficient due to two main factors: First, current server hardware from processors

to system components suffer from lack of energy proportionality. Studies by Bar-

roso et al. [47] have shown that servers with 30% utilization level typically consume

about 60% of the peak power. Besides, a big portion of power is drawn from server

platforms even when they are completely idle. Second, server-class latency-critical

workloads typically have stringent service level agreements that are required to be

met. To ensure QoS, service providers often over-provision servers to satisfy the peak

load while leaving a large amount of the servers under-utilized or idle most of the

time [107]. This further exacerbates the server energy efficiency issue.

To overcome the energy efficiency dilemma, we need a systematic approach that

1

understands power characteristics of server hardware (e.g., cores, processors, and pe-

ripheral infrastructure) as well as the interactions between software applications and

these hardware components. Meanwhile, due to the considerable variabilities in work-

loads, there does not exist a single configuration for energy management that works

well across various scenarios concerning different system utilizations, server configu-

rations and performance constraints. Determining individual low power management

policy in each scenario manually is cost-prohibitive and impractical. Therefore, it is

essential to explore adaptive mechanisms that can automatically adapt to workload

characteristics and improve energy efficiency in future server platforms.

The growing concern of information security on hardware. While energy

efficiency of server systems is clearly necessary, ensuring information security and

reducing financial cost related to information leakage on server systems is of equal

significance. During the past decade, the proliferation of personal and sensitive data

has been increasingly incentivizing adversaries to penetrate the system confinement

mechanisms for data theft. Security breaches leading to information leakage have

introduced massive economic loss every year [63]. Conventionally, attackers target

software-level vulnerabilities to carry out attacks. With rapid improvements in soft-

ware confinement and isolation mechanisms, it is becoming increasingly difficult for

information leakage attacks to exploit software vulnerabilities. To bypass software-

level protections, attackers are turning to implement their exploitations on shared

hardware resources. It has been shown in several recent studies that various perfor-

mance optimizations (such as SMT and caching) in modern processor architecture

allow sensitive bits to be leaked to malicious parties in the form of side or covert

timing channels [30]. Information leakage attacks targeting hardware are especially

worrisome since adversaries communicate simply by modulating the timing of resource

accesses, and do not explicitly transmit or receive bits. Therefore, the attackers do not

leave any physical trace during the process of communication, which makes them ex-

tremely hard to be detected. Since multi-core processors generally feature multitude

of shared hardware resources, they unavoidably offer richer space for timing chan-

nel exploits. To protect multi-core servers, as the first step, it becomes valuable to

2

comprehensively evaluate multi-core processor hardware architecture and microarchi-

tecture designs, and perform intensive investigations to unravel information leakage

vulnerabilities. We should then devise effective strategies to neutralize their efforts

in order to prevent such information leakage. We envision that information security

would be regarded as the first order design constraint in computer architecture in the

near future.

As multi-core server and software application continue to evolve, enhancing en-

ergy efficiency and information security becomes an indispensable mission. While

approaches that leverage customized hardware or a complete redesign of processor

architecture to address these two qualitative aspects of computing are possible, these

solutions typically incur high design cost and thus cannot be deployed in most prac-

tical settings. Therefore, it is equally important to explore low-cost techniques by

either using existing hardware supports or introducing minimal hardware changes

when necessary to enable timely deployment. Our work highlights the criticality of

understanding energy efficiency and information security for next generation multi-

core server system design and builds stepping stones for further explorations in these

directions.

1.2 Overview

This dissertation contains five chapters.

• Chapter 1 motivates the need for improving the two qualitative aspects of com-

puting in multi-core server systems, namely energy efficiency and security (with

respect to information leakage). It also identifies the significance of having im-

proved energy and security using low-cost techniques for next-generation multi-

core server systems.

• Chapter 2 provides the necessary background for this dissertation. Specifically,

we introduce some hardware supports that can be used as the potential knobs

for improving multi-core server energy efficiency. We explain why it is important

to harness processor and server low-power states to achieve energy savings. We

3

then present the information security issues in multi-core server hardware and

give background information on hardware information leakage in the forms of

side/covert timing channels.

• Chapter 3 demonstrates three novel techniques that make use of processor and

system low-power states to achieve enhanced energy efficiency while satisfying

application’s QoS constraints in multi-core server systems. Specifically, Dual

Delay Timer makes intelligent use of system low-power states to achieve higher

energy saving for latency-critical workloads. WASP performs workload-adaptive

energy and latency optimization by jointly using processor and system low-

power modes. Finally, TS-Bat applies efficient batching to enable processor’s

residency in the most energy-conserving state for optimized CPU energy savings.

The evaluations on physical testbed show that the proposed techniques achieve

substantial energy savings under various QoS constraints.

• In Chapter 4, we systematically investigate the information leakage vulnerabil-

ities in multi-core architectures. We first illustrate a new covert timing channel

that exploits cache access latency difference due to Non-uniform Memory Ar-

chitectures, and propose a lightweight detection technique that uses statistical

metrics to quantify the presence of such information leakage attacks. We fur-

ther demonstrate cache coherence state-based covert channels where the adver-

saries transmit secrets by manipulating the coherence states for shared cache

blocks. Characterizations are performed on the cache coherence state-based

covert channels in terms of bit rates and bit accuracy. We finally propose slight

modifications to the existing cache coherence protocol to annul the timing dif-

ference between different states and thus effectively thwart such covert timing

channels.

• Chapter 5 presents the conclusions of this dissertation work and discusses future

research directions.

4

1.3 Scope of this Dissertation

The main goal of this work is to provide understandings of the implications of

processor/server hardware on energy efficiency and information security, and offer low-

cost techniques that enhance them for the next generation multi-core server systems.

We design effective techniques to tackle both issues by leveraging existing hardware

supports and only introducing minimal architectural changes when necessary. We

perform quantitative analysis of our proposed solutions mainly on real hardware and

occasionally on simulators that model power and timing aspects of the hardware

where necessary.

To improve multi-core server energy efficiency, we are interested in techniques that

take advantage of processor and system low-power states, which are widely supported

in commercial processors. We aim for system-level energy consumption that corre-

sponds to both dynamic and static power usage of the server hardware. Our proposed

low-cost techniques target multi-core multi-server systems that run latency-critical

workloads with runtime QoS constraints. Such applications are extremely important

in delivering many fundamental services to end users, including search, caching and

web serving. Our works show promising results in improving server energy efficiency

without violating user’s performance constraints. For information security, we look

into information leakage attacks in the form of covert timing channels. Our work

investigates such information leakage vulnerabilities due to the design of multi-core

processor architecture. We are interested in characterizing such vulnerabilities as well

as constructing efficient mechanisms to detect and defend against adversaries that

exploit these vulnerabilities. Our investigations reveal two new vulnerabilities, one

associated with the NUMA configuration and another associated with the cache co-

herence fabric. Our proposed techniques utilize lightweight monitoring as well as

slight modification to existing hardware that either identify or stop the covert timing

channels. We envision that this dissertation will motivate researchers to contribute

on designing efficient and practical solutions that improve the energy efficiency and

information security to the next level in future multi-core server system design.

5

Chapter 2 Background

In this chapter, we present the background for energy efficiency and information

security problems in multi-core server systems. First, we introduce the challenges of

energy efficient computing and motivate the use of server low-power states for energy

efficiency optimization. Second, we clarify concepts of emerging information leakage

attacks in multi-core processor architectures, and highlight the need to systematically

understand information security vulnerabilities in multi-core hardware and carefully

design solution techniques.

0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6 0.8 1 Po
w

er
 (N

or
m

al
iz

ed
 to

 P
ea

k)

Utilization factor

actual EP Ideal EP

Figure 2.1: Actual server energy proportionality (actual EP) vs. ideal server energy
proportionality (ideal EP)

2.1 Server Energy Efficient Computing

2.1.1 The Energy Inefficiency Problem

Demands for personalized and contextual retrieval of large volumes of data from

the users have strongly driven the growth of server systems. The enormous server

energy consumption has raised unprecedented concern globally. Such prohibitive

energy cost largely results from lacks of sufficient energy efficiency in contemporary

server infrastructure [101, 142]. Two major factors contribute to the energy efficiency

issue. Firstly, energy proportionality over server utilization is extremely unsatisfying.

Figure 2.1 shows the power usage for a typical multi-core server compared to a server

with ideal energy proportionality. As shown in the figure, there exists a huge gap in

6

energy proportionality between a typical server (actual EP) and the ideal server (ideal

EP). Notably, servers consume a large portion of the peak power at relatively low

utilizations. Even when the server is completely idle, it still burns 40% of the peak

power. This indicates that contemporary server hardware components are inherently

energy inefficient. Server system energy inefficiency is further plagued by the second

factor, ineffective system-level resource management. Many application workloads

have QoS constraints that need to be satisfied. For latency-critical workloads, the

QoS constraints are defined as the tail latencies [81] (e.g., 90th, 95th, 99th percentile

latency) which can be very sensitive to many runtime variabilities including server

system configurations, job arrivals and workload characteristics. In order to guarantee

QoS, most server systems are provisioned for the peak demand, and configured to

operate at capacities much higher than necessary [47]. Therefore, servers are often

underutilized and operated within the lowest energy efficiency region. Overall, a

considerable amount of wasteful energy is consumed due to keeping server hardware

(e.g., CPUs) in power-consuming mode and making an excessive number idle or only

lightly used.

2.1.2 Improving Energy Efficiency with Server Low-power States

Prior studies on improving energy efficiency in server systems can be broadly

classified into two categories: (i) cluster-level power management techniques that dy-

namically re-size server farms by dispatching workloads to a subset of servers and

turning off the rest of the servers [55, 75, 129]; (ii) server-level dynamic power man-

agements that leverage Dynamic Voltage and Frequency Scaling (DVFS) to minimize

energy while not adversely affecting application performance [66, 82, 101, 102]. While

cluster-level energy optimization strategies can potentially offer promising energy sav-

ings through cutting down platform power, they work at a coarser granularity and

tend to be less useful for latency-critical workloads. DVFS is shown to be useful in

saving processor dynamic power. However, DVFS-based mechanisms are less effec-

tive as idle power is becoming the primary contributor to the energy inefficiency in

server systems. Additionally, with the trend of transistor scaling, the dynamic range

7

of voltage is largely shrinking, which further diminishes the usefulness of frequency

and voltage scaling [108].

In recent years, hardware low-power modes are emerging as important features

that are widely supported in server platforms. Processor low-power states reduce

CPU power by clock-gating and power gating various core-level and uncore compo-

nents such as function units, L1 caches and last level shared caches [73]. Meanwhile,

servers nowadays support system sleep states that reduce the entire server power by

putting server components (e.g., memory and disks) to various power conserving non-

active states. Each low-power state is associated with a latency that is required to

wake up the various system components from non-working state to the active state.

Typically deeper low-power states have higher power savings but take longer timer to

resume back to the working state [116]. Processor and system low-power states can

significantly reduce idle power consumption (up to 90% [100]) compared to systems

without enabling them. Therefore, low-power modes are promising knobs to improve

server energy efficiency to the next level.

While taking advantage of situations where servers can enter low-power states

can achieve considerable static and idle energy savings, several challenges exist in

mechanisms that harness low-power states. First, improper use of low-power states

can easily lead to application SLA violations. This is because jobs that arrive when

servers are in low-power mode need to wait until they resume to active state. Long

waiting/queuing time can severely deteriorate the job tail latency. Consequently,

server low-power states need to be carefully controlled in order to improve energy

efficiency while meeting QoS constraints. Second, due to the variability in job sizes,

system utilizations and performance constraints, determining individual low power

management policy in each scenario manually is time-consuming and cost-prohibitive.

Therefore, exploring autonomous mechanisms that can automatically adapt to var-

ious workload characteristics and improve energy efficiency is essential. Finally, as

the low-power states are numerous in server platforms (i.e., core-level, processor-

level and system-level), selecting the most beneficial low-power states and effective

coordinating software applications with them is also challenging. Our proposed tech-

8

niques [172, 174, 175] (as described in Chapter 3) address the aforementioned issues

by (i) making novel use of low-power states for applications to achieve higher energy

saving, (ii) designing an adaptive algorithm that optimizes server energy efficiency and

autonomously adjusts its parameters based on the observed workload characteristics

to meet QoS constraints, and (iii) developing a QoS-aware scheduling framework that

judiciously integrates temporal batching and spatial batching to maximize processor’s

residency in the most power-conserving state for enhanced CPU energy savings.

2.2 Information Leakage in Multi-core Server Systems

The proliferation of critical and information-sensitive data has enticed adver-

saries to compromise server systems and carry out information leakage attacks. Data

breaches have introduced tremendous economic loss every year [63]. Traditionally,

there is a large body of works that study useful static/dynamic techniques to guard

system against software-level exploitations [27, 58, 59, 76–78, 89, 90, 162, 169]. As

software confinement mechanism continues to be more capable, adversaries begin to

target shared hardware resources to carry out malicious behaviors, notably informa-

tion leakage attacks.

Among the many forms of sensitive information leakage, timing channels are par-

ticularly notorious for their stealthy exfiltration of sensitive information by an insider

process (termed as a trojan or victim) to a malicious spy at relatively high bit rates.

Such attacks can manifest as either side channels where a benign victim unknowingly

leaks sensitive data to a malicious spy, or as covert channels where a malicious in-

sider trojan process intentionally colludes with a spy process to reveal secrets illicitly.

Since the system security policy explicitly prohibits information transfer between the

insider process with processes outside of the trusted domain, the adversaries cannot

directly utilize software-level communication interfaces to perform information leak-

age. Therefore, to make the attack possible, they start to use timing channels. Timing

channels rely on modulations of the access timings on shared hardware resources and

do not leave any physical traces. Timing difference can be observed either due to

contention on shared resources or through microarchitectural states that results in

9

Dissertation Defense/57 06/07/18

Information Leakage on Hardware

 3

Hardware Infrastructure

Trojan Spy

…01010011…

Microarchitectural resources

STOP STOP

Figure 2.2: Information leakage attacks (covert channels) on shared hardware re-
sources

distinct resource access latencies. These attacks have been demonstrated to success-

fully break security primitives in modern server systems such as the cloud [153].

Since both covert and side timing channels use timing modulation, we discuss

covert channels without loss of generality. Figure 2.2 shows an illustration of an

information leakage attack in the case of covert timing channel. Formally, Trusted

Computer System Evaluation Criteria (TCSEC or Orange Book developed by US

Department of Defense) [44] defines covert channel as any communication channel

that can be exploited by a process to transfer information in a manner that violates

the system’s security policy. Among the various types of covert channels, timing

channels work by allowing a trojan process to signal information to a spy process

by modulating its own use of system resources in such a way that the change in

response time observed by the spy would provide information. TCSEC notes that

covert channels with low bandwidths represent a lower threat than those with higher

bandwidths. This is because, lower bandwidth channels become increasingly more

expensive for the adversary with diminishing returns in terms of information gain

(e.g., the adversary gets almost no useful or meaningful information on covert channels

with bandwidth rate of 0.1 bits/sec or below). Based on measurements from several

different computer systems, TCSEC classifies a high bandwidth covert channel to

have a minimum rate of 100 bits/sec.

Several existing works have demonstrated the information leakage vulnerabili-

10

ties in various hardware components including private/shared caches, memory bus

and branch predictors [46, 95, 115, 121]. The recent advancements in Spectre and

Meltdown [84, 92] attacks have shown that microarchitectural timing channels are

extremely dangerous and can be easily manifested in practical settings to exfiltrate

sensitive information on mainstream hardware. The prevalence of multi-core process-

ing and virtualization creates even larger attack surface by allowing many mutually

distrusting parties to share the same resources.

Traditionally, a significant amount of attention has been directed to software se-

curity, and hardware security, especially information leakage in multi-core server ar-

chitectures, is a new frontier yet to be thoroughly explored. Computer architects

urgently need to understand information leakage vulnerabilities in hardware and how

adversaries exploit them from an architecture perspective. To devise strategies to

neutralize such efforts by the adversary, it is important for researchers to come up

with techniques that are able to characterize, detect and thwart these attacks. More

importantly, as processor vendors are usually cautious about incorporating new fea-

tures into the existing design due to cost concerns, solution approaches that offer

detection or prevention mechanisms for these information leakage attacks should not

over-design the underlying architecture in order to make it affordable in realistic

scenarios.

In our studies [168, 170, 171] (as described in Chapter 4), we investigate and

present two new information leakage vulnerabilities in multi-core processor architec-

tures. Two classes of information leakage attacks, namely the NUMA-based (Non-

Uniform Memory Access) covert channels and the coherence state-based covert chan-

nels, are demonstrated on real multi-core server platforms. The first attack exploits

the access timings across multiple levels of the cache hierarchy in NUMA-based ar-

chitectures. While the second attack leverages the timings of load latencies corre-

sponding to cache lines in difference coherence states (i.e., Exclusive and Modified).

To protect systems against NUMA-based covert channels, we develop a lightweight

statistical method that quantifies the presence of the attacks, and further discuss

feasible mitigation techniques. To thwart cache coherence-state based attack, we pro-

11

pose slight modifications to cache coherence protocols that annul the read latencies

between the two cache coherence states. Our proposed solutions can effectively guard

multi-core servers from timing channel exploitations with low costs.

12

Chapter 3 Low-cost Techniques for Improving Server Energy Efficiency

In this chapter, we show the detailed design of the three techniques that are used to

improve the energy efficiency of server systems by leveraging low-power states. Specif-

ically, we elaborate the details of processor- and system-level low-power states in Sec-

tion 3.1. In Section 3.2, we demonstrate the design of a dual delay timer mechanism

that orchestrates servers with system low-power states to achieve high server farm

energy savings. In Section 3.3, we demonstrate WASP, a workload adaptive frame-

work that leverages both processor and system low-power states to achieve optimized

energy-latency tradeoff for latency-critical workloads. Section 3.4 demonstrates TS-

Bat, a QoS-aware scheduling framework that performs temporal and spatial batching

to achieve energy saving for multi-core processors by maximizing package-level low-

power state residency. Finally, Section 3.5 and Section 3.6 present related work and

summary of this chapter.

3.1 Understanding Server Low-power States

Emerging from embedded devices, low-power states are now an important fea-

ture targeted for power management in modern computer systems. The Advanced

Configuration and Power Interface (ACPI) [65] provides a standardized specification

for platform-independent power management. ACPI-defined interfaces have been

adopted by several major operating system vendors [25, 141] and supported by var-

ious hardware vendors such as Intel and IBM [53, 71]. Hardware low-power states

reduce the power envelope by clock gating and power gating various systems compo-

nents such as processors cores, uncore resources, memories and peripheral devices.

Figure 3.1 illustrates the hierarchical power state management in ACPI. Specifi-

cally, ACPI uses global states, Gx, to represent states of the entire system that are

visible to the user. Within each Gx state, there is one or more system sleep states,

denoted as Sx. System sleep states define power status for various server components.

For instance, S0 is the working state that indicates the system is running and CPUs

13

Dissertation Defense/57 06/07/18

Multi-core Server Low-power States

 5

S0

S1

S2

S3

S4

S5

Cn C2 C1… C0

P0

P1

P2

Pn

…G1: sleeping

G2: soft-off

G3: mechanical Off

G State: Global States

S State: System Sleeping States

C State: Processor Power States
(Core level and package Level)

P State: Processor
Performance States

G0: working

Figure 3.1: Hierarchy of server system low-power states and performance state.

are ready for executing instructions. Other S states are non-active system states.

S3 is also known as the Suspend to RAM state where processors are turned off and

all contexts are no longer maintained except memory subsystems. When the system

sleep state is S0, the processor is allowed to reside in a set of C states such as C0,

C1 and C2. C state enables fine-grained core and uncore components (e.g., private

caches, shared caches and coherence fabric) low-power modes to achieve various level

of power savings. Finally, when the processor core is active (C0), performance states

can be configured to determine the speed of instruction execution at runtime (i.e.,

DVFS). In this work, we mainly target on server low-power states for energy efficiency

optimizations for the reasons discussed in Chapter 2.

Modern processors generally provide high parallelism by integrating multiple cores

within one processor package. Low-power C states are supported at both core level

and package level. Core C state choices and residencies are determined by the Operat-

ing System (e.g., the menu CPU-idle governor in Linux [116]) based on applications’

runtime activities. The package C state is automatically resolved to the shallowest

C state among all the cores. Waking up from package C state takes longer time than

the same level of core C state since the un-core components have to be activated and

warmed up before resuming the core execution contexts.

14

Low-power states can considerably reduce server system energy consumptions

when the processor and system hardware are in the standby mode or underutilized.

However, it is worth noting that the use of low-power states can introduce perfor-

mance penalties due to the existence of delay (wakeup latency) for resuming servers

in low-power states back to active. Typically, deeper low-power states indicate more

aggressive energy savings but also corresponds to longer wake-up latency. For ex-

ample, waking up processor from core C states takes microseconds while restoring

servers from deep system sleep states (S states) can take upto a few minutes [81].

Therefore, judicious use of the above-discussed low-power states is necessary in order

to trade off application performance (e.g., job latencies) for energy efficiency without

violating user service level agreements.

3.2 A Dual Delay Timer Approach Through Leveraging System Sleep

Prior works have explored the use of processor idle and system deep sleep together

with a single delay timer that controls the server’s transition from idle state to system

deep sleep to save energy for idle servers [55]. In our first proposed technique, we take

advantage of processor idle and deep system sleep states combined with dual delay

timers to orchestrate the entry and exit from system low-power states and maximize

system energy savings for several workloads.

3.2.1 Server, Job, and Workload Model

We model the server farm as a multi-server system of homogeneous servers. Each

server is equipped with an Intel Xeon processor that can process multiple jobs at

a time (corresponding to the level of parallelism in multi-core processors). We use

four synthetic workloads with average workload execution times shown in brackets

next to them: Google search (4.2 ms), Apache (75 ms), Mail (92 ms) and DNS query

(194 ms) jobs [108], and one real system trace, Wikipedia, with an average workload

execution time of 3.5 ms [130]. The term utilization factor ρ is defined as the fraction

of time the server is expected to be busy executing jobs.

15

A system-wide load balancer is configured to dispatch jobs to servers. The job

latency is defined as the time elapsed from when a job arrives to when the job com-

pletes its execution and departs the server farm. We monitor the average job latency

(normalized with respect to the average expected execution time) and ensure that

the worst case job latency is within bounds to meet QoS constraints.

3.2.2 Motivation

Sleep states have been implemented in most modern processors to reduce energy

consumption, especially when the processor utilization levels are low. For example,

when the processor operates at 10% of its peak capacity, the processor should ideally

stay active for 10% of the time. For the remaining 90% of the time, the system should

enter one of the low-power states or sleep states (that consumes significantly less power

compared to the active mode), and ultimately approach energy proportionality. While

sleep states are designed to lower the system energy consumption, one has to use them

wisely in order to take advantage of their energy-saving benefits. To illustrate this,

we perform motivational experiments that study the energy consumption of server

farms under different workloads. The experiment is performed on a simulator that

models a server farm with 50 four-core servers (See Section 3.2.5 for more details).

Three different server power configurations are implemented as described below.

1. A-I is a power configuration where the server alternates between active (C0S0a)

and idle states (C0S0i). A server is active when at least one of the four cores within

the server has a job to process. The server enters idle state if none of its cores has a

job to process.

2. A-I-S (τ = 0) is a power configuration where the server transitions between

three states – active (C0S0a), idle (C0S0i), and system sleep (G1S3). τ denotes

the delay timer for transition from processor idle to system sleep state (i.e., S state).

The server is active when at least one of the four cores within the server has a job to

process. The server enters the idle state when none of the cores within the server have

jobs to process, and then, it immediately goes to deep sleep since the delay timer τ is

set to zero. In other words, the server goes to deep sleep immediately whenever there

16

 TT=0

 WT=0

 WT=1

 TT=0

Active
(C0S0a)

Idle
(C0S0i)

Deep Sleep
(G1S3)

 MWAIT

Figure 3.2: Server power states and their corresponding Transition (TT) and Wakeup
(WT) times (in seconds).

are no jobs to be processed by the server. Figure 3.2 illustrates the transitions among

the three states along with the corresponding transition times and wakeup times.

3. A-I-S (τ = c) is a power configuration that is similar to the above, except that

the server goes to deep sleep from idle after a delay timer expires. In other words, the

server waits for τ = c seconds before transitioning to deep sleep state after entering

the idle state. If a job arrives before the delay timer reaches zero, the server gets back

to active state. The optimal τ value is chosen based on an exponential sampling of τ

values and the associated energy savings. We note that prior studies [57] and [56] have

also considered timer-based strategies to conserve energy. In [56], the authors used

delay timers to transition between hypothetical sleep states, and in [57], the servers

are completely switched off to conserve energy. As we show later (Section 3.2.6),

our new dual timer strategy significantly improves the energy savings over the single

delay timer approach.

Figure 3.3 shows the results of our experiment for various workloads. In each

workload, we study the A-I, A-I-S (τ = 0) and A-I-S (τ = c) configurations for two

different processor utilization levels of 0.1 (low server utilization in server farm) and

0.3 (average server utilization in server farm observed by Barroso et al. [47]). The

corresponding energy consumption (in millions of Joules) are shown on the y-axis

with breakdown between processor active, idle, sleep, and wakeup cycles. Average

normalized job latency is shown above each power configuration at a certain server

utilization level. We note that in a majority of cases, A-I-S (τ = 0) configuration does

17

0
1
2
3
4
5
6
7
8
9

10

A-I A-I-S (τ = 0) A-I-S (τ = 0.5) A-I A-I-S (τ = 0) A-I-S (τ = 0.5)

Utilization=0.1 Utilization=0.3

E
ne

rg
y

(M
J)

active idle sleep wakeup

(N.L.= 1.0) (N.L.= 22.2)

(N.L.= 1.0)

(N.L.=	 1.0)	 (N.L.= 13.0)

(N.L.= 1.0)

(a) Google search

0
10
20
30
40
50
60
70
80

A-I A-I-S (τ = 0) A-I-S (τ = 5) A-I A-I-S (τ = 0) A-I-S (τ = 5)

Utilization=0.1 Utilization=0.3

E
ne

rg
y

(M
J)

active idle sleep wakeup

(N.L.= 1.0) (N.L.= 1.32)

(N.L.= 1.0)

(N.L.= 1.0) (N.L.= 1.37)

(N.L.= 1.0)

(b) Apache

0
10
20
30
40
50
60
70
80
90

100

A-I A-I-S (τ = 0) A-I-S (τ = 5) A-I A-I-S (τ = 0) A-I-S (τ = 5)

Utilization=0.1 Utilization=0.3

E
ne

rg
y

(M
J)

active idle sleep wakeup

(N.L.= 1.0)
(N.L.= 1.24)

(N.L.= 1.0)

(N.L.= 1.0)

(N.L.= 1.28)

(N.L.= 1.0)

(c) Mail

0
20
40
60
80

100
120
140
160
180
200

A-I A-I-S (τ = 0) A-I-S (τ = 5) A-I A-I-S (τ = 0) A-I-S (τ = 5)

Utilization=0.1 Utilization=0.3

E
ne

rg
y

(M
J)

active idle sleep wakeup

(N.L.= 1.0)

(N.L.= 1.1)

(N.L.= 1.0)

(N.L.= 1.0)
(N.L.= 1.1)

(N.L.= 1.0)

(d) DNS

0

5

10

15

20

25

30

N.L.=1.0
A-I

N.L.=1.0
A-I-S (τ = 0)

N.L.=1.0
A-I-S (τ = 0.5)

wiki trace

E
ne

rg
y

(M
J)

active idle sleep wakeup

(N.L.= 1.0) (N.L.= 48.0)

(N.L.= 1.0)

(e) Wikipedia

Figure 3.3: Energy breakdown for various workloads using three different server power
configurations. Average Normalized Latency (N.L.) is shown above the bars normal-
ized to the workload execution times.

not significantly improve energy, and in fact, the idle energy spent in A-I configuration

is simply translated into wakeup energy for the processor to transition from sleep to

active state in A-I-S (τ = 0). This phenomenon actually diminishes the effectiveness

of sleep state to save energy. Worse still, the latency impact of using A-I-S (τ = 0) is

extremely high, especially for workloads with short execution times such as Google

search where we observe 22× performance slowdown at a utilization level of 0.1,

13× performance slowdown at a utilization level of 0.3, and Wikipedia with a 48×

performance slowdown.

18

For A-I-S (τ = c) configuration where c is the optimal τ value, we find the following

optimal values for τ : τ = 0.5 seconds for short latency jobs such as Google search

and Wikipedia, and τ = 5.0 seconds for long latency jobs including Apache, Mail

and DNS. In general, we note that A-I-S (τ = c) configuration significantly reduces

the overall energy consumption while keeping the average normalized job latency

to be almost the same as that for A-I configuration. Through our experiments, we

measured the normalized job latency to be 1.0 in A-I-S (τ = c). The following are

our key observations:

1. At average server utilization levels of 0.1, we observe as much as 55.4% energy

reduction for Apache and up to 55.7% energy reduction in Mail workloads compared

to their corresponding A-I configuration. We note that such significant energy savings

are possible because a majority of servers now enter deep sleep state (consuming 88.4%

less power than active mode). Most sleeping servers are rarely woken up and remain

in deep sleep mode due to the incoming jobs being serviced by the servers in the

idle/standby mode with a delay timer τ = c.

2. At average server utilization levels of 0.3, we observe less energy savings com-

pared to utilization level of 0.1 due to a higher rate of incoming jobs. We measure

about 32.4% energy reduction in Mail and 30.1% energy reduction in DNS workloads

compared to the corresponding A-I configuration. Beyond active energy (that is spent

on actually servicing the jobs), we note that servers remain idle most of the time,

thus leading to overall energy reduction.

3. In Wikipedia workload trace, we observe 29.2% reduction in A-I-S (τ = 0.5)

compared to A-I configuration.

3.2.3 Dual Delay Timers Design Overview

In Section 3.2.2, we observed that A-I-S (τ = c) is able to achieve significant

energy savings over A-I while having similar performance in terms of job latency.

However, when the system utilization is low (say 0.1), short latency workloads such

as Google search still consume around 30% of the peak energy. This is due to many

servers still remaining in the idle mode after they are done servicing their jobs.

19

τl

τh

Server Farm Front End
Dual-τ Job

Handler

dispatched
 jobs

load monitor

Active Servers Sleep Servers

server wakeup

 Idle Servers

CPU Idle Z

Z

zZZ

zZZCPU Idle High τ

Low τ

Job queue

τh τh

τl τl

Figure 3.4: Dual Delay Timer Framework Overview

Symbol Description

Vai set of servers in active or idle state
Vs set of servers in deep sleep
τh high τ value
τl low τ value
tw threshold for waking up a sleeping server

Table 3.1: Notations in the Dual Delay Timer Algorithm

To explore the possibility of further savings in system energy consumption, we

devise Dual Delay Timers or Dual-τ . Dual-τ is based on the following intuition:

instead of keeping τ values to be the same for all the servers, further energy reduction

could potentially be had by grouping the servers into two pools: one pool of servers

with relatively high τ (τh) that offers to be the standby machines for the incoming

jobs, and the second pool of servers with low τ values (τl) which can quickly go to

deep sleep state. The best case scenario is when a small number of servers with high

τ continue to stay in the standby mode to maximize the chances of accepting all of

the incoming jobs, and the rest of servers with low τ quickly go to sleep resulting in

optimizing the overall energy consumption. Figure 3.4 demonstrates the overview of

the Dual Delay Timer design.

20

Algorithm 1: Dual Delay Timer Algorithm

Input: tw, n (total number of servers)
1 Initialization: Vai = {s1, s2, ..., sn};
/* By default, all servers are placed in Vai and set into idle state

*/

2 for i in [1, n] do
3 power state of si ← idle
4 end
/* arrived jobs are first placed in the queue */

5 while there are unfinished jobs in queue do
6 pick a new job j from the head of the queue;
7 if at least one server with a free core exists in Vai then
8 find set of servers S in Vai with highest utilization;
9 if multiple servers exist in S then

10 give preference to a server with τh;
11 randomly pick a server, ssch in S for scheduling;

12 end
13 schedule job j on a free core from ssch;
14 continue;

15 end
16 else
17 compute the number of pending jobs in queue, p;
18 if p > tw then
19 pick a server ssch from Vs;
20 give preference to a server with τh;
21 add ssch to Vai;
22 set ssch to active state;

23 end

24 end

25 end

3.2.4 Dual Delay Timer Algorithm

The power management policy for Dual Delay Timer augments the A-I-S config-

uration by designating a small fraction of the server pool with high τ values, while

others have low τ values.

Algorithm 1 presents our Dual Delay Timer approach that accepts the incoming

jobs and assigns them to servers. The corresponding notations are listed in Table 3.1.

Our Dual Delay Timer approach designates a small set of servers with high τ and

the rest of the servers with a low τ . The candidate servers in the two pools are

rearranged periodically based on load balancing and fairness among all of the servers.

21

When a new job arrives, the job handler will first try to assign this job to one of the

schedulable servers, which could either be an active server with available cores or a

server in idle state, denoted as Vai. The algorithm will choose a server from Vai with

the highest utilization. This is done to favor the less utilized servers to enter idle

state rapidly. If there are multiple servers with high utilization, a server with τh is

prioritized in order to favor the servers with τl to enter idle state state rapidly. If

none of the servers in Vai has an idle core, the incoming job is queued and a server in

sleep state is woken up to enter active state. However, waking up a sleeping server

every time when a job is queued can be suboptimal since the transition penalty for

an asleep server is high. To address this issue, we add a simple threshold tw. Only

when the current number of pending jobs in queue is greater than tw would a server

in deep sleep be woken up. The tw threshold is a tunable parameter that guides

how conservatively the job handler wakes up a server. Throughout our experiments,

tw is set to be the product of the number of cores per server and the number of τh

servers; This effectively avoids unnecessary server wake-ups. Note that our algorithm

assumes that the servers are capable of processing one job per core at a time without

loss of generality. If the core is capable of running multiple jobs concurrently due to

techniques like Simultaneous Multi-Threading, we could assign multiple jobs per core

until it is fully occupied.

3.2.5 Experimental Setup

3.2.5.1 Power Model

In this work, we use the low-power states from the Intel Xeon E-5 processor [71].

Table 3.2 shows the power model illustrating the power consumption by various units

in a given low-power mode. Note that the C states mentioned in our power model

refer to processor level C states.

22

Components Active C0S0a Idle C0S0i Deep Sleep G1S3

Cores [71, 100] 130 W 75 W 16 W
Chipset [100] 7.8 W 7.8 W 7.8 W
RAM [100] 23.1W 10.4 W 3.0 W
HDD [100] 6.2 W 4.6 W 0.8 W
NIC [100] 2.9 W 1.7 W 0.5 W
PSU [100] 70 W 35 W 1 W
Cooling [100] 10 W 1 W 0 W
Total Power 250 W 135.5 W 29.1 W

Table 3.2: Power breakdown for an Intel Xeon-E5 based server.

3.2.5.2 Simulation of Server Farms

We have built an in-house event-driven simulator to analyze the energy savings of

our approach. Even though several well-known data center and cloud simulators exist

(such as [26, 109]), they do not fit our needs: we need a simulator that provides fine-

grained modeling of sleep states and control of sleep state transitions as well as a basic

framework to manipulate server power states in a centralized manner. Moreover, to

analyze a wide range of workloads and applications, the simulator also needs to accept

both synthetic workloads and realistic workloads from system traces. Our simulator

has three major components: workload generator, server power state/performance

manager, and server farm job handler/load balancer. The workload generator injects

jobs into the system based on either a stochastic process (for synthetic workloads

such as Google search, Apache, Mail, and DNS) or system job arrivals/service time

traces collected from realistic data centers (for Wikipedia workload). The power state

manager models various sleep states and is responsible for coordinating the servers to

enter or wake up from a specific sleep state. For example, the power state manager

can request a server to enter deep sleep (G1S3 state) immediately or after a certain

delay timer value. Our simulator reports detailed statistics including the breakdown

of server energy and performance measures such as the job latency characteristics.

23

3.2.5.3 Simulation Configurations

To exploit the use of sleep states for energy optimization, we simulate a server farm

with 50 four-core servers. In the rest of the Section (for Dual-τ), unless otherwise

noted, we assume this to be our default configuration. We configure the duration

of our simulations to be long enough for the type of workload – for example, the

simulation length for DNS workload (with largest job size) to be 20,000 seconds,

which means roughly 40,000 jobs would be processed per server on average at server

utilization of 0.1 and an even higher number of jobs at higher utilization levels.

We then scale the execution time for other workloads based on their job sizes. As

a result, Mail, Apache, and Google search would have simulation times of 10000,

8000, and 1000 seconds, respectively. These simulation lengths are also configured to

ensure that enough number of bursty and non-bursty phases would be observed in

our experiments where we model non-uniform job arrivals (Section 3.2.6.2). Also, in

all of our experimental results, we report the steady state statistics by disregarding

the warm-up time period during the first 10000 jobs arrivals.

3.2.5.4 Workload Generation

We use three types of workload arrival models. By default, we use Poisson Process

for job arrivals, which is widely used in prior works to model data center workloads [55,

108]. To model bursty patterns in job arrivals that are also typically seen in data

center environments, we use Markov Modulated Poisson Process, a well studied model

to simulate workload burstiness [24, 28, 120]. Aside from such analytical models, we

also use Wikipedia workload, a realistic system trace available for public use [130].

For the first two cases, we simulate three different levels of system utilizations (0.1

for low utilization, 0.3 for average utilization [47], 0.6 for high utilization).

Poisson-based job arrivals: The job service times are modeled as a uniform distri-

bution with a mean service time, 1/µ, where µ is the service rate of a server. Uniform

distribution, rather than the usual exponential distribution, is assumed to prevent

the workload generator from producing very short jobs that can severely deteriorate

24

job latencies at the tail end. In a multi-core based server farm, the relation between

system utilization ρ and job arrival rate λ is: ρ = λ
µ∗nServers∗nCores , where nServers

is the number of servers and nCores is number of cores per server.

MMPP-based bursty job arrivals: MMPP uses a continuous-time Markov chain

to model different stages or states of the workload. Each state x corresponds to a

Poisson Process with job arrival rate λx. By orchestrating the transitions among

various states with high and low λs, MMPP is able to model workload burstiness at

a finer-grain level. In our experiments, we use a 2-state MMPP model, in which one

state has a high job arrival rate λh representing periods of bursty arrivals, and the

other state has a low arrival rate (λl) and models non-bursty periods of operation.

There are two approaches to tune the levels of burstiness – increasing the ratio of

job arrival rates between bursty and non-bursty state, Ra = λh/λl, or decreasing the

proportion of time the process stays in bursty state. Detailed exploration of workload

burstiness modeling is a rich area of study [24]. In our experiments to characterize

burstiness, we define the ratio between λh and λl, as well as the ratio between process

durations. The job arrival rates are then translated to different utilization factors.

λs in both states are computed and set so that the bursty workloads generated would

have an average utilization factor of 0.1, 0.3, and 0.6, respectively. This is done

to compare our results to Poisson-based workloads with the same system utilization

factors. Table 3.3 illustrates the high ρ and low ρ (corresponding to the two states of

the MMPP model) associated with different average utilization levels.

3.2.5.5 Job Handler

Our job handler uses the following algorithm: First, we check if an active server

has an idle core. If so, the job handler schedules the job on a server with least number

of idle cores. If multiple such servers exist, the handler picks one of them randomly

and schedules the job on one of its cores. Second, if none of the active servers have

any available cores to accommodate an incoming job, we check if an idle server exists.

If so, we randomly wake up one of the idle servers and schedule the job on one of its

cores. Third, if there are no active or idle servers to accommodate an incoming job,

25

Utilization levels High ρ Low ρ Window length

0.1 0.4 0.025 30 seconds
0.3 0.7 0.2 30 seconds
0.6 0.8 0.4 30 seconds

Table 3.3: MMPP ρ values for bursty and non-bursty periods to achieve a certain
overall system utilization level.

we check if a sleeping server exists. If so, we randomly wake up one of the sleeping

servers and schedule the job on one of its cores. Fourth, if there are no available

servers, the job is buffered until a server becomes available.

3.2.6 Evaluation

3.2.6.1 Exploration of Dual Timers for Poisson Job Arrivals

The parameter exploration space for Dual-τ is large due to combinational explo-

ration of two τ values and the partitioning of servers into two τ categories. To reach

the solution faster, we first conduct a uniform sampling of the three major parameters:

high τ , low τ , and the number of servers with high τ . Due to space constraints, we

are unable to present all of our results. We summarize a few important observations

from our experiments below:

1. The number of high τ servers that maximizes energy savings is approximately

ρ * total number of servers. This finding confirms our intuition that when using dual

τ , the system is able to utilize a minimal number of active/standby servers while

putting the majority of servers to deep sleep.

2. Having relatively large high τ values and setting low τ to zero (the server

immediately goes to sleep state when idle) maximizes energy savings at all utilization

levels relative to A-I and A-I-S (τ = c) configurations.

Table 3.4 summarizes the results of our experiments. We show the energy reduc-

tion with Dual Delay Timers compared to A-I and A-I-S along with the normalized

percentile job latencies. We note that dual τ can achieve further energy savings of up

to 16.7% beyond the A-I-S (optimal τ) especially at server utilization levels of 0.1.

26

Dual-τ
WD Util. Saving over Saving over 50%-ile 90%-ile 95%-ile High τ Low τ Servers# with

A-I A-I-S (opt τ) N.L. N.L. N.L. High τ
Google

0.1

+61.05% +21.49% 1.00 1.12 1.23 0.50 0 6
Apache +63.90% +16.71% 1.00 1.18 1.30 1.0 0 6
Mail +63.90% +15.35% 1.00 1.18 1.29 1.0 0 6
DNS +63.90% +15.37% 1.00 1.18 1.29 10.0 0 6

Google

0.3

+39.86% +23.74% 1.00 1.00 1.03 5.0 0 18
Apache +41.48% +14.40% 1.00 1.07 1.13 5.0 0 17
Mail +41.49% +12.89% 1.00 1.07 1.13 5.0 0 17
DNS +39.86% +10.05% 1.00 1.03 1.13 5.0 0 18

Google

0.6

+11.15% +10.08% 1.00 1.10 1.16 5.0 0 32
Apache +18.81% +11.75% 1.00 1.10 1.16 5.0 0 32
Mail +18.95% +11.11% 1.00 1.10 1.16 5.0 0 32
DNS +17.89% +9.82% 1.02 1.29 1.40 5.0 0 32

Table 3.4: Energy reduction for Dual-τ in various workloads and dual delay timer
values compared with A-I and A-I-S (opt τ : lowest energy). Job arrivals are modeled
as Poisson Process, and Normalized Latencies (N.L.) are calculated with workload
execution times as baselines.

3.2.6.2 Exploration of Dual Timers for MMPP Job Arrivals

We conduct experiments for MMPP -based workloads and utilize a Markov chain-

based predictor for burstiness detection.

We perform parameter space exploration for τ values and number of servers with

high τ . Table 3.5 summarizes the results of our experiments demonstrating the savings

in energy over A-I and A-I-S (optimal τ : lowest energy) and the corresponding τ

values and the number of servers with high τ . From the table, we can see that our

Dual Delay Timer is able to save nearly 25% energy over optimal A-I-S configuration

with single τ . Also, the number of active servers (with high τs) are now much smaller

than the expected ρ * number of servers. This is because of short periods of high

server utilization levels after which even the active servers can go to deep sleep without

affecting performance. Unlike Poisson-based job arrivals, MMPP workloads have a

small, non-zero low τ value to service the jobs during bursty phases.

3.2.6.3 Exploration of Dual Timers for Wikipedia Trace

We performed exploration of dual delay timer values τ for real world workload

traces from Wikipedia. Table 3.6 shows that setting low τ = 0.002 seconds and high

τ = 5 seconds reduces system energy consumption by 31% over A-I-S (optimal τ)

configuration. Note that the Wikipedia trace is a slowly varying workload with ultra

27

Dual-τ
WD Util. Saving over Saving over 50%-ile 90%-ile 95%-ile High τ Low τ Servers# with

A-I A-I-S (opt τ) N.L. N.L. N.L. High τ
Google

0.1

+62.33% +23.95% 1.00 1.05 1.10 5.00 0.05000 2.00
Apache +62.26% +17.30% 1.00 1.14 1.24 5.00 0.20 2.00
Mail +62.17% +17.74% 1.00 1.18 1.31 5.00 0.20 2.00
DNS +61.96% +15.64% 1.00 1.11 1.19 5.00 0.50 2.00

Google

0.3

+38.92% +21.94% 1.00 1.03 1.07 5.00 0.05 8.00
Apache +40.18% +13.00% 1.00 1.20 1.36 5.00 0.20 7.00
Mail +39.84% +13.78% 1.00 1.29 1.57 5.00 0.20 7.00
DNS +40.36% +12.64% 1.00 1.15 1.27 5.00 0.50 8.00

Google

0.6

+15.95% +15.54% 1.00 1.01 1.05 5.00 0.05 18.00
Apache +18.32% +9.05% 1.00 1.12 1.18 5.00 0.20 18.00
Mail +18.23% +9.08% 1.00 1.15 1.24 5.00 0.20 18.00
DNS +18.19% +8.46% 1.00 1.18 1.28 5.00 0.50 18.00

Table 3.5: Energy reduction for Dual-τ in various workloads and dual delay timer
values compared with A-I and A-I-S (opt τ : lowest energy). Job arrivals are modeled
as MMPP, and Normalized Latencies (N.L.) are calculated with workload execution
times as baselines.

Dual-τ
WD Util. Saving over Saving over 50%-ile 90%-ile 95%-ile High τ Low τ Servers# with

A-I A-I-S (opt τ) N.L. N.L. N.L. High τ
Wikipedia N/A +71.20% +31.36% 1.00 1.37 1.53 5 0.002 2

Table 3.6: Energy reduction for Dual-τ in Wikipedia trace for dual delay timer values
compared with A-I and A-I-S (opt τ : lowest energy). Normalized Latency (N.L.) is
calculated with workload execution time as baseline.

low utilization (ranging from 5% to 10%). Detailed statistics in our experiments

showed that under such scenario Dual Delay Timer is able to maintain the exact

number of servers to be active without waking up even a single server prematurely

after a short warm-up period. The results again show that Dual Delay Timer is

especially effective under low system utilization levels.

3.2.7 Scalability with Number of Servers

In this section, we study the energy reduction benefits of Dual Delay Timer strat-

egy by varying the number of servers. We adopt the same procedure for parameter

exploration as we did in Section 3.2.3 while exploring the optimal dual τ values that

minimize energy consumption. We repeat the experiments for three different numbers

of servers: 20, 50, and 100. Figure 3.5 shows energy savings of our Dual Delay Timer

strategy compared with the corresponding A-I configuration. For each server farm

size, the four synthetic workloads are simulated under three utilization levels of 0.1,

28

0%

20%

40%

60%

80%

0.1 0.3 0.6 0.1 0.3 0.6 0.1 0.3 0.6

E
n
e
rg
y
 R
e
d
u
c
tio
n Google Apache Mail DNS

100 Servers50 Servers20 Servers

Figure 3.5: Energy reduction of Dual-τ compared to A-I in various workloads and
server utilization levels for different numbers of servers – 20, 50, and 100.

0.3, and 0.6. From the scalability trend, we can see that when the server farm size

increases from 20 to 50, the relative energy savings for all workloads increase at the

scale of 10% to 20%. With 100 servers, the energy saving benefits are slightly better

in comparison to 50 servers, and the benefits are significantly higher against the cor-

responding A-I configuration. For example, at server utilization of 0.1, energy saving

benefits of dual delay timer is about 50%, and at server utilization level of 0.3, the

corresponding energy savings are well over 30% for all of the workloads. In summary,

about 45% to 63% energy is saved at average server utilization 0.1 depending on the

size of the server farm, 28% to 40% energy is saved at server utilization of 0.3, and

10% to 20% energy is saved at server utilization of 0.6. Our mechanism shows good

scalability and energy saving potential as server farm size increases.

3.3 WASP: Workload Adaptive Energy-Latency Optimization in Server

Farms using Server Low-power States

In this section, we present WASP, a system framework that adaptively adjusts

configuration parameters to achieve optimized energy-latency tradeoffs.

3.3.1 Motivation

The Dual-τ technique as discussed in Section 3.2 has demonstrated that the use

of server low-power modes is promising in improving server system energy efficiency

while still meeting the QoS constraints. However, we note that it is possible to build

29

Server Farm Front End
WASP Power Manager

load < Ts

load > Tw

dispatched
jobs

Server Farm Power Manager
Local Server Power Controller

Package
sleep

System
Sleep

τ seconds

Active Core
Sleep

Package
sleep

job arrives

job arrives

load monitor & power policy control

Active Server Pool
Sleep Server Pool

Provisioned
Servers

Servers with
Delay Timers

Figure 3.6: WASP Power Management Framework

even more effective energy optimization techniques by considering the following two

capabilities : (i) adjusting system configurations to adapt to different workloads as

well as distinct QoS constraints. (ii) using multiple processor and system low-power

states simultaneously to achieve better energy and latency tradeoff. We therefore

developed WASP, an energy optimization framework for server farms that is able

to adapt itself to meet the performance demands while minimizing the system en-

ergy through adaptively adjusting its parameters based on the observed application

characteristics such as job size, arrival pattern and system utilization levels.

3.3.2 WASP Design

To incorporate workload-awareness, we explore a two-level adaptive strategy that

controls the active and low-power state transitions using a local server power con-

30

Symbol Description

Vact servers in active/package sleep mode
Vs servers in system sleep mode
Ts workload threshold to reduce active servers
Tw workload threshold to increase active servers
Np number of provisioned shallow sleep servers
τ delay time before entering system sleep

Table 3.7: Notations in WASP power management algorithm

troller and a global server farm power manager. We now present the design for our

WASP framework. As shown in Figure 3.6, the server farm power manager in the

front end monitors the current load (number of pending jobs per server) and sends

control commands to the local power controller. The server farm power manager puts

the servers in either active or sleep modes. The bottom part of Figure 3.6 presents

state transitions coordinated by the local server power controllers. Algorithm 2 and 3

illustrate the control algorithms for WASP power manager and the local power con-

troller, respectively.

3.3.2.1 Workload-adaptive Algorithm

WASP automatically activates servers when the pending load becomes too high

(that could lead to higher average job latency), and then places servers in low-power

sleep mode to conserve energy when the workload becomes light. We achieve our

goal of balancing energy consumption and latency by estimating the current load

and placing servers in different power modes. There are two important parameters

that govern transitioning between active and sleep modes: 1. Ts, workload threshold

per active server below which WASP will put an active server to sleep, and 2. Tw,

workload threshold per active server above which WASP will wake up an inactive

server.

Global Server Farm Power Manager: All servers are initially in the shallow

low-power state, and arriving jobs are placed in the server’s local job queue. As

jobs arrive, the load per active mode server is computed dynamically by the power

31

Algorithm 2: Global Server Farm Power Manager

Input: Ts, Tw, Np, τ , n (total number of servers)
1 Initialization: Vact = {s1, s2, ..., sn}; Vs = {};
2 while there are unfinished jobs do
3 if a new job j arrives at time ta then
4 compute load per active server;
5 if load per active server > Tw and |Vs| > 0 then
6 retrieve a server s from Vs;
7 Vact.add(s);
8 create a trans to active mode request tta r;
9 send tta r to server s’s power controller;

10 if a job j finishes at time td then
11 compute load per active server;
12 if load per active server < Ts and |Vact| > 0 then
13 retrieve a server s in Vact;
14 Vs.add(s) ;
15 create a trans to sleep mode request tts r;
16 if count of shallow sleep servers> Np then
17 tts r.enableDelayTimer(τ);

18 else
19 tts r.enableDelayTimer(infinity);

20 send tts r to server s’s power controller;

manager in the front end based on the number of jobs sent to individual servers and

the completed jobs. The global server farm power manager maintains lists of servers

in active and sleep modes. When new jobs arrive, it first checks if current load per

active server is above Tw. If so, it selects a server in sleep server pool (if available) and

sends a power mode transition request to the active state for that server. When the

load per active server falls below Ts, the power manager selects an active server and

sends a power mode transition request to enter sleep mode. Algorithm 2 describes

the WASP power manager with its notations shown in Table 3.7.

Local Server Power Controller: The processor transitions to package sleep

state when it becomes idle, and stays in that state until it receives the request to

wakeup from the global power manager. If the server receives a request for transition

to sleep mode, it will first finish up all the pending jobs in the local queue and then

enters package sleep after which a delay timer is started. The server enters system

32

Algorithm 3: Local Server Power Controller

Input: τ (number of pending jobs in local buffer)
1 Initialization: local server power state ← package sleep;
2 current power mode pmod ← active mode;
3 delay time dt ← infinite ;
4 next state when idle ns ← package sleep;
5 while true do
6 if mode transition request rq is received then
7 if rq.requested power mode == pmod then
8 continue;

9 if rq.requested power mode == active then
10 if timer set then
11 unset timer();

12 dt ← infinite;
13 transit to package sleep;
14 ns ← package sleep;

15 if rq.requeted power mode == sleep then
16 dt ← (rq.τ);

17 if timer expires then
18 transit to ns;

19 if all cores idle and pmod == sleep then
20 set timer(dt);
21 ns ← system sleep;

sleep upon delay timer expiration. However, if the scheduler chooses to wake up the

server before timer expiration (e.g., due to sudden load increase), the timer is reset

and the server goes back to active mode.

For large server farms, we can apply one of two possible solutions: 1. Adopt a

distributed power management approach where energy is optimized within individual

domains of servers with their own power managers. 2. Adopt a hierarchical solution

with multiple levels of global power managers. We note that a distributed power

management approach may be more scalable with lower implementation complexity

compared to a hierarchical approach that may involve longer latencies for decision

making and higher bookkeeping overheads for the servers.

33

3.3.2.2 Adaptive Server Provisioning

Job arrival pattern may have local spikes (bursty), during which the service latency

may suffer, especially when the servers are in low-power modes. To mitigate this

problem, we provision a subset of servers in shallow sleep states dynamically by setting

their delay timer values to infinity. WASP determines the number of provisioned

servers dynamically through measuring the current standard deviation in the job

arrival rate observed over a period of 2 minutes. Specifically, the server provision

module samples the number of arrivals and calculates the utilization for each sample

period (one second in our current setting). It then uses the sampling window to

determine the standard deviation in the level of system utilization. The module

will provision α× stdev× number servers dynamically in shallow sleep state. α is a

tunable parameter. By default we set it to 3.0, since it typically covers a vast majority

of the population (e.g., more than 99% of the population in Gaussian distribution).

3.3.3 Experimental Setup

We perform two sets of experiments: 1. simulations to explore the Pareto-optimal

energy-latency tradeoff as well as corresponding Ts, Tw and τ settings, and 2. pro-

totype implementation on a testbed with web server deployment. We then elaborate

on the experimental setup for both approaches.

3.3.3.1 Server Power Profile and Low-power State Configuration

We profile the power consumption of the Intel Xeon E-5 processor [71] using

Intel’s Running Average Power Limit (RAPL) interface. We build a customized

cpuidle governor that allows specified low-power state transitions. The processor is

programmed to transition between active state (C0) and low-power state Cx (e.g.,

C1, C6). We observe that C6 state save significantly more power than other shallower

states with minimal additional wakeup overhead. As a result, WASP maps core sleep

and package sleep to core C6 and package C5 respectively. Similar to the configuration

in Dual τ (Section 3.2, S3 state is chosen as the system sleep state since it yields

34

��

���

���

���

���

���

���

���

�� �� �� �� �� �� �� �� �� �� ���

�
�
�
��
�
�

�
�
�
�
�
��
��

�
��
�
�

����������������������

�������� ��������

Figure 3.7: Power profile of a 10-core Xeon E5 processor with C0-C1 and C0-C6 transition
settings whenever the server is idle.1

Component Core sleep C1∗ Core sleep C6 † Pkg. sleep C6 System sleep

CPU 33.0+3.1× (na − 1) 23.0+3.8× (na − 1) 8.3 8.3
RAM [71] 10.8 10.8 4.9 1.4
Platform [107] 45.5 45.5 23.6 4.8
Total Power 89.3+3.1× (na − 1) 79.3+3.8× (na − 1) 36.8 14.5

∗ processor is active and the rest of the idle cores are in C1 state.
† processor is active and the rest of the idle cores are in C6 state.

Table 3.8: Power (W) breakdown for a system with na active cores

substantial power saving with tolerable restoration time.

Figure 3.7 shows the measured power consumption of the processor for two con-

figurations: C0-C1, C0-C6 and at utilization levels from 0% to 100%. Using linear

regression, a power model is built for the processor based on the sleep state selection

and the number of active cores at full utilization. Table 3.8 shows the power con-

sumption when a certain state is chosen for sleep mode. Table 3.9 shows the wakeup

latencies for various low-power states. Note that the processor sleep state transition

latencies are reported by the Linux cpuidle driver [116].

3.3.3.2 Simulation Platform

WASP uses an event-driven simulator based on Bighouse [109] that models server

farm workloads and multi-server activity. We simulate a server farm with 100 ten-

1We use a microbenchmark that can calibrate itself and occupy the core based on required
utilization settings. To occupy multiple cores, we run multiple copies of this microbenchmark each
pinned to a core.

35

Low-power State Wake-up latency

Core sleep C1 10 µs
Core sleep C6 82 µs
Package sleep C6 1 ms
System sleep 5 s

Table 3.9: Processor/System low-power states and wakeup latencies

core servers (by default). In all of our experimental results, we report the steady

state statistics by disregarding the warm-up period of the first 10,000 jobs. In the

simulation, we use the benchmarks as discussed in Section 3.2.1 as representatives. For

each of the representative workloads, we generate synthetic job arrivals with different

utilization levels (0.1 for low, 0.3 for average [47], and 0.6 for high). Random job

arrivals are modeled by Poisson process [108]. Besides synthetic workloads, we also

perform simulation based on Wikipedia traces.

3.3.3.3 Real System Experiments on Testbed

We deploy a testbed with a cluster of 10 application servers together with one load-

generating server and one load-balancing server; all servers support Intelligent Power

Management Interface (IPMI) interface [42] for system-level power monitoring. Each

application server is configured with the apache web service. The load generator keeps

sending web requests to the system according to real system traces (See Section 3.3.5

for further details).

3.3.3.4 Baseline Strategies

We come up with two baseline strategies that are similar to those described in

Section 3.3.1. Note that instead of C0 active and idle states, we leverage deeper

core/processor C states that are more power-conserving.

1. Active-Idle, denoted as A-I, is a power configuration where the server alternates

between active and shallow package sleep state, C1. A server is active when at least

one of the cores in the processor within the server has a job to process. The server

enters C1 if none of its cores are actively running jobs.

36

2. Delay-Doze, denoted as A-I(τ)-S, is a power configuration where the server

transitions between three states – active, package sleep C6 (I), and system sleep (S3).

When all cores are idle, the server immediately enters I, then goes to S after a delay

of τ seconds. If a new job arrives before the delay timer expires in I, the server

would transition back to the active state. Note that the C state and system sleep

state choices are consistent with the ones used by WASP (Section 3.3.2.1) for fair

comparison.

3.3.4 Energy-Latency Tradeoff Exploration

We conduct parameter exploration with thousands of simulator runs for every

workload at a given utilization level to find optimal ranges of Ts, Tw and τ values

under various QoS constraints. We study using four synthetic workloads at three

different system utilization levels, and using real system traces from Wikipedia. In

each run, we measure energy consumption, average job latency, and 90th percentile

normalized job latency. The energy-latency frontier curves are then generated by

eliminating the less-desired pairs which do not lead to Pareto-optimality. We note

that further opportunity may exist if we combine sleep states with DVFS, that reduces

dynamic power. Therefore, we conduct exploratory experiments to study the benefits

in combining WASP with DVFS to optimize the energy spent during job execution.

3.3.4.1 Frontier Curves on Random Arrivals

Figure 3.8 and Figure 3.9 present the relationship between energy and job latency

under various frequency (f) settings for the synthesis workloads. We summarize our

findings as the following:

WASP shows good energy-latency tradeoffs across workloads and uti-

lization levels. In short-latency workloads (Google and Apache) at utilization level

of 10%, without any frequency scaling (f=1.0 is depicted as solid red curves), WASP

demonstrates 57% reduction in energy compared to a naive Active-Idle (A-I) power

management policy (See Section 3.3.3.4). Note that the 90th percentile normalized la-

tency is within 2.0. At utilization level of 30%, WASP achieves 39% energy reduction

37

 0.3

 0.4

 0.5

 0.6

 1 2 3 4 5

N
or

m
al

iz
ed

 E
ne

rg
y

90th Percentile Normalized Latency

f=1.0
f=0.9
f=0.8
f=0.7

(a) Google, Util=0.1

 0.3

 0.4

 0.5

 0.6

 1 2 3 4 5

N
or

m
al

iz
ed

 E
ne

rg
y

90th Percentile Normalized Latency

f=1.0
f=0.9
f=0.8
f=0.7

(b) Apache, Util=0.1

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5

N
or

m
al

iz
ed

 E
ne

rg
y

90th Percentile Normalized Latency

f=1.0
f=0.9
f=0.8
f=0.7

(c) Google, Util=0.3

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5

N
or

m
al

iz
ed

 E
ne

rg
y

90th Percentile Normalized Latency

f=1.0
f=0.9
f=0.8
f=0.7

(d) Apache, Util=0.3

 0.7

 0.8

 0.9

 1

 1 2 3 4 5

N
or

m
al

iz
ed

 E
ne

rg
y

90th Percentile Normalized Latency

f=1.0
f=0.9
f=0.8
f=0.7

(e) Google, Util=0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5

N
or

m
al

iz
ed

 E
ne

rg
y

90th Percentile Normalized Latency

f=1.0
f=0.9
f=0.8
f=0.7

(f) Apache, Util=0.6

Figure 3.8: Pareto-efficiency frontier curves for energy vs. latency for Google and Apache
benchmarks. Job arrivals are modeled as a Poisson Process, and energy, latency and fre-
quency values are normalized with respect to the configuration using Active-Idle power
management policy.

38

 0.3

 0.4

 0.5

 0.6

 1 2 3 4 5

N
or

m
al

iz
ed

 E
ne

rg
y

90th Percentile Normalized Latency

f=1.0
f=0.9
f=0.8
f=0.7

(a) Mail, Util=0.1

 0.3

 0.4

 0.5

 0.6

 1 2 3 4 5

N
or

m
al

iz
ed

 E
ne

rg
y

90th Percentile Normalized Latency

f=1.0
f=0.9
f=0.8
f=0.7

(b) DNS Service, Util=0.1

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5

N
or

m
al

iz
ed

 E
ne

rg
y

90th Percentile Normalized Latency

f=1.0
f=0.9
f=0.8
f=0.7

(c) Mail, Util=0.3

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5

N
or

m
al

iz
ed

 E
ne

rg
y

90th Percentile Normalized Latency

f=1.0
f=0.9
f=0.8
f=0.7

(d) DNS Service, Util=0.3

 0.7

 0.8

 0.9

 1

 1 2 3 4 5

N
or

m
al

iz
ed

 E
ne

rg
y

90th Percentile Normalized Latency

f=1.0
f=0.9
f=0.8
f=0.7

(e) Mail, Util=0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5

N
or

m
al

iz
ed

 E
ne

rg
y

90th Percentile Normalized Latency

f=1.0
f=0.9
f=0.8
f=0.7

(f) DNS Service, Util=0.6

Figure 3.9: Pareto-efficiency frontier curves for energy vs. latency for Mail and DNS
benchmarks. Job arrivals are modeled as a Poisson Process, and energy, latency and fre-
quency values are normalized with respect to the configuration using Active-Idle power
management policy.

39

����

����

����

����

����

����

�� ���� ���� ���� ���� ��
�
�
��
�
���
�
�

�
�
�
�
��
�

����������������������������������

����

Figure 3.10: Pareto-efficiency frontier curve for Energy-Latency tradeoffs on real-
world Wikipedia traces.

for Google workload. We note that WASP shows a similar trend in other workloads

as well.

Using DVFS in conjunction with WASP improves Pareto optimality to

a limited extent with increased tail latency. Our results show that, by lowering

f to some extent, higher energy reduction can be achieved without adversely affecting

the latency values. For example, for DNS Service at the high utilization of 0.6 with

f = 1.0, the energy reduction can be up to 17% when the 90th percentile normalized

latency is 2.0. When f = 0.7, energy decreases by another 6% with tail latency

degrading to 3.0. However, if f is lowered too much, there is a significant deterioration

of performance without a proportional increase in energy savings. Consequently, to

achieve higher energy savings in the active mode using DVFS, appropriate selection

of f is needed. While better energy saving may be possible by incorporating more

intelligent DVFS control algorithms, we note that the room for improvement is limited

due to the fact that WASP already takes advantage of system idleness for energy

improvement.

3.3.4.2 Frontier Curves on Non-bursty Traces

We obtain publicly available Wikipedia website traces [131] that include arrival

timestamps for each web request along with the URL. Studies by van Baaren et

al. [131] have characterized the average job service time as 3.5 ms. For our study,

40

we obtain the arrival timestamps from the traces, and adopt the job service time

distribution from [131]. We simulate a one-hour Wikipedia trace on a 10-machine

configuration. Figure 3.10 shows the Pareto-optimal curves for energy and latency.

WASP is able to achieve 58% energy saving over Active-Idle with 90th percentile

normalized latency below 2.0, which is similar to the energy reduction observed in

the synthetic Web Service workload in Section 3.3.4.1.

3.3.4.3 WASP Parameter Selections

A natural question that arises during energy optimization is: what set of param-

eter values in the WASP algorithm help achieve energy-latency Pareto-optimality?

Understanding the characteristics of these parameter values is essential for users to

dynamically configure the system under various workloads and latency constraints.

For each workload, we collect Pareto-optimal values of Ts, Tw, and τ for different

utilization levels. Due to space limitations, we are unable to show all of our results.

We list our key observations below:

1. The values of τ that lead to different normalized tail latencies are fairly in-

dependent of utilization levels, but is job-size dependent. The Pareto-optimal τ for

Google is 0.5s and τ increases with job size, e.g., 10s for DNS Service.

2. The values of Tw are also independent of utilization levels. Intuitively, Tw

controls how fast a server in sleep mode would transition to active mode. As Tw

increases, servers are woken up less often, which saves energy at the cost of increased

tail latency. This gives hints on why Tw also scales linearly with latency values.

3. Ts values are independent of job execution latencies and utilization levels. More-

over, when upper bound of the 90th percentile normalized latency is set to stringent

values such as 2.0, the values of Tw and Ts are also quite close across benchmarks.

The characterization of the WASP parameters helps to optimally select Ts, Tw and

τ parameters according to the workload, utilization levels and tail latency require-

ments in an automated manner. Our experiments show that our regression model can

accurately predict the three parameters fairly quickly. For verification, we use the

regression-derived parameters (for a specific QoS) and compare the tail latency and

41

 0

 10

 20

 30

 40

 50

 0
 50
 100
 150
 200
 250
 300
 350
 400
 450

Pe
r S

er
ve

r E
ne

rg
y

(K
J)

Se
rv

er
 F

ar
m

 E
ne

rg
y

(K
J)

CPU Energy
DRAM Energy
Platform Energy

WASPDelay-DozeActive-Idle

Figure 3.11: Energy measured on a server farm with 10 servers with different energy
management policies. The first three groups of bars represent energy breakdown in each
server when Active-Idle, Delay-Doze and WASP are applied, respectively. The rightmost
three bars illustrate the total server farm energy consumption for Active-Idle (black bar),
Delay-Doze (gray bar) and WASP respectively (white bar).

energy consumption with the ones we got from the frontier curves, and our results

showed less than 5% absolute error.

3.3.5 Evaluation on Real System

We evaluate WASP on a testbed with 10 Dell Poweredge servers equipped with

Inten Xeon-based processors with all of the servers deployed on a dedicated rack. We

installed a modified version of the Apache HTTP server for our Local Power Con-

troller. We extended the Local Power Controller to also include a Delay-Doze timer.

The Global Server Farm Power Manager is added to an additional apache server with

the mod proxy balancer module used for load balancing. Specifically, the load bal-

ancer performs operating mode transitions in servers. This is done by sending special

HTTP requests (/hostname/trans-to-active-mode/, /hostname/trans-to-lp-mode) to

the application server. It also monitors the power state for each server, and man-

ages the server wakeups (from system sleep) using IPMI interface supported by Dell

systems. The special requests are handled by the local power controller that would

determine the server low-power transitions accordingly. We set up a custom cpuidle

governor which allows direct processor C-state transitions from userspace (e.g., C0-

C6). For power measurement, we leverage two techniques: the RAPL interface for

fine-grained component power, and the IPMI’s system power management interface

for coarse-grained server power. We evaluate the effectiveness of WASP by providing

42

two sets of workloads to the system: the non-bursty Wikipedia workload, that does

not require server provisioning, and four bursty NLANR workloads [4], that require

server provisioning to handle bursty workloads (See Section 3.3.2).

3.3.5.1 Non-bursty Traces

We first performed real system energy measurements by deploying Wikipedia soft-

ware stack, namely Wikipedia application (Mediawiki), database system (Mysql) on

servers. We compare WASP against Active-Idle and Delay-Doze approaches described

in Section 3.3.1. To capture detailed energy breakdown, we leverage RAPL interface

for fine-grained power measurement. The RAPL utility records the CPU and RAM

power values periodically. We configure WASP with the Ts, Tw and τ parameters

that achieve energy-latency Pareto-optimality with tail latency constraint set to 2.0.

Similarly, for Delay-Doze, we explore various values of the delay-timer and choose

the setting that achieves the best power with the same tail latency constraint. From

our experiments, we get actual CPU and RAM energy consumption for each server.

To get the overall server energy, we also factored in the platform energy shown in

Table 3.2.

Figure 3.11 shows the per-server energy breakdown in terms of CPU, DRAM,

and platform energy. With Active-Idle power management, all the 10 servers have

similar energy consumption. With Delay-Doze, some of the servers are able to stay

in system sleep state for longer periods of time, thus saving energy. With WASP, we

can clearly see that most of the servers drastically reduce energy consumption, and

only a minimal subset of servers (server#6 and #10) are used for servicing jobs. Note

that the energy consumption of server#10 is slightly higher than that of Active-Idle

power management since the server is at a higher utilization level while other servers

remained inactive. Overall, WASP gains 39% reduction in energy saving compared

to Delay-Doze, and 56% energy savings compared to Active-Idle.

43

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

S
ys

te
m

 U
ti
liz

a
tio

n

Time(hour)

(a) ny09

 0

 0.1

 0.2

 0.3

 0.4

 0 0.2 0.4 0.6 0.8 1

S
ys

te
m

 U
ti
liz

a
tio

n

Time(hour)

(b) pa09

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1

S
ys

te
m

 U
til

iz
a
tio

n

Time(hour)

(c) pa10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

S
ys

te
m

 U
til

iz
a
tio

n

Time(hour)

(d) uc09

Figure 3.12: System utilization for four bursty traces.

3.3.5.2 Bursty Traces

As the raw NLANR network traces [4] present job arrivals that are too infrequent

for the server farm system with 10 application servers (less than 2%), we speed up

the trace by scaling the 24-hour trace to one hour. We choose four traces, namely

ny09, pa09, pa10 and uc09. Figure 3.12 shows the utilization levels (scaled) for the

four traces over one hour. All traces exhibit bursty traffic patterns. For example, the

ny09 trace has highly fluctuating utilizations ranging from 4% to 45% with a large

number of spikes. To run the traces, we set up a software stack similar to the one in

Section 3.3.5.1. Each request in the trace is serviced by a PHP script that accesses a

pre-defined set of pages randomly, and we note that the average service time is about

the same as Wikipedia web requests.

To enable server provisioning, the Server Farm Power Manager additionally sam-

ples the server farm utilization levels based on the job arrival rates. Utilization is

44

��

����

����

����

����

��

���� ���� ���� ����

�
�
��
�
���
�
�

�
�
�
�
��
�

�����������
����������
����

Figure 3.13: Normalized energy consumption relative to peak energy on a 10-server
cluster.

calculated as the product of job arrival rate and average job execution time. Stan-

dard deviation on the samples for utilization levels is calculated every 120 seconds.

The number of provisioned servers is calculated dynamically (See Section 3.3.2.2 for

details). Note that, in our comparative studies, the delay-timer values are re-evaluated

for each trace such that best possible energy savings are had while meeting the QoS

constraints. Figure 3.13 shows the energy consumption for the four bursty workloads

using Active-Idle, Delay-Doze and WASP. The energy is normalized to the peak en-

ergy which is PeakPower ∗ Time. The energy reduction for WASP ranges from 34%

to 40% compared to Active-Idle. Even with the best delay timer settings, Delay-Doze

only achieves 9% to 12% energy reduction in bursty workloads. We observe that due

to the job arrival rate spikes (especially for uc09), in order for Delay-Doze to meet

the tail latency constraint of 2.0×, the delay timer has to be set to larger values, and

in turn the servers have limited chance to enter system sleep state.

3.4 TS-Bat: Multi-core Processor Power-aware Scheduling with Temporal-

spatial Batching

As shown in Section 3.2 and Section 3.3, server low-power states can save a consid-

erable amount of energy. However, for multi-core processors, we observe that in order

to achieve sufficient residency in energy-saving low-power states, it becomes neces-

sary to intentionally generate processor package-level idleness. In this section, we

demonstrate TS-Bat, a QoS-aware scheduling framework that performs temporal and

45

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 6 7 8 9 10
P
o
w
e
r
(W
a
tt
s
)

Number of Active Cores

C0 C1 C3 C6

Figure 3.14: Power range of a 10-core Xeon processor with different numbers of active
cores and various C states configurations.2

spatial batching to improve processor energy efficiency by optimizing package-level

low-power state residency.

3.4.1 Multi-core Processor Power Characteristics

In order to effectively leverage processor low-power states, it is important to un-

derstand the power characteristics of multi-core processors under various C state

configurations. Figure 3.14 shows the power profile for a 10-core Xeon E5-2680 pro-

cessor when varying the number of active cores (idle cores are put to certain C state).

The processor power is read using Intel’s Running Average Power Limit (RAPL) in-

terface [72]. We observe that the power proportionality increases as deeper level C

states are chosen for idle cores.

For deep sleep states, such as C3 and C6, we observe a significant power drop

for the processor from having one core active to all cores idle (the first two groups of

bars). This is due to the fact that the processor package has to be in C0 (active) state

whenever any of the cores is active. When all the cores are in low-power state Cx, the

entire package can enter Cx state, which further saves power through power-gating

the shared resources such as the last level cache.

Figure 3.15 shows the processor power efficiency with different numbers of active

2We use a microbenchmark that can occupy a fixed number of cores with taskset. The rest of the
idle cores are allowed to enter a controlled C state. Each power measurement is made using RAPL
for a 5-minute run. Intel’s Turbo Boost is disabled and the performance frequency governor is used
to eliminate noise effect due to processor frequency fluctuations.

46

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10
P
ro
ce
s
s
o
r
P
o
w
e
r
E
ff
ic
ie
n
c
y

Number of Active Cores

C0 C1 C3 C6

Figure 3.15: Power efficiency of a 10-core Xeon processor with different level of C
states configurations.

cores. We define power efficiency for a multi-core processor as: (Pall−cores−active/N)

(Pn−cores−active/n)
,

where N and n represent the total number of cores and the actual number of active

cores respectively. We can see that the power efficiency increases as the processor is

more utilized. This indicates that, to save energy, two strategies need to be considered

together: (i) increasing the utilization of cores in the multi-core processor so that it

is operating in the most energy-efficient mode; (ii) keeping all the cores idle so that

a considerable amount of power could be saved from the package-level, deep C state.

3.4.2 Motivation for Job Batching

As discussed Section 3.4.1, multi-core processors consume a considerable amount

of base power to keep the processor package active. Therefore, keeping the processor

in package sleep state for a longer period of time is a straightforward strategy for

saving processor energy, especially during periods when servers are underutilized. In

order to reside in package-level low-power mode, all of the cores within the same

processor need to be idle and enter the core C state first. However, due to the

increasing core count in modern multi-core processors, the busy and idle activities for

individual cores could hardly synchronize without additional control at the processor

level. As a result, the processor package can rarely go to sleep state naturally.

To study the package C state residencies, we set up Apache web server on a Xeon-

3The C state residency is reported using turbostat. Due to limitation of the RAPL implementation
on our platform, Package C0 represents the combined residence for package C0 and C1.

47

��

���

���

���

���

����

�� ��� ���� ���� ���� ���� ����

�
�
�
��
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�

��������

������� ������� ������� �������

(a) C state residency breakdown-baseline3

��

���

���

���

���

���

�������� ���������� �����������

�
�
��
�
���
�
�

�
�
�
�

�
�
�
�
��
� �����

������

������

(b) Normalized energy for baseline and a simple
batching mechanism

Figure 3.16: (a) Package C state residency breakdown for the processor running a
web server with an average 10% utilization; (b) energy consumption for baseline (no
batching), Batching-5, and Batching-20 that accumulate 5 and 20 jobs, respectively
(normalized to energy consumption with C state disabled).

based server. The web application has an average request service time of 5ms. We

use 95th percentile latency for QoS constraint, and assume that the QoS constraint

for the web application is 50ms. Also, we consider a baseline algorithm that performs

load-balancing evenly across different cores. Figure 3.16a illustrates the fractions of

time spent in various package C states over time for the baseline algorithm with under

10% system utilization. The plot shows that even at the low utilization level when

the cores are supposed to be mostly idle, the processor spends a very small proportion

of time in the C6 state.

We develop a simple batching algorithm that batches a fixed number of web

requests in the front-end before dispatching them to the server. Figure 3.16b shows

the normalized energy consumption for the baseline and two batching configurations

that batches 5 and 20 jobs, respectively. The 95th percentile latency is shown on

top of each bar. Our results show that even naive batching can save considerable

energy. Batching-5 achieves around 16% energy reduction compared to the baseline

and Batching-20 yields almost 43% energy savings. Clearly, we observe that batching

should be judiciously used: conservative batching policies leave considerable latency

slack from the target (seen in Batching-5); aggressive batching policies, though capable

of saving substantial amount of energy, may significantly violate QoS constraints due

48

to job queuing (seen in Batching-20).

3.4.3 TS-Bat Design

In this section, we present the system design of TS-Bat. TS-Bat first performs

temporal batching in the front end. Specifically, instead of dispatching job requests

immediately to the individual servers, the temporal batching engine accumulates a

certain amount of jobs and distributes the entire batch to a back end server. Essen-

tially, this creates opportunities for the multi-core processors to use all of the cores

at the same time (when the job batch arrives), thus improving the energy efficiency.

As discussed in 3.4.2, batching job requests aggressively can adversely impact the job

response time. To maintain the Quality-of-Service for the jobs, TS-Bat integrates

a two-stage queuing model that determines the maximum number of jobs to batch

without violating the target latency constraints.

To further save energy, TS-Bat incorporates a spatial batching engine that main-

tains estimated to-be idle time for each of the servers. TS-Bat then schedules the job

batch (from the temporal batching engine) to the first available server in a specific

search order. Through spatial batching, jobs are concentrated on a small subset of

servers such that the processors from the rest of the servers could stay in deep pack-

age sleep state without being unnecessarily woken up. The combined temporal and

spatial batching make sure that significant processor energy could be saved while still

maintaining the job QoS constraints.

3.4.3.1 Design of Temporal Batching

Data center service providers for latency-critical applications generally specify a

target tail latency (e.g., 95th percentile response time) for QoS guarantee. Typically,

there is a latency slack between an application’s actual job service time and the

target tail latency. We can take advantage of this latency slack by accumulating jobs

(temporal batching) before they are sent to the back-end servers. We note that, as

long as the tail latency constraints are satisfied, it is acceptable to delay executing

the jobs. In our work, we assume a multi-server infrastructure where each server has

49

j1

Tarrival Tdispatch

j1

Tdispatch

j2

Batching delay

j6 j2

…

Tdispatch

… j1

Tarrival
Batching delay

j6

Tarrival
(a) Temporal Batching in the Front-End

j1
j2

j5

Package Idle

Tdispatch

Scheduled Processor

Package active

j6

j6 j2… j1

Queuing delay

j3
j4

(b) Batched Jobs Processing on Application Server

Figure 3.17: An illustration of temporal job batching procedure assuming that the
server is equipped with a 4-core processor. (a) shows how the jobs are batched
together before they are dispatched; (b) illustrates how the batched jobs are serviced
at the local server. Note that the first 4 jobs are processed simultaneously while the
other jobs are queued.

parallelism due to the existence of multiple cores. We assume a FIFO job dispatching

model where job requests arrive and get assigned in a first-in first-out order. Note

that such queuing has been shown to be optimal for tail latency [87].

The challenging task of temporal batching is to determine the right number of jobs

(denoted as K) to batch so that the QoS will not be violated. In order to derive this

parameter, we need to understand various delays in the critical path of job batching

and processing. Figure 3.17 illustrates an example scenario. Specifically, Figure 3.17a

shows the job batching at the front-end. In this example, 6 jobs are batched before

50

they are scheduled to a server. Each job experiences a batching delay which starts from

the time it arrives Tarrival to the time when the entire batch gets scheduled on a server.

Figure 3.17b illustrates the procedure for job processing at the local server. Note

that server farm latency-critical workloads (e.g., web server) utilize multi-threading

mechanism in multi-core processors to improve overall throughput. Typically a local

load balancer designates queued requests to multiple threads running in parallel.

Since we have a 4-core processor, the first 4 jobs will be serviced simultaneously while

the remaining two jobs will experience a queuing delay. To formalize the problem,

let K be the maximum number of jobs that can be batched temporally, and ji (1 ≤

i ≤ K) is the ith arrived job in the system. The total delay Di for job ji can be

represented as:

Di = Bi + Ui (3.1)

where Bi and Ui are the expected batching delay and queuing delay for ji, respectively.

Assuming that S is the job service time distribution and λ is the job arrival rate for

the system, we have the following:

Bi = (K − i)/λ+ σ (3.2)

Ui = S95 ∗ (i− 1)/C +W (3.3)

where σ is a constant that represents the overhead of batching, C is the number

of cores per server, S95 is the 95th percentile service time based on distribution S,

and W is the wakeup latency for the processor in package sleep state. Based on

these equations, K can be derived as the maximum value that satisfies the following

inequality for all i:

Di + S95 ≤ Q (3.4)

where Q is the target tail latency.

The distribution S can be generated by monitoring the service times at runtime.

We assume that the service time distribution does not change much over time, which

51

Temporal Spatial Batching

Front-end /Load
Balancer

…

t1t2t3

t4t5t6

Requests

Server Pool

Figure 3.18: Overview of overall TS-Bat scheme. ti is the estimated processor idle
time for server i. t1, t2 and t3 ≥ tcur, which means these servers are currently busy
processing the batched jobs; t4, t5 and t6 ≤ tcur indicating these three servers are idle.

is reasonable as data center operators typically do not mix latency-critical workloads

with others [101]. As a result, S only needs to be profiled once (e.g., in the warm-

up period of every workload). The value K can then be derived by repetitively

incrementing K until inequality (3.4) is no longer satisfied. Since K is dependent on

job arrival rate λ, the temporal batching engine periodically samples the job arrivals

and updates the value of K. We note that once the distribution S is determined, the

value K under different arrival rates can be pre-computed. Particularly, it is possible

to compute various values of K for different QoS targets as a lookup table which can

be looked up by the TS-Bat runtime to avoid repetitive calculation. We also note

that, when σ is sufficiently less than the job service time, the value of K can be

independent of average job service time. Such observation can further be leveraged

to reduce runtime computation overhead. Additionally, to avoid unnecessary delays

due to having to batch K jobs (e.g., a sudden drop in arrival rate), an optional timer

can be set to trigger dispatching of the currently accumulated jobs such that the

earliest job will meet its deadline.

3.4.3.2 Design of Spatial Batching

When a batch of jobs is accumulated by the temporal batching engine, the front-

end needs to find a server to process it. One possible way is to evenly distribute

the loads to all of the application servers. However, this approach is not energy-

52

efficient because randomly dispatching job batches can create frequent active periods

for all servers. Since the operating system makes sleep-state decisions based on server

activities, evenly distributing workload may leverage only shallow sleep states in the

absence of sufficiently long idle periods. To avoid this, we propose a spatial batching

engine that determines the server to schedule the job batch. To do this, the spatial

batching engine maintains a list that provides estimated times when the servers would

become idle: tcurrent ≥ ti where ti is the estimated time when server i resumes idle

and tcurrent is the current dispatching time. It then updates the server’s estimated

idle time as tcurrent + Tb, where Tb is the estimated job batching time, which can be

estimated as
⌈
K
C

⌉
∗ S95. Figure 3.18 shows the overview of our TS-Bat approach.

3.4.4 Implementation

We implement a proof-of-concept prototype system including a load generator

using httperf [112], a TS-Bat module, and apache HTTP servers in the back-end.

httperf is modified so that it is able to generate loads to multiple apache servers. In

the back-end, the apache server is configured in such a way that it always maintains

exactly the same number of httpd processes as the number of cores. This makes sure

that incoming batched jobs are processed based on the queuing model described in

Section 3.4.3.

TS-Bat is implemented as a separate module integrated into httperf. Once ini-

tialized, the temporal batching engine samples the service times and job arrivals to

determine S95 and λ. After the two parameters are determined, it derives K accord-

ing to the methodology discussed in Section 3.4.3.1. The temporal batching engine

then starts to perform job batching. It sets up a timer upon receiving the first job in

each batch. The batching is complete either when K jobs are accumulated or when

the timer expires, whichever is first. The batching buffer is set to 200 empirically,

which is sufficient to hold requests for our workload with the smallest service time.

The job arrival rate λ is sampled periodically every t seconds, where t is a tunable pa-

rameter that controls TS-Bat ’s reactivity to load burstiness. By default, t is set to 5

seconds. The spatial batching engine chooses back-end servers based on its estimated

53

idle period, and this information is stored in a linked-list. Note that, to eliminate the

potential of resource wear-out, the spatial batching engine would shuffle the order of

the servers in the list every Tseconds so that all of them are exercised equally in the

long run. We set t to 1 second and T to 60 seconds in our experiments.

3.4.5 Experimental Setup

Server platform. We deployed a testbed with a cluster of 17 servers, including

2 standalone Xeon E5603-based servers and 15 Xeon E5650-based servers from the

Dell Poweredge M1000e Blade system. The two Xeon E5603 servers are used as load

generators and the blade servers are configured to run apache web service. All apache

servers are interconnected with a Netgear 24-port Gigabit switch (star topology).

Since our blade servers do not support RAPL interface, we utilize the IPMI interface

for system-level power reading. Each Xeon E5650-based server is configured with the

Apache HTTP server. The server power is queried and saved every 1 second. We

conservatively set the wakeup latency from package sleep state to 1 ms (the actual

transition time is usually shorter than 1 ms)

Benchmarks selection and load generation. To run various workloads, we

developed CGI scripts for the Apache servers. We select a subset of the PARSEC [22]

benchmarks to be executed by the CGI scripts. These PARSEC benchmarks rep-

resent emerging class of workloads from recognition, mining and synthesis domains

of applications that can frequently benefit from running on the cloud. We generate

workloads from five selected applications (with their average execution times shown in

brackets next to them): Bodytrack (108ms), Raytrace (79ms), Vips (42ms), Fluidan-

imate (33ms) and Ferret (21ms). Each workload is configured to run for 30 minutes.

httperf is set to generate job arrivals based on exponential distribution. We configure

httperf to generate three different levels of utilizations: 10%, 20%, and 30%.

TS-Bat parameter configuration. The batching parameter K is determined

based on the algorithm shown in Section 3.4.3.1. In our experiment, we observe that

the K value derived from the analytical model may violate the target QoS on a small

number of occasions. One potential reason is that there exists resource contention

54

between concurrent jobs. To sustain the QoS target, we set the actual value to

K− ε. We observe that ε = 2 works practically well for all of our cases. Additionally,

since the target QoS for different applications may differ, we define QoS as the 95th

percentile latency normalized to the job’s average service time. Note that the target

tail latency (QoS) should be provided to the temporal batching engine. We set two

different QoS targets for each workload: 5x 95th percentile latency (QoS-tight) and

10x 95th percentile latency (relaxed QoS).

3.4.6 Evaluation

We evaluate TS-Bat in two steps. Specifically, we first demonstrate the energy

savings and job performance using just temporal batching on the Intel Xeon E5-2680

server. Then we enable both temporal and spatial batching engines on the blade

system and illustrate the potential energy savings. We evaluate TS-Bat in two steps.

Specifically, we first show the energy savings and job performance using just temporal

batching. Then we enable both temporal and spatial batching engines, and illustrate

the overall energy savings that can be obtained from their combined deployment.

3.4.6.1 Results of Temporal Batching

To evaluate the effect of temporal batching, we use a single Apache HTTP server.

For this experiment, we use a single benchmark, Bodytrack. We observe that other

benchmarks also exhibit similar result trends based on our experiments. For Body-

track, the two target latencies are 540ms (QoS-5) and 1080ms (QoS-10). Figure 3.19

shows the package C state residency for Bodytrack with and without Temporal Batch-

ing. We can see that without batching, the processor spent less than 20% in the pack-

age C6 sleep state under 10% utilization (Figure 3.19a), which is significantly lower

than the ideal residency of 90% under ideal energy proportionality. Server residency

in the power-saving states almost diminishes as the load increases to 20% and 30%

(Figure 3.19c and Figure 3.19e). This clearly indicates the inefficiency of low power

management in under default OS settings. On the other hand, with temporal batch-

ing with TS-Bat, the Package C6 residency is significantly improved compared to the

55

��

���

���

���

���

����

�� ��� ���� ���� ���� ���� ����

�
�
�
��
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�

��������

������� ������� ������� �������

(a) Bodytrack without T.B. (Util. 10%)

��

���

���

���

���

����

�� ��� ���� ���� ���� ���� ����

�
�
�
��
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�

��������

������� ������� ������� �������

(b) Tmp. Bat. with QoS-tight (Util. 10%)

��

���

���

���

���

����

�� ��� ���� ���� ���� ���� ����

�
�
�
��
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�

��������

������� ������� ������� �������

(c) Bodytrack without T.B. (Util. 20%)

��

���

���

���

���

����

�� ��� ���� ���� ���� ���� ����

�
�
�
��
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�

��������

������� ������� ������� �������

(d) Tmp. Bat. with QoS-tight (Util. 20%)

��

���

���

���

���

����

�� ��� ���� ���� ���� ���� ����

�
�
�
��
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�

��������

������� ������� ������� �������

(e) Bodytrack without T.B. (Util. 30%)

��

���

���

���

���

����

�� ��� ���� ���� ���� ���� ����

�
�
�
��
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�

��������

������� ������� ������� �������

(f) Tmp. Bat. with QoS-tight (Util. 30%)

Figure 3.19: Package C state residency breakdown for Bodytrack benchmark. Figure
(a), (b) and (c) correspond to the residency breakdown with baseline configuration
(no batching) under 10%, 20% and 30% system utilization respectively. Figure (d)
(e) and (f) are for the same plots under Temporal Batching with tight QoS (5x).

baseline without batching. For instance, the processor spent 41% more time in pack-

age C6 state under 10% utilization (Figure 3.19b), and spent 29% more time at 30%

system utilization (Figure 3.19f). Finally, the low-power state residency decreases

much slower as the utilization level increases, compared to the baseline. Figure 3.20

illustrates the C state residency for the Vips benchmark. Similarly, the percentage

56

��

���

���

���

���

����

�� ��� ���� ���� ���� ���� ����

�
�
�
��
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�

��������

������� ������� ������� �������

(a) No Tmp. Bat. (Util. 10%)

��

���

���

���

���

����

�� ��� ���� ���� ���� ���� ����

�
�
�
��
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�

��������

������� ������� ������� �������

(b) Tmp. Bat. with QoS-tight (Util. 10%)

��

���

���

���

���

����

�� ��� ���� ���� ���� ���� ����

�
�
�
��
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�

��������

������� ������� ������� �������

(c) No Tmp. Bat.(Util. 20%)

��

���

���

���

���

����

�� ��� ���� ���� ���� ���� ����

�
�
�
��
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�

��������

������� ������� ������� �������

(d) Tmp. Bat. with QoS-tight (Util. 20%)

��

���

���

���

���

����

�� ��� ���� ���� ���� ���� ����

�
�
�
��
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�

��������

������� ������� ������� �������

(e) No Tmp. Bat.(Util. 30%)

��

���

���

���

���

����

�� ��� ���� ���� ���� ���� ����

�
�
�
��
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�

��������

������� ������� ������� �������

(f) Tmp. Bat. with QoS-tight (Util. 30%)

Figure 3.20: Package C state residency breakdown for Vips benchmark. Figure (a),
(b) and (c) correspond to the residency breakdown with baseline configuration (no
batching) under 10%, 20% and 30% system utilization respectively. Figure (d) (e)
and (f) are for the same plots under Temporal Batching with tight QoS (10x).

of package C6 state residency is greatly increased under different system utilization

levels. Moreover, we can see that, compared to Bodytrack, the C6 state residency

is slightly less. We note that the job execution time of Vips is much shorter than

that of Bodytrack. Therefore, under the same utilization, the inter-arrival times for

job batches are relatively longer for Bodytrack, which favors entering of deep sleep

57

��

���

���

���

���

����

�� ���� ���� ���� ���� �����

�
�
�

������������������

(a) Utilization 10% (QoS-tight)

��

���

���

���

���

����

�� ���� ���� ���� ���� �����

�
�
�

������������������

(b) Utilization 10% (QoS-relaxed)

��

���

���

���

���

����

�� ���� ���� ���� ���� �����

�
�
�

������������������

(c) Utilization 20% (QoS-tight)

��

���

���

���

���

����

�� ���� ���� ���� ���� �����
�
�
�

������������������

(d) Utilization 20% (QoS-relaxed)

��

���

���

���

���

����

�� ���� ���� ���� ���� �����

�
�
�

������������������

(e) Utilization 30% (QoS-tight)

��

���

���

���

���

����

�� ���� ���� ���� ���� �����

�
�
�

������������������

(f) Utilization 30% (QoS-relaxed)

Figure 3.21: Latency CDF for Bodytrack under 10%, 20% and 30% utilization using
TS-Bat’s temporal batching.

state such as C6. Regardless, we can see considerable improvement in low-power state

residency that will eventually reflect as energy savings.

Figure 3.21 and Figure 3.22 demonstrate the response time CDF for Bodytrack and

Vips. We find that the temporal batching engine is able to meet the target constraint.

For example, the actual tail latencies for Bodytrack (with average service time of

108ms) are 557ms and 986ms under 20% system utilization for QoS-tight and QoS-

relaxed receptively. For Vips (with average service time of 42ms), the achieved tail

latencies are 211ms and 358ms under 20% utilization using 5x and 10x QoS. Notably,

58

��

���

���

���

���

����

�� ���� ���� ���� ���� ����

�
�
�

������������������

(a) Utilization 10% (QoS-tight)

��

���

���

���

���

����

�� ���� ���� ���� ���� ����

�
�
�

������������������

(b) Utilization 10% (QoS-relaxed)

��

���

���

���

���

����

�� ���� ���� ���� ���� ����

�
�
�

������������������

(c) Utilization 20% (QoS-tight)

��

���

���

���

���

����

�� ���� ���� ���� ���� ����
�
�
�

������������������

(d) Utilization 20% (QoS-relaxed)

��

���

���

���

���

����

�� ���� ���� ���� ���� ����

�
�
�

������������������

(e) Utilization 30% (QoS-tight)

��

���

���

���

���

����

�� ���� ���� ���� ���� ����

�
�
�

������������������

(f) Utilization 30% (QoS-relaxed)

Figure 3.22: Latency CDF for Vips under 10%, 20% and 30% utilization using TS-
Bat’s temporal batching.

TS-Bat can effectively shift the response time for various workloads regardless of the

actual loads. We note that TS-Bat’s batching algorithm can successfully bound the

target latency through batching for all the benchmarks.

Table 3.10 summarizes the energy savings of temporal batching for all five of PAR-

SEC benchmarks in our study. Consistently, the energy saving increases as the QoS

constraint is relaxed (e.g., from QoS-5x to QoS-10x) as we have observed before. As

the utilization level increases, the energy saving reduces under all QoS settings in

general. This is due to the fact to the processor idle intervals tend to be shortened

59

Utilization 10% Utilization 20% Utilization 30%
QoS-5x QoS-10x QoS-5x QoS-10x QoS-5x QoS-10x

bodytrack (108ms) 31.9% 48.2% 33.4% 34.3% 20.3% 24.7%

fluidanimate (33ms) 13.5% 41.1% 18.2% 22.9% 8.7% 11.8%

vips (42ms) 21.0% 44.3% 27.6% 30.3% 16.0% 20.6%

ferret (21ms) 13.0% 41.9% 25.7% 32.2% 12.9% 22.6%

raytrace (79ms) 25.5% 46.7% 32.8% 34.8% 20.5% 26.4%

Table 3.10: Power savings for all benchmarks using TS-Bat’s temporal batching.
Energy savings are normalized to the baseline (OS default C state management)
energy consumption.

with higher utilizations. It is also observed that batching can be more beneficial for

applications with relatively larger job sizes (e.g. Bodytrack). Interestingly, when

changing the system load from 10% to 20%, for each benchmark, TS-Bat achieves

more relative energy savings under QoS-tight than under QoS-relaxed. This is be-

cause under QoS-5x, the amount of batching is constrained by the target job latency

especially at lower utilization levels. Under QoS-10x, job batching is constrained by

the higher job arrivals especially at the higher system utilization. Overall, we can see

that temporal batching can save between 8.7% and 48% CPU energy depending on

the workloads, server utilization levels and QoS constraints.

3.4.6.2 Combined Temporal and Spatial Batching

We perform both temporal and spatial batching on all the benchmarks as men-

tioned in Section 3.4.5 at the utilization level of 30%. The experiment is conducted

using 15 Apache servers. The target tail latency is set to 5× for all the benchmarks.

Figure 3.23 shows the overall energy savings for the entire cluster. Across all the

benchmarks, temporal batching is able to achieve energy improvement between 48%-

51%. TS-Bat, that combines temporal and spatial approaches, can provide up to 16%

additional energy savings, and achieves up to 68% energy improvement compared to

the baseline while meeting the target QoS constraints. We note that, with spatial

batching, TS-Bat is able to pack the loads onto a small subset of processors. Differ-

ently, in the baseline approach, short latency jobs will incur more frequent arrivals,

which prevents the processors from entering deep package sleep, thus significantly

60

0%

20%

40%

60%

80%

100%

Bodytrack Raytrace Vips Fluidanimate Ferret

En
er

gy
 S

av
in

g

Temporal Batching TS-Bat

Figure 3.23: Energy savings for various benchmarks with Temporal Batching and
TS-Bat at 30% utilization. Baseline has no batching.

increasing the system power consumption.

3.4.7 Discussions

Scalability of TS-Bat. In the evaluation, we use a centralized controller for the

temporal and spatial batching in TS-Bat. This may cause some scalability issues

when the data center has thousands of servers. We note that in these large scale

data centers, TS-Bat can be easily adapted with minimal modification. Specifically,

we can divide the data center into multiple clusters, and each cluster will have its

own TS-Bat controller that coordinates the batching operation. This scheme works

well with many existing data center application as a lot of data center service are

stateless [57]. That is, one user request can be serviced by any of the application

servers in the pool. Eventually, each server cluster acts as a logical data center that

can be effectively managed by TS-Bat.

Energy optimization for both servers and networks. TS-Bat largely considers

energy optimization and QoS management for data center servers. We envision that

as improvements of server energy efficiency continue, the energy consumption from

network devices will become more influential. While resource management in server

networks is a well-studied problem [93, 144–152, 159, 160], the implications of network

managements on overall energy efficiency are not fully understood. Some works have

proposed active power management mechanisms on network devices using techniques

such as dynamic link rate adaptation [6, 113]. However, merely reducing active power

61

alone is not sufficient for network devices as a large portion of switch power is con-

sumed simply by keeping the major components ON (e.g., line cards) [117] (similar to

the case of servers). Recent study has demonstrated the promise of using low-power

states for both switches and servers to achieve high energy savings [104]. We note that

TS-Bat essentially proposes an effective scheduling framework that can be augmented

to create idleness in both servers and network devices to achieve comprehensive energy

savings server-network systems.

3.5 Related Work

Offering server farm applications with performance guarantee has been widely

studied in the literature [10, 12, 13, 155–158]. Due to the rapid increase of server

system size, energy efficiency becomes a prominent issue [31, 47, 119, 126, 129]. The

trends in server energy proportionality have been studied by Ryckbosch et al. [123].

Since many server system workloads have service level agreements, judicious tradeoffs

need to be made between energy efficiency and tail latency [81].

Existing works that target improving energy efficiency in large-scale server systems

can be broadly summarized into two classes: server-level and cluster-level energy man-

agements. Dynamic voltage and frequency scaling is shown to save processor power

(e.g., [64, 126]) and has been widely utilized in for server-level energy optimizations.

Several studies have developed techniques that leverage DVFS to dynamically tune

processor performance for higher energy efficiency while satisfying application tail

latencies for online latency critical workloads [66, 82, 101, 102]. These studies are

largely aimed at applications with higher degrees of pipeline parallelism, and where

the dynamic range for every single request involves the coordination of many (or all)

servers. Although DVFS is effective in this domain, it’s capability in reducing system

energy consumption is limited due to the fact that only active processor power is

saved. Cluster-level energy management performs global control and packs the work-

load to run on a minimal subset of servers to achieve high energy proportionality for

the entire system. Gandhi et al. [55] have proposed a delayed-off mechanism that

turns off a server after it is idle for a preset period of time. Autoscale [57] reduced

62

multi-server system energy by controlling the number of active servers while satisfying

the QoS. A cluster management mechanism that maximizes resource utilization while

meeting the QoS constraints for each workload was presented in [41]. In our study, we

show how system sleep states can be smartly utilized instead of physically turning a

server off since this may introduce unacceptable spikes in job latencies, especially for

small jobs. Studies by Kanev et al. [81] highlighted the need for comprehensive sleep

state selection. Sleepscale [100] modeled a single-core server system and utilized fre-

quency scaling with CPU sleep states jointly to reduce the average power. Our work

shows that in order to improve energy-latency tradeoff, effective energy management

and adaptive system configurations of sleep states and their transitions are equally

important in multi-core multi-server systems.

Similar to batching, Meisner et al. proposed architectural support to facilitate

sleep state by delaying and preempting requests that create common idle and busy

periods across cores of a server [108]. The proposed mechanism requires additional

hardware to coordinate the sleep periods across the cores. Differently, our proposed

work uses off-the-shelf hardware and its effectiveness is evaluated on physical systems

with real power measurement. Finally, we note that server energy optimization as

proposed in our work can be integrated with more energy-efficient data center network

topologies [6, 104, 173] to achieve holistic energy savings for server-network systems.

We note that other techniques have explored more specialized approaches such

as exploiting heterogeneity of processors or domain-specific accelerators to consider-

ably improve energy efficiency for workloads with QoS constraints [91, 142, 143]. For

example, Knightshift [142] incorporated servers with two execution modes– one pro-

viding high performance while consuming higher power for high utilization periods,

the other being less power-hungry but has reduced hardware performance for low-

utilization periods to save power. The framework was further extended in [143] to

offer higher cluster-wide energy proportionality. To preserve generality and limit the

cost of our solution, we model homogeneous servers and cores with the same capabil-

ity. We note that when we combine our proposed approach with energy improvement

solution approaches on heterogeneous servers, we can further boost energy savings.

63

Workload characteristic of data center application is a critical factor that in-

fluences energy and latency optimization. Typically server farm workloads exhibit

various levels of burstiness. Casale et al. [24] analyzed different types of spikes in

realistic web server traces. In [28], the authors proposed a single metric, index of

dispersion to characterize burstiness of web application workloads. Bodik et al. [24]

built a MMPP2 model and evaluated the accuracy in fitting MMPP from workload

traces. We leverage both MMPP and realistic traces to evaluate the performance of

our proposed techniques.

Sever works have looked into minimizing the interference between co-located work-

loads that might result in application performance degradations [105, 166]. Delim-

itrou et al. [40] utilized classification techniques to find the impact of server hetero-

geneity and interference between co-located workloads for resource assignment while

satisfying the performance requirements. Dirigent [180] developed a performance-

management runtime that predicts and controls the contention-related variance of

foreground response times.

Finally, fine-grained software-level tuning has also been studied for efficient power

management. Energy saving could also be achieved by carefully tuning applications

for usage of processor resources [32, 36] or through load-balancing tasks across cores in

multicore processor settings to avoid keeping cores unnecessarily active [114]. Hao et

al. studied the use of machine learning techniques to reduce energy consumption for

NoC [177]. Meanwhile, several recent works have proposed application-specific energy

optimization mechanisms such as approximation and content caching [51, 88, 137].

These techniques are complementary to our work in this dissertation.

3.6 Summary

3.6.1 Dual Delay Timer

The Dual-τ algorithm makes smart use of the existing processor and platform

sleep states to achieve higher energy savings in comparison to existing approaches that

simply use a single delay timer strategy to enter and exit sleep states. We evaluate

64

our energy-saving techniques for different job arrival patterns and various job sizes.

Our experimental results with four synthetic workloads and a real system job trace

from Wikipedia servers [130] show that Dual-τ achieves up to 71% savings in energy

over naive energy management without the use of low-power sleep states, and up to

31% energy savings over a relatively smarter energy management mechanism with

just a single delay timer to enter the sleep state. We also show that the normalized

job latency with our Dual Delay Timer strategy is similar to the latency in the case

when the servers are always active and ready to execute jobs. The simulation-based

scalability study shows that Dual-τ is able to achieve consistent energy savings for

different sizes of server farms.

3.6.2 WASP

To further improve energy efficiency and enable adaptive control in low-power

state managements, we explored a system framework (WASP) that makes smart use

of processor C states and system sleep states combined with adaptive techniques to

orchestrate the entry and exit from these low-power states. WASP also considers

the variability of job arrivals for bursty workloads where local spikes in the arrival

patterns are monitored. This information is used to dynamically guide its approach

to provision servers in shallow sleep states such that they can be woken up faster

to meet QoS constraints. Through extensive simulation, the Pareto-optimal energy-

latency tradeoff in server farms is explored under different system utilization levels

and workloads, which is then used by WASP for parameter selection. We evaluated

WASP on a web server testbed and conduct real energy measurements. Our adap-

tive techniques provide improved Pareto-efficiency in energy latency. With the QoS

constraint of 90th percentile normalized latency to be under 2× the job execution

time, WASP exhibits up to 57% energy saving over a naive policy that uses a shallow

processor sleep state when there is no job to process, and 39% energy saving on a

delay-timer based approach.

65

3.6.3 TS-Bat

With a comprehensive power profiling on a real multi-core processor (Intel Xeon

v2), we observe that the power saving with increasing number of cores entering C

state is non-linear. Particularly, more than 90% of CPU power could be saved if

the entire processor package is put into idle state. Our findings indicate that creating

opportunities for entire package sleep can yield even higher energy saving compared to

approaches that are ignorant of this effect. Motivated by the observation, we designed

TS-Bat, an energy optimization framework that judiciously integrates a temporal

batching engine and a spatial batching engine to save the energy of server farms.

To create opportunities for entering processor-level low-power states, the temporal

batching engine accumulates just the right amount of jobs before dispatching them

to an individual server. To effectively bound the response latencies, the temporal

batching engine builds a job performance model based on the wakeup latency values

from individual processor low-power states and the available amount of parallelism

in the platform (i.e., number of cores per processor). The spatial batching engine

then dispatches the ready-to-execute job batch to a server that is estimated to be

currently idle. This further saves energy by packing the workloads on to just a

subset of processors. We implement a proof-of-concept system of TS-Bat in a testbed

with a cluster of servers, and evaluate the effectiveness of our proposed framework

on different types of workloads and various system utilization levels. By combining

temporal and spatial batching, TS-Bat increases the CPU energy savings by upto

68% with various QoS constraints.

66

Chapter 4 Information Leakage in Multi-core Server Systems:

Characterizations and Defenses

In this chapter, we systematically investigate the information leakage vulnerabil-

ities in multi-core server platforms that could be exploited as covert channels. We

target timing channels due to the design of multi-core server architectures. Specif-

ically, Section 4.1 introduces the background of non-uniform memory architectures

and cache coherence protocols, which serve critical roles in multi-core processing. In

Section 4.2 and Section 4.3 we demonstrate and characterize two newly discovered

timing channels: the NUMA-based timing channels and coherence state-based timing

channels, and study quantification and defense techniques for these timing channels.

Finally, Section 4.4 and Section 4.5 present the related work and summary of this

chapter.

4.1 Background

4.1.1 Non-Uniform Memory Architectures

The memory hierarchy in recent processors includes several levels of caches and

DRAM, some that are used privately by the individual cores and some that are shared

between multiple cores. Also, with the use of multi-socket CPUs communicating via

high speed interconnect (e.g., Quick Path Interconnect (QPI) in Intel architectures [3]

and HyperTransport links in AMD architectures [39]), processor cores can now share

cache contents across processors. Non-uniform memory architecture is the main-

stream multi-processor configuration where each processor has it local cache/memory,

and all processors operate on the same physical address space. Figure 4.1 illustrates

the cache hierarchy for a dual-socket system with NUMA setting. When processor

issues a load or store operation, it will try to find the data block either in local cache

or from a remote processor’s cache hierarchy. It is possible that the requested data

block does not reside in the entire cache hierarchy. In such cases, either the local or

remote memory controller will issue a memory access, depending on which one owns

67

Last Level Cache

On-chip Interconnect

Local Cache

core
 1

Processor Socket #2

Local Cache

core
 2

Last Level Cache

Local Cache

core
 1

Processor Socket #1

Local Cache

core
 2

O
ff-chip Interconnection

On-chip Interconnect

Figure 4.1: Local and remote cache accesses in NUMA system.

the data block.

4.1.2 Cache Coherence Protocols

Most modern processors, including Intel Xeon and AMD Opteron families, support

slight variants of MESI cache coherence protocol to preserve data coherence in private

caches [3, 39]. The MESI protocol has four states, namely:

1. Modified (M) state, where the cache block is present only in one private cache

and is dirty, i.e., the data has been modified compared to the value in main memory.

This also implies that the current core/processor has write permission to modify the

block. 2. Shared (S) state, where the cache block is present in more than one private

cache and is clean, i.e., the data matches the value in the main memory. This implies

that current CPU only has read permission to the block. 3. Exclusive (E) state,

where the cache block is present only in the current cache, but is clean, i.e., the data

matches the contents in main memory. In this state, the current CPU only has read

permissions. However, since the cache block is present only in the current cache, it

lets the owner CPU to acquire write permissions and upgrade to M state without

the need to generate invalidation requests to other cores. Also, any read misses to

this block by other cores will downgrade the coherence state in the current CPU

to S state. This dual-intent coherence state improves the performance by enabling

quick transitions to M or S from the E state depending on the memory operation.

4. Invalid (I) state, where the cache block is invalid, and does not have read or write

permissions.

Figure 4.2 illustrates the state transitions for the four coherence states in MESI-

68

M E

S I

M E

S I

Figure 4.2: State transitions for the MESI protocol

based protocols. Depending on the processor family, there are other specialized cache

coherence states to further optimize performance. For instance, the Intel Xeon proces-

sor family implements the MESIF protocol, where the F state is meant to designate

the processor that will forward the cache block to the requestor. AMD processor

family implements MOESI, where O state is created to designate the owner proces-

sor after a modified cache block transitions to shared state. This avoids write-back

operations to memory whenever the modified blocks are shared between processors.

We note that such additional states simply serve to improve performance, and do not

fundamentally add new functionality to M, E, S, or I states. For clarity, we do not

consider such performance-optimizing coherence states in our current work.

Furthermore, Intel Xeon and AMD Opteron support cache coherence across mul-

tiple sockets (processors) through high speed links between the processors [3, 38, 39].

This enables multiple processors (multiple CPUs) to share data among them using

the underlying coherence protocol.

4.2 Information Leakage Attack exploiting Non-uniform Memory Archi-

tectures

In this section, we demonstrate a new type of covert timing channel attack that

exploits the cache access latency differences in NUMA-based architectures. We further

propose a statistical metric-Degree of Sparseness- that can effectively quantify the

presence of the proposed NUMA covert channels.

69

4.2.1 NUMA Latency Profile

Due to the hierarchical memory levels in NUMA configuration, there is usually

a shorter latency period for read/write requests satisfied by a cache situated locally

within the processor (local socket) when compared to memory requests that are sat-

isfied by a cache belonging to a different processor (cross-socket or inter-socket). An

unintended side-effect of these timing differences in NUMA-based machines is that,

a malicious hacker can exploit such timing variations to force data to be placed in

different caches, and ultimately implement covert timing channels.

To understand the access latency variations in NUMA, we perform experiments

that read data from local and remote processor caches in a multi-socket processor. For

this study, we use a dual-socket Intel Xeon X5650 server with 6 cores in each socket

running at 2.67 GHz frequency. Each processor has a 32 KB private L1, 256 KB

private L2 caches, 12 MB shared L3 cache within each socket. To model real system

settings, applications such as browser, dropbox, code editors are run alongside our

experiments.

We generate 1,000 memory read operations that target caches in the local socket

(specifically, L1 cache) and remote socket (specifically, Last Level Cache or LLC in

another socket). To target local caches for reads, our test profiler runs a tight loop

with repeated reads that are satisfied by the local L1 cache. To target remote LLC for

reads, our profiler issues periodic read requests. Meanwhile, a control program, that

is pinned to a socket different from where the test profiler resides, explicitly issues

a flush operation (using x86 ISA-supported instructions such as clflush that clears

the block from all caches) and then loads the block into corresponding socket’s cache

hierarchy (that includes its LLC). When the test profiler issues its read access to the

cache block, this block is guaranteed to be routed to the remote socket where the

control program is located. All of the cache accesses and the associated instructions

are timed using rdtsc instruction. Figure 4.3a shows the Cumulative Distribution

Function (CDF) for cache access latencies from local and remote sockets. Figure 4.3b

illustrates the difference between cache accesses that are satisfied locally within the

70

0 100 200 300 400 500 600
Latency (Cycles)

0%

20%

40%

60%

80%

100%

CD
F

Local Access (L1)
Remote Access (Inter-socket)

(a) CDF of NUMA access latency

Last Level Cache

On-chip Interconnect

Local Cache

core
 1

Processor Socket #2

Local Cache

core
 2

Last Level Cache

Local Cache

core
 1

Processor Socket #1

Local Cache

core
 2

O
ff-chip Interconnection

On-chip Interconnect

(b) NUMA access patterns

Figure 4.3: Cache access patterns and cumulative distribution function for local (Level
1) and remote/cross-socket (Last Level) cache access latency in NUMA systems.

same socket (local cache hit– shown using a dotted line) versus those that are satisfied

by the remote cache (cache hit in another socket– shown using a dashed line). As we

can see, the cache accesses to local and remote caches show distinct bands of latency

distributions. This indicates the viability for exploiting the latency difference between

caches in different sockets.

4.2.2 Threat Model

In our timing channel attacks, we assume that the trojan and spy are running

on the same machine that features two or more multi-core processors. The trojan

intentionally modulates the cache access timings through issuing a flush operation,

and later places a data block in its local cache so that the spy can infer the covertly

transmitted information. We assume that a compromised trojan, that has sufficient

privileges to access sensitive data, is able to run inside the target multi-socket CPU.

Our attack model fits into flush+reload category of attacks [176], where the trojan

71

Trojan

 Spy

Timed
Load

bit ‘1’ transmitted bit ‘0’ transmitted

Local Hit Local Hit Local Hit Local Hit

Flush Load

Socket A

Socket B

Remote Hit Remote Hit Remote Hit Remote Hit

c1

c2

c1

c2
Flush Load Flush Load Flush Load

Timed
Load

Timed
Load

Timed
Load

Timed
Load

Timed
Load

Timed
Load

Timed
Load

bit ‘1’ inferred bit ‘0’ inferred

FlushLoad

Timed
Load

Flush Load

Timed
Load

Time

Time

Remote Hit Remote Hit

Figure 4.4: Illustration of the communication protocol between the spy and trojan
showing a transmission of bit sequence ‘10’.

clears its memory blocks and reloads them to alter the access times.

As software-level protections continue to offer stronger isolation between appli-

cations, hardware structures will become natural targets for covert timing channels.

In this vein, we illustrate the vulnerabilities exposed by NUMA-based architectures

(specifically, multi-socket CPU systems) that provide for timing difference in cache

accesses depending on the caches that satisfy the memory requests.

4.2.3 NUMA-based Timing Channel Construction

In this section, we demonstrate a covert timing channel implementation that ex-

ploits the cache access timing differences in NUMA. The trojan and the spy are two

separate physical processes with the trojan having higher privileges than the spy in

terms of access to sensitive secrets such as Operating System- or user-related data.

In order to sufficiently modulate the timing of cache accesses, the trojan process is

run in a socket different from the spy.

Figure 4.4 illustrates the communication protocol between the trojan and the spy

for bit transmission. The spy issues the load or read instructions periodically to a

memory address that is known (and accessible) to both the trojan and spy. Typically,

this memory address points to a shared code region such as a library function shared

between processes [176]. There are two possibilities in NUMA-based CPUs when load

operations are issued by the spy: 1. the load hits in the local L1 cache or LLC of the

spy’s socket, 2. the load misses in the cache hierarchy of the spy’s socket, and the

72

requested memory address is resident in the remote socket or DRAM. Our experiments

show two distinct bands of latencies for the above two possibilities (Figure 4.3a). The

spy times these loads to infer whether the loads resulted in a local cache hit or a

remote cache hit. If the loads are satisfied by the DRAM (i.e., neither socket’s cache

can satisfy), the spy observes a longer latency compared to remote cache hit and

ignores them.

The trojan manipulates the access timing to the shared memory address to com-

municate the bits covertly to the spy. Whenever the trojan wants to communicate

a bit, it performs a cache flush operation using instructions such as clflush. This

clears the target memory address from all of the caches that are kept coherent in the

multi-socket CPU, including that of the spy located in another socket. The trojan,

then immediately, performs a load from that memory location. This populates the

shared memory address data in the cache hierarchy of the trojan’s socket (i.e., the

corresponding L1 cache and LLC). When the spy performs its periodic load from

this memory address, the spy’s cache cannot service this load since the corresponding

contents have been previously flushed by the trojan. Effectively, this enables the spy

to detect the timing difference in cache access compared to its local cache hit.

Now that, we have seen how the trojan manipulates the timing of cache access

for the spy, it is important to understand how the transmission of ‘1’ and ‘0’ bits

can be accomplished. In our current implementation, this is done through trojan

performing a specific number of consecutive flush+reload operations to be observed

by the spy. In our current design, for transmitting a ‘1’, the trojan performs four con-

secutive flush+reload; and for transmitting a ‘0’, the trojan performs two consecutive

flush+reload operations. The spy infers the end of bit transmission when it observes

its load operation result in a local cache hit (via timing the load), i.e., the trojan has

not performed flush+reload on the memory block.

Finally, we note that our implementation does not have explicit synchroniza-

tion between the trojan and the spy. Based on our experimental measurements,

a flush+reload operation by the trojan took 350 cycles. To allow for sufficient time,

the spy performs its periodic timed load accesses every 1,000 cycles. This minimizes

73

�� ��� ��� ���

�
�� �
�
�
��
�

������������

1

0

-

-

Figure 4.5: Bit pattern (64 bits) transmitted by the trojan.

the possibility of the spy missing the trojan’s transmitted bit. We note that, in or-

der to further improve the reliability of transmission while maximizing the effective

bit rate of covert channel, the spy could reduce the time interval between its load re-

quests, and the trojan could utilize one or more of the following features: 1. add parity

bits, 2. packetize the transmission and include packet headers containing metadata,

3. synchronize using existing system features such as CPU clock.

��

����

����

����

�� ��� ���� ���� ���� ���� ����

�
�
�
�

�
�
�
��
�
�
�
�

��
�
�
��
�
�

���������������

Figure 4.6: Latency sequence for load operations measured by the spy. The (taller)
red bar and (shorter) purple bars correspond to remote cache and local cache hits
respectively.

4.2.4 NUMA-based Timing Channel Demonstration

Using the Linux system call sched setaffinity, the spy and the trojan thread are

pinned to two different sockets of Intel Xeon X5650 server. To create shared memory

pages, we programmed the trojan and spy to load a shared page from the libgcrypt

library [2], a widely used Linux cryptography library.

The spy runs a while loop with timed loads to a cache block in the shared libgcrypt

library. Figure 4.5 shows a random 64 bits that are transmitted from the trojan.

Correspondingly, Figure 4.6 shows the sequence of latencies measured using timed

74

load by the spy. As we can see, there are several consecutive tall bars (corresponding

to remote cache hits) fenced by consecutive short bars (corresponding to local cache

hits). The spy deciphers the bit based on the number of consecutive tall bars (see

Section 4.2). In our experiments, the spy observes 1-2 tall bars during ‘0’ transmission,

and 3-4 tall bars during ‘1’ transmission. This small variance stems from tail latencies

in remote cache latency distribution and the background noise from other processes.

Despite this minor variation, the spy could still correctly distinguish between ‘1’ and

‘0’ with 100% accuracy. Overall, the transmission achieves an effective bit rate of 190

Kbit/sec. Note that it is possible to further improve the speed through additional

optimizations to the trojan and spy described in Section 4.2.

4.2.5 NUMA-based Timing Channel Analysis

To prepare for an effective defense, we first attempt to characterize the NUMA-

based timing channels. We envision that any detection strategy would need to monitor

the activities of multiple NUMA components, and capture the interactions between

individual components (e.g., cache miss requests and data transfers). Through analyz-

ing the activity of cache hierarchy during covert transmission, we made an important

observation: The time-interval between two consecutive remote cache accesses (i.e.,

time-interval between inter-socket cache data transfers) exhibits a concentrated dis-

tribution in the case of a covert channel attack compared to regular applications with

legitimate communication. The concentration is due to the fact that the spy relies on

observing a consecutive number of remote load accesses in order to infer the trans-

mitted bits. As such, the spy issues a number of load operations at a pre-determined

sampling interval that can be observed over the interconnect. Our experiments show

that covert channels have only a few possible values for time-intervals between remote

cache accesses (see Section 4.2.5.1 for details). We note that it is conceivable for a

spy to change the sampling interval at runtime to evade from being noticed. How-

ever, in asynchronous environments, the spy may begin to see a rapid rise in bit error

rate due to lack of synchronization. On the contrary, for regular applications that do

not intentionally manipulate the timing between inter-socket data transfers, a higher

75

level of randomness is expected in time between inter-socket cache transfers, which is

verified through our experiments.

4.2.5.1 Time-Intervals between Remote Accesses

Since real hardware does not support measuring the time-intervals between remote

cache accesses, we setup Gem5 [23], a cycle-accurate, full system simulator to perform

our measurements. We configure Gem5 with eight x86 cores, and use a minimal

Linux distribution with kernel version 2.6.32. We build Parsec-2.1 benchmarks [22]

with 8 threads, where each thread is pinned to a separate core. We also configure

the spy and trojan to run on Gem5, where we record the timestamps for inter-core

cache data transfers. Since any core pair can be used in a covert channel attack, the

monitor filters the timestamps associated with cache data transfers for each source-

destination core pair. We generate histograms for time-intervals between inter-socket

cache accesses.

As expected, our experiments in Figure 4.7, Figure 4.8, Figure 4.9, Figure 4.10,

Figure 4.11, and Figure 4.12 show that regular (Parsec-2.1) benchmarks exhibit higher

randomness in time-intervals. We show results for four representative core pairs in

each benchmark. Also, we eliminate time-intervals greater than 5,000 cycles since

they represent lengthy idle periods without inter-core cache transfers, and collectively

constitute less than 0.5% of the population. We observe that, though some time

interval bins are more favored than other bins (i.e., higher probability), the probability

of any single bin does not exceed 25% and the expected probability in almost all of

the bins are non-trivial. In contrast, for covert channel scenario (Figure 4.13), the

time-interval distribution is highly concentrated and is non-zero only for a very few

bins. Notably, the bins between 1,500 and 2,000 cycles correspond to bit transmission

phases when more frequent remote cache accesses are observed, and the bins between

4,300 and 5,000 cycles correspond to idle phases when time interval between remote

cache accesses are long. We note that, though the absolute locations of the histogram

bins corresponding to bit transmission and idle phases may change, the characteristic

of concentration in certain bins over others remains, as they are inherently needed to

76

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(a) Bodytrack-1

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(b) Bodytrack-2

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(c) Bodytrack-3

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(d) Bodytrack-4

Figure 4.7: Histograms of time-intervals between remote cache accesses in Bodytrack
for 4 representative core pairs.

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(a) Dedup-1

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(b) Dedup-2

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(c) Dedup-3

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(d) Dedup-4

Figure 4.8: Histograms of time-intervals between remote cache accesses in Dedup
for 4 representative core pairs.

77

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(a) Fluidanimate-1

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(b) Fluidanimate-2

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(c) Fluidanimate-3

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(d) Fluidanimate-4

Figure 4.9: Histograms of time-intervals between remote cache accesses in Fluidan-
imate for 4 representative core pairs.

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(a) StreamCluster-1

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(b) StreamCluster-2

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(c) StreamCluster-3

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(d) StreamCluster-4

Figure 4.10: Histograms of time-intervals between remote cache accesses in Stream-
Cluster for 4 representative core pairs.

78

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(a) Swaptions-1

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(b) Swaptions-2

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(c) Swaptions-3

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(d) Swaptions-4

Figure 4.11: Histograms of time-intervals between remote cache accesses in Swap-
tions for 4 representative core pairs.

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(a) x264-1

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(b) x264-2

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(c) x264-3

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(d) x264-4

Figure 4.12: Histograms of time-intervals between remote cache accesses in x264 for
4 representative core pairs.

79

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

40%

50%

60%

Pr
ob

ab
ili

ty
Figure 4.13: Histogram of time-intervals between remote cache accesses in the covert
channel.

covertly communicate bits between the trojan and spy.

4.2.5.2 Quantifying NUMA Covert Channels

From Section 4.2.5.1, we see that the time-interval histograms for regular appli-

cations and covert channels are significantly different. Specifically, the time-interval

distribution in covert channel is highly concentrated within a small number of bins

to improve bit inference accuracy for the spy. In other words, the highly probable

bins are sparse for covert channels compared to regular applications. Therefore, we

use the metric Degree of Sparseness (S) [103] to capture this phenomenon. An S

value of 1 denotes that the distribution is very sparse, and a value of 0 means that

the distribution is not sparse (i.e., uniform). Given the probability vector for the

histogram bins as P, Degree of Sparseness (S) is defined as:

S =
M

M −
√
M

(1− ‖P‖1√
M × ‖P‖2

) (4.1)

where M equals to the number of histogram bins, and ‖P‖1, ‖P‖2 are norm-1 and

norm-2 for vector P respectively. It is worth noting that there are a number of

histogram bins in regular applications which have near-zero probabilities. Since S

depends on the absolute probability values, the histogram bins with near-zero prob-

abilities may be outweighed. To account for such bins and amplify their influence

during computation of S, we pre-process the probability values with the µ-law com-

80

 0

 0.2

 0.4

 0.6

 0.8

 1

(0
,1

)
(0

,2
)

(0
,3

)
(0

,4
)

(0
,5

)
(0

,6
)

(0
,7

)
(1

,2
)

(1
,3

)
(1

,4
)

(1
,5

)
(1

,6
)

(1
,7

)
(2

,3
)

(2
,4

)
(2

,5
)

(2
,6

)
(2

,7
)

(3
,4

)
(3

,5
)

(3
,6

)
(3

,7
)

(4
,5

)
(4

,6
)

(4
,7

)
(5

,6
)

(5
,7

)
(6

,7
)

D
e
g
re

e
 o

f
S

p
a
rs

e
n
e
s
s

(Source Core, Destination Core) Pair

(a) Bodytrack

 0

 0.2

 0.4

 0.6

 0.8

 1

(0
,1

)
(0

,2
)

(0
,3

)
(0

,4
)

(0
,5

)
(0

,6
)

(0
,7

)
(1

,2
)

(1
,3

)
(1

,4
)

(1
,5

)
(1

,6
)

(1
,7

)
(2

,3
)

(2
,4

)
(2

,5
)

(2
,6

)
(2

,7
)

(3
,4

)
(3

,5
)

(3
,6

)
(3

,7
)

(4
,5

)
(4

,6
)

(4
,7

)
(5

,6
)

(5
,7

)
(6

,7
)

D
e
g
re

e
 o

f
S

p
a
rs

e
n
e
s
s

(Source Core, Destination Core) Pair

(b) Dedup

 0

 0.2

 0.4

 0.6

 0.8

 1

(0
,1

)
(0

,2
)

(0
,3

)
(0

,4
)

(0
,5

)
(0

,6
)

(0
,7

)
(1

,2
)

(1
,3

)
(1

,4
)

(1
,5

)
(1

,6
)

(1
,7

)
(2

,3
)

(2
,4

)
(2

,5
)

(2
,6

)
(2

,7
)

(3
,4

)
(3

,5
)

(3
,6

)
(3

,7
)

(4
,5

)
(4

,6
)

(4
,7

)
(5

,6
)

(5
,7

)
(6

,7
)

D
e
g
re

e
 o

f
S

p
a
rs

e
n
e
ss

(Source Core, Destination Core) Pair

(c) Fluidanimate

 0

 0.2

 0.4

 0.6

 0.8

 1

(0
,1

)
(0

,2
)

(0
,3

)
(0

,4
)

(0
,5

)
(0

,6
)

(0
,7

)
(1

,2
)

(1
,3

)
(1

,4
)

(1
,5

)
(1

,6
)

(1
,7

)
(2

,3
)

(2
,4

)
(2

,5
)

(2
,6

)
(2

,7
)

(3
,4

)
(3

,5
)

(3
,6

)
(3

,7
)

(4
,5

)
(4

,6
)

(4
,7

)
(5

,6
)

(5
,7

)
(6

,7
)

D
e
g
re

e
 o

f
S

p
a
rs

e
n
e
ss

(Source Core, Destination Core) Pair

(d) Streamcluster

 0

 0.2

 0.4

 0.6

 0.8

 1

(0
,1

)
(0

,2
)

(0
,3

)
(0

,4
)

(0
,5

)
(0

,6
)

(0
,7

)
(1

,2
)

(1
,3

)
(1

,4
)

(1
,5

)
(1

,6
)

(1
,7

)
(2

,3
)

(2
,4

)
(2

,5
)

(2
,6

)
(2

,7
)

(3
,4

)
(3

,5
)

(3
,6

)
(3

,7
)

(4
,5

)
(4

,6
)

(4
,7

)
(5

,6
)

(5
,7

)
(6

,7
)

D
e
g
re

e
 o

f
S

p
a
rs

e
n
e
ss

(Source Core, Destination Core) Pair

(e) Swaptions

 0

 0.2

 0.4

 0.6

 0.8

 1

(0
,1

)
(0

,2
)

(0
,3

)
(0

,4
)

(0
,5

)
(0

,6
)

(0
,7

)
(1

,2
)

(1
,3

)
(1

,4
)

(1
,5

)
(1

,6
)

(1
,7

)
(2

,3
)

(2
,4

)
(2

,5
)

(2
,6

)
(2

,7
)

(3
,4

)
(3

,5
)

(3
,6

)
(3

,7
)

(4
,5

)
(4

,6
)

(4
,7

)
(5

,6
)

(5
,7

)
(6

,7
)

D
e
g
re

e
 o

f
S

p
a
rs

e
n
e
ss

(Source Core, Destination Core) Pair

(f) x264

Figure 4.14: Degree of Sparseness for (Source, Destination) pairs for the Parsec-2.1
Benchmarks.

pression function [124] to get a new vector Q:

Qi =
log (1 + µPi)

log (1 + µ)
(4.2)

where µ is a tunable parameter that controls the degree of compression for large

values while increasing the level of amplification for small values. We set µ = 500 in

our experiments.

We compute values of S on our histograms for time-intervals for remote cache

accesses. Figure 4.14 shows the Sparseness measurement for each of the (source,

destination) core pairs for six Parsec-2.1 benchmarks. We observe the S values to be

81

less than 0.4 in all regular benchmarks. On the other hand, S value is very high, and

around 0.8 for covert channels (which is at least 2× compared to regular applications).

This proves that our quantification technique can indeed be applied as an effective

indicator for the possible presence of NUMA-based covert timing channels.

4.2.6 Discussions on Mitigations

As demonstrated above, timings of inter-socket cache data transfers corresponding

to the adversaries’ manipulation exhibit a unique statistic profile as compared to

benign applications that do not intentionally modulate the cache transfer timings.

We note that due to the existence of many variants of communication protocols,

hardware-based mitigation techniques that attempt to catch all such attacks can be

both expensive and inflexible (i.e., unable to guarantee high coverage). Therefore, it

is desirable to have agile identification methods before adopting strict damage control

mechanisms that can potentially worsen system Quality of Service.

Our statistical quantification methodology can be served as a low-cost and effective

first step for mitigating NUMA-based covert timing channels. Notably, our proposed

technique only requires timestamp traces for inter-socket cache transfer, which can

be easily incorporated in contemporary performance monitoring infrastructures (e.g.,

PMUs) supported by all major processors. Furthermore, the statistical analysis can

be implemented as lightweight software that maximizes robustness and minimizes

time to resolution. Finally, real systems can exhibit various levels of noise from many

sources of system activities (as we have observed in our experiments). Therefore, to

achieve high usability, detection mechanisms should be equipped with effective noise

isolation techniques. We envision that future mitigation approaches will potentially

employ methodologies from the signal processing domain (e.g., [15–17, 20, 48]) to

enhance performance in realistic and noisy settings.

82

4.3 Information Leakage Attack exploiting Cache Coherence States

In this section, we demonstrate the profile of cache access latencies for cache blocks

in various read-only coherence states. A communication protocol is proposed that

manipulate cache coherence states to build a covert channel between a trojan and spy.

Additionally, we evaluate the channel capability in each communication scenarios and

quantify the bitrate in the presence of noise. Finally, to protect the cache coherence

fabric and to avoid adversely affecting the latency-critical read operations, we propose

a defense scheme that eliminates the latency differences among the corresponding

read transactions. The modified cache coherence scheme is able to defend against the

exploits involving cache coherence states.

4.3.1 Cache Coherence States and Access Latencies

To understand the effect of cache coherence states and the corresponding cache

access latency, we perform experiments that load (read) data in specific cache co-

herence states (S and E) from specific cache locations (local and remote caches with

respect to the requestor). We construct a micro-benchmark with threads that could

be pinned to either one or multiple cores. Each requestor thread periodically issues

load operations to local and/or remote cache blocks that are in one of the two co-

herence states: S or E1. In this study, we use a dual-socket Intel Xeon X5650 server,

each with 6 cores running at 2.67GHz frequency. Each processor has a 32 KB private

L1, 256 KB private L2 caches, 12 MB shared L3 cache within each socket. All of the

caches are kept coherent in hardware. Our experiments were conducted on a system

with a representative workload for a typical desktop server (i.e., applications such

as browser, dropbox, code editors were running alongside our code as we made our

measurements).

For our measurements, we generate 1,000 memory read (load) operations for each

combination pair of (location, coherence state), and time these loads using rdtsc

1Note that other coherence states such as M may also exhibit different latency profiles. However,
change to M state will require writes to the cache blocks. Since writes to shared memory will annul
silent page sharing (created using KSM), we do not consider these other states.

83

0 50 100 150 200 250 300 350 400
CPU Cycles

0%

20%

40%

60%

80%

100%

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

local shared
local excl.
remote shared
remote excl.

Figure 4.15: Load operation latency in various (location, coherence state) combina-
tions.

Cache/Coherence State Min Latency Average Latency Max Latency
Local Exclusive 116 124 128
Local Shared 92 96 101

Remote Exclusive 244 248 253
Remote Shared 220 228 236

Table 4.1: Load operation latency (CPU Cycles) in various (location, coherence state)
combinations. Location is with respect to Spy.

instruction. We note that coherence transactions are generated in each case. For

example, in Local Shared configuration, the requested data is a local L2 cache miss

and is fetched from L3 cache in the same (local) chip where the data is present in the

S state. In Local Exclusive, the requested data is local cache miss and is fetched from

another core’s L1 or L2 cache belonging to the local chip where the data is present in

the E state. Similarly, in Remote Shared, the requested data is present in the S state in

the L3 cache of a different (remote) processor chip. In Remote Exclusive, the requested

data is present in the E state in a L2 cache belonging to a remote chip. Figure 4.15

shows the cumulative distribution function (CDF) for the various (location, coherence

state) combination pairs. Additionally, Table 4.1 shows the minimum, average and

maximum access latencies for the corresponding configurations. Our results show

that these combination pairs show distinct bands of latency distributions. We observe

that accessing a cache block in the E state incurs longer latency than accessing data

block in S state (e.g., 124 cycles for accessing local E state block and 98 cycles

for local S state data block) triggered by cache lookup in different coherence states

84

(described in Section 4.3.4). Similar latency difference could also be observed for

accessing blocks in remote caches as well. Our experiments demonstrate that the

latency values are contained within a relatively narrow band for each configuration,

and the bands corresponding to different configurations are sufficiently distinct from

each other. This clearly demonstrates the viability of exploiting the latency difference

between these combination pairs to implement timing channels.

4.3.2 Sharing Physical Memory

Before constructing timing channels, the trojan and the spy should first have

shared physical memory such that timing of accesses to these addresses can be manip-

ulated. Prior techniques [74, 176] have shown their timing channel implementations

by explicitly sharing library code and data between the trojan and spy. In effect, the

coherence protocols would maintain states on such blocks to keep a coherent memory

view supported by the underlying hardware. Our attack model would work with a

similar setup. However, this setup could imply that we assume the trojan (with access

to sensitive data) and the spy (that can’t access sensitive data) to have shared code

or data, which could be difficult in systems where strict isolation guarantee policies

are enforced.

We note that a more agile adversary could circumvent the explicit code or data

sharing requirement by exploiting a feature called memory deduplication supported

by the OS. Kernel Same Page Merging (or KSM) is a kernel feature inside the OS that

allows the system to share identical memory pages (i.e., pages with the same mem-

ory contents) between different processes. This feature is routinely used to enhance

system performance and avoid having to duplicate physical memory pages holding

identical data. In current Linux systems, the KSM is a kernel thread that periodi-

cally scans the entire memory to identify identical memory pages and make them to

be candidates for merging. After the merging process is over, a single physical copy of

the page is kept and all of the duplicate copy pages are updated to point to this single

physical page in the page table. The physical pages belonging to the duplicate pages

are then released back to the system that can be used later for storing more physical

85

pages with distinct memory contents. The single physical copy (at the end of the

merging process) is marked as copy on write and resides in read-only sharing mode.

In other words, write operations to these read-only shared pages are not possible since

the kernel will separate them into two separate pages if one of the sharers happen

to modify the contents of the page, preventing any unexpected direct communication

between the sharer processes. This feature is widely adopted to compact memory,

avoid unnecessary memory duplication and reduce memory page misses [21, 134, 154].

From the above description, it is clear that the processes may begin to share pages

unknowingly behind the scenes due to the OS merging of identical physical pages

belonging to different processes. This feature can be now exploited by the trojan

and spy to force create shared memory even without explicitly having to share any

library code or data between them. In particular, since covert channels are created by

colluding parties, the trojan and spy could intentionally generate physical pages with

identical bit patterns known to both of them ahead of time. KSM scans the process

memory spaces in the order of their starting times (earliest first). To avoid noise from

external processes that may accidentally have the exact same bit patterns, the trojan

and spy will have to go through a trial communication phase where they perform a

series of cache flushes and reloads on this page to make sure that no other process

is currently sharing this page as a result of memory deduplication. If an external

sharing of this page is detected (via timing measurements), the trojan and spy may

repeat creating shared memory through deduplication using another set of identical

bit patterns known to both of them.

4.3.3 Threat Model

We assume that the trojan and spy share (one or more) multi-core processors.

The trojan has access to secretive information and it desires to transmit the secrets

to the spy. The spy process who does not have accesses to the secrets, will then cause

damages to users by exfiltrating the information to the outside world (e.g., identify

theft). The trojan can be an application that is downloaded from untrusted sources.

Note that the trojan is unable to send secretive data to the outside by itself since it

86

either lacks sufficient permissions to do so or its transmission activity can possibly be

identified and suspended by the system confinement mechanism at the software level.

Meanwhile, due to existing isolation techniques such as sandboxing, the trojan and

spy processes are explicitly prohibited from any form of direct communication. Such

settings exist currently in a variety of real-world scenarios, especially in multi-tenant

cloud environment where virtual machines from multiple users can be co-scheduled

on the same physical machine to increase resource utilization. Note that compared to

the attack model in Section 4.2.2, cache coherence state-based vulnerability expose

broader attack surface as it does not necessarily require a remote socket and local

socket setting.

The trojan and spy are able to create shared DRAM pages by either explicitly

mounting shared libraries or by leveraging KSM to silently merge two identical pages.

We note that the latter method is more stealthy since it does not explicitly request

memory sharing between the trojan and spy. Also, KSM is widely used in various

server systems to improve memory usage efficiency, which is less likely to be disabled

due to its high performance advantages. We further assume that the trojan is ca-

pable of spawning multiple threads that would run on multiple cores either within

the same socket or across multiple sockets. Through this capability, the trojan can

intentionally modulate the cache access timing through placing the shared data block

in different coherence states and possibly in various levels of the memory hierarchy

(local processor’s caches, another processor’s caches in a multi-processor). The pat-

tern of timing differences between cache block accesses in different coherence states

and locations enables a spy to infer trojan’s transmission. To synchronize, the trojan

and spy can initiate a pre-transmission process where the trojan and spy checks if a

pre-determined series of activities (such as flushes) are observed on the shared cache

blocks.

4.3.4 Exploiting Cache Coherence

In this section, we show some practical ways that the trojan and spy processes

can exploit cache latency differences to exfiltrate sensitive data.

87

Local Cache

Shared Cache

On-chip Interconnect

Local CacheLocal Cache

Core
 3

Core
 1

Core
 4

Processor Socket

Exclusive cache block (maybe stale)

Local Cache

Core
 2

0 0 1 0

Core valid bits

(a) Cache block in E state

Local Cache

Shared Cache

On-chip Interconnect

Local CacheLocal Cache

Core
 3

Core
 1

Core
 4

Processor Socket

Shared cache block (clean)

Local Cache

Core
 2

Core valid bits

0 0 1 1

(b) Cache block in S state

Figure 4.16: Trojan explicitly controlling Cache Coherence States as E or S by running
on one or two cores within the multi-core processor. The dotted lines show the service
path for a data block residing in E and S states respectively.

4.3.4.1 On-chip Cache Coherence

Figure 4.16 shows an illustration of the attack using on-chip coherence. Here we

assume a multi-core processor where each core has a private write-back cache kept

coherent using a variant of MESI protocol, and all of the cores have access to a shared

last level cache (LLC).

During a read miss in the private cache, the miss request is first sent to the shared

LLC. The LLC maintains the core valid bits vector for each block that denotes which

of the coherent private caches have a copy of the cache block [5]. An 1 bit value

indicates that the corresponding core caches that block currently, and a 0 indicates

that the corresponding core does not have that block.

If the total number of 1’s in the vector is greater than one, it indicates that two

or more sharers exist for this block. In other words, this denotes that the cache block

is in the S state in the memory subsystem, and the cache copy in the LLC is clean.

Since the LLC has a clean data copy, it can directly service the cache miss request

from the requesting core.

If the total number of 1’s in the core valid bits vector is equal to one, it indicates

that only one cache currently has the block (i.e., owns the block). Note that this

cache may have the block in the E or M coherence states. Also, this may mean

that the LLC copy of the block is possibly stale, since the current owner could have

88

modified the block contents during cache residency. To avoid sending possibly stale

data back to the requesting cache, the LLC forwards the cache request to the owner.

The owner cache responds to the requesting core with the latest copy of the cache

block, and downgrades itself to the S state. The owner also performs a write-back to

the LLC to leave a clean copy for future read misses on this block. At the end of this

transaction, note that the core valid bits vector is updated to reflect the new sharer

(the requesting core), and the total number of 1’s (sharer caches) increases to two.

If the total number of 1’s in the core valid bits vector is equal to zero, it indicates

that none of the caches currently have the block. If the LLC has a clean copy of the

data (i.e., cache valid is 1), the LLC can service the miss request. Otherwise, the

miss request is forwarded to the lower level memory, e.g., DRAM. This case does not

generate any coherence activity.

From the above discussion, it is clear that the cache blocks in S and E states

result in different read latencies due to the cache miss being serviced by different

paths.

In order to communicate covertly, the trojan has to place a cache block, B (that

can be read by the spy as well) in either of S or E coherence states, and let the

spy observe B’s access latency (using rdtsc or an equivalent instruction). The trojan

spawns two reader threads on two different cores, and lets both of these trojan threads

access the cache block B such that the LLC will record at least two 1’s in its core

valid bits vector. When the spy generates a read miss on B, its miss is serviced by

the LLC since a clean copy will be available there.

Similarly, to intentionally place B in E coherence state, B will be flushed from all

coherent caches. The trojan spawns one reader thread, that will then place a read

miss for B. The LLC’s core valid bits vector will record that only one sharer exists for

B. When the spy generates a read miss on B, its miss will routed to the trojan’s local

(private) cache. The spy’s read miss on a cache block in E state creates a different

latency profile compared to a read miss on B that is in S state.

89

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
 1

 Exclusive cache block 0 0 1 1

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
 3

Core
 1

Core
 4

0 0 0 0 Invalidated Cache Line

Processor SocketProcessor Socket

Core
 3

Core
 4

… …

(a) Cache block in E state

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
 1

 Shared cache block 0 0 1 1

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
 1

0 0 0 0 Invalidated Cache Line

Processor SocketProcessor Socket

… …

Core
 3

Core
 4 Core

 3

Core
 4

(b) Cache block in S state

Figure 4.17: Trojan explicitly controlling Cache Coherence States as E or S by running
on one or two cores within the multi-socket, multi-core processor. The dotted lines
show the service path for a data block residing in E and S states respectively.

4.3.4.2 Inter-chip Cache Coherence

Many well-known family of processors provide inter-socket cache coherence through

high speed point-to-point links, e.g., AMD’s HyperTransport bus [39], and the Intel’s

Quick Path Interconnect [3]. Such high speed links provide for efficient data sharing

between the sockets including the ability to maintain coherence between the caches.

The inter-socket coherence works similar to the on-chip cache coherence (see Sec-

tion 4.3.4.1) with slight modifications to how the data miss requests are routed. When

a core requesting a cache block B generates a read miss and the corresponding core’s

LLC does not have B, the read miss request is sent to other remote sockets first

instead of DRAM.

If B is in S state in a remote socket, then a clean copy of B is present in the

90

corresponding remote LLC. The data reply is sent back from this remote LLC to

the requesting core’s LLC that is then propagated up the memory hierarchy to the

requestor core. If B is in E state in a remote socket, then the corresponding remote

LLC routes the data miss request up to the current owner (remote) core, which then

responds with the data reply. The current owner (remote) core then downgrades its

cache copy to S state.

Similar to covert timing channels exploiting on-chip coherence states, the trojan-

spy pair can exploit block B’s presence in E or S states in remote caches and the

resulting access timing differences. Figure 4.17 shows an illustration of this exploit.

To explicitly place a block B in S state on a remote cache, all existing copies of B

must be flushed from all of the caches (through clflush or an equivalent instruction,

or through eviction of all the ways in the set [95]). The trojan spawns two threads

of itself on one of the sockets participating in hardware cache coherence, and places

a block in S state. On a different socket, the spy spawns its thread, and generates

a read miss to B to observe its access latency. To explicitly place a B in E state on

a remote cache, all existing copies of B are flushed. The trojan spawns its thread

on one of the coherent sockets, and places the block in E state similar to how we

described for the on-chip scenario (see Section 4.3.4.1). On a different socket, the spy

spawns its thread, and generates a read miss to B in order to observe its latency. By

exploiting this latency difference, the trojan can modulate the access latency to the

block and communicate the data to the spy.

We note that inter-chip cache coherence offers a higher degree of flexibility for

the trojan and spy by providing more possibilities for varied cache access latency.

This is because, through supporting inter-chip coherence, each socket offers intra-

chip coherence as well. This implies that the trojan can now place the block in one of

S or E states either within the local or a remote processor chip, that in turn provides

more distinct bands of latency values for the trojan-spy to exploit.

91

4.3.5 Timing Channel Construction

In this section, we describe the trojan and spy construction process, and show

how they would exploit cache access latency differences created by combination pairs

of cache location and coherence state associated with the cache block.

We illustrate a template for the trojan and spy that can be eventually integrated

into a real-world adversarial setting designed to exfiltrate sensitive secrets. For exam-

ple, let us consider a scenario where a spy process has the ability to observe encrypted

communication transmitted over a public network between two processes with access

to sensitive information. As per the system security policy, the spy cannot directly

communicate with either of these entities due to it being on lower security stratum,

nor can it decipher the communicated bits without knowing the decryption key. How-

ever, a malicious insider trojan (that has access to secrets) could collude with the spy

to circumvent the system security and communicate secrets covertly as follows:

1. To compromise symmetric cryptography techniques (e.g., AES, DES), a trojan

transmits symmetric encryption/decryption key covertly to the spy through modu-

lating accesses to the coherent caches on shared physical memory blocks. With the

already captured encrypted text and the now-obtained decryption key, the spy could

covertly receive the message without any direct communication with the trojan.

2. To compromise asymmetric encryption standards (e.g, RSA), a trojan and the

spy intentionally sign up for the RSA service under the pretense of encrypting their

own texts. Since trojan-spy share the same coherence fabric, the trojan could covertly

transmit its decryption key through modulating accesses to the coherent cache. The

spy could decrypt the encrypted text and gather sensitive data.

4.3.5.1 Pre-transmission

In order to construct the convert timing channel using cache coherence states,

there are two considerations: 1. shared physical read-only memory between trojan

and spy to enable covert communication (Section 4.3.2), 2. synchronization between

trojan and spy prior to transmission.

92

In our experiments, read-only shared memory is implicitly created through KSM

when the trojan and spy intentionally write identical data to their individual pages

with a deterministic, pseudo-random number generator function that begins with the

same seed. Specifically, the trojan and spy create shared memory as follows: 1. Allo-

cate memory through system calls such as alloc() and populate them with identical

contents. The allocated pages with similar content are merged through invoking the

system call madvice(). 2. The trojan and spy will wait for a certain period (e.g, 30

seconds) for the merging process to be complete. We note that this creation of shared

memory needs to be done exactly once prior to entire trojan-spy communication. In

very rare occasions, where a third independent process has its page merged with the

memory page that is actively utilized by trojan/spy for covert communication, we

have to discard such a page, and create another shared page that will be uniquely

accessed by just the trojan and spy without external interference. Such situations can

be prevented by creating a spare shared page initially, thus avoiding any necessity to

re-invoke KSM.

For synchronization, the trojan issues flush of the shared cache block and then

reloads the same block continuously for a number of times (e.g., about 20 in our

experiments), and the spy periodically issues load instruction to the same cache block.

The trojan and spy time their respective load instruction latency. Synchronization

is considered complete when the trojan observes a series of long latencies because of

having to load data from memory, and when the spy notices a sequence of latencies

eventually converging to a stable band of values. This process indicates that the trojan

and spy uniquely share a block and that the spy is able to decipher the block’s presence

in trojan’s cache through timing the cache block accesses. The actual transmission

can start once the synchronization is successful. Our experiments show that it takes,

on average, 90 milli-seconds for trojan-spy synchronization. We note that this step

needs to be performed prior to covertly transmitting the first bit or after every OS

context switch that involves either the trojan or the spy.

93

Algorithm 4: Trojan Communication Protocol

Input: read-only cache block: B, Txbit[], CSc, CSb;
/* CSc is the coherence state used in bit communication */

/* CSb is the coherence state used for bit boundary */

1 spawn trojan threads;
2 synchronize with spy using shared cache block, B;
/* B could be created implicitly via KSM or through explicitly shared

data or library code */

/* Spy-trojan communication protocol defines three counters: C1, C0

and Cb for communicating 1, 0 and boundary respectively */

3 i = 0;
4 while Txbit[i] != -1 do
5 Repeat Cb times: put B in CSb state;
6 if Txbit[i] == 1 then
7 Repeat C1 times: put B in CSc state;

8 else
9 Repeat C0 times: put B in CSc state;

10 i++;

4.3.5.2 Trojan and Spy

To implement covert timing channels using coherence states, the trojan and spy

pick a (location, coherence state) combination pair to modulate timing and commu-

nicate bits (1 or 0), and another distinct (location, coherence state) combination pair

to delineate bit transmission boundaries (i.e., to say that a bit transmission has ended

and another will start at the end of boundary). These two combination pairs are de-

noted as CSc and CSb respectively, where c stands for communication and b denotes

boundary. Correspondingly, we assume that the bands of cache access latency values

Tc and Tb are already known to the trojan and spy through self-measurements on

cache hardware (Figure 4.15). Within the bit transmission period, the trojan and

spy will also know how many consecutive times a block B will be seen in CSc state

to distinguish between the transmission of bit values ‘1’ and ‘0’, denoted by C1 and

C0 respectively. We note that having distinct communication and boundary values

remove the need for synchronization on each bit transmission.

Algorithm 4 describes our implementation for the trojan. The trojan is multi-

threaded to explicitly control the placement of blocks in S or E state either locally or

94

Algorithm 5: Spy Communication Protocol

Input: read-only cache block: B, Tvalues[]=-1;
/* Two access latency bands, Tc and Tb; Ts is the sampling interval */

/* wait for the trojan to synchronize with trojan using shared cache

block, B */

/* B could be created implicitly via KSM or through explicitly shared

data or library code */

1 while true do
2 flush B from cache;

/* wait for Ts sec until trojan has an opportunity to reload */

3 load B and time the load (T);
4 if T is within Tb then

/* transmission has started */

5 break;

6 //reception period
7 i = 0;
8 while true do
9 flush B from cache;

/* wait for Ts for trojan to reload */

10 load B and time the load (T);
11 record T into Tvalues[i++];
12 if T is outside of Tc and Tb for N consecutive times then

/* N is defined by the trojan and spy */

13 break;

14 //translation period (interpret 1’s and 0’s) read Tvalues[] vector from index 0 to N;
15 i = 0; j = 0; k=0; count[] = 0;
16 while Tvalues[i]! = -1 do
17 Repeat until Tvalues[i] is within Tb band: i++;
18 bitc = 0;
19 Repeat until Tvalues[i] is within Tc band: bitc++; i++;
20 count[j++] = bitc;

/* Thold, Threshold separates C1 and C0 and helps decipher bits */

21 while count[k] != 0 do
22 if count[k++] > Thold then
23 //Infer that the transmitted bit is 1;

24 else
25 //Infer that the transmitted bit is 0;

remotely. For every ‘1’ bit to be transmitted, it puts the cache block in CSc coherence

state for C1 times, and for every ‘0’ bit transmission, the trojan places the cache block

in CSc for C0 times. In-between every bit transmission, the trojan places the cache

block in CSb for Cb times to denote bit boundaries.

95

Processor 1 Processor 2

Flush

Timed read miss
Flush

Timed read miss
Flush

Timed read miss

bit ‘1’

Flush

Timed read miss
Flushbit boundary

Timed read miss

Timed read miss
Flush

Flush

Timed read miss
Flush

Timed read miss

bit ‘0’

bit boundary

Issue loads to B
repeatedly to maintain
E State

Issue loads to B
repeatedly to maintain
S State

Issue loads to B
repeatedly to maintain
S State

timetime

Figure 4.18: Illustrative example of ‘1’ and ‘0’ transmission protocol between trojan(s)
and spy.

The spy process is a single-threaded observer that times the cache block accesses

using repeated patterns of flushes and reloads on them. Algorithm 5 describes our

implementation for the spy. We see that the spy has three phases: 1. Polling for

start of transmission by repeated flush and reload of a shared block B. 2. Reception

of transmitted bits by timing each access to B, and recording latencies into Tval-

ues[] vector. 3. Translation of Tvalues[] by accumulating the consecutive T values

belonging to the same band, and distinguishing them into bits ‘1’ and ‘0’, and ‘bit

boundaries’.

Figure 4.18 gives a diagrammatic illustration of an example communication pro-

96

Cache Location and Coherence State Notation Number of
for bit communication and boundary Trojan threads

(Local Exclusive, Local Shared) LExclc − LSharedb 2 (local)

(Remote Exclusive, Remote Shared) RExclc −RSharedb 2 (remote)

(Remote Exclusive, Local Exclusive) RExclc − LExclb 2 (1 local, 1 remote)

(Remote Exclusive, Local Shared) RExclc − LSharedb 3 (2 local, 1 remote)

(Remote Shared, Local Exclusive) RSharedc − LExclb 3 (1 local, 2 remote)

(Remote Shared, Local Shared) RSharedc − LSharedb 4 (2 local, 2 remote)

Table 4.2: Trojan implementation along with states used for bit communication and
boundary. ‘Remote’ and ‘Local’ are with respect to the spy’s location.

tocol between the trojan and spy. In this example, the trojan is located in a processor

different from that of the spy (Note that the trojan and spy could be in the same

processor as well). The trojan modulates the cache access timing for the spy by plac-

ing a block B in E state when it wants to transmit a bit, and through placing B

in S state to indicate boundaries between bits. The trojan spawns 2 threads on the

remote socket, and issues load requests to B from just one thread to explicitly place

it in E state and issues load requests to B from both threads to explicitly place it in

S state. In particular, between cache block flushes initiated by the spy, the trojan

places B in E state for 3 consecutive times to signal a ‘1’ bit, and places B in E state

for just 1 time to signal a ‘0’ bit. For bit boundaries, the trojan places B in S state

for 2 consecutive times between flushes initiated by the spy.

Table 4.2 shows 6 cases where the trojan and spy use two distinct (location, co-

herence state) combination pairs for bit transmission and bit boundary identification.

The location identifiers ‘local’ and ‘remote’ are with respect to the spy, since it mea-

sures the load latencies and deciphers the bit values/boundaries on its end.

4.3.6 Experimental Results

We conduct experiments on a Intel Xeon X5650 2-socket server with a total of 12

cores, the configuration described in Section 4.3.1. We pin the trojan and spy threads

onto specific cores using the sched setaffinity API. All of the reported load latencies

were obtained by inserting the rdtsc instruction. We implement the 6 attack scenarios

listed in Table 4.2 and study their bandwidths. Additionally, we implement a covert

97

��

��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�
���
�
�
��
�

���������

Figure 4.19: Bit pattern (100 bits) covertly transmitted by the trojan.

timing channel with symbols encoding multi-bits by leveraging combination pairs of

(location, coherence state) and encoding data in larger-than-binary representations.

4.3.6.1 Spy’s Reception

Figure 4.19 shows the secret (bit) pattern that the trojan intends to covertly

communicate with the spy. Figure 4.20 shows the results of load latencies observed

on the spy side. For each combination pair of (location, coherence state), we show

two sets of results: the top portion shows the load latencies observed throughout the

entire reception period, and bottom portion shows a magnified view illustrating the

communication of the first five bits in the top figure for clarity. In this magnified

view, we observe that for each ‘1’ bit transmitted, the spy observes the load latency

in the Tc band, corresponding to CSc, for four or five consecutive times (each dot

in the figure denotes a ‘timed’ load operation); for each ‘0’ bit transmitted, the spy

observes load latency in the Tc band for one or two consecutive times (See discussion

in Section 4.3.5.2). These are shown as red dots in the bottom portion of each figure.

Similarly, the boundary between bit values are deciphered by the spy when it observes

load latency in the Tb band, corresponding to CSb, for four to five times consecutively.

Our experiments show that the spy is able to correctly decipher the transmitted bits

for all 6 attack scenarios with 100% accuracy.

98

��
����
����
����
����
����

�� ���� ���� ���� ���� ���� ���� ���� ����

�
�
��
�
�
�
�
��
�
�
��
�
�

���

����

����

��� ��� ��� ��� ��� ���

���������������

(a) LExclc-LSharedb

��
����
����
����
����
����

�� ���� ���� ���� ���� ���� ���� ���� ����

�
�
��
�
�
�
�
��
�
�
��
�
�

����

����

����

��� ��� ��� ��� ��� ���

���������������

(b) RExclc-RSharedb

��
����
����
����
����
����

�� ���� ���� ���� ���� ���� ���� ���� ����

�
�
��
�
�
�
�
��
�
�
��
�
�

����
����
����
����
����

��� ��� ��� ��� ��� ���

���������������

(c) RExclc-LExclb

��
����
����
����
����
����

�� ���� ���� ���� ���� ���� ���� ���� ����

�
�
��
�
�
�
�
��
�
�
��
�
�

��
���

����
����
����
����
����

��� ��� ��� ��� ��� ���

���������������

(d) RExclc-LSharedb

��
����
����
����
����
����

�� ���� ���� ���� ���� ���� ���� ���� ����

�
�
��
�
�
�
�
��
�
�
��
�
�

��
���

����
����
����
����
����

��� ��� ��� ��� ��� ���

���������������

(e) RSharedc-LExclb

��
����
����
����
����
����

�� ���� ���� ���� ���� ���� ���� ���� ����

�
�
��
�
�
�
�
��
�
�
��
�
�

��
���

����
����
����
����
����

��� ��� ��� ��� ��� ���

���������������

(f) RSharedc-LSharedb

Figure 4.20: Bit Reception by the Spy (corresponding to the bits transmitted in
Figure 4.19) through measuring load latency (in CPU cycles). The top portion in
each subfigure shows the entire reception period, and the bottom portion shows a
magnified view for the reception of first five bits.

4.3.6.2 Transmission Bandwidth

We conduct experiments to study the raw bit accuracy with increasing transmis-

sion bit rates between the trojan and spy. We perform this study by tuning two

knobs: 1. Reduce the number of consecutive caching operations for shared blocks

that communicate bit values and boundaries, i.e., values of C1, C0 and Cb. 2. Reduce

the interval between shared cache block loads by the spy, i.e., the value of Ts. Refer

99

90%

92%

94%

96%

98%

100%

100 200 300 400 500 600 700 800 900 1000

R
aw

 B
it

A
cc

ur
ac

y

Bit Rate (Kbps)

(a) LExclc-LSharedb

90%

92%

94%

96%

98%

100%

100 200 300 400 500 600 700 800 900 1000

R
aw

 B
it

A
cc

ur
ac

y

Bit Rate (Kbps)

(b) RExclc-RSharedb

90%

92%

94%

96%

98%

100%

100 200 300 400 500 600 700 800 900 1000

R
aw

 B
it

A
cc

ur
ac

y

Bit Rate (Kbps)

(c) RExclc-LExclb

90%

92%

94%

96%

98%

100%

100 200 300 400 500 600 700 800 900 1000

 R
aw

 B
it

A
cc

ur
ac

y

Bit Rate (Kbps)

(d) RExclc-LSharedb

90%

92%

94%

96%

98%

100%

100 200 300 400 500 600 700 800 900 1000

R
aw

 B
it

A
cc

ur
ac

y

Bit Rate (Kbps)

(e) RSharedc-LExclb

90%

92%

94%

96%

98%

100%

100 200 300 400 500 600 700 800 900 1000

R
aw

 B
it

A
cc

ur
ac

y

Bit Rate (Kbps)

(f) RSharedc-LSharedb

Figure 4.21: Raw bit accuracy as captured by the spy with increase in transmission
rates.

to Algorithms 4 and 5 for further details on these parameters. Figure 4.21 shows

our results. In this study, we note that there are 3 possibilities for raw bit error

on the reception side: 1. certain bits may be lost, 2. extra bits may be added due

to duplication (very rare and we did not observe any such occurrence in our exper-

100

���

����

����

����

����

�����

��������������� ��������������� ������������� ��������������� ��������������� �����������������

�
�
�

�
�
���
�
�
�
�
��
�
�

����
����
����
����
����

Figure 4.22: Raw bit accuracy captured by the spy when co-located with external
processes (kernel-build [1]).

iments), and 3. certain bits may be flipped (1 mis-interpreted as 0, or vice versa).

Accuracy is defined as the ratio of number of raw bits correctly received by the spy

to total number of raw bits transmitted by the trojan. As we increase the bit rate to

beyond 500 Kbps, we see that most cases experience a rapid drop in raw bit accuracy.

However, there are two exceptions: 1. RExclc − LExclb begins with a high initial

bit rate of over 400 Kbps and declines to below 90% accuracy only beyond 800 Kbps.

2. RExclc − LSharedb shows high immunity and a good raw bit accuracy of 96%

even at 800 Kbps. We note that the effective ‘information bit’ accuracy rates can be

kept potentially high by leveraging higher raw bit transmission rates especially when

the underlying transmission protocol incorporates error correcting codes. Methods to

recover information bits due to omission and bit flips is a well studied topic [54], and

is outside the scope of our work.

4.3.6.3 External Noise and Error Correction

To observe noise effects from co-located memory-intensive applications, we run

a highly memory-intensive workload, kernel-build [1], that compiles a Linux kernel

to benchmark a system or test its stability. This application supports a variety of

options including multi-threaded implementation. Note that this experiment simu-

lates an extreme stress-test case where a very high memory-intensive multi-threaded

workload is co-located with trojan/spy. In this setting, alongside our trojan and spy

processes, we spawn a different number of kernel-build threads (1 to 8). Figure 4.22

shows our experimental results where we observe that, with the increase in number of

memory-intensive threads, the bit accuracy levels on the spy side experience a range

101

of degradation.

Specifically, even with six background processes, the spy processes in all of the 6

attack variants are able to achieve fairly high bit accuracy (above 90% on average).

However, with 8 external kernel-build processes, we see an observable impact on the

trojan-spy communication (11% to 23% increase in raw bit error rate). Meanwhile, we

observed subtle differences between different cases. For example, since kernel-build

processes saturate the internal bus (L2-LLC) bandwidths, load latency values to E

state blocks in remote caches were highly varied while remote LLC accesses (S state

blocks) do not suffer from high latency swings when measured by the spy.

To illustrate mechanisms that can improve bit accuracy under noise, we propose

and implement a simple error encoding and retransmission protocol. For each packet

(64 bytes), 16 parity bits are added to catch any bit flips within 4 Byte chunks. After

each packet transmission, the spy checks for parity bits and if errors are detected, it

will request for packet resend by covertly transmitting NACK bit. This is achieved by

reversing the roles of spy as the transmitter and trojan as the receiver just for trans-

mitting the NACK bit. This process is repeated until successful receipt of the packet.

Figure 4.23 shows the achievable bit rates for trojan-spy transmission without noise

and the effective rate with retransmission scheme under medium noise (with 4 kernel-

build processes) and high noise (with 8 kernel-build processes) levels. Overall, we can

see that the retransmission scheme suffers less than 10% reduction in transmission

rate, and incurs 24% worst-case reduction in transmission rate under high noise levels

in return for guaranteeing 100% bit recovery. Conceivably, the same NACK mecha-

nism can be used to track non-reception by the spy as well. If the spy was context

switched out, the trojan will not receive acknowledgment packet (NACK bit), and

hence will retransmit until a successful acknowledgment (NACK=0) is received.

Our experimental results provide a useful insight that the covert timing channels

introduced due to coherence states can be robust in terms of bit accuracy and high

transmission rates. Also, incorporating even a fairly simple error detection and re-

transmission scheme can significantly improve bit accuracy with a relatively small

impact on peak bit rate.

102

��

����

����

����

����

����

����

����

����

���
�����

���
����

���
�����

���
����

���
�����

���
��

���
�����

���
����

���
�����

���
����

���
�����

���
����

��

�
��
�
�
���
�

�
�
���
�
�
��

�
��
�
�
�
�

�������� ���� ����

Figure 4.23: Effective information bit transmission rate with error correction scheme
under medium (4 co-located kernel-build processes) and high (8 co-located kernel-
build) noise levels.

4.3.6.4 Symbols Encoding Multi-bits

Besides just increasing the transmission speed, the volume of information trans-

mitted by a covert channel can be increased by encoding multiple bits using symbols.

Due to the presence of multiple distinct latency bands corresponding to (location,

coherence state) combination pairs, we implement a covert timing channel that trans-

mits symbols encoding 2-bits in every transmission. We utilize four combination pairs

(RExclc, LExclc, RSharedc, LSharedc) to encode one of four distinct symbol values.

The spy infers the symbol by issuing load instructions (similar to our algorithm in

Section 4.3.5.2) and timing the load operation latency corresponding to combination

pairs.

Our experiments demonstrate a peak transmission rate of around 1.1 Mbps, which

is significantly higher than the 700 Kbps observed when using just one combination

pair of (location, coherence state) for encoding binary data for transmission. Fig-

ure 4.24 shows spy’s reception of symbols through timed load operations along with

a magnified view of the first 9 symbols or 18 bits (10 01 01 00 01 10 01 10 11), in which

all four distinct symbols are observed. We note that more sophisticated symbol en-

coding mechanisms may achieve even higher transmission rates, and our main goal

here is simply to demonstrate alternative ways that an adversary can exploit in order

to achieve higher bandwidths.

103

��
����
����
����
����
����

�� ��� ���� ���� ���� ����

�
�
��
�
�
�
�
��
�
�
��
�
�

���

����

����

����

����

��� ��� ��� ��� ��� ��� ���
���������������

Figure 4.24: Multi-bit symbol transmission using 4 combination pairs to encode 2-
bit symbols. Magnified view of first 18 bits reception is shown, that captures all 4
possible symbol values.

Coherence Protocol and Exclusive Cache Block Shared Cache Block
Cache Inclusiveness

Snoopy, Inclusive Requestor→Owner cache Requestor→LLC
→ Requestor →Requestor

Snoopy, Non-inclusive Requester→Owner cache Requestor→MemCtrl
→Requestor →Requestor

Directory, Inclusive Requestor→Directory Requestor→LLC
→Owner cache→Requestor →Requestor

Directory, Non-inclusive Requestor→Directory Requestor→MemCtrl
→Owner cache→Requestor →Requestor

Table 4.3: Sequence of coherence controllers that interact in order to service the cache
blocks in E and S state under different classes of cache coherence protocols. ‘LLC’
and ‘MemCtrl’ denote Last Level Cache and Memory Controller respectively.

4.3.7 Vulnerability Analysis on Variants of Coherence Protocols

The processors used in our evaluation deploy a variant of directory-based coher-

ence protocol (with LLC’s core-valid-bits) that directs the coherence messages to

specific cores in order to service these cache misses. In this section, we systematically

study the coherence state vulnerabilities in different variants of coherence protocols.

Two factors play a key role in determining the cache access latency, namely the

family of coherence protocols and the inclusiveness property of caches. Different

104

coherence protocol implementations have varying set of transactions when accessing

a cache block in a specific coherence state. When a requestor cache controller issues a

cache miss request for a block, coherence messages are sent over the interconnection

fabric. The owner (e.g., cache controllers, coherence directory or memory controller),

that owns the requested block, will respond with the data reply. Generally, for an

E state cache block, the cache controller that currently holds the private copy of the

date is designated as the owner, and responds with the data reply. Differently, the

cache directory (usually, LLC) or the memory controller typically own cache blocks

in S state. Table 4.3 illustrates the sequence of coherence controllers associated with

servicing data miss requests on E- and S-state cache blocks in the four variants of

cache coherence protocols2.

For snoopy protocols run on inclusive caches, read operations on E-state blocks

will involve snooping into the private owner cache, while reads on S-state blocks

are satisfied by the lower level LLC that has a clean copy of the cache block and

acts as the owner [127]. Although both coherence transactions need two hops, they

involve different paths. As a result, the cache access latencies for S and E states

can be distinguished by adversaries that are monitoring for such information. Simi-

larly, for directory-based protocols run on inclusive caches, a read on E state cache

blocks requires a coherence request first sent to the directory module (that is typically

maintained in the LLC on many modern processors). The directory then forwards

the request to the owner cache, which will subsequently respond with the data. On

the other hand, reads on S state cache blocks are replied by the LLC. These two co-

herence transactions differ in the hops traversed, which results in the distinct latency

bands as demonstrated in Table 4.1.

Additionally, the cache inclusion policy influences read operations to S-state cache

blocks. Specifically, for inclusive caches, the LLC always owns the S-state blocks and

will respond to cache controller directly with the data. In non-inclusive caches, the

memory controller is set to own the cache block and accordingly requests to S-state

2When the LLC holds a copy of the cache block, the coherence transactions on non-inclusive
caches are similar to that of exclusive caches. Therefore, the coherence transactions we listed for
non-inclusive caches in Table 4.3 may be applied to a strictly exclusive cache hierarchy as well.

105

blocks will be serviced by the main memory since the LLC may not potentially have

a copy. Such design decisions are made to avoid multiple data transfers from the

various sharers.

In summary, we note that all four variants of cache coherence protocols can be

vulnerable to exploits due to differences in their timing profile (as discussed in Sec-

tion 4.3.4). Table 4.3 elaborates the coherence transactions for accessing Exclusive

and Shared cache blocks under the four variants of cache coherence protocols.

4.3.8 Securing Cache Coherence Protocols

As we know, E-state aims to reduce the coherence transactions and the corre-

sponding latency for writes that immediately follow the read operation to that mem-

ory block. Most existing cache coherence protocols allow cache blocks to transition

from E to M state without initiating coherence transactions (silent upgrade). Due

to this optimization, the cache directory and memory controller will not own these

E-state blocks and assume that their data copies are stale.

As discussed in Section 4.3.7, across all the four variants of cache coherence imple-

mentations, private caches claim ownership of E-state blocks. These design consider-

ations result in latency differences corresponding to the read-only coherence states,

namely E and S, and potentially enable construction of timing channels using read-

only states.

4.3.8.1 Modifying E→M Transition

To remove the read latency differences between E and S states, a potential solution

is to service the read requests to cache blocks in read-only states (E and S) uniformly

by the directory (or memory controller). This means that all E→M upgrade requests

from the cores should be forwarded onto the directory or memory controller every

time. This makes the LLC to be aware of the precise coherence state for the corre-

sponding data block (i.e., helps distinguish E vs. M). The LLC can then store the

correct coherence state for that block. This enables the LLC to have ownership of

E-state cache blocks, since they are guaranteed to be clean until being notified by

106

Coherent cache block
in E state

CPU store

Coherent cache block
changes to EtM

Send upgrade req.
to LLC

Is LLC
block in E

state

LLC block upgrades
to M

LLC sends ACK
to cache controller

Coherent cache block
changes to M

Coherent cache tries
store again

YesNo

LLC sends
NACK

Figure 4.25: Handling E→M transition in directory-based protocols. Coherent Cache
denotes private caches kept coherent using the coherence protocol hardware.

the owner core. Also, the read requests to both E- and S- state blocks can now be

serviced by the LLC, and the read timing difference between these two states for an

external requestor will be zero.

Modifications needed in Directory-based protocols. In order to make LLCs own E- and

S- state cache blocks, directory-based protocols need an additional transient coherence

state. Figure 4.25 shows our solution approach. Upon receiving a write command

on E-state blocks in the private coherent caches, the corresponding coherence state

transitions to EtM . The write upgrade request is then forwarded to the LLC that

maintains the directory information corresponding to the cache block. If the current

coherence state in the LLC is also E, then the LLC modifies its coherence state

to M, approves the E→M, and forwards the acknowledgment to the requestor core.

Otherwise, the write request is denied, and the requestor core re-initiates the write

operation all over again by sending invalidation requests to other cores.

Modifications needed in Snoopy-based protocols. In snoopy protocols, write upgrade

requests are typically sent over the system bus when transitioning from S to E state.

107

Coherence State Min Latency Average Latency Max Latency
Exclusive & Shared 119 119.4 120

Table 4.4: Load operation latency (Cycles) for S- and E- state blocks within the
socket using the modified directory-based protocol.

0 50 100 150 200 250 300 350 400
CPU Cycles

0%

20%

40%

60%

80%

100%

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

shared state
excl. state

(a) Original protocol

0 50 100 150 200 250 300 350 400
CPU Cycles

0%

20%

40%

60%

80%

100%

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

shared state
excl. state

(b) Modified protocol

Figure 4.26: Distributions of latencies for accessing E- and S- state cache blocks under
original MESI protocol and the modified protocol with changes to E-state cache blocks

Since memory controller monitors all of coherence traffic on the system bus, we note

that the following modifications can be made to avoid read latency differences between

E and S-state blocks. 1. All read requests to E- and S-state blocks can be replied

directly by the memory controller. 2. The upgrade miss requests can be issued for

E-state blocks for E→M transitions, instead of S-state blocks for S→E transitions.

4.3.8.2 Latency Profiles with the Modified Coherence Protocol

To evaluate the effectiveness of our proposed mechanism, we model the modified

E→M coherence transition and measure the latency profiles using Gem5, a cycle-

accurate full system simulator [23]. We configure Gem5 with eight x86 cores, and

use a minimal Linux distribution with kernel version 2.6.32. Each core has a 32 KB

private L1 and all cores share a 2MB L2 cache. The microbenchmark (described in

Section 4.3.1) is used to profile the cache access latencies. Figure 4.26 shows the

CDFs of cache access latencies for the E- and S- state cache blocks under the original

coherence protocol and the modified coherence protocol with changes to E-state cache

blocks. We can see that under the original MESI-based protocol, the latency profiles

for E and S cache blocks accesses are easily distinguishable as the distributions form

108

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

blackscholes bodytrack fluidanimate freqmine streamcluster x264

Pe
rf

or
m

an
ce

 O
ve

rh
ea

d

Figure 4.27: Performance overhead for the modified cache coherence protocol in PAR-
SEC benchmarks

two narrow bands that do not overlap (Figure 4.26a). Figure 4.26b demonstrates

the same latency profiles in the modified protocol that aims to close the latency

gap between the E and S cache block accesses. In fact, the two distribution are

exactly the same as the E and S cache block accesses now involve the same coherent

transactions. Table 4.4 lists the latency statistics including minimum, average and

maximum latencies for accessing E- and S-state blocks. Obviously, an attacker would

not be able to build a covert channel by manipulating the two latency values.

4.3.8.3 Implications on Application Performance

The modifications to the cache coherence protocol require additional messages

sent to the directory or memory to upgrade cache blocks from E to M as writes to

E-state block will be blocked before the upgrade transaction is completed. This may

potentially affect the application performance. To evaluate the performance overhead

involved in the modified coherence protocol, we run several multi-threaded PARSEC

benchmarks [22] that have various levels of cache coherence activities. Each bench-

mark is configured to run with four threads. Figure 4.27 shows the performance

overheads in terms of execution time for each benchmark’s region of interest (ROI).

Notably, we observe less than 0.5% overhead for these applications. The performance

impact is negligible for the following two reasons: First, the number of stores to

E-state cache blocks is only a relatively small portion of all store instructions; Sec-

ond, the additional transaction for the write to E-state block is lightweight as it

109

only involves notifications to the last level cache, unlike writes to S-state blocks that

typically generate getM requests as well as invalidation messages [127]. Specifically,

we see that blackscholes has very few stores to E-state blocks and our mechanism

only incurs less than 0.01% overhead. On the other hand, fluidanimate performs a

considerable number of writes to E-state blocks (that introduce longer latencies) and

as well as many reads to remote E-state blocks (that have reduced delays), and the

overall influence of the modified coherence protocol is less than 0.4%.

Moreover, our secure cache coherence is designed to protect the systems where

untrusted processes are running on the same machine and are sharing copy-on-write

pages (e.g., through KSM). We note that under this context, the latency of E-block

upgrade is essentially hidden by the latency of copying the physical page during

the first write operation to copy-on-write page. To avoid performance slowdown in

regular applications, a simple switch between the performance version (unmodified

protocol) and secure version (our modified protocol) can be designed in hardware such

that we can achieve trade off between performance and security. When the switch is

enabled, E→M transitions will undergo additional steps before actual transition that

are described in our Section 4.3.8.1.

4.4 Related Work

With the rapid advancements in software confinement mechanism, adversaries are

turning to target hardware for information leakage attacks. Lampson et al. were

the first to propose the concept of covert channels [86]. In recent years, there are a

plethora of studies that demonstrate covert/side channels on various shared hardware

resources including caches [61, 95, 122, 161, 176], function units [8, 138], memory

bus [153], processor frequency settings [11] and branch predictors [7, 46].

Among various types of processor components, caches are widely exploited for

information leakage attacks due to the fact that they are one of the most shared hard-

ware resources. Cache timing channels can be broadly categorized into two classes.

Contention-based cache timing channels transfer secrets by creating intentional con-

tention on certain cache sets [95, 115]. The adversaries do not need to have shared

110

memory between the trojan/victim and spy. The second class of attacks depends

on the flushing operations that on shared (typically read-only) memory between the

two communicating processes [60, 176]. By controlling whether the accesses to shared

cache lines result in cache hits or misses through flushing, the trojan is able to transfer

secrets stealthily. We note that most of these attacks rely on modulating the access

timing behavior of a single hardware resource that may potentially be addressed

through carefully monitoring the unit, and if possible, isolating them. In contrast,

our work illustrates an attack that leverages the oft-used NUMA architecture and

hardware cache coherence mechanism operating on multiple caches with various co-

herence states. Our study highlights the need for a more careful understanding of

such hardware vulnerability in order to devise effective defense strategy against such

attacks.

Irazoqui et al. [74] demonstrated a side channel implementation that takes advan-

tage of the cache access timing difference exposed by the high-speed point-to-point

interconnect between processors compared to DRAM accesses. This attack manipu-

lates accesses to the remote cache and DRAM. Different from this attack, our NUMA-

based covert timing channel involves cache activities on both local (private cache) and

remote resources (remote last level cache). This makes it even harder for detection

as any effective defense technique would require analysis of inter-socket activities.

Prior studies [62, 111] on Intel and AMD processors have shown that the cache access

latencies are usually within a stable band of values, which has been observed in our

work. Our work demonstrates that cache coherence states can be leveraged to build

high bit rate information leakage channels.

Additionally, there are some recent works showing information leakage attacks

using specific un-core and off-chip resources. Evtyushkin et al. [45] have shown a

covert channel attack that relies on applications using random number generation.

DRAMA [121] leveraged DRAM row buffer conflicts to implement timing channels.

These attacks also work across CPUs and are powerful in the specific application do-

main. Moreover, with the wide deployment of GPUs due to its enormous performance

in acceleration [68, 69, 96–99, 110, 163], attackers begin to carry out information leak-

111

age attacks on GPUs. For instance, Jiang et al. [79] demonstrated a side channel to

recover AES encryption keys using correlation analysis on GPU platforms. Kadam

et al. [80] later generalized the vulnerabilities and proposed a series of coalescing ran-

domization mechanisms that can greatly improve information security on GPUs. We

note that cache-based timing channel is potentially even more detrimental due to the

fact that caches are commonly shared and mostly used in multi-core systems.

Several existing works have studied the detection and defense techniques for

covert/side channel attacks. Demme et al. [43] introduced a metric to quantify the

difficulty level to exploit a system for side channels. Venkataramani et al. [29, 30, 132]

have proposed techniques that detect contention-based timing channels in functional

units and caches. Hunger et al. [70] also studied contention-based cache timing chan-

nels and proposed anomaly-based detection. Yan et al. [165] built a record and replay

framework that detects covert timing channels by analyzing the difference of caches

miss patterns observed from the record and replay runs. Yao et al. [167] proposed tech-

niques to detect Jump-oriented programming based code re-use attacks, which can

be potentially applied to mitigate the recently-disclosed Spectre attack that leverages

speculation and control flow hijacking [92]. In terms of defense, Wang et al. [139] pro-

posed secure hardware cache designs with partition-locking and random permutation

to thwart cache side channels. SHARP [164] redesigned shared cache line replace-

ment policy to avoid inclusion property that is exploited by the spy to decipher the

victim’s activity. Prefetch-guard [49, 50] leveraged hardware prefetchers to obfuscate

the latency measurements for the trojan process in covert timing channels. To de-

fend against memory-based timing channels, Ferraiuolo et al. [52] designed a secure

memory scheduling algorithm. Several other works have proposed mechanisms that

offer memory safety protection using hardware support for memory access monitoring

and tainting [83, 125, 133]. These mechanisms can be effectively utilized to protect

systems from covert storage channels. Besides timing, the memory access addresses

can also leak sensitive information. To thwart side channels on memory addresses,

effective ORAM schemes are proposed that ensure memory access locations are in-

dependent of program inputs [135, 136]. Additionally, emerging non-volatile memory

112

technology is expected to replace DRAMs due to its advantages of increased capac-

ity, data non-volatility as well as low energy consumption [14, 33–35]. Protecting

these memory modules from adversaries that exploit data persistence for information

leakage is a critical mission [18].

Camouflage [178] reshaped the timing of memory requests and responses to a de-

terministic distribution in order to eliminate memory access pattern snooping by un-

trusted parties. Recent works [9, 19] leveraged computation logic in emerging memory

technology to cryptographically obfuscate memory addresses and memory bus timing

to thwart memory bus attacks. Wassel et al. [140] proposed wave scheduling policy

to prevent timing channels in NoC architectures. We note that none of these prior

defenses are designed to protect system-wide coherence protocols that entail multiple

caches.

CATalyst [94] leveraged the Cache Allocation Technology (CAT) to reserve static

cache partitions where secure pages are pinned upon request from the application.

Recently, Sprabery et al. [128] proposed a scheduling framework that assigns user-

notified sensitive workload on isolated partitions using CAT. Running processes can

request to load their sensitive data in the secure pages to avoid cache timing attacks.

These solutions require either application-level or user-level cooperation to guide iso-

lation, as a result, they do not defend against covert timing channels attacks where

trojan and spy collude to perform information leakage.

CacheBar [179] applied copy-on-access physical page management and controlled

the cache-ability of pages in individual containers to defeat side channel attacks. This

method may introduce unnecessary performance degradation on benign applications

due to increased cache misses. TimeWarp [106] and FuzzyTime [67] mitigated cache

timing channel by adding noise to the system clocks, which will reduce the accuracy

of spy’s latency measurements. However, such mechanisms cannot defeat attacks

that use self-clocking or large cache footprint to dilute noises. Additionally, there

are some works that detect cache timing channel based on analysis of statistics from

performance counters [37, 118]. Chiappetta et al. [37] analyzed LLC miss patterns

to track adversaries. However, this can highly impact detection accuracy since the

113

trojan/spy may intentionally inflate evictions just to evade detection.

4.5 Summary

In this chapter, we first investigate and present a new type of hardware vulnerabil-

ity to covert timing channels exposed by the difference in access timing across multiple

levels of the cache hierarchy in Non-Uniform Memory Access (NUMA)-based archi-

tectures. We implement a realistic covert timing channel based on this vulnerability,

and demonstrate the attack on a dual-socket Intel Xeon server where the trojan mod-

ulates the cache access timing by locating itself on a socket different from the spy. We

then explore statistical techniques to characterize and quantify the possible presence

of covert timing channel activity. We utilize Degree of Sparseness [103] to quantify

and analyze the pattern of time intervals for inter-socket cache data transfers when

observed during covert channel activity and regular application execution (with no

known covert information leakage channels). Our simulation results on Gem5 demon-

strates the proposed metric is highly distinctive between covert channel executions

and benign application executions. Developing such quantification techniques will be

a useful first step in mounting a successful defense against such timing channels.

Additionally, we systematically unravel the vulnerability exposed by cache coher-

ence states to covert timing channels. For the first time, we show how exclusive and

shared coherence states may present a significant vulnerability that can be taken ad-

vantage by adversaries for covert timing channel construction purposes. In contrast to

prior works, we assume a broader adversary model where the trojan and the spy can

force create coherence transactions through either explicitly created read-only shared

physical pages (e.g., shared library code) or implicitly created shared physical memory

pages through an OS feature named Kernel Same Page Merging (KSM). Our study

presents novel insights into the behavioral characteristics of a class of covert timing

channels that exploit coherence states, their peak bandwidths, and transmission rates

in the presence of external noise. Finally, we have proposed a defense mechanism that

proposes a secure cache coherence scheme with modest changes to existing coherence

protocols, thereby, effectively closing the latency gap between cache accesses to read-

114

only states, namely E and S. Our evaluation shows that the modified cache coherence

protocol is able to annul the timing difference associated with the two cache coherence

states with minimal performance overhead for benign applications.

115

Chapter 5 Conclusions

As software continues to grow in size and complexity, computer systems are rapidly

evolving in order to meet the computation and storage need for end users. While

advances in hardware platforms over the past decade bring enormous performance

advantages, system administrators and service providers are facing new challenges,

namely energy efficiency and information security on multi-core server infrastructures.

The tremendous cost corresponding to energy consumption and data breach in server

systems has raised significant concerns globally. Hence, enhancing energy efficiency

and information security on multi-core server hardware is of great significance for the

computer industry.

This dissertation offers in-depth understandings of the aforementioned two quali-

tative aspects of multi-core server systems. We come up with several techniques that

improve the energy efficiency and information security for the next generation multi-

core system design. All techniques share the common goal of achieving low costs in

order to make them practically applicable in realistic settings.

We first proposed three novel techniques that are aimed at improving energy ef-

ficiency for server workloads with QoS constraints by judiciously leveraging server

low-power states. The Duel τ technique makes smart use of system sleep states

with two delay-timer configurations to reduce server farm energy consumption. The

WASP framework jointly leverages processor and system low-power states, and ad-

justs its configuration parameters autonomously to achieve optimized energy and

latency tradeoff for different workloads. TS-Bat is a power-aware and QoS-aware

scheduling framework that integrates spatial and temporal job batching to improve

residency of package-level low-power mode to generate considerable processor energy

saving. We implemented several prototypes on simulations and in physical testbed

with a cluster of servers, and evaluated our proposed techniques with a variety of

workloads. Our results show that our proposed solutions are able to significantly

improve the energy efficiency of multi-core servers with high flexibility and workload

adaptivity.

116

Additionally, we systematically investigated the information leakage vulnerabil-

ities associated in multi-core server architectures. We discovered the new NUMA-

based covert timing channel that exploits the cache access timing difference in non-

uniform memory architectures. We implemented the covert timing channel on real

system platforms. We explored statistical analysis techniques to characterize and

quantify the presence of the covert timing channel activity. We further revealed a

critical vulnerability exposed by an oft-used feature in most modern multi-core and

multi-socket processors, namely cache coherence protocol states. We showed how ad-

versaries could exploit cache coherence states and construct covert timing channels

in order to illegitimately transmit sensitive secrets to untrusted parties by violating

the underlying system security policy. To thwart against such attacks, we studied

defense mechanisms with slight cache coherence modifications that removes the read

latency difference between read-only coherence states, and obstructs the adversaries

from taking advantage of these states to implement their timing channels.

Over the past decade, improvements in multi-core server design have made pos-

sible a host of hardware optimizations that boost software performance. While

performance-optimized designs are clearly beneficial, they can lead to considerably

high energy consumption and potentially contribute to severe information security

risks. Concerns about energy efficiency and information security can significantly in-

fluence the usability of server systems. As architects continue to invest efforts to push

the performance envelope, it is equally important to take into account the energy ef-

ficiency and information security implications of the hardware design, and consider

mechanisms that sustain both aspects with relatively low costs. We consider this

dissertation as a step that offers useful insights for designing future low-cost energy

efficiency and information security enhancing techniques on multi-core server systems.

Lastly, we summarize several critical future research directions. In terms of server

energy efficiency, as computing systems are turning to be heterogeneous with the in-

creasing integration of domain-specific accelerators and performance-varying proces-

sors, understanding and improving energy efficiency for workloads on heterogeneous

platforms is becoming crucial. Also, with the growing complexity of server config-

117

urations, it is necessary to design intelligent solutions (e.g., with the help of recent

advancements in machine learning techniques) that can perform energy-performance

management automatically to eliminate human intervention. For information secu-

rity, with the plentiful supports of off-the-shelf features in commercial processors, it

is worthwhile to explore the potential for leveraging them to building robust infor-

mation security assurance solutions with low costs. Finally, hardware designers and

computer architects should look into secure architecture designs that offer a set of

configurable security guarantees for software applications.

118

Bibliography

[1] Kcbench. https://linux.die.net/man/1/kcbench.

[2] Libgcrypt project. https://www.gnu.org/software/libgcrypt/.

[3] Intel QuickPath Architecture, 2012. http://www.intel.com/pressroom/

archive/reference/whitepaper_QuickPath.pdf.

[4] The Univ. of Waikato NLANR Projects, 2012. http://www.nlanr.net.

[5] Using Intel VTune Amplifier, 2013. https://goo.gl/E9Fp2m.

[6] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu. Energy proportional

datacenter networks. ACM SIGARCH Computer Architecture News, 38(3):338–

347, 2010.

[7] O. Aciiçmez, Ç. K. Koç, and J.-P. Seifert. On the power of simple branch

prediction analysis. In Proceedings of the Symposium on Information, computer

and communications security. ACM, 2007.

[8] O. Aciicmez and J.-P. Seifert. Cheap hardware parallelism implies cheap secu-

rity. In Workshop on Fault Diagnosis and Tolerance in Cryptography. IEEE,

2007.

[9] S. Aga and S. Narayanasamy. Invisimem: Smart memory defenses for memory

bus side channel. In Proceedings of the Annual International Symposium on

Computer Architecture, pages 94–106. ACM, 2017.

[10] V. Aggarwal, M. Xu, T. Lan, and S. Subramaniam. On the optimality of

scheduling dependent mapreduce tasks on heterogeneous machines. arXiv

preprint arXiv:1711.09964, 2017.

[11] M. Alagappan, J. J. Rajendran, M. Doroslovacki, and G. Venkataramani. DFS

covert channels on multi-core platforms. In Proceedings of International Con-

ference on Very Large Scale Integration. IEEE, 2017.

119

[12] S. Alamro, M. Xu, T. Lan, and S. Subramaniam. Cred: Cloud right-sizing to

meet execution deadlines and data locality. In IEEE International Conference

on Cloud Computing, pages 686–693. IEEE, 2016.

[13] S. Alamro, M. Xu, T. Lan, and S. Subramaniam. Shed: Optimal dynamic

cloning to meet application deadlines in cloud. In IEEE International Confer-

ence on Communications, pages 1–6. IEEE, 2018.

[14] M. Alshboul, J. Tuck, and Y. Solihin. Lazy persistency: a high-performing and

write-efficient software persistency technique. In Proceedings of the 45th Annual

International Symposium on Computer Architecture. ACM, 2018.

[15] A. Ambaw, M. Bari, and M. Doroslovački. A case for stacked autoencoder

based order recognition of continuous-phase FSK. In Proceedings of Conference

on Information Sciences and Systems. IEEE, 2017.

[16] A. Ambaw, M. Bari, and M. Doroslovački. A convolutional neural network

approach for order recognition of CPFSK signals. In Proceedings of Asilomar

Conference on Signals, Systems, and Computers. IEEE, 2018.

[17] A. B. Ambaw and M. DoroslovaCki. Feature based order recognition of

continuous-phase fsk using principal component analysis. In Asilomar Con-

ference on Signals, Systems, and Computers, pages 156–160. IEEE, 2017.

[18] A. Awad, P. Manadhata, S. Haber, Y. Solihin, and W. Horne. Silent shredder:

Zero-cost shredding for secure non-volatile main memory controllers. In Pro-

ceedings of International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 263–276. ACM, 2016.

[19] A. Awad, Y. Wang, D. Shands, and Y. Solihin. Obfusmem: A low-overhead

access obfuscation for trusted memories. In Proceedings of the Annual Interna-

tional Symposium on Computer Architecture, pages 107–119. ACM, 2017.

[20] M. Bari, N. Lughmani, A. Ambaw, and M. Doroslovački. Comparison of algo-

rithms for raw handwritten digits recognition. In Proceedings of Annual Asilo-

120

mar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA,

Oct. 28-31 2018.

[21] A. Barresi, K. Razavi, M. Payer, and T. R. Gross. Cain: silently breaking aslr

in the cloud. In USENIX Workshop on Offensive Technologies, 2015.

[22] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite: Char-

acterization and architectural implications. In ACM International Conference

on Parallel Architecture and Compilation Techniques, 2008.

[23] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-

tness, D. R. Hower, T. Krishna, S. Sardashti, et al. The gem5 simulator. ACM

SIGARCH Computer Architecture News, 39(2):1–7, 2011.

[24] P. Bodik, A. Fox, M. J. Franklin, et al. Characterizing, modeling, and generating

workload spikes for stateful services. In Proceedings of ACM Symposium on

Cloud Computing, 2010.

[25] L. Brown. ACPI in linux. In Linux Symposium, 2005. https://www.kernel.

org/doc/ols/2005/ols2005v1-pages-59-76.pdf.

[26] R. N. Calheiros, R. Ranjan, A. Beloglazov, et al. Cloudsim: a toolkit for

modeling and simulation of cloud computing environments and evaluation of

resource provisioning algorithms. Software: Practice and Experience, 41(1):23–

50, 2011.

[27] J. Cao, Q. Li, Y. Ji, Y. He, and D. Guo. Detection of forwarding-based malicious

urls in online social networks. International Journal of Parallel Programming,

44(1):163–180, 2016.

[28] G. Casale, N. Mi, L. Cherkasova, and E. Smirni. How to parameterize models

with bursty workloads. SIGMETRICS Performance Evaluation Review, 36(2),

Aug. 2008.

121

[29] J. Chen and G. Venkataramani. An algorithm for detecting contention-based

covert timing channels on shared hardware. In Proceedings of ACM Workshop

on Hardware and Architectural Support for Security and Privacy. ACM, 2014.

[30] J. Chen and G. Venkataramani. CC-hunter: Uncovering covert timing channels

on shared processor hardware. In IEEE International Symposium on Microar-

chitecture. IEEE, 2014.

[31] J. Chen and G. Venkataramani. A hardware-software cooperative approach for

application energy profiling. IEEE Computer Architecture Letters, 14(1):5–8,

2015.

[32] J. Chen and G. Venkataramani. enDebug: A Hardware–software Framework for

Automated Energy Debugging. Journal of Parallel and Distributed Computing,

96:121–133, 2016.

[33] J. Chen, G. Venkataramani, and H. H. Huang. RePRAM: Re-cycling PRAM

faulty blocks for extended lifetime. In IEEE/IFIP International Conference on

Dependable Systems and Networks, pages 1–12. IEEE, 2012.

[34] J. Chen, G. Venkataramani, and H. H. Huang. Exploring dynamic redundancy

to resuscitate faulty pcm blocks. Journal on Emerging Technologies in Com-

puter Systems, 10(4):31:1–31:23, June 2014.

[35] J. Chen, Z. Winter, G. Venkataramani, and H. H. Huang. rpram: Exploring

redundancy techniques to improve lifetime of pcm-based main memory. In 2011

International Conference on Parallel Architectures and Compilation Techniques,

pages 201–202. IEEE, 2011.

[36] J. Chen, F. Yao, and G. Venkataramani. Watts-inside: A Hardware-software

Cooperative Approach for Multicore Power Debugging. In Proceedings of In-

ternational Conference on Computer Design. IEEE, 2013.

[37] M. Chiappetta, E. Savas, and C. Yilmaz. Real time detection of cache-based

122

side-channel attacks using hardware performance counters. Applied Soft Com-

puting, 49:1162–1174, 2016.

[38] P. Conway and B. Hughes. The AMD Opteron northbridge architecture. IEEE

Micro, 27(2):10–21, 2007.

[39] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes. Cache

hierarchy and memory subsystem of the AMD Opteron processor. IEEE micro,

30(2):16–29, 2010.

[40] C. Delimitrou and C. Kozyrakis. Paragon: QoS-aware scheduling for heteroge-

neous datacenters. ACM SIGARCH Computer Architecture News, 41(1):77–88,

2013.

[41] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and QoS-aware

cluster management. ACM SIGPLAN Notices, 49(4):127–144, 2014.

[42] Dell, HP, Intel and others. The Intelligent Platform Management Inter-

face (IPMI). https://www.intel.com/content/www/us/en/servers/ipmi/

ipmi-home.html.

[43] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan. Side-channel vul-

nerability factor: a metric for measuring information leakage. ACM SIGARCH

Computer Architecture News, 40(3):106–117, 2012.

[44] Department of Defense Standard. Trusted Computer System Evaluation Crite-

ria. US Department of Defense, 1983.

[45] D. Evtyushkin and D. Ponomarev. Covert channels through random number

generator: Mechanisms, capacity estimation and mitigations. In Proceedings of

Conference on Computer and Communications Security, pages 843–857. ACM,

2016.

[46] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh. Understanding and mit-

igating covert channels through branch predictors. ACM Transactions on Ar-

chitecture and Code Optimization, 13(1):10, 2016.

123

[47] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a warehouse-

sized computer. In ACM SIGARCH Computer Architecture News, volume 35,

pages 13–23, 2007.

[48] H. Fang, S. S. Dayapule, F. Yao, M. Doroslovački, and G. Venkataramani. A

noise-resilient detection method against advanced cache timing channel attack.

In Proceedings of Asilomar Conference on Signals, Systems, and Computers,

2018.

[49] H. Fang, S. S. Dayapule, F. Yao, M. Doroslovački, and G. Venkataramani.

Prefetch-guard: Leveraging hardware prefetchers to defend against cache tim-

ing channels (short paper). In Proceedings of IEEE Symposium on Hardware

Oriented Security and Trust. IEEE, 2018.

[50] H. Fang, S. S. Dayapule, F. Yao, M. Doroslovački, and G. Venkataramani.

Prodact: Prefetch-obfuscator to defend against cache timing channels. Inter-

national Journal of Parallel Programming, 2018.

[51] A. Farrell and H. Hoffmann. MEANTIME: Achieving both minimal energy

and timeliness with approximate computing. In USENIX Annual Technical

Conference (USENIX ATC 16), pages 421–435. USENIX Association, 2016.

[52] A. Ferraiuolo, Y. Wang, D. Zhang, A. C. Myers, and G. E. Suh. Lattice prior-

ity scheduling: Low-overhead timing-channel protection for a shared memory

controller. In IEEE International Symposium on High Performance Computer

Architecture, pages 382–393, 2016.

[53] M. Floyd, M. Allen-Ware, K. Rajamani, et al. Introducing the adaptive energy

management features of the Power7 chip. In IEEE Micro, 2011.

[54] R. Gallager. Low-density parity-check codes. IRE Transactions on Information

Theory, 8(1):21–28, 1962.

124

[55] A. Gandhi and M. Harchol-Balter. How data center size impacts the effective-

ness of dynamic power management. In Proceedings of IEEE Conference on

Communication, Control, and Computing. IEEE, 2011.

[56] A. Gandhi, M. Harchol-Balter, M. Kozuch, et al. Are sleep states effective in

data centers? In Green Computing Conference. IEEE, 2012.

[57] A. Gandhi, M. Harchol-Balter, R. Raghunathan, et al. Autoscale: Dynamic,

robust capacity management for multi-tier data centers. ACM Transactions on

Computer Systems, 30(4):14, 2012.

[58] X. Gao, Z. Gu, M. Kayaalp, D. Pendarakis, and H. Wang. ContainerLeaks:

Emerging Security Threats of Information Leakages in Container Clouds. In

Annual IEEE/IFIP International Conference on Dependable Systems and Net-

works, 2017.

[59] X. Gao, Z. Xu, H. Wang, L. Li, and X. Wang. Reduced Cooling Redundancy:

A New Security Vulnerability in a Hot Data Center. In Network and Distributed

System Security Symposium. IEEE, 2018.

[60] D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+ flush: A fast and

stealthy cache attack. arXiv preprint arXiv:1511.04594, 2015.

[61] D. Gruss, R. Spreitzer, and S. Mangard. Cache template attacks: Automating

attacks on inclusive last-level caches. In USENIX Security, 2015.

[62] D. Hackenberg, D. Molka, and W. E. Nagel. Comparing cache architectures

and coherency protocols on x86-64 multicore SMP systems. In Proceedings of

International Symposium on Microarchitecture, pages 413–422. ACM, 2009.

[63] E. Harrell and L. Langton. Victims of identity theft, 2014. US Department of

Justice, Office of Justice Programs, Bureau of Justice Statistics, 2015.

[64] S. Herbert and D. Marculescu. Analysis of dynamic voltage/frequency scaling in

chip-multiprocessors. In Proceedings of ACM/IEEE International Symposium

on Low Power Electronics and Design. IEEE, 2007.

125

[65] Hewlett-Packard, Intel, Microsoft, Phoenix and Toshiba. Advanced Configura-

tion and Power Interface Specification. http://www.acpi.info/.

[66] C. H. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner, T. Wenisch, J. Mars,

L. Tang, and R. G. Dreslinski. Adrenaline: Pinpointing and reining in tail

queries with quick voltage boosting. In IEEE International Symposium on

High Performance Computer Architecture, pages 271–282. IEEE, 2015.

[67] W.-M. Hu. Reducing timing channels with fuzzy time. Journal of computer

security, 1(3-4):233–254, 1992.

[68] Y. Hu, P. Kumar, G. Swope, and H. H. Huang. Trix: Triangle counting at

extreme scale. In IEEE High Performance Extreme Computing Conference,

pages 1–7. IEEE, 2017.

[69] H. H. Huang and H. Liu. Big data machine learning and graph analytics:

Current state and future challenges. In IEEE International Conference on Big

Data, pages 16–17. IEEE, 2014.

[70] C. Hunger, M. Kazdagli, A. Rawat, A. Dimakis, S. Vishwanath, and M. Ti-

wari. Understanding contention-based channels and using them for defense. In

International Symposium on High Performance Computer Architecture. IEEE,

2015.

[71] Intel. Intel Xeon processor E5-1600/E5-2600/E5-4600 product families, 2012.

http://tinyurl.com/d7ma5nf.

[72] Intel. Intel R 64 and IA-32 Architectures Software Developer Manual. Volume

3b: System Programming Guide (Part 2), pages 14–19, 2013.

[73] Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual, 2016.

[74] G. Irazoqui, T. Eisenbarth, and B. Sunar. Cross processor cache attacks. In

Proceedings of the 11th Asia Conference on Computer and Communications

Security, pages 353–364. ACM, 2016.

126

[75] C. Isci, S. McIntosh, J. Kephart, R. Das, J. Hanson, S. Piper, R. Wolford,

T. Brey, R. Kantner, A. Ng, et al. Agile, efficient virtualization power man-

agement with low-latency server power states. In ACM SIGARCH Computer

Architecture News, volume 41. ACM, 2013.

[76] Y. Ji, Y. He, X. Jiang, J. Cao, and Q. Li. Combating the evasion mechanisms

of social bots. computers & security, 58:230–249, 2016.

[77] Y. Ji, Y. He, X. Jiang, and Q. Li. Towards social botnet behavior detecting

in the end host. In IEEE International Conference on Parallel and Distributed

Systems, pages 320–327. IEEE, 2014.

[78] Y. Ji, Q. Li, Y. He, and D. Guo. Botcatch: leveraging signature and behavior

for bot detection. Security and Communication Networks, 8(6):952–969, 2015.

[79] Z. H. Jiang, Y. Fei, and D. Kaeli. A complete key recovery timing attack

on a GPU. In Proceeding of International Symposium on High Performance

Computer Architecture, pages 394–405. IEEE, 2016.

[80] G. Kadam, D. Zhang, and A. Jog. Rcoal: mitigating gpu timing attack via

subwarp-based randomized coalescing techniques. In IEEE International Sym-

posium on High Performance Computer Architecture, pages 156–167. IEEE,

2018.

[81] S. Kanev, K. Hazelwood, G.-Y. Wei, and D. Brooks. Tradeoffs between power

management and tail latency in warehouse-scale applications. In Proceedings of

IEEE International Symposium on Workload Characterization, 2014.

[82] H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez. Rubik: Fast Ana-

lytical Power Management for Latency-critical Systems. In Proceedings of Intl.

Symp. on Microarchitecture. ACM, 2015.

[83] M. Kharbutli, X. Jiang, Y. Solihin, G. Venkataramani, and M. Prvulovic. Com-

prehensively and efficiently protecting the heap. In Proceedings of the 12th In-

127

ternational Conference on Architectural Support for Programming Languages

and Operating Systems, pages 207–218. ACM, 2006.

[84] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,

T. Prescher, M. Schwarz, and Y. Yarom. Spectre attacks: Exploiting speculative

execution. ArXiv e-prints, 2018.

[85] J. Koomey. Growth in data center electricity use 2005 to 2010. A report by

Analytical Press, completed at the request of The New York Times, 2011.

[86] B. W. Lampson. A note on the confinement problem. Communications of the

ACM, 16(10):613–615, 1973.

[87] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble. Tales of the tail:

Hardware, os, and application-level sources of tail latency. In Proceedings of the

ACM Symposium on Cloud Computing, pages 9:1–9:14. ACM, 2014.

[88] Y. Li, Y. Chen, T. Lan, and G. Venkataramani. Mobiqor: Pushing the envelope

of mobile edge computing via quality-of-result optimization. In IEEE Interna-

tional Conference on Distributed Computing Systems, pages 1261–1270. IEEE,

2017.

[89] Y. Li, F. Yao, T. Lan, and G. Venkataramani. Semantics-aware rule recom-

mendation and enforcement for event paths (short paper). In International

Conference on Security and Privacy in Communication Systems, pages 572–

576. Springer, Cham, 2015.

[90] Y. Li, F. Yao, T. Lan, and G. Venkataramani. Sarre: semantics-aware rule rec-

ommendation and enforcement for event paths on android. IEEE Transactions

on Information Forensics and Security, 11(12):2748–2762, 2016.

[91] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch. Thin

servers with smart pipes: designing soc accelerators for memcached. In ACM

SIGARCH Computer Architecture News, volume 41, pages 36–47. ACM, 2013.

128

[92] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher,

D. Genkin, Y. Yarom, and M. Hamburg. Meltdown. ArXiv e-prints, 2018.

[93] C. Liu, M. Xu, and S. Subramaniam. A reconfigurable high-performance optical

data center architecture. In IEEE Global Communications Conference, pages

1–6. IEEE, 2016.

[94] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B. Lee.

Catalyst: Defeating last-level cache side channel attacks in cloud computing.

In Proceedings of International Symposium on High Performance Computer

Architecture, pages 406–418. IEEE, 2016.

[95] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level cache side-channel

attacks are practical. In Proceedings of Symposium on Security and Privacy,

pages 605–622. IEEE, 2015.

[96] H. Liu and H. H. Huang. Graphene: Fine-grained io management for graph

computing. In USENIX Conference on File and Storage Technologies, pages

285–300. USENIX Association.

[97] H. Liu and H. H. Huang. Enterprise: Breadth-first graph traversal on gpu

servers. In International Conference for High Performance Computing, Net-

working, Storage and Analysis, 2015.

[98] H. Liu, H. H. Huang, and Y. Hu. ibfs: Concurrent breadth-first search on gpus.

In Proceedings of the 2016 International Conference on Management of Data,

2016.

[99] H. Liu, J.-H. Seo, R. Mittal, and H. H. Huang. GPU-accelerated scalable

solver for banded linear systems. In IEEE International Conference on Cluster

Computing, pages 1–8. IEEE, 2013.

[100] Y. Liu, S. C. Draper, and N. S. Kim. Sleepscale: runtime joint speed scaling

and sleep states management for power efficient data centers. In Proceeding of

IEEE International Symposium on Computer Architecuture, 2014.

129

[101] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis. Towards

energy proportionality for large-scale latency-critical workloads. In Proceeding

of IEEE International Symposium on Computer Architecuture, 2014.

[102] D. Lo and C. Kozyrakis. Dynamic management of turbomode in modern multi-

core chips. In IEEE International Symposium on High Performance Computer

Architecture. IEEE, 2014.

[103] P. Loganathan, A. W. Khong, and P. A. Naylor. A class of sparseness-controlled

algorithms for echo cancellation. IEEE Transactions on Audio, Speech, and

Language Processing, 17(8):1591–1601, 2009.

[104] B. Lu, S. S. Dayapule, F. Yao, J. Wu, G. Venkataramani, and S. Subramaniam.

Popcorns: Power optimization using a cooperative network-server approach for

data centers (invited paper). In IEEE International Conference on Computer

Communication and Networks. IEEE, 2018.

[105] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-up: Increas-

ing utilization in modern warehouse scale computers via sensible co-locations.

In Proceedings of IEEE/ACM International Symposium on Microarchitecture,

2011.

[106] R. Martin, J. Demme, and S. Sethumadhavan. Timewarp: rethinking timekeep-

ing and performance monitoring mechanisms to mitigate side-channel attacks.

ACM SIGARCH Computer Architecture News, 40(3):118–129, 2012.

[107] D. Meisner, B. T. Gold, and T. F. Wenisch. Powernap: eliminating server idle

power. In ACM Sigplan Notices, volume 44. ACM, 2009.

[108] D. Meisner and T. F. Wenisch. Dreamweaver: architectural support for deep

sleep. ACM SIGPLAN Notices, 47(4):313–324, 2012.

[109] D. Meisner, J. Wu, and T. F. Wenisch. Bighouse: A simulation infrastructure

for data center systems. In Proceeding of IEEE International Symposium on

Performance Analysis of Systems and Software, 2012.

130

[110] R. Mittal, J. H. Seo, V. Vedula, Y. J. Choi, H. Liu, H. H. Huang, S. Jain,

L. Younes, T. Abraham, and R. T. George. Computational modeling of cardiac

hemodynamics: current status and future outlook. Journal of Computational

Physics, 305:1065–1082, 2016.

[111] D. Molka, D. Hackenberg, R. Schöne, and W. E. Nagel. Cache coherence pro-

tocol and memory performance of the intel haswell-ep architecture. In Interna-

tional Conference on Parallel Processing, pages 739–748. IEEE, 2015.

[112] D. Mosberger and T. Jin. httperf: a tool for measuring web server performance.

ACM SIGMETRICS Performance Evaluation Review, 1998.

[113] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and D. Wetherall. Reduc-

ing network energy consumption via sleeping and rate-adaptation. In USENIX

Symposium on Networked Systems Design and Implementation, volume 8, pages

323–336, 2008.

[114] J. Oh, C. J. Hughes, G. Venkataramani, and M. Prvulovic. LIME: a framework

for debugging load imbalance in multi-threaded execution. In International

Conference on Software Engineering, pages 201–210. IEEE, 2011.

[115] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures:

the case of AES. In Proceedings of the Cryptographers’ Track at the RSA Con-

ference, pages 1–20. Springer, 2006.

[116] V. Pallipadi, S. Li, and A. Belay. cpuidle: Do nothing, efficiently. In Proceedings

of the Linux Symposium, volume 2, pages 119–125. Citeseer, 2007.

[117] T. Pan, T. Zhang, J. Shi, Y. Li, L. Jin, F. Li, J. Yang, B. Zhang, X. Yang,

M. Zhang, H. Dai, and B. Liu. IEEE/ACM Transactions on Networking,

24(3):1448–1461, 2016.

[118] M. Payer. Hexpads: a platform to detect stealth attacks. In Proceedings of

International Symposium on Engineering Secure Software and Systems, pages

138–154. Springer, 2016.

131

[119] S. Pelley, D. Meisner, T. F. Wenisch, and J. W. VanGilder. Understanding and

abstracting total data center power. In Workshop on Energy-Efficient Design,

2009.

[120] D. Perez-Palacin, J. Merseguer, and R. Mirandola. Analysis of bursty workload-

aware self-adaptive systems. In Proceedings of ACM/SPEC International Con-

ference on Performance Engineering, 2012.

[121] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. Drama: Exploit-

ing dram addressing for cross-cpu attacks. In Proceedings of USENIX Security

Symposium, 2016.

[122] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off of my

cloud: exploring information leakage in third-party compute clouds. In Proceed-

ings of International Conference on Computer and Communications Security,

pages 199–212. ACM, 2009.

[123] F. Ryckbosch, S. Polfliet, and L. Eeckhout. Trends in server energy proportion-

ality. Computer, 44(9):69–72, 2011.

[124] K. Sayood. Introduction to data compression. Newnes, 2012.

[125] J. Shen, G. Venkataramani, and M. Prvulovic. Tradeoffs in fine-grained heap

memory protection. In Proceedings of ACM Workshop on Architectural and

System Support for Improving Software Dependability. ACM, 2006.

[126] D. C. Snowdon, S. Ruocco, and G. Heiser. Power management and dynamic

voltage scaling: Myths and facts. 2005.

[127] D. J. Sorin, M. D. Hill, and D. A. Wood. A primer on memory consistency

and cache coherence. Synthesis Lectures on Computer Architecture, 6(3):1–212,

2011.

[128] R. Sprabery, K. Evchenko, A. Raj, R. B. Bobba, S. Mohan, and R. H. Campbell.

A novel scheduling framework leveraging hardware cache partitioning for cache-

side-channel elimination in clouds.

132

[129] N. Tolia, Z. Wang, M. Marwah, C. Bash, P. Ranganathan, and X. Zhu. Deliver-

ing energy proportionality with non energy-proportional systems: Optimizing

the ensemble. In Proceedings of the Conference on Power Aware Computing

and Systems, pages 2–2. USENIX Association, 2008.

[130] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia workload analysis for

decentralized hosting. Computer Networks, 53(11):1830–1845, 2009.

[131] E.-J. van Baaren. Wikibench: A Distributed, Wikipedia based Web Application

Benchmark. Master’s thesis, VU University Amsterdam, 2009.

[132] G. Venkataramani, J. Chen, and M. Doroslovacki. Detecting hardware covert

timing channels. IEEE Micro, 36(5):17–27, Sept 2016.

[133] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic. Memtracker:

An accelerator for memory debugging and monitoring. ACM Transactions on

Architecture and Code Optimization, 2009.

[134] C. A. Waldspurger. Memory resource management in VMware ESX server.

ACM SIGOPS Operating Systems Review, 36(SI):181–194, 2002.

[135] R. Wang, Y. Zhang, and J. Yang. Cooperative path-oram for effective memory

bandwidth sharing in server settings. In IEEE International Symposium on

High Performance Computer Architecture, pages 325–336. IEEE, 2017.

[136] R. Wang, Y. Zhang, and J. Yang. D-ORAM: Path-oram delegation for low ex-

ecution interference on cloud servers with untrusted memory. In EEE Interna-

tional Symposium on High Performance Computer Architecture, pages 416–427.

IEEE, 2018.

[137] Y. Wang, Y. Li, and T. Lan. Capitalizing on the promise of ad prefetching

in real-world mobile systems. In IEEE International Conference on Mobile Ad

Hoc and Sensor Systems, pages 162–170. IEEE, 2017.

133

[138] Z. Wang and R. B. Lee. Covert and side channels due to processor architecture.

In Proceedings of Annual Computer Security Applications Conference, pages

473–482. IEEE, 2006.

[139] Z. Wang and R. B. Lee. New cache designs for thwarting software cache-based

side channel attacks. In ACM SIGARCH Computer Architecture News, vol-

ume 35, pages 494–505. ACM, 2007.

[140] H. M. G. Wassel, Y. Gao, J. K. Oberg, T. Huffmire, R. Kastner, F. T. Chong,

and T. Sherwood. Surfnoc: A low latency and provably non-interfering ap-

proach to secure networks-on-chip. In Proceedings of International Symposium

on Computer Architecture, pages 583–594. ACM, 2013.

[141] T. Watanabe. ACPI implementation on freebsd. In USENIX Annual Technical

Conference, FREENIX Track, 2002.

[142] D. Wong and M. Annavaram. Knightshift: Scaling the energy proportionality

wall through server-level heterogeneity. In Proceedings of IEEE/ACM Interna-

tional Symposium on Microarchitecture, 2012.

[143] D. Wong and M. Annavaram. Implications of high energy proportional servers

on cluster-wide energy proportionality. In Proceedings of IEEE International

Symposium on High Performance Computer Architecture, 2014.

[144] J. Wu, S. Subramaniam, and H. Hasegawa. Comparison of oxc node architec-

tures for wdm and flex-grid optical networks. In International Conference on

Computer Communication and Networks, pages 1–8, 2015.

[145] J. Wu, S. Subramaniam, and H. Hasegawa. Optimal nonuniform wavebanding

in wdm mesh networks. In International Conference on Optical Network Design

and Modeling, pages 86–91. IEEE, 2015.

[146] J. Wu, S. Subramaniam, and H. Hasegawa. Optimal nonuniform wavebanding

in wdm mesh networks. Photonic Network Communications, 31(3):376–385,

2016.

134

[147] J. Wu, S. Subramaniam, and H. Hasegawa. Dynamic routing and spectrum

assignment for multi-fiber elastic optical networks. In Photonic Networks and

Devices, pages NeTu4F–1. Optical Society of America, 2018.

[148] J. Wu, M. Xu, S. Subramaniam, and H. Hasegawa. Evaluation and Perfor-

mance Modeling of Two OXC Architectures (Invited Paper). In IEEE Sarnoff

Symposium, 2016.

[149] J. Wu, M. Xu, S. Subramaniam, and H. Hasegawa. Joint banding-node place-

ment and resource allocation for multi-granular elastic optical networks. In

IEEE Global Communications Conference, pages 1–6. IEEE, 2017.

[150] J. Wu, M. Xu, S. Subramaniam, and H. Hasegawa. Routing, fiber, band, and

spectrum assignment (RFBSA) for multi-granular elastic optical networks. In

IEEE International Conference on Communications, pages 1–6, 2017.

[151] J. Wu, M. Xu, S. Subramaniam, and H. Hasegawa. Joint banding-node place-

ment and resource allocation for multigranular elastic optical networks. Journal

of Optical Communications and Networking, 10(8):C27–C38, 2018.

[152] J. Wu, J. Zhao, and S. Subramaniam. Co-scheduling computational and net-

working resources in elastic optical networks. In IEEE International Conference

on Communications, pages 3307–3312. IEEE, 2014.

[153] Z. Wu, Z. Xu, and H. Wang. Whispers in the hyper-space: high-speed covert

channel attacks in the cloud. In USENIX Security 12, 2012.

[154] N. Xia, C. Tian, Y. Luo, H. Liu, and X. Wang. Uksm: swift memory dedupli-

cation via hierarchical and adaptive memory region distilling. In Proceedings of

USENIX Conference on File and Storage Technologies, pages 325–339. USENIX

Association, 2018.

[155] M. Xu, S. Alamro, T. Lan, and S. Subramaniam. Cred: Cloud right-sizing

with execution deadlines and data locality. IEEE Transactions on Parallel and

Distributed Systems, 28(12):3389–3400, 2017.

135

[156] M. Xu, S. Alamro, T. Lan, and S. Subramaniam. Laser: A deep learning

approach for speculative execution and replication of deadline-critical jobs in

cloud. In International Conference on Computer Communication and Networks,

pages 1–8. IEEE, 2017.

[157] M. Xu, S. Alamro, T. Lan, and S. Subramaniam. Optimizing speculative execu-

tion of deadline-sensitive jobs in cloud. In ACM SIGMETRICS/International

Conference on Measurement and Modeling of Computer Systems, pages 17–18.

ACM, 2017.

[158] M. Xu, S. Alamro, T. Lan, and S. Subramaniam. Chronos: A unifying op-

timization framework for speculative execution of deadline-critical mapreduce

jobs. In International Conference on Distributed Computing Systems. IEEE,

2018.

[159] M. Xu, C. Liu, and S. Subramaniam. Podca: A passive optical data center ar-

chitecture. In International Conference on Communications, pages 1–6. IEEE,

2016.

[160] M. Xu, C. Liu, and S. Subramaniam. Podca: A passive optical data cen-

ter network architecture. Journal of Optical Communications and Networking,

10(4):409–420, 2018.

[161] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R. Schlichting.

An exploration of l2 cache covert channels in virtualized environments. In

Proceedings of the 3rd Workshop on Cloud Computing Security Workshop, pages

29–40. ACM, 2011.

[162] H. Xue, Y. Chen, F. Yao, Y. Li, T. Lan, and G. Venkataramani. Simber: Elim-

inating redundant memory bound checks via statistical inference. In IFIP In-

ternational Conference on ICT Systems Security and Privacy Protection, pages

413–426. Springer, Cham, 2017.

136

[163] D. Yan and H. Liu. Parallel graph processing. Springer Encyclopedia of Big

Data Technologies, pages 1–8, 2018.

[164] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas. Secure hierarchy-aware cache

replacement policy (sharp): Defending against cache-based side channel atacks.

In Proceedings of International Symposium on Computer Architecture, pages

347–360. ACM, 2017.

[165] M. Yan, Y. Shalabi, and J. Torrellas. Replayconfusion: Detecting cache-based

covert channel attacks using record and replay. In IEEE International Sympo-

sium on Microarchitecture, 2016.

[166] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-flux: Precise online QoS

management for increased utilization in warehouse scale computers. ACM

SIGARCH Computer Architecture News, 41(3):607–618, 2013.

[167] F. Yao, J. Chen, and G. Venkataramani. Jop-alarm: Detecting jump-oriented

programming-based anomalies in applications. In Proceedings of International

Conference on Computer Design, pages 467–470. IEEE, 2013.

[168] F. Yao, M. Doroslovački, and G. Venkataramani. Covert timing channels ex-

ploiting cache coherence hardware: Characterization and defense. International

Journal of Parallel Programming, 2018.

[169] F. Yao, Y. Li, Y. Chen, H. Xue, T. Lan, and G. Venkataramani. Statsym: vul-

nerable path discovery through statistics-guided symbolic execution. In Annual

IEEE/IFIP International Conference on Dependable Systems and Networks.

IEEE, 2017.

[170] F. Yao, G. Venkataramani, and M. Doroslovački. Covert timing channels ex-

ploiting non-uniform memory access based architectures. In Proceedings of ACM

Great Lakes Symposium on VLSI, pages 155–160. ACM, 2017.

137

[171] F. Yao, G. Venkataramani, and M. Doroslovacki. Covert timing channels ex-

ploiting non-uniform memory access based architectures. In Proceedings of

Great Lakes Symposium on VLSI, pages 155–160. ACM, 2017.

[172] F. Yao, J. Wu, S. Subramaniam, and G. Venkataramani. WASP: Workload

adaptive energy-latency optimization in server farms using server low-power

states. In IEEE International Conference on Cloud Computing, 2017.

[173] F. Yao, J. Wu, G. Venkataramani, and S. Subramaniam. A comparative analysis

of data center network architectures. In IEEE International Conference on

Communications, 2014.

[174] F. Yao, J. Wu, G. Venkataramani, and S. Subramaniam. A dual delay timer

strategy for optimizing server farm energy. In IEEE International Conference

on Cloud Computing Technology and Science, 2015.

[175] F. Yao, J. Wu, G. Venkataramani, and S. Subramaniam. Ts-bat: Leveraging

temporal-spatial batching for data center energy optimization. In IEEE Global

Communications Conference, pages 1–6. IEEE, 2017.

[176] Y. Yarom and K. Falkner. Flush+ reload: a high resolution, low noise, L3 cache

side-channel attack. In USENIX Security, 2014.

[177] H. Zheng and A. Louri. Ez-pass: An energy performance-efficient power-gating

router architecture for scalable nocs. IEEE Computer Architecture Letters,

17(1):88–91, 2018.

[178] Y. Zhou, S. Wagh, P. Mittal, and D. Wentzlaff. Camouflage: Memory traffic

shaping to mitigate timing attacks. In Proceedings of International Symposium

on High Performance Computer Architecture, pages 337–348. IEEE, 2017.

[179] Z. Zhou, M. K. Reiter, and Y. Zhang. A software approach to defeating side

channels in last-level caches. In Proceedings of Conference on Computer and

Communications Security, pages 871–882. ACM, 2016.

138

[180] H. Zhu and M. Erez. Dirigent: Enforcing qos for latency-critical tasks on shared

multicore systems. ACM SIGARCH Computer Architecture News, 44(2):33–47,

2016.

139

