
StatSym: Vulnerable Path Discovery through Statistics-Guided
Symbolic Execution

Fan Yao, Yongbo Li, Yurong Chen, Hongfa Xue, Tian Lan and Guru Venkataramani
Department of Electrical and Computer Engineering

The George Washington University
Email: {albertyao, lib, gabrielchen, hongfaxue, tlan, guruv}@gwu.edu

Abstract—Identifying vulnerabilities in software systems is cru-
cial to minimizing the damages that result from malicious exploits
and software failures. This often requires proper identification of
vulnerable execution paths that contain program vulnerabilities
or bugs. However, with rapid rise in software complexity, it has
become notoriously difficult to identify such vulnerable paths
through exhaustively searching the entire program execution
space. In this paper, we propose StatSym, a novel, automated
Statistics-Guided Symbolic Execution framework that integrates
the swiftness of statistical inference and the rigorousness of
symbolic execution techniques to achieve precision, agility and
scalability in vulnerable program path discovery. Our solution
first leverages statistical analysis of program runtime information
to construct predicates that are indicative of potential vulnera-
bility in programs. These statistically identified paths, along with
the associated predicates, effectively drive a symbolic execution
engine to verify the presence of vulnerable paths and reduce
their time to solution. We evaluate StatSym on four real-world
applications including polymorph, CTree, Grep and thttpd that
come from diverse domains. Results show that StatSym is able to
assist the symbolic executor, KLEE, in identifying the vulnerable
paths for all of the four cases, whereas pure symbolic execution
fails in three out of four applications due to memory space
overrun.

I. INTRODUCTION

Securing software systems has become very challenging
due to the growing software complexity. Prior studies have
shown that there are about 5 to 20 bugs per 1,000 lines of
software code [1]. Exploitation of such bugs and program
vulnerabilities has been a major threat to computer security
and user data safety. Solution approaches, that effectively
address such threats, need to be aware of program paths
containing vulnerabilities.

Note that various parts of the software code are likely
developed by different programmers over time, and as such,
identifying vulnerable program paths can be difficult. Ad-
ditionally, attackers have become very adept at exploiting
vulnerabilities as soon as they are exposed to them [2]. These
considerations call for an efficient and scalable approach to
analyzing vulnerable program paths in a swift and rigorous
manner.

Prior work on program vulnerable path analysis can be
broadly classified into three categories [3]: 1. Record and
Replay systems that perform an exact reproduction of the
execution path leading to a certain vulnerability [4], [5],
[6], [7]; 2. Techniques that use random testing (e.g., fuzzing
and statistical methods [8], [9], [10], [11], [12]) relying on

sampling of runtime program states and probabilistic rep-
resentations of knowledge base; 3. Techniques that utilize
formal methods (e.g. symbolic execution and dynamic tainting
analysis [13], [14], [15], [16], [17], [18]) relying on program
models, semantics and logical structures to construct knowl-
edge base.

Unfortunately, all of these prior techniques have some
fundamental limitations. As instances, 1. Record and Replay
requires capturing all program inputs and execution states
and incurs high performance overhead (for logging). Plus,
there is a considerable deployment cost (to monitor various
system components from different vendors), and imprecision
due to data unavailability in certain cases (where users do not
wish to reveal personal details) [19], [20], [21], [22]. 2. Pure
statistical methods rely on probabilistic inference and often
fail to guarantee complete accuracy. Any conclusions derived
from sampling the runtime program states can offer only
limited visibility, and are prone to false alarms [9]. As a result,
considerable human effort is still required to verify the results
from statistical analysis. 3. Formal methods require exhaustive
analysis along all paths in the application code, that can be
prohibitively expensive in terms of time and resources. As
such, strict symbolic execution methods can be less effective
in analyzing software at-scale.

In this paper, we propose StatSym, a framework for vul-
nerable path identification through Statistics-Guided Symbolic
Execution. StatSym’s efficiency stems from a novel integra-
tion of statistical analysis and symbolic execution techniques.
First, it leverages statistical analysis to construct program
predicates (e.g. conditions and assertions of program states that
are indicative of program vulnerability), and then employs a
path construction algorithm to select (and rank) the most likely
execution path responsible for vulnerability. The suspicious
execution path and its associated predicates provide inference
to a symbolic execution module, which will perform statistics-
guided path exploration in a pruned search space (where higher
priorities are assigned to the candidate paths and their close
neighbors) to validate the presence of vulnerable paths.
StatSym harnesses the advantages of both statistical anal-

ysis and symbolic execution techniques to perform rigorous
path detection while maintaining scalability and swiftness. To
the best of our knowledge, this is the first work that integrates
statistical analysis and symbolic execution to expedite the
vulnerable path identification. We evaluate StatSym using
real-world software code and demonstrate the usefulness of

fault point
root cause

... ...
failure point
attack/crash

start point

Fig. 1: Conceptual model of software failure. System failure
may denote security exploitation or program crash.

our approach in terms of both efficiency and accuracy in
identifying the actual vulnerable program paths.

Identifying the execution paths and constraint sets that lead
to vulnerable program states has several useful applications
such as (i) automatically patching the buggy code through
hardening of vulnerable paths, (ii) preemptive input filter-
ing/checking to prevent the program from reaching vulnerable
states that lead to malicious exploitation or termination, and
(iii) providing useful insights to the programmers during
debugging phases of code development. In real-world software
systems such as web servers (like thttpd [23]), vulnerable
inputs can lead to program crashes or undesired information
outflows. Identifying the conditions on program variables
and/or execution paths that can lead to such vulnerable system
states, is helpful to track and mitigate the malicious effects of
such exploits.

In summary, the contributions of this paper are:
1) We design and implement StatSym, a novel automated

framework for vulnerable path identification by integrating
statistical analysis and symbolic execution, ultimately reducing
the time to solution.

2) StatSym employs a new vulnerable path construction
algorithm that leverages statistical inference to construct vul-
nerable paths with partial execution logs (typical of most real-
world situations). The suspicious execution paths identified
by statistical analysis guide symbolic execution to search
vulnerable paths efficiently.

3) We evaluate the proposed StatSym using real-world
applications from diverse domains: polymorph [24], CTree,
Grep [25] and thttpd [23]. From our experiments, we observe
that StatSym is able to identify the vulnerable paths in all
the four programs. In polymorph, StatSym speeds up the
vulnerable path discovery by about 15× over pure symbolic
executor, KLEE [13].

4) We perform sensitivity studies on how different program
logging and sampling impact the performance of StatSym.
Our results show that StatSym is able to identify vulnerable
paths and achieve significant speedup even at relatively low
sampling rate of 20%.

II. MOTIVATION

Consider the system failure model shown in Figure 1.
During vulnerable path analysis, there are two important points
in the execution path: the fault point and the failure point [26].
Fault point is the root cause of failure (e.g. location where

Program SLOC Ext. Call Inter. Call G.V. Params.
polymorph 506 29 16 36 253

CTree 3011 50 52 188 1568
Grep 6660 143 532 718 15760
thttpd 7939 114 145 545 7420

TABLE I: Program source statistics: Source Lines of Code
(SLOC), External Calls (Ext. Call), Internal user-level calls
(Inter. Call), Global Variables (G.V.) and Function parameters
(Params.).

Bare Demo of IEEEtran.cls for Conferences

Michael Shell
School of Electrical and
Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332–0250

Email: http://www.michaelshell.org/contact.html

Homer Simpson
Twentieth Century Fox

Springfield, USA
Email: homer@thesimpsons.com

James Kirk
and Montgomery Scott

Starfleet Academy
San Francisco, California 96678-2391

Telephone: (800) 555–1212
Fax: (888) 555–1212

Abstract—The abstract goes here.

I. INTRODUCTION

This demo file is intended to serve as a “starter file” for
IEEE conference papers produced under LATEX using IEEE-
tran.cls version 1.7 and later. I wish you the best of success.

mds

January 11, 2007

A. Subsection Heading Here

Subsection text here.

1) Subsubsection Heading Here: Subsubsection text here.

II. CONCLUSION

The conclusion goes here.

1void vul_func(int a){
2//...
3if(a >=3)
4assert(0);
5}
6
7void f1(int x) {
8if(x>=1000 || x<0){
9//...
10}
11else{
12int i = 0;
13while(i<x){
14vul_func(i);
15i++;
16}
17printf("%d\n",i);
18}
19}
20
21void main() {
22int m;
23//set m as symbolic
24make_symbolic(&m,
25sizeof(m),"sym_m");
26
27//pass m to f1
28f1(m);
29}

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

[1] H. Kopka and P. W. Daly, A Guide to LATEX, 3rd ed. Harlow, England:
Addison-Wesley, 1999.

(a) Sample source code

7

9 12

1714:1

14:2

14:3

x ≥	1

x	≥	2

x	≥	3
17

17

x ≥	0	&&	
x	<	1000

(b) Pure Symbolic Execution

7

12

14:1

14:2

14:3

x	≥	3

(c) Statistics-Guided Symbolic Execution

Fig. 2: Illustration showing pure symbolic execution’s search
space being reduced greatly through statistics-guided symbolic
execution in StatSym.

a strcpy is performed without checking the length of target
string buffer). Failure point is the point of undesired program
outcome (e.g., program crash or a manifested malicious attack
such as sensitive information exfiltration). In actual software
systems, these two points can be far away from each other.
For instance, in the case of return-oriented programming [27],
consider a function F with a string P . The fault point can
be a statement in function F that fills the memory pointed by
P using an adversary’s malicious inputs. The payload injected
by the adversary would only be executed when returning from
function F (e.g., the failure point).

In fact, there are several documented evidences of bugs in
real-world applications that have led to security attacks. In
this paper, we consider four buggy applications: polymorph, a
utility tool for file name conversion; CTree, a GNU tool for
displaying file system hierarchy; Grep, a command-line utility
for plain-text search and thttpd, an open source web server.

Thttpd, the server-class application with several thousand

lines of code, has numerous documented bugs. Reports from
CVE [28] show that several security vulnerabilities exist in
the release 2.25b that allow remote code execution. Examples
include string replacement buffer overflow vulnerability in
a function named defang [28]. CTree and Grep from the
STONESOUP project [25], with thousands of lines of code
(not including external libraries) and several thousands of
variables and function parameters, have various types of
vulnerabilities including memory corruption and integer over-
flows. polymorph from Bugbench [24], contains a stack buffer
overrun vulnerability.

Identifying vulnerable paths in applications using pure sym-
bolic execution may be impossible due to path explosion prob-
lem. As the scale of the programs become large, the number
of possible exploration paths can quickly grow exponentially
depending on the number of intervening branches, loops and
recursive functions embedded in the program source code.
This would quickly exhaust both computation and storage re-
sources in computer systems, limiting its capability to identify
vulnerable program paths. Table I shows statistics from various
applications in terms of lines of code, number of function calls,
variables and function parameters.

In contrast to symbolic execution, statistical testing meth-
ods rely on logging of program states for analysis. Global
variables, function parameters, return values, and occasionally,
certain local variables are components of such program states.
To keep performance overheads acceptable, existing statistical
methods generally advocate for partial logging through sam-
pling [9]. However, an adverse side-effect of partial/incom-
plete logging is that, it becomes extremely hard for statisti-
cal methods alone to accurately identify the predicates and
program paths that lead to vulnerable execution, resulting in
one or both of the following undesirable outcomes: 1. missed
vulnerable paths (false negatives) due to inadequate statistical
profile data, or 2. weak or wrong predicates due to imperfect
statistical data. Consequently, manual reviews and debugging
of statistical output are still required for further verification.

In summary, we note that, a good solution approach to pro-
gram vulnerability analysis requires two qualities: efficiency
or effectiveness. Efficiency is the ability for a solution to make
swift inference, while Effectiveness defines the rigorousness
and accuracy of vulnerable path identification. We note that
statistical methods are efficient (performance-wise) but are
less effective in locating the exact vulnerable program paths.
On the contrary, pure symbolic execution methods are more
effective with their rigorous analysis and rule-based models,
but the performance overheads are prohibitively high. This
motivates our design of StatSym framework, which pushes
the envelope for vulnerable path identification through a
novel integration of the symbolic execution and statistical
approaches. More precisely, the statistical analysis module
of StatSym constructs predicates and candidate vulnerable
paths that are indicative of program vulnerability and guides
the symbolic execution module through pruning its search
space. In this way, symbolic executors can assign higher
search priority to suspicious candidate paths (and their close

neighbors) until the vulnerable paths are assertively identified
and the associated path constraints are generated.

Consider a simple C program in Figure 2a consisting
of some conditional operations and loop iterations for an
integer input x. There is an assertion statement in vul func()
associated with the range of the argument a (a >= 3), which
is guarded by x in the while loop in line 13. To search for a
vulnerable path, pure symbolic execution tools would typically
set x as symbolic and fork a brand new state after each loop
iteration. The corresponding path exploration space is shown
in Figure 2b as a tree structure. As we can see, a symbolic
executor has to explore both sets of execution paths for the
if statement in line 8. This exploration has to be repeated for
every iteration of the loop.

The statistical approach in StatSym is able to identify
the most likely vulnerable path by constructing predicates
and conditions for the target vulnerability. In this example,
it first selects a candidate path covering 7→12→14 using
program execution history (both faulty and non-faulty). This
helps trim off1 the unnecessary subtree of states on the left
side with root node 9. Then, StatSym infers that the range
of values for variable x which is highly correlated with the
vulnerability. As x can directly guide the number of iterations
to be considered by the symbolic executor in line 13, a
large number of subtrees corresponding to the paths (that are
unlikely to be responsible for the vulnerability) are trimmed.
The pruned subtree in Figure 2c illustrates the reduced search
space with StatSym when the candidate path is 7→12→14
with a predicate of (x ≥ 3). With statistical guidance, we
see that the actual states/paths that need to be explored by
StatSym are significantly reduced when compared to that of
pure symbolic execution.

III. THREAT MODEL AND ASSUMPTIONS

A. Threat Model

In this work, we consider program vulnerabilities including
software bugs and defects that can manifest by exploiting
program control flows or by manipulating program inputs or
states. When these vulnerabilities are exploited, their effects
will manifest and lead to program crashes or security breaches.
Identifying vulnerable paths leading to the program failure is
crucial for hardening these software systems, e.g., by filtering
faulty inputs, path-sensitive analysis [29], [30] and hardening
code path [2], [31]. In case of more sophisticated attacks,
such as silent corruption of memory values, we note that our
proposed mechanism can still be just as effective, provided that
the point of attack (data corruption) can be identified through
periodically imaging the memory. Note that vulnerable path
discovery has application in software debugging as well.

1The non-selected paths (that are trimmed off) receive lower priority in
symbolic execution. So, in the (unlikely) worst case when erroneous statistical
inference is made, the performance of StatSym is equivalent to pure
symbolic execution.

sampled
log

predicate
construction &
ranking

candidate
path
construction

statistics-guided
symbolic
execution

program

testing
inputs

vulnerable path
and constraints

Fig. 3: Design Overview of Vulnerability Discovery Framework based on Statistics-Guided Symbolic Execution.

B. The Use of Partial Logging

We assume that only partial logging is available at runtime,
which provides incomplete inputs for statistical analysis in
StatSym. This assumption is based on findings in numerous
prior works that demonstrate full logging to be impractical in
real-world applications [8], [9], [10], [11]. In order to reduce
the performance overhead for runtime logging, prior works
often take advantage of statistical sampling to log only partial
information on the fly. In this paper, we consider logging
only at function entry and exit points, and our logging targets
include program global variables, function parameters and
return values. We note that some program variables may con-
tain sensitive user information. Thus, the logging system may
define security rules to prevent collecting such information,
e.g., logging only the length of string objects and hashing
function names. To preserve user privacy, Yuan et al. [21]
show how users can be provided with the option to inspect
the runtime logs and eliminate any sensitive information.

C. Existence of Multiple Vulnerabilities and Paths

Multiple vulnerabilities may exist in a single program,
especially as program size increases. While this paper fo-
cuses on identification of single vulnerable path, the proposed
StatSym framework can be easily extended to programs with
multiple vulnerabilities and/or multiple vulnerable paths. Prior
works have studied bug isolation techniques [9], and leverage
machine learning and clustering techniques [11] to separate
log files pertaining to different bugs to generate statistical
inference for each individual bug. By taking advantage of
these techniques, we can isolate different vulnerabilities and
use StatSym to identify (and eliminate) vulnerable paths one-
by-one through an iterative process until all vulnerabilities and
paths are identified.

IV. APPROACH OVERVIEW

StatSym makes use of statistical analysis to 1. infer
candidate paths that are most likely related to the vulnera-
bility and 2. construct and rank predicates (i.e., conditions
associated with program states) based on their relevance to
program failures or security breaches. The results effectively
guide path-driven symbolic execution to concentrate on more
likely candidate paths with higher priority, thus improving the
efficiency of vulnerable path identification.
StatSym has the following components (Figure 3):
• A runtime sampling and logging component that collects

runtime program information including global variables,

function parameters and return values at function entry
and exit points. To minimize the effects of logging
and the associated performance overheads, we adopt a
probabilistic sampling method.

• A statistical inference component which analyzes the
runtime program information, constructs predicates (con-
ditions and certain assertions about program states or
variables), and ranks them based on relevance to the
program failure point. A higher confidence score indicates
a higher likelihood of a predicate being indicative of the
target vulnerability.

• A candidate path construction component that generates
candidate vulnerable paths that will receive higher pri-
ority for symbolic execution based on the confidence
scores. Each node in the path represents a function entry
or function exit point (instrumentation location).

• A statistics-guided symbolic execution component that
performs program state exploration based on vulnerable
paths. Once the actual vulnerable path is found, the
symbolic execution procedure would output the complete
execution path (and path constraints) that leads to the
program failure point.

V. StatSym DESIGN

This section presents our StatSym framework and algo-
rithm design, including (i) predicate construction and ranking,
(ii) candidate path identification and (iii) statistics-guided
symbolic execution.

A program can be represented at different granularities. In a
Control Flow Graph (CFG), each node represents a basic block
(a straight-line sequence of code without any branches except
at the entry and exit points), and each directed edge denotes
a possible control transfer (e.g., conditional branches). At a
coarser granularity, a program can also be represented by a
Call Graph (CG), where each node corresponds to a function
or procedure, and an edge represents the call relations between
functions or procedures. Note that CG represents a subset of
CFG information since function calls and returns are also part
of control transfer instructions. In this paper, we use a graph
representation G to denote a program that primarily considers a
CG due to the limitations stemming from the tools used in our
studies (See Section VI for further details). We note that our
framework can be easily extended to include finer granularity
CFG nodes as well if we have the capability to instrument the
program at the basic block block level, and monitor variables
inside these basic blocks. Without loss of generality, we will
refer to the granularity of observation as program blocks.

The graph G consists of a node set N and an edge set
E . We consider program blocks, each consisting of program
code between two instrument points and represented by a node
ni ∈ N in G. The edges in E are directed and denoted by
(ni, nj) where ni ∈ N and nj ∈ N is the head and tail of
the edge respectively. A state comprises a set of variables and
program control transfers that are made visible by source-level
or runtime program instrumentation.

A. Predicate Construction and Ranking

We identify a list of instrumentation locations, program
variables and statements for predicate construction. Such runs
are provided to StatSym by the users, which are then used
by the statistical sampling module. Our evaluation emulates
average user behavior by providing a series of random inputs
to the applications, generating a sufficiently large number of
sample runs, and randomly sampling them to assemble a set of
correct executions and faulty executions. Also, to differentiate
program execution states, the same variable instrumented at
different locations is considered separately. For example, a
global variable that appears in two different physical locations
in the program are considered separately from each other.
Predicate Construction: We analyze each variable’s statis-
tics (e.g., distributions) in correct and faulty executions, and
construct the predicate based on the divergence between the
variable’s statistics in these two cases, e.g., offering highest
degree of distinction between them. More precisely, if variable
a at a certain location has a set C of values in correct
executions and a set F of values in faulty executions, formally,
we construct a predicate x = {a ∈ P} for variable a to
optimally separate the instances of a within correct executions
and faulty executions, by minimizing the quantification error:

E = |P ∩ C|+ |Pc ∩ F|, (1)

where Pc is the compliment of P . Intuitively, the predicate
x provides an optimal separation between correct executions
and faulty executions using the distributions of variable a. For
example, if an integer variable a in faulty executions is always
larger than that of correct executions, we can find a threshold
σ that separates the two sets and construct a predicate as x =
{a ≥ σ}.
Predicate Confidence Score and Ranking: We derive a con-
fidence score metric to measure the capability of a predicate in
indicating vulnerabilities. Predicate x receives a higher score
if it can better distinguish faulty from correct executions. Let
P(x|C) be the probability (i.e., implied frequency from the
log files) of predicate x being true in correct executions, and
P(x|F) be the probability in faulty executions. The absolute
difference between these two probabilities is assigned as the
temporary score for the predicate of that specific instrumenta-
tion location and variable:

s = |P(x|C)− P(x|F)|. (2)

The larger a predicate score is, the higher likelihood vulnera-
bility is associated with the variable and instrumented location
involved in predicate x.

B. Candidate Path Identification

We propose a path identification algorithm to statistically
extract program execution paths, traversing locations of highly
ranked predicates and leading to the vulnerability manifes-
tation (failure) point. First, due to possibly incomplete pro-
gram profile from probabilistic logging, we need to construct
the transitions between different instrumented locations from
faulty executions, which is modeled as an association rule
mining problem [32], [31]. Let o(ei) and o(ej) be the number
of occurrences for instrumented locations ei and ej in all
the log files, we calculate the frequency that ej occurs after
ei, denoted by o(ei → ej). This enables us to calculate the
confidence µ of transition ei → ej :

µ(ei, ej) =
o(ei→ej)

o(ei)
(3)

Through identifying all transitions with statistically signif-
icant confidence scores, we are able to construct a transi-
tion graph for each tested program. We propose a heuristic-
based path identification algorithm to extract candidate paths
traversing the instrumented locations of high confidence-score
predicates. The path identification involves three steps: 1. Find
acyclic paths starting from nodes that have no incoming arcs
(e.g. representing possible program entry points) to the failure
point. The score of each node on the path is represented
by the predicate with the highest score associated with the
instrumented location. From all the acyclic paths, we select
the one with the largest average confidence score. Such a path
is referred to as skeleton in our algorithm. 2. There could be
predicates with high confidence scores that are not included
in the skeleton. To account for these predicates, we use a
greedy algorithm to identify the path segments that branch
out from the skeleton and traverse these high confidence-score
predicates. The path segments linking the skeleton and high
confidence-score predicates are called detours. 3. A candidate
path is constructed by combining the skeleton and detours,
allowing a search to visit high confidence-score predicates on
detours, while moving along the skeleton toward vulnerability
manifestation point.

C. Statistics-Guided Symbolic Execution

A candidate path includes a sequence of instrumented
locations and the associated predicates. An example of the
candidate path consisting of multiple nodes is shown in
Figure 4. The dotted-gray circle is the starting point of the
path (e.g. main() function). Each subsequent node (e.g., green
circles marked by ni) represents an instrumented location in
the program, associated with a predicate pi. The vertical-
dashed red circle denotes the failure point.

Note that the candidate paths generated from statistical
analysis might not be a viable path during actual program
execution due to incomplete statistical information. To guar-
antee the accuracy of discovered vulnerability paths, symbolic
executors are used to verify statistically-identified candidate
paths. As shown in Figure 4, StatSym utilizes two mecha-
nisms to guide symbolic execution: inter-function and intra-
function search. Inter-function search is guided by the nodes

Start point
Candidate nodePredicatepi

Failure Point

 Extra nodes explored to deal with inaccuracy when hop threshold is 1
Nodes trimmed by statistical results

p1 p2 p3p0

ni

Inter-function search
guided by path nodes

Intra-function search
guided by predicates

n1 n2 n3

n1

n2

n3

Fig. 4: Candidate path through statistical analysis (top) and
the symbolic executor’s search space (bottom).

in the candidate path. The symbolic executor selects those
execution paths that follow a given candidate path and does not
deviate by more than a preset number of hops. In Figure 4, the
diagonal-filled circles denote nodes that are within the allowed
hop distance. Intra-function search is guided by leveraging
predicates. When symbolic execution spawns additional states
at branch points, the constraints associated with the predicate
at the location combined with the constraint set (including the
branch conditions) would be evaluated. If the constraints and
predicates are not satisfied, the state associated with the current
branch will be explored at a later stage when no other active
states are available. This enables StatSym to significantly
trim down the search space by eliminating paths that either do
not follow a candidate path or that are unlikely to be related to
program vulnerability (denoted by the gray circles in Figure 4).

To improve the possibility of finding vulnerable program
paths, we allow symbolic executors to search paths that deviate
from the candidate path within a threshold of τ hops. For
example, if on a candidate path, two locations a and b have
no direct links in the program, the statistics-guided symbolic
execution module will start to search with a maximum depth
equal to τ to reach location b from location a. A higher τ
improves the robustness of symbolic executors at the expense
of increasing runtime overhead. The example in Figure 4
has threshold τ set to 1. If a feasible solution exists for the
constraints involved in an execution path, the symbolic execu-
tor validates that the path and confirms its association with
vulnerability. The verified path and the associated constraints
would be output as the result. The overall algorithm governing
the operations of different modules is shown in Figure 5.

VI. IMPLEMENTATION

We implement a prototype of StatSym that has two mod-
ules: a statistical analysis module and a symbolic execution

Algorithm: Statistics-Guided Symbolic Execution
Preprocess log files, count the numbers of runs n(R),
locations n(L) and logged variables n(V)
(a) Divide the n(R) of runs into correct executions C

and incorrect executions I
(b) Transform the logged data

transform non-numerical variables’ characteristics to
numerical values

(c) Predicate construction
for all logging locations R

for all logging variables L
(c.1) Construct a predicate x based on C and I
(c.2) Calculate probabilities for when the predicate is true

within C and I, i.e. p(x, C) and p(x, I)
(c.3) Assign |p(x, C)− p(x, I)| as score

end for
end for
(d) Rank |p(x, C)− p(x, I)| for all R and L
(e) Symbolic execution

set up timer for symbolic path exploration
while (problematic path is not found & timer has not expired)

(e.1) Join skeleton and detours to get a candidate
path P with the largest average predicate score

(e.2) Do Symbolic execution using candidate path (P)
(e.3) if bug is triggered in (e.2)

Output the complete path of (e.2) and the associated
predicates

end if
end while

Fig. 5: StatSym Algorithm

module (Figure 6). Statistical analysis module consists of two
sub-systems, Predicate Manager and Candidate Path Construc-
tor Symbolic execution module is built on KLEE [13].

KLEE Executor StatSym State
Manager

KLEE State
Manager

 StatSym Scheduler
KLEE

Scheduler

4

3

5

6

7

Program Monitor
 Fjalar

Predicate
Manager

Candidate Path
Constructor

12

Statistical Analysis Module

Symbolic Execution Module

Fig. 6: StatSym System Framework

A. Program Monitor

We implement our program monitor using Valgrind [33]. We
build a custom instrumentation tool by modifying Fjalar [34]
which is a plug-in on top of Valgrind. Fjalar is able to
dynamically instrument on unmodified C/C++ programs and
provides rich source code-level semantic information such
as variable names, variable types and function names. By
overriding the instrumentation behaviors at function entry and
exit points, our custom tool is able to log variable names and
values based on their type. Leveraging the built-in support

from Fjalar, our program monitor is able to perform runtime
logging at tunable sampling rates, allowing for partial logging.

B. Statistical Analysis Module

The Statistical analysis module includes two components:
Predicate Manager and Candidate Path Constructor (imple-
mented with around 3K Lines of Code using Python). The
Predicate Manager reads multiple runtime logs generated
by the program monitor 1©, and then constructs predicates
and ranks them based on confidence scores that measure the
statistical difference of a variable (and its values) between
correct executions and faulty executions. Note that a higher
ranked predicate indicates a closer correlation with program
vulnerability.

The Candidate Path Constructor first identifies the transi-
tion links between different locations (using Equation (3)) and
constructs a dynamic control flow graph connected via multi-
ple function call entries and exit points. The Candidate Path
Constructor will utilize the ranked predicates from Predicate
Manager 2© to extract a skeleton and the associated detours. A
skeleton is obtained by choosing the path with highest average
predicate score when breadth first search is performed starting
from the program entry point to the failure point.

The candidate vulnerable paths are constructed by joining
the skeleton and detours based on predicate scores to improve
vulnerable path discovery. As discussed in Section V-B, each
detour can start from a certain node on the skeleton that finally
returns back to the skeleton. Depending on the indices of the
starting and ending nodes of a detour in the skeleton, they
can be categorized into three types: (i) detours whose starting
index is smaller than the ending index on the skeleton, (ii)
detours with the starting index larger than the ending index,
and (iii) detours with the starting and ending nodes at the
same index on the skeleton. The latter two detour types will
introduce cycles to the candidate path, and the first type of
detours may replace certain segments of the original skeleton.
In our current implementation, we apply different heuristics
that are aware of these detour types. For example, for each
unique location on the skeleton, if there exist multiple detours
of the same type, we calculate the average predicate scores
for all such detours, and select the one with largest confidence
score.

C. Statistics-Guided Symbolic Execution

Symbolic Execution in KLEE: Each path that is to be
explored by KLEE at runtime, is represented by a unique
state and identified using the traversed branch decisions,
current program counter and stack frames. The LLVM bitcode
interpreter or Executor uses a loop to iterate over instructions
(stepInstruction()) and executes them (executeInstruction())
symbolically if possible. Upon reaching a branch instruction
(e.g. {if, else}, {switch, case}), the executor will attempt to
fork a state, provided that the constraint corresponding to the
branch direction is satisfiable. KLEE implements several state
scheduling algorithms including Breadth First Search (BFS),
Depth First Search (DFS), Random Path Selection and even a

sophisticated coverage-optimized search that uses a heuristic
to weigh each state based on the likelihood of covering new
source code.

Statistics-Guided Symbolic Execution in StatSym: We
modify KLEE to take advantage of the candidate path and
predicates information output by statistical analysis module
to the State Manager of StatSym 3©. The StatSym State
Manager infers and maintains all of the potential states that are
worthy of subsequent exploration. In our implementation, the
KLEE Executor retrieves one state a time from the StatSym
State Manager and executes the next instruction for that state.
The StatSym State Manager records the progress of symbolic
execution along the candidate path for all states by bookmark-
ing the currently executed path nodes, as well as the diverted
hops (Section V-C). More importantly, the StatSym State
Manager will use the candidate path to guide state exploration:
Inter-function and Intra-function. When the current symbolic
execution point matches the name of the candidate path node,
the constraints indicated by predicates would be added to
the current state in StatSym State Manager2, which helps
trim down intra-function search space. The symbolic execution
states corresponding to the branch instruction outcomes that
conflict with the constructed predicates will be suspended. For
inter-function guidance at function entry and exit, the State
Manager will update the diverted hops in the current state,
and suspend the states that have exceeded the hop diversion
threshold from further consideration. StatSym State Manager
also coordinates with KLEE’s default state manager to main-
tain necessary information for each state such as constraint set
and memory space. The StatSym State Scheduler interacts
with the State Manager to select the next state to be explored,
6©, 7©. The StatSym scheduler gives the states that have less

diverted hops higher priority. If a candidate vulnerable path
is verified by the Symbolic Executor, the complete vulnerable
path along with the constraints are output. If not, the next
candidate path in the list (if one exists) would be explored, and
the above process would be repeated over again. We note that
StatSym provides the same level of code coverage and depth
in the search as compared to KLEE’s symbolic execution.

VII. EVALUATION

A. Experimental Setup

Benchmark Selection: We performed extensive studies on
application benchmarks from multiple sources [24], [25], [35]
that include server class, GNU utilities and database system.
The vulnerabilities associated with the target programs include
buffer overruns, integer handling errors, pointer dereferencing
vulnerabilities and data race bugs. To represent diverse do-
mains, we select four real-world programs: polymorph, Grep,
CTree and thttpd.

2Note that KLEE does not directly support constraining string length. As a
workaround, for strings with unknown length, we intentionally allocate long
enough memory array. We then constrain the length of the string by controlling
the index at which the first ‘\0’ resides.

Statistical Analysis
Module

Symbolic Execution
Module

Benchmark detours time(sec) time(sec)
polymorph 0 1.9 180.6

CTree 0 58.4 1.6
thttpd 6 561.2 247
Grep 12 661.4 37.7

TABLE II: Number of detours, and time breakdown when
sampling rate is 100%.

Statistical Analysis
Module

Symbolic Execution
Module

Benchmark detours time(sec) time(sec)
polymorph 2 1.6 213.0

CTree 1 43.2 2.4
thttpd 7 428.0 1263.0
Grep 31 518.7 44.3

TABLE III: Number of detours, and time breakdown when
sampling rate is 30%.

0 50 100 150 200

Polymorph
 (4)

Ctree
(4)

thttpd
(13)

Grep
(12)

Maximum Length
Average Length
Minimum Length

Fig. 7: Statistics of candidate path lengths. The number below
each application name represents the total number of paths
generated by statistical analysis.

Log Collection and Sampling: Ideally, we need to collect a
large set of the user’s execution traces, and then randomly
sample them to assemble our sets of correct execution logs
and faulty execution logs. To emulate this scenario, we run
our application with a sufficiently large number of randomly
generated input sets that result in correct and faulty executions.
We collect logs of the target programs using the Program
Monitor described in Section VI-A. Each log file corresponds
to a program run and is annotated with a flag indicating
whether it is from a correct or faulty execution. Among all of
the generated logs, we randomly choose one hundred correct
execution logs and one hundred faulty execution logs. In our
evaluation, we use partial, incomplete logging at the sample
rate of 30% and 100%. For polymorph and CTree, we also
select multiple levels of sampling ranging from 20% to 100%
for the sensitivity study in Section VII-C. Note that StatSym
is effective even at a relatively low sampling rate of 20%, as
will be shown later in Section VII-D.

Symbolic Execution: We use unmodified symbolic execution
on KLEE as the baseline for comparison. For StatSym,
we set the timeout for statistics-guided symbolic execution
to be 15 minutes for a given candidate path; we set the
symbolic execution timeout length for KLEE to be 8 hours.
The default threshold value τ is set to 10 for all applications
(See Section V-C for details). For both StatSym and KLEE
to perform symbolic execution, proper configuration of the
symbolic inputs in each program is required. Valid program
inputs typically follow certain format. For example, CTree
program requires the option of -n and -q. We note that, without
knowledge of the parameter format and option semantics,

symbolic executor would spend enormous time iterating over
program parameter parsing, which is irrelevant to the pro-
gram’s core functionality. In our experiments, we configure
such semantically reasonable and required program input
options for both StatSym and KLEE to avoid unnecessary
(exhaustive) search. Recent works such as [36] highlight the
needs to automatically recognize program input constraints
for more efficient symbolic execution, and we note that such
optimizations are beyond the scope of our work.
Experiment Testbed: All experiments are conducted on our
lab server equipped with a 4-core Intel Xeon E5405 server
and 12GB DRAM.

B. Evaluation Results

For all of the benchmarks, StatSym is able to successfully
identify the vulnerable paths correctly corresponding to the
respective vulnerabilities. In Table II and Table III, we sum-
marize the time overheads for both statistical analysis and
symbolic execution module with two sampling rates, 100%
and 30% respectively. We record the time consumed for
the statistical analysis and the number of different detours
generated. For statistics-guided symbolic execution, we record
the time taken to find the vulnerable paths and generate the
corresponding test inputs.

From Table II, we can see that the statistical analysis
module effectively generates the candidate paths, especially
for polymorph and CTree (with 0 detours). When sampling
rate is reduced to 30%, Table III shows that the number of
detours increases slightly for these two programs resulting in
a higher number of possible candidate paths. Figure 7 shows
the distribution of candidate path lengths, including minimum,
maximum and average number of nodes (path length) for
each target program’s candidate paths, which are generated by
joining the detours using heuristics explained in Section VI-B.
We observed that the first generated candidate path at 30%
sampling for both polymorph and CTree has fewer nodes. For
example, the first candidate path output under 100% sampling
for polymorph includes 10 nodes while the one under 30%
sampling only has 6 nodes. Interestingly, even with fewer
nodes in the first candidate path, StatSym can successfully
find the vulnerability in its first iteration. Also, it is worth
noting that the module, that dominates runtime overhead,
varies across applications. At 30% sampling, for polymorph,
the program logs generated are very small that it takes less than
2.0 seconds for statistical method to construct candidate paths.
In this case, the statistics-guided symbolic executor dominates

the time (180.6s). On the contrary, for Grep, we observe that
its log size is large (hundreds of MB), the statistical analysis
takes much longer than symbolic execution. In Table IV, we
present the total amount of time (including statistical analysis
and symbolic execution) to identify the vulnerable path for
StatSym compared with the time taken for pure symbolic
exploration by KLEE. We observe that StatSym always
explores significantly less number of paths and spends less
time than KLEE to find the vulnerability in the program (on
average 85.3% fewer paths). Notably, even with significantly
higher number of paths explored, for CTree and Grep, pure
symbolic execution by KLEE fails to find the vulnerability
and reports state exploration failure due to lack of available
memory that stopped the constraint solver from forking more
processes. For the smallest program, polymorph, under 30%
sampling, it takes only 214.6 seconds to find the vulnerability,
which is a 15 × speedup compared with pure symbolic
execution. Across all four programs, StatSym is able to
correctly discover the vulnerable paths and the corresponding
inputs with no false positives or false negatives. Moreover, the
vulnerable paths for three of the programs are identified using
the first candidate path found by statistical analysis module
(see Section VII-C for details).

KLEE w/ StatSym Pure Sym. Exec. w/ KLEE
Benchmark #paths time(sec) #paths time(sec)
polymorph 63 214.6 8368 3252.0

CTree 112 45.6 17575 Failed
thttpd 5168 1691.0 17882 Failed
Grep 11462 563.0 38708 Failed

TABLE IV: Number of paths explored and time spent before
finding the bug in StatSym with KLEE and pure symbolic
execution by KLEE at 30% sampling rate.

C. Case Studies

1) Polymorph: Polymorph is a file name conversion utility.
Users of polymorph can provide either a file name or an
entire folder to polymorph for name conversion. Specifically,
user provides the option -f together with a string as the
name of the targeted file for conversion. After parsing the
command line parameters, the user provided string name
target is passed to function convert fileName() as parameter
original. The vulnerability resides in convert fileName() where
each character in target is read, transformed (if necessary)
and copied to the stack allocated 512-Byte buffer newName
without boundary check. convert fileName() then performs a
series of system calls before it returns. The program will crash
if the stack is filled with an adversary’s payload.

With 30% sampling rate, there are 12 instrumented locations
denoted by L1∼L12 and 10 instrumented variables, shown in
Figure 8. Table V shows the top 10 predicates. The numbers
in third column of the table denote the instrumented location
index in Figure 8. We observe that the first six predicates
limit the length of strings that implicitly depend on target.
When the user-provided file name is longer than 512 bytes,

Instrumented Locations:
L1: grok commandLine():leave L2: convert fileName():enter
L3: is fileHidden():leave L4: does nameHaveUppers():enter
L5: does newnameExist():leave L6: grok commandLine():enter
L7: convert fileName():leave L8: main():enter
L9: does newnameExist():enter L10: main():leave
L11: is fileHidden():enter L12: does nameHaveUppers():leave
Instrumented Variables:
GLOBAL: target, wd, hidden, track, clean, init file, hidden file

FUNCPARAM: argc, original, suspect

Fig. 8: Instrumented locations and variables in Polymorph

No. Predicate Loc.
P1 len(suspect FUNCPARAM) >536.5 L9
P2 len(original FUNCPARAM)>518.0 L2
P3 len(suspect FUNCPARAM)>535.0 L12
P4 len(suspect FUNCPARAM)>517.5 L3
P5 len(suspect FUNCPARAM)>526.0 L2
P6 len(suspect FUNCPARAM)>497.5 L5
P7 track GLOBAL<-infinity L7
P8 wd GLOBAL<-infinity L7
P9 track GLOBAL<-infinity L10
P10 clean GLOBAL<-infinity L10

TABLE V: List of top 10 predicates for the Polymorph

this would trigger the vulnerability in convert fileName(). The
last four predicates indicate that in L7 and L10, the constraints
are not satisfied to trigger the vulnerability under study. This
is because only correct runs could reach L7 - the return of
convert fileName()3 and L10 - return of main(). Figure 9
shows the ordered candidate paths. The top-most path is
provided as the first output candidate path to statistics-guided
symbolic execution. The symbolic execution module is able
to explore the node convert fileName() which is missing in
between L1 and L11 in the real execution path. The predicate
set (P1, P5, P3, P6) guides the branching of the major loop
iterating over user-provided string target in convert fileName()
so that the sub-paths corresponding to strlen(suspect)<536.5
are eventually discarded. The symbolic executor quickly tra-
verses through the path that has excessive write iterations to
newName and finally the vulnerability is triggered. StatSym
then stops exploration at the failure point upon return of
convert fileName(). As shown in Table IV, StatSym only
explores 63 paths until the final vulnerable path is discovered.

2) thttpd: thttpd is a widely-used web server application.
A buffer-overflow bug in version 2.25 [23] is triggered when
defang function processes input variable ‘str’ derived from
user input. After replacing ‘<’ and ‘>’ in ‘str’ with ‘<’ and
‘>’, the manipulated string is copied to a destination string
variable called ‘dfstr’ and will potentially cause remote code
injection. From Table IV we see that pure symbolic execution
failed after exploring almost 18K individual paths. Two main
reasons exist for the failure: First, thttpd involves large number

3In the case of faulty runs, our monitoring tool will not capture the function
return.

L1 L11

P1

L4

P5

L12

P3

L9

P1

L5

P6

L1 L2

P3

L3

P4

L4

P5

L9

P1

L5

P6

L1 L11

P1

L4

P5

L9

P1

L5

P6

Start point Li Candidate nodePredicatepi Failure Point

Fig. 9: Candidate paths for Polymorph

of internal and external calls. By reviewing the log files
for thttpd, we observed that there are hundreds of function
calls from the string injection point, handle read() to the
vulnerability site defang(). Among the large number of paths
spawned by KLEE, only a few of them (less than 1%) reach the
execution point at defang(), while a majority of explored paths
are diverted from the real vulnerable path. Second, the defang()
function involves a tight loop which includes an inner switch
statement. Without additional constraints for the input string,
KLEE itself will need to explore all the branch possibilities
(every loop iteration and case statement). This will spawn
even more states and quickly result in an explosion of states
during exploration. For StatSym, with 30% sampling rate,
the statistical analysis module finds a skeleton path consisting
of 34 nodes along with 7 detours. Each of the instrumented
location is a key execution point leading to defang(). Our
statistical module identifies a number of high score predicates
including dfstr in defang function as well as other variables
and functions that are related to the dfstr variable. A total of
thirteen candidate paths are constructed by joining the skeleton
and detours. The length of the candidate paths range from 34
to 190 nodes. The first candidate path used to guide symbolic
execution has 190 nodes. This path is generated by adding all
the detours to the skeleton path in a randomly-chosen order.
The symbolic execution module was not able to successfully
explore along this candidate path, as the search failed after
exceeding the hop threshold τ = 10 (i.e., after exploring
all matching execution paths that are no more than τ nodes
different) at node send response():enter with node index 71.
This candidate path is marked as infeasible. With StatSym
support, we are able to explore function defang() fairly quickly
using the guidance from a candidate path identified in the
second round. The predicate associated with this candidate
node (len(str) > 999.5) further helps prune the search space
for KLEE because additional forks of states relating to every
loop iteration and switch-case branches can be eliminated
for strings with shorter lengths. Overall, StatSym used two
candidate paths to finally discover the vulnerable path for
thttpd.

3) CTree and Grep: The buffer overflow bug in
CTree is triggered when an environment variable named
stonesoup stack buffer 64 with length over 64 bytes is
read by CTree, which overflows a fixed stack buffer of size 64

in the function initlinedraw(). When using StatSym to ana-
lyze CTree, the statistical analysis module is able to construct
a candidate path that starts with the main() program entry
point, and ends at the exit point of initlinedraw() function.
The statistical analysis module generates the predicate for
node stonesoup read taint() leave showing that a string
variable named stonesoup tainted buff has length longer
than 306.5 on vulnerable path. Note that the predicate gives a
sufficient condition that lead to the vulnerability path since the
actual length of the stack buffer is 64. This greatly reduces the
required search space for KLEE during its symbolic execution.
For Grep, the code injection mechanism by STONESOUP is
similar to CTree. Our analysis shows that our approach con-
structs useful predicates that lead to vulnerable path discovery.

D. Sensitivity to Sampling

��

���

����

����

����

����

��� ��� ��� ��� ��� ��� ��� ��� ����

�
�
��
�
��
�
�
�
�

�
�
�
�
��
�
�
�
��
�
�
�

�������������

�������������������������
�����������������������

����������

(a) Polymorph

��

���

����

����

����

����

��� ��� ��� ��� ��� ��� ��� ��� ����

�
�
��
�
��
�
�
�
�

�
�
�
�
��
�
�
�
��
�
�
�

�������������

�������������������������
�����������������������

����������

(b) CTree

Fig. 10: Time breakdown for statistical analysis and symbolic
execution modules of StatSym to analyze polymorph and
CTree when using different levels of sampling rate.

As shown in prior work [9], program logging with proba-
bilistic sampling is required in practice to mitigate the runtime
overhead. We evaluate the effects of reduced sampling rate
using Fjalar [34]. While random sampling has advantages of
reducing performance overhead, it increases the probability of
false alarms in statistical analysis, leading to potentially lower
accuracy in predicate and candidate path construction.

We conduct experiments, and show our results on poly-
morph and CTree applications to understand the implication of
partial logs generated at different sampling rates. As sampling
rate varies from 20% to 100%, we collect 200 log files from
runtime program sampling and input the logs to StatSym.
In Figure 10a and Figure 10b, we show the time required by

StatSym’s statistical analysis module and symbolic execu-
tion module, respectively. Note that in all these experiments,
StatSym is able to discover the vulnerable path. In particular,
as sampling rate increases from 20% to 100%, the time
spent by statistical analysis increases from 1.6 seconds to 1.9
seconds in polymorph and from 43.2 seconds to 58.7 seconds
in CTree because of the larger sized log files.

As more program profile information is logged at runtime
and becomes available for statistical analysis, the accuracy of
results improve (i.e., increasing the probability of finding the
vulnerable path). This is able to trim down the search space
for symbolic executor significantly. Thus, the time spent by
symbolic execution module to discover the vulnerable path
decreases from 213.0 to 179.5 for polymorph and from 2.4
to 1.6 for CTree. These experimental results illustrate an in-
teresting trade-off between more accurate inference (requiring
increased runtime information and overhead) and larger search
space that needs to be explored by symbolic execution. We
note that with smarter techniques to implement partial logging,
we are likely to achieve the same effectiveness for StatSym
with even lower sampling rates.

VIII. RELATED WORK

Statistical analysis has been employed to construct bug-
related predicates [9], [10], [11], [37] to facilitate testing
and debugging. In practice, this approach relies on partial
logging (often through random sampling) of target programs
to amortize monitoring overheads [9]. Prior works have
studied predicate construction algorithms for bug localization,
identifying multiple bugs [11], [38], [10]. Although these
techniques can assist testing and debugging, their outputs still
require manual analysis. Another line of work builds bug
detection models using machine learning techniques, such as
mining control-flow graphs [39] and hidden Markov model
for anomaly detection [40], and modified support vector ma-
chine [41]. Different from those works, StatSym focuses on
automated vulnerable program path diagnosis and debugging.

Symbolic execution, model checking and tainting are well
studied techniques for formal verification, static analysis or
test generation [13], [14], [42], [17], [43], [44], [45]. In [45],
symbolic execution and symbolic reachability analysis are
combined to improve the effectiveness of analyzing branches.
This is further improved by fitness-guided symbolic execu-
tion [46], partial or directed symbolic execution [18], [19],
[47], complex path constraints solving techniques [48], [49],
[50], [51], [52], and concolic execution to generate concrete
inputs for paths coverage [53], [54]. Although they are able
to provide formal verification of program vulnerabilities, these
techniques suffer from prohibitive overheads especially when
analyzing large software programs that contain an exponential
number of potential execution paths.

Li et al. [31], [30] leverage program runtime information for
program debugging and security enhancement. Jin el al. [20]
propose a bug synthesis tool that reproduces the observed field
failures using execution data collected from users. However,

this approach can have some practical limitations where log-
ging entire (or most of) call sequences at runtime is infeasible.
In this paper, by taking advantage of incomplete logging at
a very low sampling rate, StatSym is able to minimize the
runtime overhead. Crameri et al. [19] propose a technique that
utilizes branch selection history to guide symbolic execution
for debugging. This approach only offers a local view of
program execution (at each individual branch) and thus are less
effective in identifying the entire vulnerable path. In contrast,
StatSym employs predicate and candidate path construct for a
global search and is semantically more powerful. For example,
consider the example of a loop that is branch-heavy: a branch
direction for the loop only implies a direction choice for KLEE
in this iteration, however, a statistically generated predicate
that governs the number of iterations will be able to guide
KLEE more effectively in reducing its overall search space.

IX. CONCLUSION

In this paper, we proposed StatSym, a novel framework
for vulnerable path discovery, which harnesses the scalability
of statistical analysis and the rigorousness of symbolic ex-
ecution. Program runtime information is analyzed using the
StatSym statistical analysis module to construct predicates
and identify candidate vulnerable paths. Our statistical-guided
symbolic executor leverages the paths to search vulnerable
paths in a prioritized manner. We evaluated StatSym on
four applications polymorph from Bugbench, CTree, Grep
from NIST STONESOUP benchmarks and thttpd. Our results
show StatSym has a 15× speedup to find vulnerable paths
compared to the pure symbolic execution - KLEE, and is able
to correctly identify the vulnerabilities for all applications even
when a pure symbolic executor fails in three out of the four
applications.

ACKNOWLEDGMENT

This work was supported by the US Office of Naval Re-
search (ONR) under Award N00014-15-1-2210. Any opinions,
findings, conclusions, or recommendations expressed in this
article are those of the authors, and do not necessarily reflect
those of ONR.

REFERENCES

[1] M. C. Libicki, L. Ablon, and T. Webb, The Defenders Dilemma:
Charting a Course Toward Cybersecurity. Rand Corporation, 2015.

[2] P. Akulavenkatavara, J. Girouard, and E. Ratliff, “Mitigating Malicious
Exploitation of A Vulnerability in A Software Application by Selectively
Trapping Execution along A Code Path,” 2010. US Patent 7,845,006.

[3] J. S. Mertoguno, “Human Decision Making Model for Autonomic Cyber
Systems,” International Journal on Artificial Intelligence Tools, 2014.

[4] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F. Kaashoek, and
Z. Zhang, “R2: An Application-level Kernel for Record and Replay,” in
USENIX Conference on Operating Systems Design and Implementation,
2008.

[5] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn,
and S. Narayanasamy, “DoublePlay: Parallelizing Sequential Logging
and Replay,” ACM Transactions on Computer Systems, 2012.

[6] D. Subhraveti and J. Nieh, “Record and Transplay: Partial Checkpointing
for Replay Debugging across Heterogeneous Systems,” in ACM SIG-
METRICS joint international conference on Measurement and modeling
of computer systems, 2011.

[7] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen,
“ReVirt: Enabling Intrusion Analysis through Virtual-machine Logging
and Replay,” ACM SIGOPS Operating Systems Review, 2002.

[8] R. McNally, K. Yiu, D. Grove, and D. Gerhardy, “Fuzzing: The State
of the Art,” tech. rep., DTIC Document, 2012.

[9] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug Isolation via
Remote Program Sampling,” ACM SIGPLAN Notices, 2003.

[10] P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit, “Statistical Debug-
ging Using Compound Boolean Predicates,” in International Symposium
on Software Testing and Analysis, ACM, 2007.

[11] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
Statistical Bug Isolation,” ACM SIGPLAN Notices, 2005.

[12] H. Xue, Y. Chen, F. Yao, Y. Li, T. Lan, and G. Venkataramani, “SIM-
BER: Eliminating Redundant Memory Bound Checks via Statistical
Inference,” in International Conference on ICT Systems Security and
Privacy Protection-IFIP SEC, Springer, 2017.

[13] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs,” in
USENIX Conference on Operating Systems Design and Implementation,
2008.

[14] I. Doudalis, J. Clause, G. Venkataramani, M. Prvulovic, and A. Orso,
“Effective and Efficient Memory Protection Using Dynamic Tainting,”
IEEE Transactions on Computers, vol. 61, pp. 87–100, 2012.

[15] S. Bucur, V. Ureche, C. Zamfir, and G. Candea, “Parallel Symbolic
Execution for Automated Real-world Software Testing,” in European
Conference on Computer Systems, ACM, 2011.

[16] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic, “Mem-
Tracker: An Accelerator for Memory Debugging and Monitoring,” ACM
Transactions on Architecture and Code Optimization, vol. 6, no. 2,
pp. 5:1–5:33, 2009.

[17] J. Shen, G. Venkataramani, and M. Prvulovic, “Tradeoffs in Fine-grained
Heap Memory Protection,” in Workshop on Architectural and System
Support for Improving Software Dependability, ACM, 2006.

[18] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks, “Directed Symbolic
Execution,” in International Static Analysis Symposium, Springer, 2011.

[19] O. Crameri, R. Bianchini, and W. Zwaenepoel, “Striking A New Balance
between Program Instrumentation and Debugging Time,” in European
Conference on Computer Systems, 2011.

[20] W. Jin and A. Orso, “BugRedux: Reproducing Field Failures for In-
house Debugging,” in International Conference on Software Engineer-
ing, IEEE Press, 2012.

[21] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving Software
Diagnosability via Log Enhancement,” ACM Transactions on Computer
Systems, vol. 30, no. 1, pp. 4:1–4:28, 2012.

[22] D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, X. Tang, Y. Zhou,
and S. Savage, “Be Conservative: Enhancing Failure Diagnosis with
Proactive Logging,” in USENIX Conference on Operating Systems
Design and Implementation, 2012.

[23] ACME Lab, “Thttpd.” http://www.acme.com/software/thttpd/.
[24] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou, “BugBench: A

Benchmark for Evaluating Bug Detection Tools,” in Workshop on the
Evaluation of Software Defect Detection Tools, 2005.

[25] NIST, “IARPA STONESOUP Phase 3.” https://samate.nist.gov/SARD/
testsuite.php.

[26] J.-C. Laprie, “Dependable Computing: Concepts, Limits, Challenges,”
in International Symposium On Fault-Tolerant Computing, 1995.

[27] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When Good
Instructions go bad: Generalizing Return-oriented Programming to
RISC,” in ACM SIGSAC Conference on Computer and Communications
Security, 2008.

[28] CVE, “Vulnerability of thttpd in defang function.” http://www.cvedetails.
com/cve/2003-0899.

[29] Y. Zheng and X. Zhang, “Path Sensitive Static Analysis of Web
Applications for Remote Code Execution Vulnerability Detection,” in
International Conference on Software Engineering, IEEE, 2013.

[30] Y. Li, F. Yao, T. Lan, and G. Venkataramani, “POSTER: Semantics-
Aware Rule Recommendation and Enforcement for Event Paths,” in
International Conference on Security and Privacy in Communication
Systems, pp. 572–576, Springer, 2015.

[31] Y. Li, F. Yao, T. Lan, and G. Venkataramani, “SARRE: Semantics-
Aware Rule Recommendation and Enforcement for Event Paths on
Android,” IEEE Transactions on Information Forensics and Security,
vol. 11, no. 12, pp. 2748–2762, 2016.

[32] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules,” in International Conference on Very Large Data Bases, 1994.

[33] N. Nethercote and J. Seward, “Valgrind: A Framework for Heavyweight
Dynamic Binary Instrumentation,” ACM Sigplan notices, vol. 42, no. 6,
pp. 89–100, 2007.

[34] P. J. Guo, “A Scalable Mixed-level Approach to Dynamic Analysis of
C and C++ Programs,” Master’s thesis, MIT, 2006.

[35] “Verisec Suite.” https://se.cs.toronto.edu/index.php/Verisec Suite.
[36] E. Wong, L. Zhang, S. Wang, T. Liu, and L. Tan, “DASE: Document-

assisted Symbolic Execution for Improving Automated Software Test-
ing,” in International Conference on Software Engineering, IEEE, 2015.

[37] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “SOBER: Statistical
Model-based Bug Localization,” ACM SIGSOFT Software Engineering
Notes, 2005.

[38] S. Wang, F. Khomh, and Y. Zou, “Improving Bug Localization Using
Correlations in Crash Reports,” in International Conference on Mining
Software Repositories, IEEE, 2013.

[39] X. Shu, D. Yao, and N. Ramakrishnan, “Unearthing Stealthy Program
Attacks Buried in Extremely Long Execution Paths,” in ACM SIGSAC
Conference on Computer and Communications Security, 2015.

[40] K. Xu, K. Tian, D. D. Yao, and B. G. Ryder, “A Sharper Sense of Self:
Probabilistic Reasoning of Program Behaviors for Anomaly Detection
with Context Sensitivity,” in International Conference on Dependable
Systems & Networks, IEEE/IFIP, 2016.

[41] Z. Gu, K. Pei, Q. Wang, L. Si, X. Zhang, and D. Xu, “LEAPS:
Detecting Camouflaged Attacks with Statistical Learning Guided by
Program Analysis,” in International Conference on Dependable Systems
& Networks, IEEE/IFIP, 2014.

[42] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic, “Flexi-
taint: A programmable Accelerator for Dynamic Taint Propagation,” in
International Symposium on High Performance Computer Architecture,
IEEE, 2008.

[43] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as
Deviant Behavior: A General Approach to Inferring Errors in Systems
Code,” in SIGOPS Operating Systems Review, ACM, 2001.

[44] D. Engler, B. Chelf, A. Chou, and S. Hallem, “Checking System Rules
Using System-specific, Programmer-written Compiler Extensions,” in
USENIX Conference on Operating Systems Design and Implementation,
2000.

[45] M. Baluda, G. Denaro, and M. Pezze, “Bidirectional Symbolic Analysis
for Effective Branch Testing,” IEEE Transactions on Software Engineer-
ing, 2015.

[46] T. Xie, N. Tillmann, J. De Halleux, and W. Schulte, “Fitness-guided
Path Exploration in Dynamic Symbolic Execution,” in International
Conference on Dependable Systems & Networks, IEEE/IFIP, 2009.

[47] C. Zamfir and G. Candea, “Execution Synthesis: A Technique for
Automated Software Debugging,” in European Conference on Computer
Systems, ACM, 2010.

[48] A. Aquino, F. A. Bianchi, M. Chen, G. Denaro, and M. Pezzè, “Reusing
Constraint Proofs in Program Analysis,” in International Symposium on
Software Testing and Analysis, ACM, 2015.

[49] P. A. Abdulla, M. F. Atig, Y.-F. Chen, L. Holı́k, A. Rezine, P. Rümmer,
and J. Stenman, “Norn: An SMT Solver for String Constraints,” in
International Conference on Computer Aided Verification, 2015.

[50] J. D. Scott, P. Flener, and J. Pearson, “Constraint Solving on Bounded
String Variables,” in International Conference on Integration of AI and
OR Techniques in Constraint Programming, Springer, 2015.

[51] X. Xie, Y. Liu, W. Le, X. Li, and H. Chen, “S-looper: Automatic
Summarization for Multipath String Loops,” in International Symposium
on Software Testing and Analysis, ACM, 2015.

[52] P. Saxena, P. Poosankam, S. McCamant, and D. Song, “Loop-extended
Symbolic Execution on Binary Programs,” in International Symposium
on Software Testing and Analysis, ACM, 2009.

[53] J. Zhang, X. Chen, and X. Wang, “Path-oriented Test Data Generation
Using Symbolic Execution and Constraint Solving Techniques,” in
International Conference on Software Engineering and Formal Methods,
IEEE, 2004.

[54] P. Dinges and G. Agha, “Targeted Test Input Generation Using Sym-
bolic Concrete Backward Execution,” in International Conference on
Automated Software Engineering, ACM/IEEE, 2014.

