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Abstract—Modern Data Centers have increasingly adopted
heterogeneous processors in their server nodes to maximize
power efficiency. However, there are still challenges in how to
properly configure these processors such that throughput can be
maximized under fluctuating workload while optimizing system
power consumption. In this paper, we propose PowerStar, a
framework that maximizes power efficiency and reduces the
number of reconfigurations needed in heterogeneous processors
during periods of fluctuations in job arrival patterns while
handling latency-critical workloads. PowerStar is built based
on the following two key observations: (i) reconfiguration of
heterogeneous processors to add more cores and enable higher
performance and/or re-allocation of computing cores can be
costly due to the extra latency involved and the associated energy
overheads; (ii) a considerable amount of energy savings can be
achieved by keeping the system in most power-efficient configu-
rations capable of absorbing short bursts in job arrivals without
needing to reconfigure the system. PowerStar operates by carefully
choosing the most power-efficient configurations (states) and judi-
ciously maximizing the state residency through controlled use of
approximate computing, when feasible. We implement PowerStar
as a prototype on a 6-core ARM big.LITTLE heterogeneous
platform and evaluate it with a variety of workloads. Our results
show that, compared to a baseline of performance-driven power
management policy, our power efficiency-aware PowerStar can
reduce the average power by upto 11% under tight QoS (95"
percentile latency under 3x job execution latency), and can save
even higher average power of upto 32% under relaxed QoS (95"
percentile latency under 10x job execution latency) constraints
when compared to the baseline.

Index Terms—Power aware computing, Heterogeneous proces-
sors, Approximate Computing, Workload management.

I. INTRODUCTION

Large-scale server farms and data centers account for more
than 2% of the US domestic energy consumption [1]. As
they are often over-provisioned to meet the peak demand, a
considerable amount of power is spent on just keeping the
server systems powered up. Improving power efficiency of
data centers is very challenging as service providers need to
meet the Quality of Service (QoS) requirements from the user,
which is typically defined by tail latencies (e.g., 95", 99t")
percentile latencies) for the workloads.

We note that heterogeneous multiprocessing (HMP) offers
even greater opportunity for optimizing power efficiency using
cores with differing performance and power profiles. Owing to
this reason, heterogeneous computing systems provides better
adaptability to tradeoff performance against a given power
budget. Prior work have developed mechanisms that allocate
heterogeneous core resources for latency critical workloads
to achieve energy savings [2], [3]. However, there are still

two major challenges in heterogeneous computing environ-
ments: 1) Designing an effective resource allocation strategy
in heterogeneous processor environments under temporally
fluctuating workload arrival rates can be challenging. 2) Core
reclamation and reassignment typically involves wakeup and
shutdown of core and un-core hardware components, that can
incur non-trivial performance and energy overheads if done
frequently.

In this paper, we propose PowerStar, a framework for
reconfiguring heterogeneous processors and load scheduling to
improve power efficiency when there are temporal variations
in job arrival patterns especially for latency-critical workloads.
Unlike prior techniques that enable or disable cores based
on performance needs of the current workload, PowerStar
carefully selects the next configuration with higher perfor-
mance that delivers higher power efficiency as well. This
reduces the amount of reconfigurations needed when there
are temporary spikes in job arrival patterns, while improving
system power efficiency. Ocassionally, such high bursts over
short period are commonly seen in today’s latency-critical
workloads [4]. To tackle this problem, PowerStar leverages
approximate computing to moderately sacrifice acceptable
levels of in accuracy for jobs (as permitted by corresponding
application domains), so that the current configuration can still
meet the latency constraints. Recent research has shown that
many data center workloads, including web-search and web-
service, are amenable to approximation [S]. To the best of our
knowledge, PowerStar is the first work that leverages both
heterogeneity and dynamic approximation jointly to improve
power efficiency for latency-critical workloads.

In summary, the main contributions of our paper are as
follows:

e« We analyze various workloads under different arrival
patterns, and our experimental results show that the power
efficiency profiles can exhibit different trend patterns
across HMP configurations. Our study shows the need
for workload-specific analysis of power-efficiency pro-
files and reconfigurations to accommodate changes in
workload arrival patterns.

o« We design PowerStar, a framework that considers the
cost of reconfiguration and the current workload arrival
patterns along with QoS constraints, to judiciously choose
the next HMP configuration especially during short bursts
in workload arrival patterns.

« We explore mechanisms to enable adaptive job execution,
that can further boost energy savings and reduce the



number of HMP reconfigurations through leveraging ap-
proximate computing techiniques. In particular, we study
two different reconfiguration strategies to increase power
efficiency of the system while maintaining QoS.

o« We implement a prototype of our PowerStar frame-
work on an ARM big.LITTLE processor-based physical
testbed, and evaluate PowerStar’s efficacy using PAR-
SEC benchmarks [6]. Our results show that, compared
to a baseline of performance-driven power management
policy, our power efficiency-aware PowerStar can reduce
average power by upto 11% under tight QoS (95"
percentile latency under 3x job execution latency), and
can save even higher average power of upto 32% under
relaxed QoS (95" percentile latency under 10x job
execution latency) constraints without adversely affecting
application tail latencies.

II. BACKGROUND

Heterogeneous computing is one of the most promising ways
to improve peak performance of the system while achieving
energy proportionality as other techniques such as frequency
scaling provide limited power reduction [7]. In Single-ISA
asymmetric multiprocessing, the processing cores can be dif-
ferentiated by various micro-architectural features such as
cache and pipeline structure, clock frequencies, special in-
struction accelerators, out-of-order execution capability, etc.
to provide significantly different performance and power char-
acteristics for the same application binaries. A heterogeneous
processor can be a valuable resource in data center environ-
ments, where the workload of different levels of performance

sensitivity can be scheduled accordingly.
Linux’s race-to-idle scheduling policy maintains an ordered

list of CPU configurations (numbers of cores and related
frequency settings) based on performance. It merely switches
to next higher CPU configuration if the current one does
meet the QoS demands. We note that such a policy may not
work well for scheduling on heterogeneous processors, since
a configuration with higher performance may not be the most
power efficient. Also, other heterogeneous multiprocessing
scheduler policy, such as the ARM’s Global Task scheduler
for big.LITTLE processor [8], schedules CPU-intensive tasks
on the big cores and I/O intensive tasks on the small cores to
improve task efficiency. However, this task may not be power-

efficient when multiple jobs run in the system.
We quantify the performance requirements of the data center

users in terms of latency of any given job to be serviced by
the system as specified by the Quality-of-service constraints.
The system targets to satisfy, for instance, the 95" percentile
target latency for all the jobs irrespective of the number of
jobs arriving at any given point of time to the server. We
can consider the latency target parameter to be a multiple of
the job’s execution time, that includes the communication time
between client and server, queuing delays, CPU allocation time

and time taken by the client to process the return request.
In order to meet performance demands from higher work-

load arrival, a processor reconfiguration is necessary to enable
more number of active cores. Similarly, cores must be turned

off when the workload arrival rate decreases. Such changes
to active and low power status of cores is managed by the
OS power governor, and during transition, they add both
energy and latency costs. This is because, the low power
states involve clock gating certain architectural features such
as instruction pipelines and caches, and re-enabling them costs
additional clock cycles. Prior work show that the transition
time between active and sleep states can be high (around
20ms) [9]. Apart from these overheads, there is additional
performance degradation due to warmup times of processor
data and instruction caches depending on the application as
established by [10]. This performance loss was measured to
be around 200% additional time for next 10,000 instructions
in SPEC benchmarks [10].

III. MOTIVATION

Under performance-driven power management policies, when
the job workload exceeds the peak performance capacity of
current configuration, the processor is reconfigured to enable
for higher performance. This is accomplished through pow-
ering on an additional core, or setting a higher frequency
or both. We note that such reconfiguration does not always
correspond to improved power efficiency, i.e, Performance
Per Watt (PPW) does not necessarily improve when simply
moving to a higher configuration. Under fluctuating workload
patterns, it may not be prudent to just pick the next perfor-
mance configuration to adjust to increased workload.

In this section, we perform motivational study to understand
the relationship between power efficiency and performance
in heterogeneous multiprocessing architectures. We consider
a job processing data center-like environment where each job
takes a certain amount of resources to execute on a compute
server and that it needs to satisfy the QoS constraints set forth
by the user. In this experiment, we consider a 6-core ARM
big.LITTLE processor, with 2 high performance (Big cores,
denoted by, ‘B’) and 4 high power-efficiency (Little cores,
denoted by 'L’) processor cores. Each little core and big core
consumes 0.2W and 0.6W peak power respectively on our
ODROID XU4 board with the Exynos 5422 processor [11].
Each individual core could be dynamically shut down and will
consume zero watt in power-off state. We use six benchmarks
from the PARSEC benchmark suite [6] to build an online
web-serving style applications on top of Apache (Refer to
Section V for more details). Figure 1 shows the power
efficiency (maximum jobs execution throughput per watt) for
the benchmarks under various HMP configurations (the X-axis
is sorted based on the power consumption). The maximum job
throughput is obtained by gradually increasing the arrival rate
until the QoS constraint (i.e., 95" percentile latency is less
than 3x job execution latency) is no longer satisfied. From our
experimental results, we can see that the power efficiency does
not linearly scale with the increasing performance of each
successive configuration. In fact, we can see that the peaks
and valleys in power efficiency at each of the configuration,
indicating considerable fluctuations of power efficiency as
capacity of the configuration increases. This is significantly
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Fig. 1: Peak Power efficiency for different HMP configurations of 6-core big. LITTLE procesor for non-approximate and approximate versions

of benchmarks.

different from homogeneous platforms. Also, by comparing
the power efficiency curves across multiple benchmarks, we
can find that the choice of power efficient states may slightly
vary as well. For instance, in swaptions benchmark, 1L+2B
is more power efficient than 4L+1B, whereas the trend is
reversed in Ferret benchmark for the same two configurations.
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Fig. 2: Relative power consumed by PEAR policy over a baseline
PAR policy.

We implement a baseline policy, Performance-Aware Re-
configuration (denoted as PAR) that simply transitions to the
successive higher performance state when QoS constraints
are not met. We conduct study to quantify the benefit of
Power Efficiency-Aware Reconfiguration of HMP processors
(denoted as PEAR) that transitions to next power-efficient
HMP configuration when job arrival patterns change and QoS
constraints are violated. We run the benchmarks for a total
of 500s with diurnal (sinusoidal) job arrival pattern, and
QoS (95" percentile latency) constraint of 3x job execution
latency. Figure 2 shows the relative power consumed by PEAR
over the baseline PAR policy. We observe that the power under
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Fig. 3: Comparison of number of HMP reconfigurations required by
PAR and PEAR policies.

PEAR policy could be upto 30% lower in certain benchmarks
(e.g., canneal). Also, in Figure 3, we observe that PEAR
reduces the number of HMP reconfigurations to satisfy QoS
in 5 out of 6 applications (sometimes, as high a reduction by
almost 50% e.g., canneal). In ferret, however, there is a slight
increase in the number of HMP reconfigurations. While PEAR
offers better energy savings than PAR in general, we note that
our motivational study offers good insights into the promise
of pursuing power efficiency-aware reconfiguration of HMP to
accommodate short-lived fluctuations in workload arrivals.

Based on our motivational study, our intuition is that,
through avoiding the processor configurations into power-
inefficient states, we can significantly reduce the energy con-
sumption of a server. Additionally, we enable approximation
(as permitted by the application domain) in order to achieve
faster execution time and higher power efficiency. Note that
approximate computing for PARSEC benchmarks has been
studied by prior work [12].



IV. POWERSTAR DESIGN OVERVIEW

As evidenced by our experimental results in Section III, HMP
configurations that offer the necessary performance does not
always correspond to increased power efficiency. Unfortu-
nately, existing OS process schedulers typically coordinates
tasks and manages heterogeneous cores merely based on
the projected performance needs. For instance, Utilization-
aware load balancers [8] categorize tasks into computation-
intensive and I/O- intensive types, and schedule tasks onto

high-performance and slow cores respectively.
In this work, we propose PowerStar, a power efficiency

aware reconfiguration and load scheduling framework in het-
erogeneous processor environments, especially under short
bursts or fluctuations in job arrival rates while satisfying QoS
constraints. At a high level, PowerStar incorporates two critical
components: 1) a workload-specific power efficiency profiling
module for different HMP configurations; 2) a runtime power-
efficiency aware reconfiguration module that dynamically al-
locates heterogeneous cores and leverages approximate com-

puting for jobs to meet QoS constraints.
Workload profiler for power efficiency of a HMP con-

figuration. In the offline analysis stage, we systematically
profile the maximum arrival rate that a particular HMP config-
uration could serve under target QoS constraints. This could
be computed by gradually increasing the job arrival rate in
small increments until the tail latency (QoS) constraints are
violated. After this step, we are able to obtain the maximum
throughput (performance) per watt for a given configuration.
To understand the effect of approximation that could enable
higher power efficiency, we perform the same procedure for
the approximate versions of the job workload under a different
approximation levels. Essentially, after the completion of this
offline analysis phase, our profiler generates a power efficiency
vector that is a six-element tuple: (W, Q, C, Aoz, E), where
W indicates the workload type, @} is the QoS constraint
(i.e., target tail latency), C' represents the HMP configuration.
Amae and E represent the maximum job arrival rate that can
be serviced while not violating QoS constraints and, and E
denotes the highest power efficiency under this setting.

Runtime power efficiency-aware HMP reconfiguration.
Figure 4 illustrates the overall design of the power efficiency
aware resource reconfiguration for PowerStar. At a high level,
the reconfiguration comprises of three major modules: the load
monitor module, the reconfiguration controller and the job
approximation manager. The load monitor keeps track of the
arrival rate and profiles the service times for the workload.
It is worth noting that typically the average service times
for latency-critical workload is steady over time, therefore
the monitor only needs to capture the service time statistics
for an initial warmup period of the system. However, the
job arrivals may exhibit either short-term spikes or long-
term diurnal fluctuations. Thus our monitor will continuously
track the historical job arrival rates, and estimate job arrival
traffic for the next decision window. PowerStar uses a mov-
ing average-based prediction, similar to TS-BatPro [13]. The
reconfiguration controller receives the job arrival rates and

service time statistics from the load monitor, and then makes a
determination on the HMP configuration that will yield highest
power efficiency while still satisfying the tail latency (QoS)
objective. The reconfiguration can either perform reallocation
of heterogeneous cores and/or request adjustment of approxi-
mation levels for the jobs to be served in the current period.
Finally, the job approximation manager receives notifications
about approximation target from the reconfiguration controller.
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Fig. 4: High Level Design of PowerStar

A. Conservative Switching

The conservative switching policy will prioritize leveraging
approximation as much as possible without having to switch
to a higher performance HMP reconfiguration. In other words,
the conservative switching policy aims to remain closer to the
current HMP configuration as possible, with the anticipation
that load spikes are short-lived. Specifically, for the current
configuration with power efficiency vector, denoted by V, if
the predicted job arrival A, exceeds V..\p,qz, this policy first
attempts to find an approximation level that can still guarantee
the QoS (i.e., soft reconfiguration). If soft reconfiguration is
not suitable (i.e., approximate computing still violates latency
constraints), then HMP reconfiguration is performed (i.e., hard
reconfiguration). The conservative switching mechanism is
built based on the observation that the load fluctuation for
latency-critical workloads often undergoes short-lived bursti-
ness [4]. Therefore, a slight change in HMP configuration
(e.g., an additional small core) with job approximation retained
for a short period of time is expected to absorb such short-
term spikes. This avoids considerable hardware reconfiguration
(e.g, allocation of a big core) that may severely deteriorate the
power efficiency of the system. We note that the approximation
level needs to be controlled judiciously so that the accuracy
of the latency-critical workload would not be excessively
influenced. Accordingly, we monitor the number of jobs which
were executed approximately and employ a approximation
threshold to bound the worst-case accuracy loss for the jobs.
Algorithm 1 describes the conservative switching policy.

B. Aggressive Switching

Different from Conservative Switching, Aggressive Switching
prioritizes HMP configuration that can serve the incoming jobs
that avoids sacrificing accuracy. That is, whenever the current
HMP configuration is unable to bound the tail latency due
to increased load with the highest allowable approximation



level (per user’s QoS constraints), it will elect the next most
power efficient HMP allocation for the non-approximate job
execution to meet the QoS. This algorithm is more applicable
when there are high variations in job arrival rate patterns.
By choosing the next most efficient state without sacrificing
accurancy loss, we still leave room in the new transition
state to absorb any future variations in arrival rate through
approximation. The aggressive switching policy is shown in
Algorithm 2.

Algorithm 1: Conservative Switching algorithm

Input: ;

List of HMP configuration in order of performance:C1, C2, Cs...C),;
New estimated job arrival rate: Ry e

Current job arrival rate: R;

Current HMP configuration: C';

Number of Approximated Jobs in current time window: Num Aprrox;
Current level of Approximation:A;,,;

Power for the corresponding HMP configurations Py, Pa, Ps3...Pp;
Output: New HMP configuration: Cl;

New level of Approximation: A ,q+

8 let Apone and Apjgp be the lowest and highest approx. levels;

9 if R, ew >MaxRate(C;, A;,) then

10 if Ain = Ajow and Ry <MaxRate(C;, Apign) and
numApprozx + 1<QoSappros then

1 L Aout Ahigh;

R T S R SR

12 else if numApprox + 1<QoSapprox then

13 Find HMP configuration C; with lowest power P, such that
MaxRate(Cy, Anigh) <Rnew:

14 L Aout < Anigh:

15 else

16 if numApprox + 1<QoSapprox then

17 Co + Cy;

18 L Agut < Anighs

19 else

20 Find HMP configuration C with lowest power P, such that

MaxRate(Co, Anone) <Rnew;
21 Aout + Anone;

22 else if Ryew <MaxRate(C;, A;y,) then
23 CApPproz,,in +—
FindstateCywithlowestPgsuchthatMazRate(Cy, Apigp)<Rnew:

2 CNOAPPToT yin
FindstateCgwithlowestPysuchthatMazRate(Cq, Anone)<Rnew:

25 if CApproxpin 7 CNApprox,i, then
26 if numApprox + 1<QoSapproz then
27 L Aout < Anighs

28 else

29 Co < CNApproTmin;

30 L Acut + Anone;

31 else

32
33

else if A;,, = ApignandNumApprox + 1>Q0Sappro. then
35 L Aout <~ Anone

Co «+ CNApproTmin;
Avut + Anone:

»
£

6 return A,q¢;

w

C. Implementation

The resource allocation of the heterogeneous processor is
implemented by dynamically mapping active threads to the
available cores in the current configuration, and by putting
the rest of the unused cores into low-power mode [14]. We
implement the reconfiguration algorithm as a separate module
within httperf load generator [15]. The reconfiguration module

Algorithm 2: Aggressive Switching algorithm

Input: ;

List of HMP configuration in order of performance:C1, C2, C3...C),;
New estimated job arrival rate: R, e

Current job arrival rate: R;

Current HMP configuration:C'; ;

Number of Approximated Jobs in current time window: Num Aprrox;
Current level of Approximation:A;,,;

Power for the corresponding HMP configurations Py, P2, Ps... Py}
Output: New HMP configuration:C;

New level of Approximation: A+

8 let Anone and Ap gy be the lowest and highest approximation levels;
9 if R, e >MaxRate(C;, A;,,) then

R S O

10 if Ain = Ajow and Ryew <MaxRate(C;, Apign) and
numApprox + 1<QoSappros then
1 | Aout « Anigns
12 else
13 Find HMP configuration C, with lowest power P, such that
MaxRate(Co, Anone) <Rnew;
14 Aout < Anone;

15 else if R, ¢y, <MaxRate(C;, A;y) then

16 CApproxmin < FindthestateC,withlowestpower Py
suchthatMazRate(Cy, Apigh)<Rnew:

17 CNoApproxmin + FindthestateCrwithlowestpower Py
suchthatMazxRate(Cy, Apone)<Rnew:

18 if CApprox,in # CN Approxmin then

Co < CNApproxmin;
Aout < Anones

19
20

21 else if A;p, = ApignandNumApprox + 1>Q0Sappros then
2 L Aout +— Anone

23 return A,,¢;

performs load prediction within the next time window, and
determines the right HMP configuration as well as job approx-
imation levels using algorithms described earlier in Section IV.
It then issues commands to the Apache server that performs the
soft and hard reconfiguration of HMPs as needed. Our typical
monitor window in-between decisions for reconfiguration is
1 second, although a rapidly changing arrival pattern may
trigger early reconfiguration if necessary. HMP reconfiguration
is done by sending special HTTP requests to the application
server to perform remapping of the Apache working threads
as well as modifying the approximation parameters of specific
applications in the CGI scripts.

As part of the QoS constraints, we also consider an ap-
proximation threshold to avoid noticeable loss of accuracy
due to prolonged execution of approximated jobs. Currently,
our policy would not allow more than a sequence of k jobs to
be executed continuously in approximation mode (where & is
set by the user). We note that k is a configurable parameter
that could be set by system administrators based on user’s
needs. By default, we set k to be 5 in our experiments.

V. EXPERIMENTAL SETUP

Client and server configuration. We build a prototype of
PowerStar using Apache web server. The web server is de-
ployed on an ODROID XU4 board equipped with the Samsung
Exynos 5422 ARM big.LITTLE processor [16]. The key hard-
ware configuration and the power model of the ARM board
are illustrated in Table I. In our evaluation, we let PowerStar
to use 4 LITTLE and 2 big cores while the rest two big
cores are allocated exclusively to run other system background
processes. This ensures that other system processes will not



interfere with latency-critical workloads. Each request from
the client side is served by the Apache server internally via
executing CGI scripts that run a particular native job.We setup
a client-side load generator on a separate machine running
httperf [15]. We modified httperf so that it is able to generate
server traffic based on real-world job arrival traces. We utilize
a real system job arrival trace from NLANR [17] to model our
workload arrival patterns to the system. Additionally, we also
use a synthetically generated sinusoidal (diurnal) job arrival
pattern that exhibits higher variation in the job arrivals to
stress-test our system.
TABLE I: Exynos 5422 big.LITTLE processor specs

[ Specification [ LITTLE cluster | big cluster |
Core Type Cortex A7 Cortex A15
Number of Cores | 4 4
Max. Frequency 1.4 Ghz 2 Ghz
Pipeline In-order Out-of-order
Peak Power 0.2W 0.6W
Memory 2 GB LPDDR3 RAM

A. Benchmarks

We consider six different applications from PARSEC-2.1 [6].
Each application support approximate computing via tuning
the application parameters [18]. Currently, we only model one
level of approximation in PowerStar, and note that our analysis
can be extended to multiple approximation levels as well. We
describe our applications in Table II:

1400
W LITTLE core s LITTLE core(Approximation)

big core 7 big core (Approximation)
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Fig. 5: Benchmark execution times (non-approximated and approxi-
mated) when run on big and little cores.

VI. EVALUATION

In our experimental evaluation, we study the effectiveness of
PowerStar using applications from various domains, arrival
traffic patterns and QoS constraints.

A. Power Efficiency and Performance

First, we study the effect of approximation on the execution
time of benchmarks as well its power efficiency profiles.
We use the approximation parameters outlined in Section V.
Figure 5 shows the execution times of the various benchmarks
in LITTLE and big cores under both non-approximate and
approximate settings. As expected, big cores offer higer per-
formance in general over little cores even over approximation.
The only exception is canneal, where execution time is reduced
significantly when run under approximate mode. Figure 1

presents corresponding power efficiency profiles for various
HMP configurations in different benchmarks. As expected
the power efficiency profiles of approximate versions are
much higher, and in particular, benchmarks like streamcluster,
canneal, bodytrack and ferret show a sharply increased power
efficiency for certain HMP configurations under approximate
mode.

B. Conservative vs. Aggressive Switching

We study the average power consumption for conservative and
aggressive switching policies in our PowerStar framework for
both tight QoS (95" percentile latency under 3x job execution
latency) and under relaxed QoS (95" percentile latency under
10x job execution latency) . For these experiments, we model
load arrival patterns from real traces such as NLANR, as
well as synthetic diurnal job arrival pattern. Our experimental
results are shown in Figure 6. We find that Conservative
switching offers higher power savings in general, and can
result in upto 11% savings compared to baseline PAR policy
(See Section IIT). With the diurnal arrival pattern, the conser-
vative switching policy provides much higher power savings
of up to 32% in certain benchmarks such as canneal.
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Fig. 7: Comparison of number of reconfigurations required for tight
(3x) QoS threshold NLANR job arrival.

C. HMP reconfigurations

One important benefit of using approximation is the reduction
in the number of reconfiguration required. Using either Con-
servative or Aggressive policies, PowerStar is able to reduce
the number of reconfigurations by 41%-84% as compared
to the baseline PAR policy for NLANR job arrival pattern
as shown in figure 7. Moreover, by switching to the non-
approximate jobs when current load exceed the capability
of the hardware configuration, the conservative policy offers
a slightly lower number of reconfiguration when compared
to the aggressive policy. Obviously, this preference of non-
approximation state offers more room to absorb the fluctua-
tions in job arrival rate, and thus fewer transitions. Addition-
ally, when the workload is more varying as in the diurnal job
arrival pattern, we see that aggressive policy is preferable.



TABLE II: Benchmarks and approximation parameter details.

[ Benchmark [ Application domain [ Approximation Parameter
Swaptions Financial Analysis Number of Montecarlo simulations reduced from 200 to 100.
Bodytrack Computer Vision Limiting the number of input particles processed 20 to 10.
Ferret Similarity search Number of top results queried from 5 to 2.
Streamcluster | Data Mining and Clustering Number of clusters required from 1000 to 750.
Canneal Simulated Annealing for Optimum routing cost | Number of Swapping steps from 1000 to 500.
Fluidanimate | Physics Computation Number of frames to simulate from 10 to 6 in the 15K particle testcase.
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Fig. 6: Average Relative Power under different job arrival patterns and QoS constraints (Baseline: PAR policy).

VII. RELATED WORK

Energy management for latency critical workload has been
well studied in the past decade. Typically, the proposed
techniques could be categorized into two classes: (i) idle
power management that improves energy savings by putting
system hardware components to low-power modes ( [13], [14],
[19]-[21]), (ii) active power managements leveraging Dynamic
Voltage and Frequency Scaling (DVES) to save processor or
server dynamic power ( [4], [22]), (iii) Application power
debugging [23]-[25]. These techniques exploit the tail latency
slack to dynamically trade-off performance for higher energy
efficiency while still meeting the service level agreement. Most
of these mechanisms consider homogeneous multi-core pro-
cessors that exhibit consistent power efficiency across cores.

During the past few years, several studies have shown that
heterogeneous processors offer even greater opportunity for
enhancing computing efficiency through cores with differen-
tiating performance characteristics. Some prior works have
proposed energy efficient scheduling frameworks for hetero-
geneous processor. Specifically, Octopus-Man [2] dynamically
schedules tasks on either high performance cores or power-
efficient cores to enhance energy efficiency with QoS aware-
ness. Hipster [3] utilizes reinforcement learning to adaptively

map workload at certain utilization level to a heterogeneous
core allocation as well as DVFS configuration that meet QoS
and achieve higher energy savings. Note that these techniques
do not explicitly model or leverage the power efficiency across
various HMP configurations. Differently, PowerStar directly
optimizes energy efficiency through intentionally choosing the
most power efficient configurations, which has been shown
to be extremely effective in achieving considerable energy
savings. Haque et al. [26] use techniques that dynamically
change migration thresholds for transitioning application pro-
cesses from slow to fast processing cores based on length of
execution. This approach may incur non-trivial performance
overhead due to the fine-grained per-process monitoring and
scheduling mechanism.

Finally, there are some emerging studies on using approx-
imation to trade off quality of result for better performance
and/or energy efficiency [5], [12], [27]. CLAP [28] adjusts
the data aggregation granularity for online search workload
to achieve reduced tail latency with minimal accuracy losses.
PowerDial [18] dynamically adapts the application behavior
through approximate computing so that applications can meet
task deadlines. MEANTIME [12] applies control theory to
perform resource allocation based on the current jobs, and ad-



justs job approximation levels to avoid performance violations.
Pliant [29] improves server utilization for mixed workloads
by controlling approximation of non-latency critical jobs to
satisfy the latency requirement of co-located latency critical
jobs. This approach does not consider server heterogeneity
and cost of processor core reconfiguration especially in highly
variable workload patterns.

Additionally, there have been studies utilizing both hetero-
geneity and job approximation techniques. Tan et al. [30]
propose a heterogeneity aware, per task scheduler to im-
prove performance under a strict DP constraint. Recently,
Kanduri et al. [31] show how a coordinated management of
approximation and processor performance control is necessary
as controlling one without aware of the other will output
incorrect results. Compared to these works, the key difference
of our proposed framework is that PowerStar makes use of
approximation as the control knob to optimize duration of the
system in the most power efficient state even under bursty
workloads. PowerStar is able to achieve higher energy saving
due to reduced number of hard reconfiguration as well as
prolonged stay in power efficient settings.

CONCLUSION

In this paper, we proposed PowerStar, a power efficiency-
aware reconfiguration and local scheduling framework that
aims to optimize power efficiency for latency critical work-
load on heterogeneous multi-processors. PowerStar carefully
chooses the most power-efficient configurations and maxi-
mizes their state residency. Through a coordinated reconfigu-
ration mechanism, PowerStar is able to significantly reduce the
number of hardware reconfigurations even when the workload
exhibits short-lived bursty job arrivals. We have built a proto-
type of PowerStar on a real-world HMP platform, and exten-
sively evaluated the efficacy of our proposed framework using
a variety of workload and traffic patterns. Our results show
that, compared to a baseline of performance-driven power
management policy, our power efficiency-aware PowerStar can
reduce as much as 28% power reduction under tight QoS
(95" percentile latency under 3 job execution latency), while
reducing as much as 50% processor reconfigurations.
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