
Tradeoffs in Fine-Grained Heap Memory Protection ∗

Jianli Shen, Guru Venkataramani, Milos Prvulovic
College of Computing

Georgia Institute of Technology
{jianli, guru, milos}@cc.gatech.edu

ABSTRACT
Different uses of memory protection schemes have differ-
ent needs in terms of granularity. For example, heap secu-
rity can benefit from chunk separation (by using protected
”padding” boundaries) and meta-data protection. However,
such protection can be done at different granularity(eg. per-
word, per-block, or per-page), with different performance,
cost and memory overhead tradeoffs for different applica-
tions. In this paper, we explore these tradeoffs for the pur-
pose of heap security in order to discover whether the ”right”
granularity exists and how the granularity of protection af-
fects design decisions.

We evaluate such tradeoffs based on the current heap-
security approaches in a single address space operating sys-
tem.The access control granularities we use are word, 8-byte,
16-byte, 32-byte, and page. We find that none of these
schemes is optimal across all applications. In some applica-
tions, excessive padding degrades caching performance for
coarse-granularity schemes, while in others, large-block per-
mission changes introduce large overheads for finer granular-
ities. To overcome these limitations, we propose a new two-
granularity scheme, which uses word- and page-granularity
protection to eliminate padding but allow fast page-size per-
mission changes for large memory blocks. On all applica-
tions, this new scheme performs as well or better than the
best single-granularity scheme. It also performs on par with
the more complex Mondrian Memory Protection, which uses
a complex trie structure and multiple permissions caching
mechanisms to support a hierarchy of protection granulari-
ties.

∗This work was supported, in part, by the National Sci-
ence Foundation under Grant Numbers CCF-0429802, CCF-
0541080 and CAREER award 0447783. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily re-
flect the views of the National Science Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASID2006 San Jose, California, USA
Copyright 2006 ACM 1-59593-576-2 ...$5.00.

Categories and Subject Descriptors
C.0 [Hardware/software interfaces]:

Keywords
Heap Security, Memory Protection, Protection Granularity

1. INTRODUCTION
In recent years, there has been a clear trend toward im-

proving security of computer systems and resilience against
attacks. This trend, combined with increasing number of
transistors on a chip, has led to a number of proposals for
hardware-based and hardware-assisted protection schemes.

Many attacks today exploit some heap-based vulnerabil-
ities, such as buffer overflows [5], or a function pointer [3]
overwrites with input data, modification of heap meta-data,
etc. As a result, hardware-enforced memory protection of
smaller-than-page memory regions (e.g. write-protect func-
tion pointer of a heap block metadata) would go a long way
toward improving security of computer systems.

Unfortunately, there have been relatively few studies of
such fine-grain memory protection, especially when it comes
to tradeoffs between hardware and software support. In this
paper, we take an approach of selecting one particular (but
fairly broad) use of fine-grain protection, and then examin-
ing how to achieve such protection with different levels of
hardware support. Our scheme individually protects heap
chunks from sequential overflows in neighboring chunks, and
also prevents corruption of heap meta-data. The levels of
hardware support we examine range from using existing
page-granularity protection, to word-granularity protection
where every memory word in the application’s address space
has its own set of access permissions.

To implement the desired heap protection using hard-
ware support that has a protection granularity larger than
a word, we rely on software padding to block-align memory
areas that have different protection. Once we account for
all the overheads of checking and manipulating (modifying)
permissions, we find that fine-grain schemes degrade per-
formance in applications with large heap objects, because
permissions changes require iterating through many small
permissions entries. However, coarse-grain schemes degrade
performance for applications with small objects, because
alignment wastes space and results in increased cache and
TLB pressure.

As a result of these considerations, we propose a new two-
level scheme that supports word- and page-granularity pro-
tections. Word-granularity support eliminates padding and

its cache- and TLB-related problems, while page-granularity
protection allows quick permission changes for large blocks
that “cover” entire pages. We find that this new scheme
performs, on each application, as well or better than the
best single-granularity scheme for that application, with per-
formance overheads below 2% on all applications and well
below 1% on average. We also find that this simple two-
granularity scheme slightly outperforms the more complex
Mondrian Memory Protection (MMP), which uses a trie
structure to keep its protections with a hierarchy of granu-
larities, and uses multiple sophisticated caching mechanisms
to quickly look up these protections.

The rest of the paper is organized as follows: Section 2
gives an overview of fine-grained heap protection, Section 3
presents our experimental setup, and Section 4 presents the
evaluation of protection characteristic of single-granularity
schemes. Based on these findings, Section 5 presents our
new simple and effective two-level scheme and compares its
performance to other schemes. Section 6 presents related
work. Finally, Section 7 presents our conclusions and future
work.

2. OVERVIEW OF FINE-GRAIN
HEAP PROTECTION

The heap memory area is typically managed by a user-
level library, such as the C standard library (e.g. glibc [7]).
Data within the heap area is divided into chunks of various
sizes. Allocation requests are serviced by finding a suitably-
sized free chunk. If there are no chunks of the right size, a
larger chunk is split to obtain a new chunk of a needed size.
Finally, if there are no more chunks that are large enough,
the heap area is expanded using a brk system call or a new
heap area is created using mmap.

To quickly service allocations, free chunks are organized
into free lists, with each free list containing chunks in a given
size range. As a result, most often a free chunk of appropri-
ate size can be found at or near the head of the free list for
that chunk size.

A deallocated chunk can simply be added to a free list
for that chunk size. However, the heap management library
tries to reduce heap fragmentation through consolidation of
free chunks. When a chunk is freed, the library checks the
neighboring chunks, and if one or both neighbors are free
they are combined with the newly freed chunk into a larger
free chunk.

Meta-data for a heap chunk consists of the chunk’s data
size and allocation status, and free list pointers for a free
chunk. This metadata must be quickly found given a chunk’s
address, so a typical heap library keeps its meta-data in-
terleaved with data - meta data is kept as a header that
precedes the chunk’s data region. Given the chunk’s data
address (e.g. when free() is called), its meta-data is found
at a constant (negative) offset.

Unfortunately, such meta-data is easy to corrupt. For ex-
ample, if a heap chunk contains a buffer, writing past the end
of the buffer will result in modifying meta-data for the next
chunk in the heap memory area. This can result in leaking
memory (e.g. by reducing the size of a large free chunk) or
crashes (e.g. by changing the status of an allocated chunk to
appear free). By leveraging the free list insertion/deletion
code, the attacker can even manipulate free list pointers in
a way that causes a value of attackers choice to be placed

in a memory location of attackers choice [1, 10]. Note that
this is a very powerful exploit for attackers, e.g. it allows
a function pointer to be modified directly without affecting
surrounding data, which defeats protection schemes based
on cannary values [4].

Heap data is also vulnerable to attacks, e.g. by a buffer
overflow that overwrites data in the next chunk which hap-
pens to contain function pointers or other information that
can affect control flow.

To protect heap data and its corresponding meta-data
against sequential buffer overflows, we add a write-protected
block before and after meta-data, as shown in Figure 1.
With a buffer overflow reaches one of these protected block
before it reaches any meta-data (or data in another chunk).

a = 1: allocated
a = 0: free

31 3 2 1 0Head
Head Size 0 0 a

App Data

Padding/Barrier

Padding/Barrier

Figure 1: Heap Structure with Interleaved Padding.

However, meta-data of a chunk is usually small (e.g. only
4 bytes in the GNU standard C library on a 32-bit architec-
ture), and some heap chunks also have relatively small data.
If the hardware can track protections at the granularity of
N bytes, we need two N-byte blocks per chunk and, if N is
larger than the word size, additional padding is needed to
align data and meta-data blocks to N-byte boundaries.

3. EXPERIMENTAL SETUP

3.1 Protection Information Representation
To study the tradeoffs in fine grained memory protection

scheme, we use 2-bit protection entries, with protections as
shown in Figure 2. Each protection entry is associated with
an N-byte block of memory, where N is the protection granu-
larity. The protection information is kept as a simple array
structure in a separate and protected part of the applica-
tion’s address space not accessible to the programmer, and
can be stored in memory and cached in L2 on-chip caches.
We assume that the OS protects this information through a
trusted kernel. Because a protection check is needed every
time data is accessed, keeping blocks of protection entries in
the data L1 cache would dramatically increase the required
L1 bandwidth. To avoid this, we add a separate small L1
protection cache. This cache is only 2KBytes in size, so it
is smaller and faster than data and instruction L1 caches.
However, since protection entries are much more compact
than the corresponding data and code, the protection cache
tends to hit more often than existing L1 caches. As a re-
sult, a protection cache lookup is very rarely on the critical
path of the processor’s execution. Finally, the separate L1
protection cache leaves existing highly-optimized L1 caches
unchanged, so the overall impact of our fine-grain permis-
sions’ checking should be minimal.

execute-read11

read-write10

read-only01

no perm00

MeaningPerm Value

Figure 2: 2 Bit Permission Values and Their Mean-
ing.

3.2 Benchmark Applications
We use all C-language applications from the SPEC CPU

2000 [17] benchmark suite except perlbmk and vortex which
use system calls that are currently not supported in our
simulator. We modified the standard C malloc library [7]
to insert padding and protect/unprotect code for different
protection granularities. We compiled all the applications
with our new library at the highest (O3) optimization level
in GCC. For each application, we use the reference input
set in which we fast-forward through the first five billion
instructions to skip initialization phases and simulate the
next two billion instructions in detail. However, we keep
track of the protection information during fast forwarding
of instructions to maintain correctness.

3.3 Benchmark Characteristics
To characterize memory allocation behavior in SPEC ap-

plications, we show in Figure3 the average allocation request
size (in bytes). The figure shows that applications with fre-
quent heap requests have small average allocation sizes (for
example, twolf has an average request around 32 bytes, and
art request 26 bytes on average). For those applications, the
overhead of padding will significantly depend on the protec-
tion granularity, both in terms of memory space and in terms
of performance.

1.00

10.00

100.00

1000.00

10000.00

100000.00

1000000.00

10000000.00

bzip
2

gcc
gzip m

cf

par
se

r
m

es
a

am
m

p

cr
af

ty
tw

olf

eq
uak

e ar
t

vp
r

Figure 3: Average Allocation Request Size in Bytes.

3.4 Simulation Environment
We use SESC [11], an open-source execution-driven simu-

lator, to simulate an out-of-order superscalar processor whose
architectural parameters are shown in Table 1. The L1 data
cache we model is 16KB in size, two-way set associative,
dual-ported, with 32-byte blocks. The processor-memory
bus is 128 bits wide and operates at 500MHz, and the no-
contention round-trip main memory latency is 375 cycles.

The protection cache is 2KBytes in size, 8-way associative
and has a 32-byte block size. Its access latency of this cache
easily matches the 2-cycle latency of other L1 caches (there
is no need for permissions to arrive before the data does).

Architectural Parameters Specification

ArchBits 32
Clock Frequency 5 GHz

L1 I-Cache WB 16KB,2way, 32B line
L1 D-Cache WB 16KB,2way, 32B line
L2 Cache Unified WB, 2M, 8way, 32B line
L1 latency 2 cycles
L2 latency 10 cycles

State Cache(SL1) WB 2KB, 8way, 32B line
SL1 latency 2
I/D TLB 128 entries, fully assoc.

TLB miss latency 500 cycles
Memory bandwidth 3.2 GB/sec

Memory latency 375 cycles
Fetch/Decode Width 6/6 per cycles
Issue/Retire Width 6/6 per cycles

ROB entries 156
load/store entries 24/24
Int/float registers 128/128

Table 1: Parameters of the Simulated A rchitecture.

4. PROTECTION GRANULARITY
CHARACTERIZATION

In this section, we assume simple hardware support that
maintains protection information at a fixed granularity. In
other words, one protection entry is associated with each
N-byte block of data, where N is hard-wired and protection
entries are kept as an array in memory and cached on-chip
as described in Section 3.

The smallest protection granularity (the value of N) in our
experiments is 4, which corresponds to per-word protection
that needs no padding to align protected blocks with a pro-
tection granularity boundary. We consider larger granulari-
ties of 8, 16, 32, and 64 bytes, which require some padding,
as well as a 4096-byte granularity, which corresponds to per-
page protection that can use existing page tables and TLBs.

Table 2 shows the heap memory space overhead due to
padding to align our protected blocks to protection gran-
ularity boundaries. Note that this overhead does not in-
clude the two protected “delimiter” needed to “guard” each
meta-data entry. This overhead also does not include actual
protection entries, whose overhead can easily be calculated
as two bits per N bytes of memory mapped into the appli-
cation’s address space. The overhead of protection entries
is 6.25% (2/32) for the per-word protection granularity, and
diminishes in linear proportion to the protection granularity.

From the table, we observe that the padding overhead in
several applications becomes considerable when the protec-
tion granularity is 16 or larger. The applications with low
average allocation request sizes namely twolf, equake, art
and vpr exhibit this behavior. (Figure 3). With a 64-byte
protection granularity, in these applications the space used
by padding exceeds the space used for actual heap data, and
with page-granularity protections the padding is so preva-
lent that actual data represents less than 2% of the heap
area being used.

The execution time overhead for different protection gran-
ularities is shown in Figure 4. We observe that several appli-
cations suffer huge overheads with page-granularity protec-

-5%
0%
5%

10%
15%
20%
25%
30%

bzip2 crafty gcc twolf gzip mcf parser vpr ammp equake mesa art Average

4-byte 8-byte 16-byte 32-byte page

������� ������� 	
����� �����

Figure 4: Execution Time Overhead with Different Protection Granularities

bench 8 byte 16 byte 32 byte 64 byte page

bzip2 0.00% 0.00% 0.00% 0.00% 0.02%
gcc 0.01% 0.16% 0.53% 1.03% 17.18%
gzip 0.00% 0.00% 0.00% 0.01% 0.26%
mcf 0.00% 0.00% 0.00% 0.00% 0.01%

parser 0.00% 0.00% 0.00% 0.00% 0.07%
mesa 0.00% 0.00% 0.00% 0.00% 0.18%
ammp 1.04% 4.74% 11.90% 20.20% 963.17%
crafty 0.02% 0.06% 0.13% 0.28% 18.15%
twolf 3.55% 33.34% 92.84% 221.61% 9666.51%

equake 0.00% 22.25% 61.53% 173.24% 7112.92%
art 0.00% 18.17% 47.33% 134.42% 5575.46%
vpr 0.01% 12.37% 61.39% 159.51% 6226.98%

Table 2: Memory Space Overhead of Padding for
Different Protection Granularities

tion. This performance overhead is mostly caused by TLB
contention and cache conflicts. Note that we place a pro-
tected word between data of one chunk and the meta-data of
the next chunk, and we also place a protected word between
a chunk’s meta-data and its data. With page-granularity
protection each of these protected words must be on a page
by itself. As a result, meta-data of each chunk is on a page
by itself (”sandwiched” by protected pages), and data for
a chunk also occupies one or more entire pages. As a re-
sult, each actively used heap block uses at least one TLB
entry, and memory management operations access a large
number of pages (one for each accessed meta-data entry).
This is in contrast to “normal” heap access patterns, where
data and meta-data for many small blocks may fit in a single
page. As a result, some applications experience a greatly in-
creased number of TLB misses. Furthermore, since all small
heap chunks occupy cache blocks that are at the beginning
of their pages, cache blocks that belong to sets whose tags
correspond to a beginning of a page experience heavy con-
tention, while blocks in other sets remain under-utilized.
This considerably increases the number of cache conflicts
and further degrades performance.

For smaller protection granularities, the performance over-
head is caused mainly by two factors. First, finer-granularity
protection means that an allocation or deallocation of a large
block changes a large number of protection entries. A clear
example of such behavior is mcf, which has a very large
allocation request size. As the protection granularity in-
creases, fewer protection entries need to be un-protected and
the overhead is reduced. The second source of overhead is
the increasing cache pollution and conflicts due to padding.

The clearest example of this is in art, where a transition
from 32-byte to 64-byte granularity results in a large over-
head increase (from less than 1% to nearly 30%). This is
because a typical heap chunk in art fits in a single 32-bit
cache line, and 64-byte alignment results in increased de-
mand for even-numbered cache sets (heap data maps there)
and under-utilization of odd-numbered cache sets (padding
maps there).

Overall, we observe that small-granularity protection is
needed to achieve low memory space overheads and to re-
duce cache and TLB conflicts, but larger granularity is bene-
ficial to reduce the overhead of changing protections for large
chunks of memory. As a result, we find that a granularity of
8 bytes is a good balance between padding space overhead
(less than 4% in all applications) and performance overhead
(less than 9% in all applications). However, we note that
the ideal scheme would be one to allow fine-grain protec-
tion for applications that have small heap chunks (to re-
duce padding overhead and contention in caches and TLBs),
while also allowing large-granularity protection in applica-
tions that have large heap chunks (to reduce overhead of
protection updates).

From Table 2 and Figure 4, we see that an ideal scheme
would use multiple granularities. In the next section, we
describe a simple two-granularity scheme whose complexity
and cost is similar to our word-granularity scheme, but with
the added advantage of being able to handle large blocks at
page-granularity.

5. A NEW TWO-GRANULARITY SCHEME
The multiple-granularity scheme we propose uses only two

granularities: word and page. The word granularity al-
lows us to avoid padding, and the page granularity allows
us to quickly update protections when an entire page be-
longs to the same chunk. For the word granularity, we use
the same protection storage and caching approach that was
described in previous sections. Our page-granularity pro-
tection, however, is kept in the page table and cached in
TLBs. The page-granularity protection entry also has an
extra bit, which indicates whether the page uses page- or
word-granularity protection.

To check access permissions for a given address, the hard-
ware first accesses the TLB, handling TLB misses in the
same way as existing processors. In addition to access per-
missions maintained by the OS, the hardware also checks
our 3-bit user-level permissions. If the granularity bit indi-
cates that page-granularity protection is used for that page,

0%
2%
4%
6%
8%

10%
12%

bzip2 crafty gcc twolf gzip mcf parser vpr ammp equake mesa art Average

Word-Granularity Two-Granularity MMP

Figure 5: Execution Time Overhead of Our New Two-Granularity Scheme, Compared to Word-Granularity
Protection and MMP.

the 2-bit protection entry is used to check whether the cur-
rent access is allowed. If the word-granularity protection
is indicated, the processor searches for the word-granularity
protection entry (or entries, in case of a multi-word access)
in the L1 protection cache, using it to check whether the
current access is allowed. Misses in the L1 protection cache
are handled by fetching the block of permissions from the
“regular” L2 cache and, if needed, memory.

We note that it would be possible to use a different granu-
larity as the “large” granularity in a two-granularity scheme.
However, we choose page granularity becasue it has the
advantage of being already supported by page tables and
TLBs, so we do not need another protection cache and a
second memory area to keep page-granularity protection en-
tries.

The memory space overhead of our two-granularity scheme
is similar to the word-granularity scheme (6.25% for per-
word protection entries). Note that we still keep word-
granularity protection entries allocated, even for pages that
use page-granularity protections. This is done to simplify
management of protection entries - it allows us to keep per-
word protections in a single array structure and avoid com-
plex memory management operations when switching a page
of data between protection granularities.

The procedure that sets permissions for a region of mem-
ory iterates through that region, and checks whether the
next word in the iteration is page-aligned and whether the
region “covers” that whole page. If both conditions are sat-
isfied, we set the granularity bit to indicate page-granularity
protections, set the page-granularity protection entry, and
move on to consider the start of the next page. If the word
we are considering is not page-aligned, or the remaining size
of the region does not reach the end of the page, we must
use word-granularity protections. To do that, we first check
the granularity bit in the TLB. If it indicates that word-
granularity protection is used for the page, we simply up-
date the word-granularity protection entry and move on to
the next word. If page-granularity protection is indicated,
we take the page-granularity protection entry and copy it
into all word-granularity protection entries for that page.
Then we change the granularity bit for the page to indi-
cate word-granularity protection, and finally we update the
word-granularity protection entry and move on to the next
word. The entire permissions-setting procedure is done in
software, and its execution is accounted for in our experi-
mental results.

Figure 5 compares the performance of our two-granularity
scheme to the word-granularity scheme. We observe that
the two-granularity scheme has overheads below 2% for all

applications, in contrast to the single-granularity per-word
scheme which has a 10% overhead in mcf.

We also compare our two-level scheme to the more com-
plex Mondrian Memory Protection (MMP) [18]. Mondrian
uses an entire hierarchy or protection granularities, and or-
ganizes its protection information in a trie data structure.
A lowest-level (leaf) node of the trie contains per-word pro-
tection entires. Higher-level nodes correspond to increas-
ing protection granularities, and contain either pointers to
lower-level nodes or protection entries at the appropriate
granularity. Because protection entries at different levels
of the trie can correspond to several different granularities,
they are cached using a ternary content-addressable-memory
(TCAM) protection cache, and also using a set of “sidecar”
registers, as described in [18]. We note that the hardware
to look up protections in the MMP’s trie structure is con-
siderably more expensive than for our simple array-based
lookups. MMP’s trie structure updates are also considerably
more complex than in our scheme. In particular, changes in
protection granularity require trie node insertions or dele-
tions. In our experiments, we assume 32-bit virtual ad-
dresses, which results in a 3-level MMP trie. With 64-bit
addresses, the MMP trie would have 7 levels, causing addi-
tional complexity and overheads.

Despite the simplicity of our new two-granularity scheme,
its performance is similar to that of MMP. In fact, in most
applications our scheme outperforms MMP, although we
fully account for the overheads of our scheme and neglect
some overheads for MMP.

6. RELATED WORK
Buffer overflow bugs and vulnerabilities have been studied

extensively [3, 4, 5], and heap buffer overflows and meta-
data corruption have been exploited in real attacks [12, 13,
14]. Several software tools for detection of such bugs and
vulnerabilities have been developed [8, 15], and more re-
cently hardware support for detection to these and other
bugs and vulnerabilities has been proposed [2, 16, 18, 19,
20]. Koldinger et al. [9] discuss architectural implications
of single address space operating systems, specifically the in-
teraction between the memory system architecture and the
operating system’s use of addressing and protection. MIT J-
Machine Multicomputer [6] introduces low overhead mech-
anisms for protection against message corruption, intercep-
tion and starvation.

Most related to our work is Mondrian Memory Protection
(MMP) [18], which uses a trie-based hierarchical memory
protection structure. In MMP, the leaf-level protections en-

tries protect memory at a word granularity (one protection
entry per 4-byte word), and levels closer to the root of the
trie offer protection for increasingly large granularities. This
hierarchical organization allows very fine-grained protection
where it is needed, while still using large-granularity protec-
tion where possible. Unfortunately, the scheme is relatively
complex to implement: it requires hardware support to tra-
verse the trie and find the granularity (trie level) that con-
tains the protection entry for a given address, which can re-
sult in large overheads. To avoid such overheads, the scheme
uses two different caching mechanisms, one of which relies
on TCAMs. Furthermore, protection changes are relatively
complex and can result in trie node insertions and deletions,
which is difficult to support in hardware and, if changes are
frequent, can cause noticeable slowdowns if done in software.

In contrast to MMP, our proposed two-level protection
scheme relies on existing page tables for its page-granularity
protections, and uses a simple array-based structure for its
word-granularity protections. As a result, simple index-
ing can be used to look up our protection entries, and we
only add a small and simple L1 protection cache to speed
up word-granularity protection lookups (existing TLBs are
leveraged to handle page-granularity lookups). This simplic-
ity of our protection structure also allows simpler and faster
protection updates, which only need to consider two levels of
protections and simple indexing to access protection entries.

A potential disadvantage of our new 2-level scheme is that
it can have a larger memory space overhead than MMP when
large-granularity protection can be used. Fortunately, page-
granularity protections already represent a very minor mem-
ory space overhead, and little is gained by using even larger
protection granularities. Similarly, our 2-level protection
scheme had a potential performance disadvantage because
larger-granularity protection information can be cached on-
chip more effectively. However, little is gained if protection
information is found on-chip but the page table entry is not:
a TLB miss must still be serviced, and when the page table
entry is brought into the TLB our page-granularity protec-
tion is brought with it.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we examine the tradeoffs involved in choos-

ing the granularity of fine-grain memory protection. We
find that existing page-granularity protection, when used for
fine-grain protection, wastes huge amounts of memory due
to padding and results in very poor performance. We also
find that a simple word-granularity scheme performs poorly
when used to protect large chunks of memory. These obser-
vations lead us to propose a new two-granularity scheme that
dynamically selects between word- and page-granularity pro-
tection for each page. The new scheme is similar in complex-
ity to a single-granularity per-word protection, and leverages
existing TLBs and page tables for its page-granularity pro-
tection. This two-granularity scheme achieves similar per-
formance but is significantly less complex than MMP, a pre-
viously proposed multiple-granularity scheme. Overall, we
believe that our new two-granularity scheme is a good trade-
off between performance overhead, memory space overhead,
and hardware complexity.

Our future work includes additional uses for fine-grain
protection, such as protection for return addresses, func-
tion pointers, and read-only data. We also plan to extend
our evaluation to include additional benchmarks, especially

object-oriented ones that may have additional overheads due
to frequent protection changes.

8. REFERENCES
[1] Anonymous. Once upon a free(). Phrack Magazine, 57(9),

2001.

[2] M. L. Corliss, E. C. Lewis, and A. Roth. Dise: A
programmable macro engine for customizing applications.
In ISCA ’03: 30th Intl. Symp. on Computer Architecture,
pages 362–373, New York, NY, USA, 2003. ACM Press.

[3] C. Cowan, S. Beattie, J. Johansen, and P. Wagle.
PointGuard: Protecting Pointers from Buffer Overflow
Vulnerabilities. in Proc. of the 12th USENIX Security
Symp., pages 91–104, 2003.

[4] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, Q. Zhang, and H. Hinton.
StackGuard: Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks. in Proc. of the 7th
USENIX Security Symp., pages 63–78, 1998.

[5] C. Cowan, F. Wagle, C. Pu, S. Beattie, and J. Walpole.
Buffer overflows: Attacks and defenses for the vulnerability
of the decade. In DARPA Information Survivability Conf.
& Exposition – Volume 2, pages 119–129, 2000.

[6] W. J. Dally and et al. The j-machine: a fine-grain
concurrent computer. In G. X. Ritter (ed.), Information
Processing 89, North Holland, 1989. Elsevier Science
Publishers B.V.

[7] Doug Lea. A Memory Allocator.
http://gee.cs.oswego.edu/dl/html/ malloc.html, 2000.

[8] IBM Corporation. IBM Rational Purify.
http://www.ibm.com/software/awdtools/purify/, 2005.

[9] E. J. Koldinger, J. S. Chase, and S. J. Eggers. Architectural
support for single address space operating systems. In 5th
Intl. Conf. on Architectural Support for Programming
Languages and Operating System (ASPLOS), volume 27,
pages 175–186, New York, NY, 1992. ACM Press.

[10] F. Perriot and P. Szor. An Analysis of the Slapper Worm
Exploit.
http://securityresponse.symantec.com/avcenter/reference/
analysis.slapper.worm.pdf, 2003.

[11] J. Renau et al. SESC. http://sesc.sourceforge.net, 2006.

[12] Security Focus. Wu-Ftpd File Globbing Heap Corruption
Vulnerability. http://www.securityfocus.com/bid/3581,
2002.

[13] Security Focus. CVS Directory Request Double Free Heap
Corruption Vulnerability.
http://www.securityfocus.com/bid/6650, 2003.

[14] Security Focus. Sudo Password Prompt Heap Overflow
Vulnerability. http://www.securityfocus.com/bid/4593,
2003.

[15] J. Seward. Valgrind, An Open-Source Memory Debugger
for x86-GNU/Linux. http://valgrind.kde.org/, 2004.

[16] R. Shetty, M. Kharbutli, Y. Solihin, and M. Prvulovic.
HeapMon: a Low Overhead, Automatic, and
Programmable Memory Bug Detector. In IBM T.J.
Watson Conf. on Interaction between Architecture,
Circuits, and Compilers, 2004.

[17] Standard Performance Evaluation Corporation. SPEC
Benchmarks. http://www.spec.org, 2000.

[18] E. Witchel, J. Cates, and K. Asanovic. Mondrian memory
protection. In ASPLOS-X: 10th international conference
on Architectural Support for Programming Languages and
Operating Systems, pages 304–316, New York, NY, USA,
2002. ACM Press.

[19] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. Midkiff,
and J. Torellas. AccMon: Automatically Detecting
Memory-related Bugs via Program Counter-Based
Invariants. In Proc. of the 37th Intl. Symp. on
MicroArchitecture), 2004.

[20] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torellas.
iWatcher: Efficient Architectural Support for Software
Debugging. In Proc. of the 31st Intl. Symp. on Computer
Architecture, 2004.

