
Digital Object Identifier

Machine-Learning-based Analysis of
Program Binaries: A Comprehensive
Study
SHAOWEN SUN*, HONGFA XUE*, (Student Member, IEEE), GURU VENKATARAMANI,
(Senior Member, IEEE) and TIAN LAN, (Member, IEEE)
The George Washington University, Washington, DC, 20052 (e-mail: {sunshaowen, hongfaxue, guruv, tlan}@gwu.edu)
*Shaowen Sun and Hongfa Xue contributed equally to this work.

Corresponding author: Hongfa Xue (e-mail: hongfaxue@gwu.edu).

ABSTRACT Binary code analysis is crucial in various software engineering tasks, such as malware
detection, code refactoring and plagiarism detection. With the rapid growth of software complexity and
the increasing number of heterogeneous computing platforms, binary analysis is particularly critical and
more important than ever. Traditionally adopted techniques for binary code analysis are facing multiple
challenges, such as the need for cross-platform analysis, high scalability and speed, and improved fidelity,
to name a few. To meet these challenges, machine learning-based binary code analysis frameworks attract
substantial attention due to their automated feature extraction and drastically reduced efforts needed
on large-scale programs. In this article, we provide a taxonomy of machine-learning-based binary code
analysis, describe the recent advances and key findings on the topic, and discuss the key challenges and
opportunities. Finally, we present our thoughts for future directions on this topic.

INDEX TERMS Machine learning, Program binary analysis, Taxonomy.

I. INTRODUCTION

B INARY code analysis (BCA) allows software engineers
to directly analyze binary executables without access to

source code. It is widely used in various domains where there
is limited availability of source code, e.g., due to proprietary
issues or simply impossible to trace any source code. Today,
BCA has become more important than ever due to legacy
programs that have been installed in a variety of environ-
ments including the Internet of Things (IoT). It is currently
estimated that there are more than 20 billion IoT devices
worldwide by 2020 [67]. BCA can be useful for IoT and
other mission-critical environments (e.g., defense, hospitals)
and provide key tools for improving software security in such
places [56], [115], [129].

Note that, it is difficult to directly analyze binary exe-
cutables when compared to program source code. First, it is
challenging, if not impossible at all, to recover the original
source code or semantic information from the representation
of binary code. Second, commercial software and operat-
ing system are usually slightly obfuscated to deter reverse
engineering and unlicensed use. On the other hand, system
and kernel libraries are often optimized to reduce disk space
requirements. For instance, it may be difficult to locate

function entry points (FEPs) since the full symbol or debug
information is usually not available in optimized binaries.

Recently, machine learning techniques have been em-
ployed to automatically extract features through large
amounts of data and have achieved significant success in the
field of source code analysis [5], [117], [142], [144]. Inspired
by those prior works on the source code, machine learning-
based BCA has also been widely studied as well. Tesauro
et al. [123] first introduced a neural network based method
for recognizing virus in application binaries. Since then, ma-
chine learning-based BCA has become a significant research
topic in vulnerability detection, function recognition, and
other areas.

In this article, we discuss several aspects of binary code
analysis and outline the machine learning algorithms used
in such analyses. We provide a taxonomy of machine-
learning-based binary code analysis techniques and discuss
the key challenges and opportunities. Finally, we present our
thoughts for future directions on this topic.

II. BACKGROUND
BCA is a key requirement for many software engineering
tasks that include:

VOLUME 4, 2016 1

push ebx
mov eax, [esp+4+arg_0]
mov edx, [eax+58h]
mov ebx, [edx+344h]
mov edx, [eax]
mov eax, [ebx+24h]
mov ecx, edx
sar ecx, 8
cmp ecx, 3
jz short loc_80B6412

lw $v0, 0x47($a0)
lw $v1, 0($a0)
lw $v0, 0x344($v0)
sra $a1, $v1,6
li $a0, 2
bne $a1, $a0, locret_19830
lw $v0, 0x31($v0)

cmp edx, 302h
jle short loc_80B640f

pop ebx
retn

cmp edx, 302h
mov edx, 20080h
cmovz eax, edx
pop ebx
retn

slti $v1, 0x303
bnez $v1, locret_19830
li $v1, 0xC030

bne $v0, $v1, locret_19830
nop

la $v0, loc_20080

jr $ra
nop

A. x86 assembly B. MIPS assembly

FIGURE 1. The control flow graph comparison for the vulnerable function CVE-2013-6449 under different architectures. [46]

• vulnerability discovery (including integer, heap or stack
buffer overflow, denial-of-service attack, Input manipu-
lation, authentication bypass vulnerabilities)

• refactoring (a restructuring process of changing a pro-
gram binary to creates new versions that implement or
propose change to the program binary while preserving
the program’s external behavior (functionality and se-
mantics))

• plagiarism detection (detecting a plagiarized program,
which is a program that has been generated from an-
other program with trivial text edit operations).

Especially with the rapid growth of IoT devices and the
complexity of software applications, program binaries are of-
ten shared among multiple platforms. Imagine a single bug is
injected at source code level, it may spread across thousands
or more devices that have diverse hardware architectures
and software platforms. Thus, binary analysis is particularly
critical and more crucial than ever.

BCA is used to provide information about a program’s
content (instructions, basic blocks, functions, and modules),
structure (control and data flow), and data structures (global
and stack variables), and is, therefore, a foundation of many
security applications. Code Clone Detection in binaries seeks
to find code sequence used more than once, copy/paste or
reused code, or same source code but compiled under dif-
ferent Instruction Set Architectures [19], [66], [110], [150].

Malware detection detects malicious programs which have
vulnerabilities inside and will cause damage to systems or
programs crashes [10], [12], [18], [32], [36], [41], [58], [82],
[126], [127], [146]. Code obfuscation translates the original
program into another one preserving its function but making
it hard for analysis [74], [86], [114], [119], [135]. Binary
reverse engineering translates the binary program into high-
level readable language, such as converting binaries back
to source code [29], [79], [85], [118]. Binary customiza-
tion directly changing the binary program through binary
rewriting, removing unused or vulnerable codes/functions
in program binaries [25], [26]. Recent studies have shown
that software can manipulate hardware features as well to do
malicious activities like information leakage [2], [145], [147]
and memory corruption [23], [24], [119]. Such studies call
for a more thorough understanding of software binaries [95],
[128] and assessing their potential to be exploited in security
attacks.

A. KEY CHALLENGES
Legacy program binaries exist in many production systems,
e.g., airspace, military, and banking. To detect bugs or an-
alyze software system safety, executable binary codes are
the only source of information about program content and
behavior. The compile, link, and optimize steps can cause a
program’s detailed execution behavior to differ substantially
from its source code. Although it is easy to compile source

2 VOLUME 4, 2016

codes into binary executables, it is hard to reverse the binary
codes back to source codes for further analysis. Often, it is
relatively better to have binary executables be analyzed into
intermediate representations (e.g., binary assembly code),
which consist of limited code syntax and semantic features
comparing to the source code.

We note that the source code can be compiled in different
platforms (e.g. x86, MIPS). This leads to the syntactic binary
representations to be very different for the same program
compiled on two platforms, bearing very different structures.
Such cross-platform binary code analysis problems have
been tackled, only recently [43], [47]. These efforts use
frameworks to extract various robust platform-independent
features directly from binary code. We will discuss more
details in Section VI.

Example. A vulnerable function in the source code may
propagate into hundreds or more IoT devices that have di-
verse hardware architectures and software platforms after
being compiled using the same source code. For instance,
a real-world denial-of-service attack vulnerability CVE-
2013-6449 has completely different control flows when
compiled under x86 and MIPS architecture as shown in
Figure 1, even though they both are compiled from the
same source code from OpenSSL library (version 1.0.1a).

To deal with these challenges, the traditional approaches
for BCA are mainly through pure statistical methods or pure
formal analysis (e.g., binary symbolic execution). Statistical
methods depend on logging of program states for analysis. In
reality, the program execution often yields partial/incomplete
logs, it becomes extremely hard for statistical methods alone
to accurately achieve the goal through binary code analysis.
For example, in vulnerability discovery, it could easily miss
vulnerable paths (false negatives) due to inadequate statistical
profile data and low code analysis coverage. On the other
hand, pure formal analysis can guarantee no false positives
with a better analysis accuracy and significantly improve
code coverage. However, it is always a time-consuming ap-
proach and cannot be deployed in large scale programs due
to exponential state increase (path explosion) problem.

B. GENERAL FRAMEWORK
To overcome the difficulty of processing binary codes and
perform the code analysis in an automated fashion, Ma-
chine Learning techniques have been adopted. Several ma-
chine learning-based code analysis frameworks have been
deployed at the source code level that adapt natural language
processing (NLP) techniques at source code for different pur-
poses. For example, White et al. [133] introduce a learning-
based framework for code similarity detection in the source
code, where Recursive Neural Network (RNN) is deployed
to profile code sequences.

A machine learning-based BCA framework has generally
two stages: the training stage and the analysis stage. The
general framework of machine learning based binary code
analysis is shown in Figure 2. In the training stage, the target

binary code will be analyzed first and unique features will be
extracted from the analysis results. Then, the Machine learn-
ing algorithm will be trained with input features and desired
binary code knowledge. In the analysis stage, given a target
binary code, features will be extracted after program analysis
(e.g. lexical analysis and syntax analysis). According to the
training result, machine learning models can be used to
identify such features to achieve certain analyzed goals such
as discovering vulnerable paths, finding performance bugs
and imbalance and so on.

C. THE TAXONOMY
According to the general framework shown in Section II-B,
existing machine learning-based BCA systems can be
broadly divided into four major components. In Figure 3,
we present the taxonomy of machine learning-based BCA
framework in detail. The remaining sections of this paper
discuss the various existing methods from the perspective
of feature extraction, feature embedding, analysis techniques
used in BCA and corresponding applications in the real-
world.

1) Feature Extraction
Different from applying machine learning in NLP tasks,
optimized program binary codes contain a huge vocabu-
lary block of codes (e.g. basic blocks) that have complex
relationships and less redundancy in terms of syntax and
semantic information compared to human languages or even
the original program source codes. The first requirement
of machine learning-based BCA is to extract features that
represent binary code. Here, we further divide the features
extracted from program binaries into different categories.

1. Graph-based feature. Program Binaries can be repre-
sented as a program flow graph, such as control flow
graph (CFG). We can use such graph to extract graph-
based features [43], [47], [65], [136].

2. Code-based feature. Here, we extract the features di-
rectly from raw binary code. We summarize code-
based feature into two different levels: token-level and
instruction-level.

2.1. Token-level features. Tokens (e.g., words, characters,
or symbols) from binary code to extract tokens-based
feature using decompiler or binary disassembly tools,
such as IDA Pro [102], OllyDbg [148] and cap-
stone [90].

2.2. Instruction-level features. Every machine-level in-
struction in binary executables is a combination of
tokens, such as memory references, registers, and im-
mediate values. Such instructions sequence can also
be used as program features for analyzing program
bugs, information flow and so on [95], [126].

2) Feature Embedding
The extracted raw features from binaries cannot be fed into
machine learning modules directly since machine learning

VOLUME 4, 2016 3

Training set

Binary
Analysis

Feature
Extraction

Training

Machine Learning
Models

Machine
Learning

Algorithm

Target Binary
Analysis ResultFeature

Extraction

Training Stage

Analysis Stage

Desired binary code
knowledge

FIGURE 2. General framework of machine learning based binary code analysis.

needs numerical data as inputs (e.g. vectors). Thus, a general
phase is to transfer features to feature vectors or some formal
rules, this phase is commonly named as feature embedding.

1. Graph Embedding. Graph embedding networks have
been proposed for classification domains such as
molecule classification [35], which we can covert graph-
based features into graphs.

2. Code Embedding. Based on existing sequence-to-
sequence models (e.g., Recursive Neural Network),
These and related models are well-suited to tasks that
have tokens or instructions as inputs and embed them
into vector space [72], [103], [120].

3) Analysis Techniques

After feature extraction and feature embedding, we need
to choose a suitable machine learning algorithm for further
program analysis. Existing analysis techniques can be classi-
fied into three categories: supervised learning, unsupervised
learning, and deep learning. We will discuss each of them in
detail in Section V.

4) Applications

BCA for malware detection is a widely developed area of
research. Rieck et al. [103] introduced Malware behavior
analysis based on machine learning. Liangboonprakong et
al. [83] create a method to classify Malware families using
Machine learning. Rosenblum et al. [105] recover tool chain
provenance to record the compilation-related information.
discovRE [43] and Genius [47] develop tools that can identify
bugs automatically via clustering the already known vulner-
abilities.

The remainder of this article is organized as follows. In
Section III and Section IV, we discuss the overall principles
and strategies of feature extraction and feature embeddings.
Sections V address the commonly used machine learning
models that are deployed in binary code analysis and they
will be further compared, while Section VI discusses the
application of machine learning based code analysis for real-
world problems. Section VII discusses how recent advances
in other areas could be applied to enhance binary code
analysis. Concluding remarks are presented in Section VIII.

III. FEATURE EXTRACTION
In this section, we list the various types of features that can
be extracted from binaries. In general, the goal of feature
extraction is to automatically link binary code patterns mined
at the lexical level with patterns mined at the syntactic level.

A. GRAPH-BASED FEATURES

The Program flow graph (e.g., control flow graph, data
dependency graph.) is the common feature used in various
approaches of BCA. Especially for the cross-platform bug
search problem, the program flow graph and the basic block
margins typically remain equivalent (or at least similar) in
cross-compiled code. Thus, such graph-based features are
adaptive by design and with high efficiency for large-scale
BCA applications.

1) Abstract Syntax Tree

Abstract Syntax Tree (AST) is typically used by compilers
to represent the structure of program code, and to analyze
the dependencies between variables and statements. Many

4 VOLUME 4, 2016

Machine Learning-based
BCA

Feature Extraction

Feature Embedding

Analysis Techniques

Applications

Deep Learning

Graph-based Features

Code-based Features

Graph Embedding

Code Embedding

Unsupervised Learning

Supervised Learning

Abstract Syntax
Control Flow Graph

Tokens
N-gram
Printable Strings
Portable Executable

Token-level Features

Instruction-level Features

Feature Entry Point
Idiom
Hexdecimal Byte Sequences
The Malware Instruction Set
Instructions

Frequency Embedding
Byte Embedding
Instruction Q-gram Embedding

Support Vector Machine
K-nearest neighbor
Decision Tree
Random Forest
Boosting
Bayers classifier

Deep Neural Network
Recurrent Neural Network
Multiple Layer Perceptron
One-Sided Perceptron

Clustering
Rule-based Learning
Weighted Prefix Tree

Cryptographic Algorithm Classification
Recovering Toolchain Provenance
Binary Code Clone Detection
Decompilation
Function Recognition
Authorship Recognition
Malware Detection
Vulnerability Discovery

FIGURE 3. The taxonomy of machine learning-based BCA framework.

works adopts AST in source code level syntax extraction
analysis [20], [34], [72], [76], [93].

AST can also be used in machine learning-based BCA. For
instances, a function recognition tool, FID [130], first trans-
lates each instruction within a basic block into assignment
formulas which can represent the data flow exchanging and
the semantics of each basic block. Then, each data move-
ment between registers and/or memory (assignment) will be
translated into a syntax tree, which can be further converted
into a numerical vector by calculating the maximum levels of
nested parentheses and the maximum depth of an AST as two
syntactic features.

Example. As shown in Figure 4, (A) shows a function
entry point basic block and its corresponding data move-
ment operations (register/memory copy, assignments and
computations), while (B) shows memory access de-
pendency behavior between caller’s and callee’s basic
blocks.

2) Control Flow Graph
The concept of Control Flow Graph (CFG) is first introduced
by Frances et al. [4]. CFG represents a graph of all possible
execution paths that might be traversed through a program
during its execution. To construct a basic static binary CFG,
function entry and exit point should be found first. In a
function, a sequence of consecutively executing instructions
(defined as nodes) and control flow transfers betwen such

push %ebp
push %ebx
push %edi
push %esi
sub $0x4c, %eax
mov 0x68(%esp), %eax
mov 0x64(%esp), %edx
mov 0x60(%esp), %esi
mov %edx, %edx

eax = mem1
ebx = reg2
ecx = reg3
edx = mem2
esi = mem3
edi = reg6
ebp = reg7
esp = reg8 - 92

mov $0x805248e, 0x4(%esp)
mov -0x10(%ebp), %eax
mov %eax,(%esp)
call c_strcasecmp

<c_strcasecmp>:
push %ebp
mov %esp, %ebp
push %esi
push %ebx
sub %0x20, %esp
mov 0x8(%ebp), %esi
mov 0xc(%ebp), %ebx
cmp%ebx, %esi
jne 0x804cf85

eax = mem1
ebx = reg2
ecx = reg3
edx = reg4
esi = reg5
edi = reg6
ebp = reg7
esp = reg8

eax = reg1
ebx = mem1
ecx = reg3
edx = reg4
esi = mem2
edi = reg6
ebp = reg8 - 4
esp = reg8 – 44
[reg8+4] = mem3
[reg8+8] = mem4

A. stack register adjustments in a
function entry point

B. Memory access behaviors in an
inter-procedure control transfer.

FIGURE 4. Instruction and its corresponding assignment formulas. [130]

sequences via jumps, function calls and returns (defined as
edges). A binary CFG is constructed to capture the rela-
tionship between nodes and edges in the underlying binary
program. It is a useful method to reflect internal relations
between basic blocks. For this purpose, plenty of works have
discussed CFG extraction from binary codes as program
features, such as Theiling et al. [124], Kinder et al. [75],
Kruege et al. [77], Yadegar [141].

VOLUME 4, 2016 5

entry

blk1

blk2 blk3

blk4

exit

blk1

blk4

blk2 blk3

blk1

blk2 blk3

blk1

...

...

CFG unigrams:

...

CFG bigrams:

CFG unigrams:

B.Control-flow featuresA.Control-flow graph

FIGURE 5. Control Flow Features. [20]

TABLE 1. List of Attributes used in ACFG.

Type Attribute name

Block-level attributes

String Constants
Numeric Constants
of Arithmetic Instructions
of Calls
of Transfer Instructions
of Instructions

Inter-block attributes # of offsprings
Betweenness

In the area of machine learning-based BCA, many works
have adopted CFG features as inputs to machine learning
models [3], [21], [53]. For instance, discovRE [43] uses
CFG to reflect structural similarity between two static func-
tions in program binaries which will be further discussed in
Section IV; Caliskan et al. [20] disassemble the executable
binary and recover the CFG as features to extract the abstract
syntax trees of decompiled source code for code authorship
recognition. We give a simple example of how to extract CFG
features utilizing simple NLP model (N-gram model).

Example. Assuming a static binary function CFG shown
in Figure 5. The corresponding control-flow features are
generated by using the N-gram model. For instance, CFG
bigrams (while N = 2) extract 2 adjacent basic blocks as
control-flow features.

To reflect the binary code behaviors at the instruction-
level, graphlets [99] (small, non-isomorphic subgraphs of the
CFG) is introduced to analyze instruction patterns. It was
first introduced for BCA domain by Rosenblum et al. [105],
[107]. Rosenblum et al. [107] use graphlet features to repre-
sent details of the program structure. In this work, graphlets
are particularly three-node subgraphs of CFG. Such graphlet
features can be used to capture the layout of particular
classes of instructions. Simultaneously, it can also be used
to represent the program structure (the local control flow).
We illustrate graphlet features using an example as follows.

cpuid
jmp L2
…

L1:
cmp ecx,edx
jle L1

L2:
mov eax, 0x5
sysenter

σ
3

σ
1

σ
1

τ
2

τ
1

A. code example B. Graphlet

τ
3

FIGURE 6. Example code and its corresponding grapglet. [107]

Example. As shown in Figure 6, A is a binary code
snippet with three basic blocks and B is the correspond-
ing graphlet. σi={1,2,3} are the three different types of
nodes in graphlet respectively. For example, σ1 repre-
sents a block which contains privileged system instruc-
tions. Since there are two basic blocks with privileged
instructions (cpuid and systenter in the code snippet),
there are two σ1 nodes in this case. τi={1,2,3} indicates
the control flow edge type between basic blocks. For in-
stance, τ1 is its fall through edge and τ3 is corresponding
to the jle conditional branch.

Besides of traditional CFG, there is a similar graph named
as Attributed Control Flow Graph (ACFG) to represent a
static binary function (mostly used for the tasks of vulnerabil-
ity discovery and cross-platform code similarity detection).
In an ACFG, each vertex is a basic block labeled with a
set of attributes. Table 1 lists the commonly used attributes
in ACFG. As we can see, the number of string, function
calls, control transfer instructions, and arithmetic instructions
are extracted as features for further analysis. Those ACFG
generated from binaries will be further embedded into a hash
table and similarities are compared. Genius [47] proposes
ACFG as raw features to compare the code similarity be-
tween static binary functions. Xu et al. [136] also adopt
this ACFG construction technique to extract raw features
but with a different feature embedding method. We discuss
more details about how to convert ACFG to embeddings in
Section IV-A.

6 VOLUME 4, 2016

mov [esp+4Ch+var_40], edi
mov [esp+4Ch+var+n], 18h
mov [esp+4Ch+var_3C], edx
mov edx, [esi]
mov [esp+4Ch+dest], 0
mov [esp+4Ch+src], edx
call eax

loc_80CC1B2B:
cmp bp, 1
jz short loc_80C1B88

xor eax, eax
cmp bp, 2
jz short loc_80C1B48

loc_80C1B48:
cmp ebx, 12h
movzx edx, byte ptr [edi+3]
movzx ecx, byte ptr [edi+4]
jnz short loc_80C1B39

lea eax, [ebx+13h]
…
mov [esp+4Ch+src], offset
aD1_bpth_c;
mov [esp+4Ch+dest], eax
mov [esp+4Ch+var_24], eax
call CRYPTO_malloc
…
mov [esp+4ch+dest], ecx ; dest
mov [esp+4Ch+src], edi ; ecx
mov [esp+4Ch+var_20], ecx
call _memcpy
mov ecx, [esp+4Ch+var_20]

[0, 1, 10, 1, 11, 0, 11, 0.296]

[0, 1, 1, 0, 2, 0, 10, 0.362]

[0, 1, 1, 0, 3, 0, 5, 0.19]

[1, 6, 21, 4, 32, 2, 5, 0.26]

[0, 1, 1, 0, 4, 0, 4, 0.187]

B. The corresponding ACFGA. Partial control flow graph of dtls_process_heartbeat

FIGURE 7. Partial CFG of function dtls_process_heartbeat and its corresponding ACFG. [136]

Example. Figure 7 illustrates an ACFG for a function
in OpenSSL containing the Heartbleed vulnerability. To
generate the ACFG for a binary function, we first need to
extract its control flow graph (as showing on the left hand
of the figure), along with occurrence of each attribute
for each basic block in the graph, and store them as the
features associated with the basic block (the generated
ACFG is showing on the right hand of the figure). Each
ACFG node can be converted into an N-dimension vector
through counting the occurrence of N attributes (In this
example, N = 8). According to the types of instructions,
the first block can be represented as [0, 1, 10, 1, 11, 0, 11,
0.296] (e.g., There is only one function call instruction,
thus, the fourth dimension of the vector equals to one.
Also, not the last dimension represents the Betweenness,
which is a centrality measure of a vertex within a graph.)

In summary, CFG-based features mainly are used to show
structural characteristics of binary codes with high-level
analysis granularity (e.g. control flow dependency or data
dependency).

B. CODE-BASED FEATURES
1) Tokens
Different from program flow graph, which needs to be recov-
ered and constructed from binaries through control or depen-
dency analysis, a sequence of tokens (e.g., words, characters,
or symbols) can be easily extracted and contain enough
information to represent a code’s syntax and structure. It
is also easy to transform token sequences to other types
of features and it is very efficient for large-scale programs
analysis and scalable to large software systems [20], [81],

[98].
Based on the appropriate level of granularity, the binary

code sequence can be divided into several pieces with the
same length token sequences. Katz et al. [72] propose token-
based binary to source code translation framework by to-
kenizing binary code byte by byte to identify identifier, a
keyword or a constant corresponding to the source program
in the high level language such as C. Saebjornsen et al. [110],
Xue et al. [139], [140] and Byteweight [9] adopt token-based
methods for analysis as well. In the following sub-sections,
we present various token-based features that have been used
in BCA domain.

a: N-gram
N-gram is a contiguous sequence of N items extracted from
the given samples. For program binary analysis, N-gram
based features are defined as a sequential pattern where an
individual sample can be identified as binary instructions, file
names, function arguments and so on.

Liangboonprakong et al. [83] proposes an N-gram based
feature extracted from the binary form of Malware.

Example. Table 2 uses n=1,2,3,4 to generate n-gram
slices and t is a set of n-gram terms.

Shijo et al. [120] propose an integrated static and dynamic
analysis framework for vulnerable binary code detection. It
first discovers call sequences in the application programming
interface (API) via the cuckoo malware analyzer [96], which
is a sandbox used to outline the malware behavior. It then
uses N-gram based method to analyze API call sequences
called API-call-grams. Finally, it generates feature vectors
by counting the frequency of printable strings and using N-

VOLUME 4, 2016 7

TABLE 2. N-gram-malware matrix. [83]

malware file Terms(N-Gram)
mw1 t1 t2 t3 t9
mw2 t3 t4 t6 t8
mw3 t3 t4 t6 t7
mw4 t3 t4 t6 t8
mw5 t1 t2 t4 t6
mw6 t1 t2 t4 t9
mw7 t2 t5 t6 t7
mw8 t2 t5 t6 t7
mw9 t3 t4 t5 t8

...
mwn ti tk

grams with the top N of the highest frequency of printable
strings. Rosenblum et al. [107] introduce the byte N-gram
method to extract short strings from instruction, such as
a specific type of instruction and memory access pattern
behavior.

b: Portable Executable

The Portable Executable (PE) is a file format for binary files
that encapsulates important information for program loader
to manage executable binary code, such as the dynamic
libraries, API exported and so on. This executable-specific
information in PE format’s headers can be extracted as fea-
tures to represent a binary file.

Schultz et al. [116] extracted file size, the name of dynamic
link libraries (DLLs) which are shared libraries in Windows
OS, the names of functions within a DLL and relocation
table from PE file’s header using libBFD, a library of GUN’s
Bin-Utils. Saxe et al. [112] extracted the import address
table into a 256-integrate-array and convert text information
in numerical PE fields into 256-length-array from malware.
Based on these malware features and group information,
malware can be classified into different families.

We note that the Portable executable feature is a unique
feature for certain executable files, especially for files in
Windows platforms.

c: Printable Strings

Printable strings are un-encoded strings preserved after com-
piling the source code into binaries. Many works [68], [69]
have proven that the printable strings are one of the most
useful features that can be obtained from binary executables.
It can be relatively easily extracted from binary files, such
as "Openfile", "GetError" or "CopyMemory". The printable
strings extracted from binary files are sorted according to the
frequency of occurrence within a file. We further eliminate
the printable strings whose frequency below a particular
threshold. Here we give an example.

Example. Consider we have three binary files (one
benign and two malware) correspondingly. After feature
extraction and processing, we assume the printable
strings are included in each binary file as follows:

File1 (benign): {GetProcessWindowStation,
FindFirstFile, GetLongPathName, HeapReAlloc}

File2 (malware): {FindFirstFile, GetLongPathName,
GetProcessHeap, GetLastError}

File3 (malware): {GetLastError, FindFirstFile,
GetProcAddress}

Then we count the frequency of these printable strings.
Based on the analysis results from Islam et al. [69]. they

found 10% feature reduction rate gives the optimum
result, we say it threshold value (integer value). In this
example, we have total of 11 printable strings, thus the
threshold can be set up as 2 if we calculate the upper

limit of d11× 10%e (note that this threshold value can
be an arbitrary value depending on users as long as it is

larger than 20% feature reduction rate), then the features
selected will be {FindFirstFile, GetLongPathName and,

GetLastError}:
Printable strings Frequency
FindFirstFile 3
GetLongPathName 3
GetLastError 2
GetProcessWindowStation 1
HeapReAlloc 1
... ...

2) Instruction-level Features
To further lift tokens-based features to a higher level repre-
sentation, we can also use instruction-based features that are
a combination of tokens, such as memory references, regis-
ters and immediate values. We then list several instruction-
based features in this section.

a: Function Entry Points
The function or procedure, identified in the static binary code,
is a collection of basic blocks with one entry point (i.e., the
next instruction after a call instruction) and possibly multiple
exit points (i.e., a return or interrupt instruction). The entry
point of a function is named as the Function Entry Point
(FEP). Several tools are able to manually identify the FEP,
such as Dyninst [63] and IDA Pro [102].

b: Idiom
To represent the order of a sequence of binary instructions,
the idiom feature is introduced into the features extraction
process. An idiom is a short instruction sequence template
including undecided instructions inside, which is similar

8 VOLUME 4, 2016

to N-grams based feature with optional single-instruction
wildcards. Any short instruction sequences satisfying the id-
iom template are considered as idiom features. For instance,
Rosenblum et al. [108] use idiom features to extract compiler
provenance without the assistance of machine learning tech-
niques. There are two types of idioms which are prefix idiom
and entry idiom. On the one hand, an entry idiom reflects
FEP’s instructions and its offset immediately.

Example. For instance, an idiom

u1 = (push ebp | ∗ |mov esp, ebp) (1)

where ∗ can be any type of instructions. An
instruction sequence matches this idiom will be
extracted to capture patterns indicative of compiler
provenance, such as a sequence of instruction
(push ebp | push eax | mov esp, ebp) is a match
and will be identified as idiom features.
On the other hand, a prefix idiom places the offset at the
beginning. For example, an instruction sequence which
will immediately precede (ret|int3) will be:

u2 = (PRE : ret|int3) (2)

c: The Malware Instruction Set

The Malware Instruction Set (MIST) [125] is a special rep-
resentation of vulnerable program behavior. The MIST in-
struction can be translated from arbitrary binary instructions.
In contrast to traditional textual or XML-based instruction
formats, the MIST of a malware binary code is described as
a sequence of instructions, where encode individual system
calls obtained from the execution trace of a malware pro-
gram. Figure 8 shows the structure of a MIST instruction. In
the MIST instruction, CATEGORY OPERATION reflects the
system call, while ARGBLOCK represents arguments of sys-
tem calls. The system call arguments are arranged in blocks
in different levels and these levels are the MIST levels. The
MIST level divides a MIST into several parts which higher
levels contain attributes with a higher variability and lower
levels are more constant. Rieck et al. [103] uses MIST to
search numeric identifiers representing system calls and argu-
ments using the program monitoring tool CWSandbox [134].
Similarly, MIST is also used in Firdausi et al. [49] as features
for analysis.

TABLE 3. MIST categories and encoding as well as the number of
contained unique operations within each category. [125]

Category # syscalls Category # syscalls

01 Windows COM 4 0B Windows Services 11

02 DLL Handling 3 0C System 2

03 Filesystem 14 0D Systeminfo 7

04 ICMP 1 0E Thread 3

05 Inifile 5 0F User 8

06 Internet Helper 5 10 Virtual Memory 5

07 Mutex 2 11 Window 5

08 Network 6 12 Winsock 13

09 Registry 9 13 Protected Storage 9

0A Process 7 14 Windows Hooks 1

CATEGORY OPERATION | ARGBLOCK | ARGBLOCK | … | ARGBLOCKN

Level 1

Level 2

Level 3

FIGURE 8. Schematic depiction of a MIST instruction. [125]

Example. Given a CWsandbox original XML move file
operation of system call as:
<move_file srcfile = "c:\foo.exe"
dstfile="c:\windows\system32\kernel32.dll" file-
type="file" creationdistribution = "CREATE_NEW">

According to table 3, the corresponding MIST will have
the category filesystem (03) and the system call move file
(05). The other part of MIST instruction will be arranged
as path names and file extensions in level 2 and the base
names of the files in level 3:

03 05︸ ︷︷ ︸
move_file

| 01 000000 01︸ ︷︷ ︸
createflages

00006ce5︸ ︷︷ ︸
”exe”

000066fc︸ ︷︷ ︸
”c:\”

00006b2c︸ ︷︷ ︸
”dll”

002e6d6c︸ ︷︷ ︸
”c:\w...”

| 00006d5f︸ ︷︷ ︸
”foo”

071c94bc︸ ︷︷ ︸
”kernel”

d: Hexadecimal Byte sequence

To deal with the binary files that are not in PE format, Schultz
et al. [116] propose Hexadecimal features that convert origi-
nal binary files into hexadecimal files via a raw byte transla-
tion tool Hexdump [92]. The result will be hexadecimal byte
sequences that can represent machine code instructions.

VOLUME 4, 2016 9

TABLE 4. Lexical Features extracted from assignment formulas in
FID. [130]

Feature Definition
numOperator/length the number of occurrences of operators di-

vided by the formula length of characters
numToken/length the number of tokens divided by the formula

length of characters
numConstant/length the number of constants divided by the for-

mula length of characters
decOperator/length the number of subtraction operators divided

by the formula length of characters
decNum/length the number of “small operands” in subtrac-

tion operations divided by the formula length
of characters

Example. Given a sequence of machine code instructions,
Hexdump can translate them into hexadecimal files. As
shown in the following example, each line of hexadeci-
mal numbers corresponds to a short sequence of machine
code instructions.

1f0e 0eba b400 cd09 b821 4c01 21cd 6854
7369 7020 6f72 7267 6d61 7220 7165 6975
6572 2073 694d 7263 736f 666f 2074 6957
646e 776f 2e73 0a0d 0024 0000 0000 0000
454e 3c05 026c 0009 0000 0000 0302 0004
0400 2800 3924 0001 0000 0004 0004 0006
000c 0040 0060 021e 0238 0244 02f5 0000
0001 0004 0000 0802 0032 1304 0000 030a

e: Others
We have listed several well-used features in previous sec-
tions, there are still some works that are using other types
of special features that cannot be classified into the same
category.

Hosfelt et al. [65] use PIN tool, a dynamic binary instru-
mentation framework [89], to trace each instruction in bina-
ries and counts the number of execution for each instruction.
Then, the PIN tool will classify each instruction into different
categories, such as Nop, Syscall and Binary. Hosfelt et
al. [65] also use PIN to detect and counts the number of loops
in programs.

As introduced in section III-A1, FID [130] translates bi-
nary instructions within a basic block into assignment formu-
las. On the one hand, operations, constants, and token related
features will be extracted from these assignment formulas as
Lexical features shown in table 4. On the other hand, stack
registers (formulas of register esp and ebp) are extracted as
stack features.

IV. FEATURE EMBEDDING
As extracted raw features from program binaries cannot be
fed into machine learning modules directly since machine
learning needs numerical data as inputs (e.g. vectors), we
would like to learn an indexable feature representation from
the feature extraction that we need to encode (i.e., embed)
a feature representation into an embedding (e.g., numeric
vectors). In this section, we present the common feature

embedding approaches corresponding to different feature
representations.

A. GRAPH EMBEDDING
A control flow graph describes the flow of basic blocks in the
instruction level. However, such basic blocks or instructions
cannot be directly used as an input for a machine learning
model. Thus, some numeric and non-numeric features have
to be normalized into vectors of some length. discovRE [43]
introduces a concept called Basic Block Distance dBB to
detect the similarity of functions in binaries. Assuming we
have a vulnerable function code sample, we can use Basic
Block Distance to identify similar functions in other binaries
across platforms, compilers, and optimizations.

It first represents a static function f ’s CFG, identified from
program binary, with each node labeled with features F ,
that can be its topological order, string references, numeric
constants, and robust features (e.g., No.of function calls,
No.of store/load instructions and so on)in the function. Based
on these representing features, the basic block distance dBB

is defined as:

dBB(cif , cig) =

∑
αi|cif − cig|∑

αimax(cif , cig)
(3)

with αi is the weight metric with range as [0...100] to achive
max(dBB(fi, gj) − dBB(fi, fj)), and cif and cig represent
numeric feature i ∈ F of function f and g where f 6= g.
In another way, we want to maximize the difference between
same and different functions.

Besides, Genius [47] calculates the similarity of two static
binary functions using ACFGs. It first defines a ACFG as:

G = 〈V,E, φ〉 (4)

where V is a set of basic blocks, E is a set of edges and
φ : V →

∑
is a labeling function that maps a basic block

in V to a set of attributes in
∑

. Similar definitions such
as g = 〈ν, ε〉 are proposed in Xu et al. [136]. Based on
G1, G2, the bipartite graph which combines two graphs can
be represented as Gbp = (V̂ , Ê), where

V̂ = V (G1 ∪G2) (5)

and

Ê = {êk = (vi, vj |vj ∈ V (G1) ∧ vj ∈ V (G2))}. (6)

where êk = (vi, vj) is an edge from vi to vj . So, based on the
distance (equation 7), the similarity of two ACFGs (g1, g2),
denoted as k(g1, g2), can be described as:

k(g1, g2) = 1− dBB(g1, g2)

max(dBB(g1,Φ), dBB(Φ, g2))
(7)

where Φ is an empty ACFG whose nodes has an empty
feature vector, and the size is set to that of the corresponding
compared graph (g1 and g2).

10 VOLUME 4, 2016

B. CODE EMBEDDING
1) Frequency Embedding
Katz et al. [72] introduce a decompilation framework to
reverse binaries to the source code. It uses frequency em-
bedding as the translation from short snippets of higher-level
code (C source code) to corresponding bytes of binary code
in a compiled version of the program. A popularity ranking
(the top N most frequent tokens) is generated to represent a
token as the input for Recurrent Neural Network.

Additionally, Liangboonprakong et at. [83] also propose
sequential pattern extraction [1] and pattern statistic to statis-
tics the frequency of pattern extracted from raw features.
Given the result of n-gram extraction T = {t1, t2, ..., tm},
a sequential pattern can be represented as an ordered list of
terms as S = 〈t1, ..., tr〉 : (ti ∈ T). So, n-gram patterns will
be a vector di and the embedding result will be Y .

~di = 〈(si1 , fj1), (si2 , fj2), ..., (sim , fjm)〉 (8)

Y = { ~d1, ~d2, .., ~dn} (9)

where si is a pattern (tokens), fj is the frequency in di.
For each vector, frequency-inverse document frequency (TF-
IDF) weighting filtrates out the common n-gram sequential.
Finally, it minimizes valued feature sets with sequential
floating forward selection (SFFS) procedure [100]. Similarly,
[120] lists API-call-grams and corresponding classes sorted
by frequency and a vector for each feature is created.

2) Byte Embedding
Some machine learning based BCA frameworks directly
use raw bytes extracted from binary programs as features.
However, raw bytes are not acceptable for some machine
learning models. In Shin et al. [121], the recurrent neural
network takes bytes as inputs. A byte cannot directly be input
to RNN so that each byte has to be translated into a form
that the RNN accepts. Shin et al. [121] introduce a method
called the one-hot encoding. In this method, each byte will
be encoded as a R256 vector and there is only a ’1’ as the
identification of a byte and the other are 0s in each vector.

Example. NUL (0) and NOP in x86 (144) can be repre-
sented as equation 10 and 11.

[1 0 . . . 0︸ ︷︷ ︸
255 elements

] (10)

[0 . . . 0︸ ︷︷ ︸
144 elements

1 0 . . . 0︸ ︷︷ ︸
111 elements

] (11)

3) Q-grams Embedding
Inspired by NLP techniques and host-based intrusion detec-
tion [37], [50], [80], [111], Rieck et al. [103] have developed
a unique feature embedding approach of instruction Q-grams
which is similar to N-grams. A window will slide over a
MIST instructions sequence x and a sequence with the length
of Q called instruction Q-gram will be extracted. The set of
Q-grams S can be represented as:

S = {(a1, ..., aq|ai ∈ A with 1 ≤ i ≤ Q)} (12)

where A is the set of all possible instructions. Within the
set S, the extraction result is translated into |S|-dimensional
vector. Then, the embedding function can be represented as:

φ = (φ(x))s∈S (13)

where

φs(x) =

{
1 if report x contains q − grams s,
0 otherwise

(14)

Example. If there is a report x of malware behavior
corresponding to a simple sequence of instructions x =
{1|A 2|A 1|A 2|A}, where N |A is a MIST instruction A
with MIST level N . It can be formed by two simplified
instructions A = {1|A, 2|A}. Consider the sliding
window threshold is set up as Q=2, there are only two
possible instruction sequences as ′1|A 2|A′ or ′2|A 1|A′.
Then the embedding function is:

φ(′1|A 2|A 1|A 2|A′)→


0
1
1
0


′1|A 1|A′
′1|A 2|A′
′2|A 1|A′
′2|A 2|A′

(15)

In order to reduce the bias, the embedding result will be
further normalized as:

φ̂(x) =
φ(x)

||φ(x)||
(16)

After normalization, the similarity between two embeddings
(x and z) can be calculated as the distance d(x, z):

d(x, z) = ||φ̂(x)− φ̂(z)|| (17)

V. ANALYSIS TECHNIQUES
The early stage of BCA based on machine learning usually
employs basic machine learning analysis techniques, such
as logistics classification, linear regression and so on. With
the rapid development of machine learning analysis (e.g.,
deep neural networks) techniques, more advanced machine
learning algorithms have been used lately.

In section III and section IV, we discuss how to extract
a feature and embed them into an appropriate format (e.g.,
numerical feature vectors) for machine learning. Here, we
divide the machine learning analysis techniques used in BCA
into three main types: supervised learning, unsupervised
learning, and deep learning. The main difference between
supervised learning and unsupervised learning is that the
ground truth and prior domain knowledge are given for su-
pervised learning. Unsupervised learning, on the other hand,
does not have those conditions before its training process.

A. SUPERVISED LEARNING
In this section, we present several BCA systems that using
supervised learning. Table 5 shows the overview of existing
works.

VOLUME 4, 2016 11

TABLE 5. Summary of supervised learning in machine learning-based BCA.

Supervised Learning Title Purpose

Support Vector Machine

Liangboonprakong et al. [83];
Shijo et al. [120];
Hosfelt et al. [65];
Rosenblum et al. [105]

Classify String Tokens;
Classify Malware and Benign;
Classify Cryptographic Algorithms;
Create Model for Toolchain Provenance

K-Nearest Neighbors discovRE [43] Detect Code clone

Bayes Classifier Hosfelt et al. [65];
Schultz et al. [116]

Classify Cryptographic Algorithms;
Detect Malware

Decision Tree Hosfelt et al. [65];
liangboonprakong et al. [83]

Classify Cryptographic Algorithms;
Classify Malware

Random Forest Caliskan et al. [20];
Shijo et al. [120]

Learn De-anonymizing Pattern;
Classify Malware

Boosting FID [130] Recognize Function in Binary Code

a: Support Vector Machine
Support Vector Machine (SVM) is a supervised leaning used
as a classification generation. It was first invented as a
practical method by Vapnik et al. [16], then it was further
developed in Cortes et al. [33]. The key ideal of SVM is
trying to fairly separate a linear space into different classes.
Given the input of a set of vector xi, there will be a weight
vector λ generated during training. The weight vector decides
the boundary of different classes in the form of margin
also defined as a kernel function K(x, y) where (x, y) is a
point in a feature space mapped from a hyperplane in the
input space. As a significant segment in SVM, there are
many kernel functions introduced to this area, such as lin-
ear kernel function, polynomial kernel function, radial-basis
kernel function [113], and sigmoid kernel function. For linear
kernel function, linear SVM calculate faster due to the linear
function and less argument. Thus, the linear kernel function is
used when the sample set is huge. Comparing with the linear
kernel, the polynomial kernel has more parameters (α, d, c)
than the linear kernel (c), so it is usually used to handle the
classification problem with the orthogonal normalization.

Linear kernel function:

K(x, y) = xT y + c (18)

Polynomial kernel function:

K(x, y) = (αxT y + c)d (19)

Radial-basis kernel function:

K(x, y) = exp(−||x− y||
2

2λ2
) (20)

Sigmoid kernel function:

K(x, y) = tanh(αxT y) + c (21)

In the field of machine learning based BCA, SVM has
been applied in several works. Liangboonprakong et al. [83]
adopt polynomial kernels SVM to classify string tokens
of hexadecimals extracted from disassembling files and its

frequency features with high dimensions in vector space via
LIBSVM [22]. Shijo et al. [120] use WEKA [60] machine
learning tool to study its PSI features as static features,
API call sequences as dynamic features to classify malware
and benign. This paper adopts SVM, Random Forest as
learning methods and SVM gets a better accuracy. Hosfelt
et al. [65] compare the training results of four different
kernel functions: Linear, RBF, Polynomial and Sigmoid and
finds that the linear kernel has the best performance to clas-
sify cryptographic algorithms in binary programs. Besides,
Rosenblum et al. [105] adopt linear SVM to scale all features
via LIBLINEAR [45] due to its less cost and higher accuracy
on recovering the details generated during transformation
process through which the binary was produced.

b: K-Nearest Neighbors

K-Nearest Neighbors (K-NN) is a supervised learning clas-
sification approach. Given a sample set, K-NN identifies k
samples whose distances will be shortest in the feature vector
space. Basing on these k neighbors’ information, the K-NN
classifier can further identify input targets. discovRE [43]
employs K-NN based on k-dimensional trees (k-d tree). This
k-d tree is a binary search tree whose node is a k-dimensional
vector and one dimension of each node is randomly chosen
from the data set. When search for a point in the tree, the
system will begin from the root and step down. In each step,
the most match point will be chosen if it is better then the
old one. This algorithm cannot handle high-dimensional data
well.

c: Bayes classifier

The Bayes model is a basic learning method to make deci-
sions via probabilities. It classifies the groups by computing
the probability of a certain feature belonging to a certain
class. For instance, given features {x1, ..., xn} of the program
X , the probability of Program X belonging to class Ck for

12 VOLUME 4, 2016

each of k possible outcomes will be:

P (Ck|X) =

∏n
i=1 P (xi|Ck) ∗ P (Ck)∏n

j=1 P (xj)
(22)

In this case, classification model will be:

ŷ = argmaxk∈{1,...,K}(P (Ck)

n∏
i=1

P (xi|Ck)) (23)

For example, Hosfelt et al. [65] adopt Gaussian Bayes
(P (x|c) is Gaussian function) as one of the learning algo-
rithms to represent the most likely function returning to the
class C.

Besides, Schultz et al. [116] adopt both Bayes and Muti-
naive Baye to detect malware. Similar to naive Bayes, the
likelihood of Muti-Bayes of the class C given bytes X will
be:

LNB(C|X) =

|NB|∏
i=1

PNBi
(C|X)

PNBi(C)
(24)

And classification model will be:

ŷ = maxC(PNB(C) ∗ LNB(C|X)) (25)

where NB stands for a set Naive Bayes of classifiers, |NB|
is the size of set, NBi∈{1,2,...,|NB|} is an individual Naive
Bayes classifier.

d: Decision Tree
The Decision Tree is a tree-liked supervised learning model
formed by decisions and corresponding consequences. Bel-
son et al. [13] is the earliest work that used the decision
tree. After, some researchers have improved the decision
tree algorithms, such as Freund et al. [51] and Kearns et
al. [73]. A decision tree is formed by nodes, arcs, and leaves
which represent decisions, consequences, and results. Those
three parts can reflect feature attributions, feature values and
categories clearly.

In BCA field, Hosfelt et al. [65] use the decision tree as
a supervised learning algorithm and compared it with other
learning algorithms. The result shows that the decision tree
has a weak performance in identifying the binary program
of the cryptographic algorithm used to encode data. Be-
sides, liangboonprakong et al. [83] adopt the C4.5 decision
tree [101] with tool KNIME [14] as one of learning methods
to classify malware. Similar to the result in Hosfelt et al. [65],
the accuracy of malware classification of the decision tree is
lower than SVM.

e: Random Forest
Random Forest is an Ensemble learning combining decision
trees, so it has a better performance compared with a decision
tree. It was first introduced in Ho et al. [62] and was further
developed in Dietterich et al. [40]. In the area of machine
learning based BCA, Caliskan et al. [20] randomly selected
(logM)+1 features from M total features and each (logM)+
1 features will be inputted to a tree. Shijo et al. [120] also
adopts random forest as their classifier for malware detection.

f: Boosting
In order to improve the performance of a certain machine
learning algorithm, boosting is proposed. The boosting com-
bine several weak learning algorithms together and create a
strong learner. FID [130] proposes the majority voting on the
top of multiple learning. It combines linear SVM and two
Boosting which are AdaBoost and GradientBoosting.

Example. RIPPER sets five types of rules after learning
thousands of malicious binaries and benign binaries.
according to four principles:
1. Does the malware have a GUI?
2. Does the executable perform malicious functions?
3. Does the executable compromise system security?
4. Does this executable delete a file?

Then to check if a binary is malicious, we need to check
the following classification table:

Has a GUI? Malicious Function? Compromise Security? Deletes Files? Malicious executable?
√ √ √

×
√

×
√ √ √ √

√
× ×

√
×

√ √ √ √ √

The heuristic for stop condition defined as a total description
length will be computed with the rule set and examples. The
total description length will stop adding rules when there
is no positive example or it is more than 64 bits and larger
than the smallest description length calculated from previous
rules.

B. UNSUPERVISED LEARNING
Different from supervised learning, unsupervised learning
does not have the ground truth and prior domain knowledge
before its training process. In this section, we then give the
common unsupervised learnings that have been employed in
BCA, and the overview is shown in Table 6.

1) Clustering
Clustering is one of the most common unsupervised learn-
ing approaches used in general classification tasks. Given a
considerable amount of unmarked feature embeddings, clus-
tering can automatically group them into different homoge-
neous groups [151]. Several existing works adopt clustering
algorithms to gain homogeneous groups and prepare for
further classification.

a: K-means Clustering
K-means Clustering is a prototype-based clustering that was
first introduced by Lloyd [88]. Then, it was further developed
and improved by many other researchers, such as Algorithm
AS 136 [61], Alsabti et al. [6], filtering algorithm [71], etc.

Hosfelt et al. [65] uses K-means clustering as an unsuper-
vised learning module to identify instruction features, such
as the number of times an individual instruction is executed,
the type of instructions (e.g., NOP, SYSCALL) and the
number of loops executed, from the implementation binaries
of cryptographic algorithm for malware detection purpose.

VOLUME 4, 2016 13

TABLE 6. Summary of unsupervised learning in machine learning-based BCA.

Unsupervised Learning Title Purpose

Clustering

K-means
Hosfelt et al. [65];
Rosenblum et al. [107]

Identify Instruction Features;
Classify Authorship

Affinity Propagation Clone-Hunter [139] Detect Code Clones in Binaries
Hierarchical Clustering Rieck et al. [103] Classify Behavior

Other Genius [47] Generate Cluster of ACFGs

Rule-based Schultz et al. [116]
Identify Malicious Executables
Features

Weighted Prefix Tree Byteweight [9]
Identify Function Entry Points
in Binary Program

The goal of this work is to utilize K-means clustering to
detect cryptoviruses in small (single purpose) programs.

Besides, Rosenblum et al. [107] uses K-means clustering
for authorship classification. Given program sets and label
sets, we can cluster them with a distance metric between two
feature vectors. During this process, Large Margin Nearest
Neighbors (LMNN) [132] is proposed to learn the distance
metric.

K-means clustering is a simple and efficient clustering
algorithm. However, prior knowledge of the cluster numbers
must be known before clustering and k-means clustering also
cannot handle non-globular clusters well.

b: Affinity Propagation Clustering
Different from K-means clustering, Affinity Propagation
clustering (AP clustering) is able to determine the number
of clusters among the data points without any a prior knowl-
edge [15]. AP clustering performs the "message passing"
procedure to update the relationships between data points
and candidate exemplars (a.k.a cluster centers). There are
three matrices used in AP clusterings, where S is a similarity
matrix, R(i, k) and A(i, k) are for Responsibility matrix
and Availability matrix respectively. Assuming we have two
distinct data points Xi and Xj , S is represented as the
negated value of the squared Euclidean distance.

On the other hand, Responsibility matrix and Availability
matrix are being updated in each iteration. In particular,
R(i, k) measures how well data pointXk is suited to serve as
a candidate cluster exemplar for the point Xi, while A(i, k)
reflects how appropriate it is for Xi to choose Xk as its
cluster exemplars. The more details of AP clustering can be
found in reference [52].

In particular, Clone-Hunter [139] utilizes AP clustering to
detect code clones in binaries. Given a binary code, Clone-
Hunter first normalizes the assembly code into intermedi-
ate representations in order to remove instruction-specific
details, such as register names and memory addresses. The
feature vectors are then generated from each normalized
instruction sequence, embed them into vector space and use
AP clustering algorithms to find binary code clones.

c: Hierarchical Clustering
Hierarchical Clustering clusters data sets from different hi-
erarchies, hence, it can handle non-globular clusters. In the
machine learning based BCA, Rieck et al. [103] proposes a
framework using the Hierarchical Clustering [42] for the be-
havior classification problem following by Bayer et al. [11].
It firstly uses a linear-time algorithm [55] to extract proto-
types whose distance is smaller than a constant from feature
vectors. Based on these prototypes, Clustering will then
update the distance with the minimum Manhattan Distance
between prototypes and finally decides the group according
to the nearest prototype.

d: Other Types of Clusterings
Genius [47] adopts a kernelized special clustering [94] where
the input is a kernel matrix to generate a optimal cluster.
Given a kernel matrix formed by a set of ACFG similarity
score which has been discussed in IV-A, the output will be
an optimal cluster of ACFGs.

2) Rule-based Learning
Schultz et al. [116] employ a special rule-based learning sys-
tem [31] which is a set-valued extension of a rule inductive
algorithm, the Repeated Incremental Pruning to Producing
Error Reduction (RIPPER) [30]. For example, Schultz et
al. [116] use this algorithm to learn malicious executables
features (PE headers information) to construct a detection
model to identify malicious executables.

3) Weighted Prefix Tree
Similar to AST, a prefix tree is a data structure that each
non-root node is associated with bytes or instructions for a
binary code to enable efficient information retrieval. Given
a static execution path containing a n instructions, it can be
represented in a prefix tree path from root to a child node with
tree height of n. Byteweight [9] utilizes a weighted prefix
tree approach to identify function entry point in a program.
It proposes a program signature learning process using prefix
tree and recognizes function entry pointer by simple match-
ing binary code fragments with the corresponding learned
signatures. First, the training data is constructed as a corpus

14 VOLUME 4, 2016

of program binaries, which contain a set of functions with
known function entry point and end point. Then, it builds
weight prefix tree for each function from training data and
the weights are learned by the likelihood that the instruction
sequence corresponding to the path from the root node to this
node is a function entry point in the training data set.

Ø

push %ebp

push %ebp

Mov %esp, %ebp

Mov %rbp, -0x8(%rsp)

…

Callq 0x43a28

Callq 0x401320

sub $0x20, %rsp

mov %rsi, %rbx

…

0.0000

0.1445

0.8459

0.9883

0.9694

0.0159

0.0320

0.9728

0.9419

FIGURE 9. A sample of Prefix Tree [9]

Example. In a weighted prefix tree, defined in
Byteweight, each non-root node specifically represents
an instruction. As shown in Figure 9, for example, the
weight of {push%ebp} is 0.8459, which means there are
84.59% of all sequences in with prefix of {push %ebp}
were function entry point, while the other 15.41% were
not.

C. DEEP LEARNING
In recent years, Artificial Neural Network (ANN), especially
Deep Neural Network, has been applied to the BCA [121],
and has shown better results than other methods. The advan-
tage of Neural Network (NN) is that it can represent a binary
analysis task, (e.g. using ACFG embedding to represent a
binary function as we mentioned in Section III), as NN can
train parameters in an end-to-end fashion so that it does
not require too much prior domain knowledge. On the other
hand, an NN-based BCA approach can be adaptive by design,
as the input of NN can be arbitrary types of data into different
application tasks. Table 7 gives the overall of current BCA
frameworks based on deep learning

1) Recurrent neural network (RNN)
RNN is a type of ANN original proposed from Hopfield
networks [64] in 1982. RNN has been proven as an effective
approach for modeling a piece of sequential information,
such as binary assembly code. Katz et al. [72] proposes the
encoder-decoder RNN using the seq2seq model to generate
a decompiler. From the token result discussed in the pre-
vious section, both source codes and binary tokens can be
translated into integers according to the frequency of tokens.
Then, these pairs of integers will be grouped into different
buckets according to their length. RNN will take both source
codes (C language) and corresponding binary code buckets
as input and output a decompiler model.

mov %edi 0x4029e0 push %rbp... ...

Ot−2 Ot−1 Ot Ot+1 Ot+2

S t−2 S t−1 S t S t+1 S t+2

W

V

U

FIGURE 10. RNN learning process.

Clone-Slicer [140] proposes a code clone detection frame-
work based on RNN. It first parses assembly instructions into
tokens and uses them as input to RNN to generate vector
embeddings for each unique token in the lexical level. Then
it utilizes recursive auto-encoder to combine the embeddings
to generate code signature in syntax level. Here, we give an
example of how to use RNN to model binary assembly code.

Example. As shown in Figure 10, there are 2 adjacent
instructions which are [..., mov, %edi] and [0x4029e0,
push, %rbp, ...]. The input of each node is a one-hot
vector representing the current term in the disassembly
code corpus, the hidden layer stores the current state
and previously calculated results. Specifically, it can be
obtained using the following equation:

st = f(Uxt +Wst−1) (26)

The output is probability vectors to predict the distri-
bution of the next input. The parameters {U, V,W} are
trained using back propagation through the time (BPTT)
method in an RNN network [44]. Once RNN training is
complete, each term in the code corpus will have a unique
embedding U for further analysis.

Similarly, Shin et al. [121] also adopts RNN as its learning
method for function recognition and the learning process is
just like Xue et al. [140].

2) Deep Neural Network (DNN)
DNN is a complex non-linear ANN with multiple hidden
layers. Its first implementation is back to 1989 by Lecun
et al. [78]. Recently, DNN has been substantially applied in
different NLP tasks and aim to improve the representation
power of the abstractions (e.g., language words embeddings).

As mentioned in Section III-A2, Xu et al. [136] embed
the whole ACFG through a DNN embedding network, then
it implements a similarity detection based on the euclidean

VOLUME 4, 2016 15

TABLE 7. Summary of deep learning in machine learning-based BCA.

Deep Learning Title Purpose

Recurrent neural network
Clone-Slicer [140];
Shin et al. [121]

Detect Code Clone;
Recognize Function in Binary Program

Deep Neural Network Xu et al. [136] Embed ACFGs
Multiple Layer Perceptron Liangboonprakong et al. [83] Classify Malware Families

One-Sided Perceptron Gavriluţ et al. [54] Detect Vulnerabilities

distance between the embeddings for two static functions
that compiled in different architectures. We further present
an example of such embedding process using DNN.

Example. As shown in Figure 11, given a set of ACFG
basic blocks feature vector, the embedding network will
generate a feature vector to represent a basic block and
its adjacent basic block in each DNN layer. In particular,
a code graph with a set of vertex v (In this figure, there
are three vertex x1, x2 and x3). Then embedding µt+1

v is
updated at each iteration as:
µt+1
v = f(xv,

∑
u∈v

µt)

where f is a nonlinear function. In Figure 11, the
function f is defined as:
tanh(W1xv + σ

∑
u∈v

µu)

where xv is a d-dimensional vector for graph node
(or basic-block), W1 is a d × p matrix, and p is the
embedding size as explained above. To make this
transformation σ(∗) more refined, a n-layer neural
network are used after as:
σ(l) = P1 ×ReLU(P2 × ...ReLU(Pnl)))
where Pi is a p × p matrix, ReLU is the activation
function as ReLU(x) = max{0, x}.

For example, given the ACFG in Figure 7, the first layer’s
input will be the current vertex [0, 1, 10, 1, 11, 0, 11,
0.296] and the adjacent vertex is [0, 1, 1, 0, 2, 0, 10,
0.362]. In the second layer, the current vertex will be [0,
1, 1, 0, 2, 0, 10, 0.362] and adjacent vertex are [0, 1, 1,
0, 3, 0, 5, 0.19], [1, 6, 21, 4, 32, 2, 5, 0.26] and so forth.
The output of embedding network will be a vector which
represents the whole ACFG.

3) Multiple Layer Perceptron (MLP)

Multi-layer perceptron (MLP), a feed-forward neural net-
work that consists of at least three layers (an input and an
output layer with one or more hidden layers). Different from
conventional neural networks, each node is using a nonlinear
activation function (e.g., sigmoid function) in MLP except
for the input nodes. Thus, it can handle non-linear separable
data due to its multi-layers and non-linear activation.

Back to Section III-B, we mentioned Liangboonprakong
et al. [83] use N-gram-based features to classify malware
families. It then adapts MLP as one of their classification

models. However, the results have shown the classification
accuracy is not as good as other classification models, such
as SVM.

4) One-Sided Perceptron
One-sided perceptron is a modified version of Perceptron.
This algorithm first trains data with a chosen label and
data sets will be separated into two part through learned
linear separator. On the one side of separator, data will
have that chosen label, while the others will have mixed
labels. Gavriluţ et al. [54] propose one-sided perceptrons to
detect vulnerabilities in binaries. One-sided perceptrons is
modified from perceptrons algorithm in [104] for malware
detection purpose. In Gavriluţ et al. [54], the Perceptron
Training Subroutine, One-sided Perceptron, and Kernelized
One-sided Perceptron Algorithms are integrated together by
a Cascade Classifier. The Cascade Classifier is a case of
ensemble learning which each classifier in Cascade Classifier
will collect the previous classifiers’ output and learning data
itself.

VI. APPLICATIONS
In this section, some applications of machine learning based
BCA will be classified. Furthermore, we elaborate and com-
pare the techniques used in each application in detail.

A. BINARY CODE CLONE DETECTION
Detecting similar code fragments, usually referred to as code
clones, is an important task to understand software and detect
duplicate code fragments. Many works have proposed vari-
ous code clone detection frameworks for different purposes
in the source code. For example, prior works make use of
subsequence token matching, abstract syntax trees (ASTs)
comparison or control flow graph analysis [8], [70]. Binary
code clone detection is more difficult compared to detect
code clones in source codes. As mentioned in the previous
section, source codes leverage rich structural information
such as syntax trees and variable names made available
through source lines of program code comparing to binary
codes. Due to this fundamental difficulty of binary code clone
detection, machine learning has been adopted and proved as
a sufficient approach.

Generally, there are five different clone types in terms
of binaries. Type I: Identical code fragments that are
copy/paste. Type II: Identical code fragments except for

16 VOLUME 4, 2016

+

...

x
1

x
3

x
2

μ
1

0
μ

2

0
μ

3

0

μ
1

1
μ

1

1
μ

1

1

μ
1

T
μ

1

T
μ

1

T

❑×W
2

+

...
+

W
1
×W

1

xμ

xμ
i+1

ReLU P
n
×W

1

ReLU

P
1
×W

1

tanh

σ

Current Vertex
Adjacent Vertex

μ
v

i...

A. Embedding Network B. One Layer of Embedding Network

n layers

μ

T
 ite

ra
ti o

n
s

FIGURE 11. DNN embedding structure. [136]

TABLE 8. Binary code clone detection.

Title Year Features ML Model Type I Type II Type III Type IV Type V

Saebjornsen et al. [110] 2009 Tokens Clustering
√ √

David et al. [39] 2014 CFG & Execution trace Clustering
√ √

Esh [38] 2016 Instructions Logistic function
√ √ √

discovRE. [43] 2016 CFG K-NN
√ √ √

Gemini [136] 2017 ACFG Neural Network
√ √ √

Clone Hunter [139] 2018 Tokens Clustering
√ √

Clone-Slicer [140] 2018 Tokens Recursive Neural Network
(RNN)

√ √ √ √

variations in identifiers, literals, and comments. Type III:
Syntactically similar fragments with further modifications
such as changed, added or removed statements with respect
to each other. Type IV: Semantically equivalent code frag-
ments that implement the same functionality. Type V: Cross-
platform code fragments that are compiled from the same
source code but in different platforms, e.g., x86, ARM, or
MIPS.

Table 8 summaries the contrast of some binary code clone
detection applications. We conduct experiments to analyze
and compare the ability to detect different types of code
clones. All experiments are performed on a 2.54 GHz Intel
Xeon(R) CPU E5540 8-core server with 12 GByte of main
memory. The operating system is Ubuntu 14.04 LTS. We
measured the quality of code clones (in terms of clone
types) that are detected from those clone detection tools. In
the evaluation, we measure the types of code clones (five
different types:Type I - Type V, defined in Section VI-A)
that are able to bes detected from those clone detection tools.
For a fair comparison, we choose the same configuration
to generate function-level code regions conducted on eight

real-world software systems (in binary format) mentioned in
Reference [133]. Finally, to mitigate the bias, two judges (two
authors from this paper) used a uniform set of guidelines to
measure the similarity of code fragments.

As we can see, the majority of binary code clone detection
frameworks are efficient to detect Type I and Type II clones.
In particular, CFG based features can obviously show char-
acteristics in the binary code and are able to detect Type V
clones. For machine learning, discovRE [43] adopts K-NN
due to faster set up time and less memory occupy compared
with SVM. Xu et al. [136] introduce Neural Network because
it can quickly retrain the data set. Mostly, deep learning tech-
niques have been applied in the binary code clone detection
and can be used to detect. Type IV clones. Clone-Slicer [140]
first proposes a binary clone detector using RNN. The general
idea is similar to use RNN for NLP tasks. Here, we give an
example of how to apply deep learning to detect binary code
clones

VOLUME 4, 2016 17

1 push %rbp

2 mov %rsp, %rbp

3 sub $0x20, %rsp

4 lea -0x4(%rbp), %rax

5 mov %rax, %rsi

6 mov $0x601060, %edi

7 callq 400710

8 mov -0x4(%rbp), %eax

…

…

…

…

push

%rbp

mov

%rsp

%rbp

A. Basic Block B. Recursive Auto-encoder

FIGURE 12. Code clone detection process by Xue et al. [140]

Example. As shown in Figure 12, given instructions in
a basic block, the recursive auto-encoder will embed
vectors into an embedding vector. It shows an execution
path including a total of 8 instructions. Clone-Slicer
makes use of a greedy method to combine the embed-
dings. For instance, the embedding for the first instruc-
tion (push %rbp) is encoded from terms embeddings
[push; %rbp]. For the rest of the instructions, it repeats
the same process until the end of the given execution
path.

B. FUNCTION RECOGNITION

In binary code, only part of instructions can be extracted
since different optimizations may have been made during
program compiling time (e.g. inline functions). It is a difficult
task to identify the boundary of each basic block and further
find the entry point and the end point of functions. As
mentioned in Section III, FEP features are used as inputs for
the machine learning model to deal with this problem. Using
machine learning, each boundary can be easily found. Table 9
lists several existing works for the function recognition in
static binary codes.

Rosenblum et al. [106] and Rosenblum et al. [109] both
set FEP based features and Idiom feature as the characteristic
of binary code. Rosenblum et al. [106] use MRF model
interface, while Rosenblum et al. [109] adopt CRF model
interface as the learning model. The goal of these two papers
is FEP identification. Besides, Byteweight [9] has the same
goal which is to find the function entry points. It adopts
a weight prefix tree to learning the CFG based features.
Shin et al. [121] propose RNN as the ML model to learn
tokens of byte sequences. FID [130] proposes a ensemble
learning using LinearSVC, AdaBoost, and GradientBoosting
to recognize function.

C. MALWARE DETECTION
The software security system has become more complex due
to the growing software scale and complexity. Prior works
have shown that there are about 5 to 20 bugs per 1,000 lines of
software code [84]. To reduce the number of vulnerabilities
in software systems, malware detection is becoming the focus
of BCA research.

Identifying vulnerabilities in binaries have been studied
for over 20 years, the main research consists of three major
directions: static analysis, dynamic analysis, and hybrid
method (the combination of static and dynamic). Tools for
malware detection have been deployed to all stages of soft-
ware development to reduce the damages caused by software
security issues. To evaluate malware detection systems, we
use two common measurements:
1. True Positives Rate (TPR), the number of malicious
executable examples classified as malicious executables.
2. False Positives Rate (FPR), the number of benign programs
classified as malicious executables.

We note that the reported TPR and FPR numbers vary
in existing malware detection tools, that is because different
tools may be used for different purposes (for example, some
tools are proposed to detect memory-related vulnerable pro-
grams, some tools are to detect crytovirus, etc.). On the other
hand, different tools utilize various types of features and ma-
chine learning analysis techniques. Thus, the performance of
a malware detection tool can be affected by the different types
of machines they used for evaluation, the hyperparameters
in machine learning models (e.g., training iterations, vector
embedding depth and size and so on), the type and the size
of training and testing data. This results in that we cannot do
a one-to-one simple comparison. Therefore, we report TPR
and FPR into three different levels asHigh/H ,Medium/M
and Low/L respectively. Table 12 shows the range of those
levels. .

Table 10 summarizes some widely used malware detection
tools for binary executables. For instance, VDISCOVER has
an FPR as H (31%), which is the highest FPR in this list.
That is because it is developed to detect not only malware in
large-scale programs, but to predict if the bugs are exploitable
or probably exploitable. This can be limited by the amount
of training data for machine learning model and require
both static and dynamic (e.g., runtime information) features.
We further compare the experiment setup in those malware
detection systems in detail, shown in Table 11. As we can
see, most of those works chose a larger amount of malicious
binaries than clean/benign binaries for training their systems.
On the other hand, the cross-validation approach is a pretty
common method to evaluate the performance. Finally, the
training time are not always reported. That is because the
training for machine learning is mainly an offline process,
which does not consume the online resources. Thus, it is not
an important experiment affecting factor.

Schultz et al. [116] use RIPPER and different Bayes
models learning PE features and token of byte sequence

18 VOLUME 4, 2016

TABLE 9. Function Recognition.

Title Year Features ML Model

Rosenblum et al. [106] 2007 FEP based and Idiom features MRF model interface

Rosenblum et al. [109] 2008 FEP based and Idiom features CRF model interface

Byteweight [9] 2014 CFG Weight Prefix Tree

Shin et al. [121] 2015 Byte Sequences RNN

FID [130] 2017 Lexical, Syntactic and Stack features Linear SVC, AdaBoost and GradientBoost-
ing

TABLE 10. The comparison of classification performance in malware detection tools.

Title Year Features ML Model TPR FPR

Schultz et al. [116] 2001 PE features and Byte sequence RIPPER, Native Bayes model and Multi-
Native Bayes model

High Low

Gavriluct et al. [54] 2009 N/A One-Sided Perceptron High Medium

Rieck et al. [103] 2011 MIST Hierarchical Clustering and Nearest prototye
classification

Not Applicable Not Applicable

Liangboonprakong et al. [83] 2013 String Pattern C4.5, Multilayer perceptron and SVM High Not Applicable

Saxe et al. [112] 2015 Byte Histogram Feature and PE Features DNN High Low

Shijo et al. [120] 2015 PSI and API-calls SVM and Random Forest High Low

Zak et al. [149] 2017 Sectional Byte N-grams and Assembly N-
gram features

Elastic-Net Regularized Logistic Re-
gression and Stacking

High Not Applicable

RMVC [122] 2018 Opcodes RNN and CNN Medium Low

Liu et al. [87] 2019 Image Features MLP, KNN, and Random Forest Medium Not Applicable

TABLE 11. The comparison of experiment affecting factors in malware detection tools.

Title
Training data size Testing data size

Evaluation Appraoch Training Time
#malicious binaries #clean binaries #malicious binaries #clean binaries

Schultz et al. [116] 3,265 1,001 206 38 cross-validation Not Available

Gavriluct et al. [54] 7,822 415 2,581 137 cross-validation 22.75 mins

Rieck et al. [103] 33,698 Not Available Not Available Not Available Metrics of precision and recall Not Available

Liangboonprakong et al. [83] 9,759 2,440 1,950 488 Receiver operating characteristics (ROC) Not Available

Saxe et al. [112] 350,016 81,910 Not Available Not Available cross-validation 40 mins

Shijo et al. [120] 997 490 Not Available Not Available Metrics of precision and recall Not Available

Zak et al. [149] 200,000 200,000 40,000 37,349 Metrics of precision and recall Not Available

RMVC [122] 4,133 Not Available 894 Not Available Metrics of precision and recall Not Available

Liu et al. [87] 36,736 Not Available Not Available Not Available Metrics of precision and recall Not Available

TABLE 12. Ranges of reported TPR and FPR for malware detection.

High Medium Low
TPR 100% ∼95% 95% ∼75% <75%
FPR >15% 15% ∼5% <5%

to detect vulnerabilities. Gavriluct et al. [54] direct learn
the binary malware via the one-sided perceptron. Rieck
et al. [103] generates a vulnerability detector through the
Hierarchal Clustering and Nearest prototype classification.
Liangboonprakong et al. [83] adopt both a decision tree C4.5,
a multilayer perceptron and SVM to learn the string pattern.
Saxe et al. [112] learn vulnerabilities through DNN. Shijo et
al. [120] adopt both SVM and Random Forest. Genius [47]
searches bugs via spectral clustering. VDISCOVER [57]

searches vulnerabilities through learning the static and dy-
namic calling sequence for c library of samples via the
logistic regression model, MLP and Random Forest. Zak et
al. [149] learn malware through two kinds of n-gram features.
The first is sectional byte n-gram features which are byte
sequences of PE features and the second is assembly n-gram
features which are assembly code instructions. RMVC [122]
first translates the assembly language into an image through
RNN and hash algorithm Minhash [17], then uses CNN to
learn image features and constructed a model for the malware
identification.

D. VULNERABILITY DISCOVERY

Machine-learning-based BCA are also applied successfully
in vulnerability discovery field. The existing vulnerability
analysis methods based on machine-learning can be cate-

VOLUME 4, 2016 19

TABLE 13. Vulnerabilities discovery

Title Year Features ML Model Analysis Type Type of vulnerabilities detected
Padmanabhuni et al. [97] 2015 CFG-based Fea-

tures
Native Bayes, MLP, Sim-
ple Logistic, and Sequen-
tial Minimum Optimiza-
tion

Syntax-level Buffer overflow

Yamaguchi Fabian et al. [143] 2015 CFG-based Fea-
tures

Clustering Semantic-level Memory corruption

Genius [47] 2016 ACFG Spectral Clustering Syntax level Buffer/Heap/Stack overflow; Null pointer
deference; Double free

VDISCOVER [57] 2016 Dynamic and
static features

logistic regression, MLP
of single hidden layer and
random forest

Lexical-level Buffer/Heap/Stack overflow; Null pointer
deference; Double free; Use after free

NeuFuzz [131] 2019 Binary Programs DNN Semantic-level Buffer/Heap/Stack overflow; Null pointer
deference; Invalid memory access

Change et al. [27] 2019 Execution Paths RNN Semantic-level Buffer/Heap/Stack/Integer overflow
PATCHDETECTOR [48] 2019 Tokens Deep feed-forward Neural

Network
Semantic-level Buffer/Heap/Stack overflow

gorized into three different program analysis methods: (1)
vulnerability analysis in the lexical level; (2) vulnerability
analysis in the syntax level; (3) vulnerability analysis in
semantic level. Table 13 summarizes several distinguished
works for vulnerability discovery, with respect of machine
learning model used, analysis method, and the types of
vulnerabilities that are detected. As we can see, semantic pro-
gram analysis outperforms the other two analysis approaches
in general, with the ability to detect diverse bugs and higher
accuracy.

For example, Fabian et al. [143] propose a detection
framework for automatically inferring search patterns for
taint-style vulnerabilities. The inferred patterns are derived
through tainting by identifying corresponding source-sink
APIs and constructs patterns that model the control flow
graph in binaries. The results show the inferred patterns
reduce the amount of code to inspect for finding known
vulnerabilities by over 95% and are able to identify multiple
unknown types of vulnerabilities as well.

E. AUTHORSHIP RECOGNITION

Authorship means the creation of a piece of code and its at-
tribution that will threat the privacy and security community.
In order to identify the author of a certain program by coding
style without any source code or increase the accuracy, binary
code is adopted for the authorship recognition. Table 14
shows the contrast of Authorship recognition. Two papers all
use features related to instructions. In Rosenblum et al. [107],
Idioms and graphlets can reflect order and detail of instruc-
tions, while Caliskan et al. [20] directly use instructions
as features. It means that the instruction is more likely to
reflect the style of code by different authors. Meng et al. [91]
construct a classification model via learning instructions,
CFG, and data flow to identify basic block level authorship
in a binary code.

F. OTHER TYPES OF APPLICATIONS
Besides the applications we have mentioned above, there
are several other works using machine learning based BCA
frameworks for other purposes. We list some distinguished
other types of applications in Table 15. Hosfelt et al. [65]
test the ability of Cryptographic algorithm classification of
learning algorithm SVM, Naive Bayes model, Decision Tree,
and K-means Clustering. Katz et al. [72] create a tool to
decompilation via RNN. Rosenblum et al. [105] use SVM
to learn the compiler information and further recovers tool
chain provenance.

VII. FUTURE RESEARCH DIRECTIONS
In this section, we discuss a number of possible directions for
future work in BCA, including deep learning based BCA, and
joint statistical and formal learning approaches to improve
the robustness of BCA.

A. DEEP LEARNING
Deep learning has demonstrated great potential in various
domains. Relating to software analysis, researchers have
successfully applied deep learning for problems like malware
detection [7], [112] and binary reverse [28]. More and more
works are starting to leverage these advanced machine learn-
ing models for BCA.

LEMNA [59], a deep learning based BCA framework, can
take an input data sample and generates a small set of inter-
pretable features to explain how the input sample is classified.
The core idea is to approximate a local area of the complex
deep learning decision boundary using a simple interpretable
model. In a separate line of work, INNEREYE [152] borrows
ideas from NLP to provide a solution for two important code
similarity comparison problems. (I) Cross-platform binary
code similarity detection; and (II) given a piece of binary
code of interest, determining if it is contained in another piece
of code compiled from a different instruction architecture
set (ISA). Furthermore, MORPH [137] proposes an interac-
tive program feature customization framework by leveraging

20 VOLUME 4, 2016

TABLE 14. Authorship recognition.

Title Year Features ML Model

Rosenblum et al. [107] 2011 Idiom and graphlets features SVM and LMNN

Caliskan et al. [20] 2015 Instruction feature Random forest

Meng et al. [91] 2017 Instruction, data flow and context features CRF and SVM

TABLE 15. Other types of applications.

Title Features ML Model Purpose

Hosfelt et al. [65] Instruction, Category fea-
ture

SVM, Native Bayes model, Decision Tree
and K-means Clustering

Cryptographic algorithm classification

Katz et al. [72] String RNN Decompilation

Rosenblum et al. [105] FEP based features SVM Recovering Toolchain Provenance

deep learning technique to map dynamic execution trace to
static binary functions and binary rewriting to remove unused
program features.

These works are only the initial steps towards develop-
ing sophisticated and highly automated BCA models/tools
through deep learning. By making the progress of developing
machine learning models and address unique challenges aris-
ing from BCA, more efforts can make a positive contribution
to building reliable deep learning systems for critical BCA
applications.

B. JOINT STATISTICAL AND FORMAL LEARNING
As mentioned in Section II, The two lines of BCA tech-
niques alone have certain fundamental limitations. 1. Pure
statistical methods rely on probabilistic inference and often
fail to guarantee complete accuracy. Any conclusions derived
from sampling the runtime program states can offer only
limited visibility and are prone to false alarms. As a result,
considerable human effort is still required to verify the results
from statistical analysis. 2. Formal methods require exhaus-
tive analysis along with all paths in the application code,
which can be prohibitively expensive in terms of time and
resources. As such, strict symbolic execution methods can be
less effective in analyzing software at-scale.

Recently, some researchers have proposed a new type
of BCA framework, which integrates statistical and formal
methods to harnesses the advantages of both techniques to
perform rigorous code analysis in binary executables while
maintaining scalability and swiftness. Statsym [146] explores
the use of statistical data from faulty execution runs to swiftly
identify vulnerable program paths in an application’s source
code. SIMBER [138] used statistical data from program
execution runs to determine safety of array accesses, and
eliminate array bound checks in program locations where
it is deemed redundant. We note that these joint learning
techniques were performed at source code level.

Clone-Hunter [139] develops a joint learning framework
to rapidly remove redundant array bound checks in binaries.
It utilizes clustering algorithms from machine learning to

detect binary code clones. Then, binary symbolic execution is
used to verify if the samples within an identified cluster have
redundant bound checks. If machine learning algorithms are
able to cluster identical codes efficiently, this joint learning
methodology enables a highly automated and scalable re-
dundant bound check elimination process. Clone-Slicer [140]
proposes a similar formal verification idea to verify if two
binary clone clones detected from a machine learning module
are true positives in terms of memory safety.

This hybrid (or joint) formal-statistical learning technique
can add another important dimension to Machine-Learning-
based BCA, potentially delivering both the effectiveness of
statistical analysis and guarantees from symbolic execution.

VIII. CONCLUSION
Binary Code Analysis techniques have given us the op-
portunities to analyze binary executables without access to
the source code, and has notable applications in numerous
domains like code clone detection, malware detection, soft-
ware testing and so on. With the help of Machine learning
techniques, BCA has been significantly spedup that helps
better understand binary program behavior in a rapid man-
ner, secure software systems, and troubleshoot errors during
system runtime.

This article has discussed some of the key aspects and
challenges of BCA based on machine learning, presenting
for a broad audience the basic design principles of BCA
frameworks. We hope this comparative study will help non-
experts or other researchers to grasp the background knowl-
edge and related techniques, inspiring new novel ideas and
further works in this important direction.

REFERENCES
[1] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining

association rules. In Proc. 20th int. conf. very large data bases, VLDB,
volume 1215, pages 487–499, 1994.

[2] Murugappan Alagappan, Jeyavijayan Rajendran, Miloš Doroslovački,
and Guru Venkataramani. Dfs covert channels on multi-core platforms.
In 2017 IFIP/IEEE International Conference on Very Large Scale Inte-
gration (VLSI-SoC), pages 1–6. IEEE, 2017.

VOLUME 4, 2016 21

[3] Shahid Alam, Issa Traore, and Ibrahim Sogukpinar. Annotated control
flow graph for metamorphic malware detection. The Computer Journal,
58(10):2608–2621, 2015.

[4] Frances E Allen. Control flow analysis. In ACM Sigplan Notices,
volume 5, pages 1–19. ACM, 1970.

[5] Mohamed Almorsy, John Grundy, and Amani S Ibrahim. Supporting au-
tomated vulnerability analysis using formalized vulnerability signatures.
In Automated Software Engineering (ASE), 2012 Proceedings of the 27th
IEEE/ACM International Conference on, pages 100–109. IEEE, 2012.

[6] Khaled Alsabti, Sanjay Ranka, and Vineet Singh. An efficient k-means
clustering algorithm. 1997.

[7] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Kon-
rad Rieck, and CERT Siemens. Drebin: Effective and explainable
detection of android malware in your pocket. In Ndss, volume 14, pages
23–26, 2014.

[8] Brenda S Baker. Parameterized duplication in strings: Algorithms and
an application to software maintenance. SIAM Journal on Computing,
26(5):1343–1362, 1997.

[9] Tiffany Bao, Johnathon Burket, Maverick Woo, Rafael Turner, and David
Brumley. Byteweight: Learning to recognize functions in binary code.
USENIX, 2014.

[10] Elena Gabriela Barrantes, David H Ackley, Trek S Palmer, Darko Ste-
fanovic, and Dino Dai Zovi. Randomized instruction set emulation to
disrupt binary code injection attacks. In Proceedings of the 10th ACM
conference on Computer and communications security, pages 281–289.
ACM, 2003.

[11] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher
Kruegel, and Engin Kirda. Scalable, behavior-based malware clustering.
In NDSS, volume 9, pages 8–11. Citeseer, 2009.

[12] Ulrich Bayer, Christopher Kruegel, and Engin Kirda. TTAnalyze: A tool
for analyzing malware. na, 2006.

[13] William A Belson. Matching and prediction on the principle of biological
classification. Applied statistics, pages 65–75, 1959.

[14] Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel,
Tobias Kötter, Thorsten Meinl, Peter Ohl, Christoph Sieb, Kilian Thiel,
and Bernd Wiswedel. KNIME: The Konstanz Information Miner. In
Studies in Classification, Data Analysis, and Knowledge Organization
(GfKL 2007). Springer, 2007.

[15] Ulrich Bodenhofer, Andreas Kothmeier, and Sepp Hochreiter. Apclus-
ter: an r package for affinity propagation clustering. Bioinformatics,
27(17):2463–2464, 2011.

[16] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A
training algorithm for optimal margin classifiers. In Proceedings of the
fifth annual workshop on Computational learning theory, pages 144–152.
ACM, 1992.

[17] Andrei Z Broder. On the resemblance and containment of documents. In
Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat.
No. 97TB100171), pages 21–29. IEEE, 1997.

[18] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn
Song, and Heng Yin. Automatically identifying trigger-based behavior in
malware. In Botnet Detection, pages 65–88. Springer, 2008.

[19] Juan Caballero, Noah M Johnson, Stephen McCamant, and Dawn Song.
Binary code extraction and interface identification for security applica-
tions. Technical report, CALIFORNIA UNIV BERKELEY DEPT OF
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2009.

[20] Aylin Caliskan-Islam, Fabian Yamaguchi, Edwin Dauber, Richard Ha-
rang, Konrad Rieck, Rachel Greenstadt, and Arvind Narayanan. When
coding style survives compilation: De-anonymizing programmers from
executable binaries. arXiv preprint arXiv:1512.08546, 2015.

[21] Silvio Cesare and Yang Xiang. Classification of malware using structured
control flow. In Proceedings of the Eighth Australasian Symposium
on Parallel and Distributed Computing-Volume 107, pages 61–70. Aus-
tralian Computer Society, Inc., 2010.

[22] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vec-
tor machines. ACM transactions on intelligent systems and technology
(TIST), 2(3):27, 2011.

[23] Jie Chen, Guru Venkataramani, and H Howie Huang. Repram: Re-cycling
pram faulty blocks for extended lifetime. In IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2012), pages
1–12. IEEE, 2012.

[24] Jie Chen, Guru Venkataramani, and H Howie Huang. Exploring dynamic
redundancy to resuscitate faulty pcm blocks. ACM Journal on Emerging
Technologies in Computing Systems (JETC), 10(4):31, 2014.

[25] Yurong Chen, Tian Lan, and Guru Venkataramani. Damgate: Dynamic
adaptive multi-feature gating in program binaries. In Proceedings of the
2017 Workshop on Forming an Ecosystem Around Software Transforma-
tion, pages 23–29. ACM, 2017.

[26] Yurong Chen, Shaowen Sun, Tian Lan, and Guru Venkataramani. Toss:
Tailoring online server systems through binary feature customization.
2018.

[27] Liang Cheng, Yang Zhang, Yi Zhang, Chen Wu, Zhangtan Li, Yu Fu, and
Haisheng Li. Optimizing seed inputs in fuzzing with machine learning.
arXiv preprint arXiv:1902.02538, 2019.

[28] Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and Zhenkai Liang.
Neural nets can learn function type signatures from binaries. In Proceed-
ings of the 26th USENIX Conference on Security Symposium, Security,
volume 17, 2017.

[29] Cristina Cifuentes. Partial automation of an integrated reverse engineer-
ing environment of binary code. In wcre, pages 50–56, 1996.

[30] William W Cohen. Fast effective rule induction. In Machine Learning
Proceedings 1995, pages 115–123. Elsevier, 1995.

[31] William W Cohen. Learning trees and rules with set-valued features. In
AAAI/IAAI, Vol. 1, pages 709–716, 1996.

[32] Kevin Coogan, Saumya Debray, Tasneem Kaochar, and Gregg Townsend.
Automatic static unpacking of malware binaries. In Reverse Engineering,
2009. WCRE’09. 16th Working Conference on, pages 167–176. IEEE,
2009.

[33] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.

[34] Baojiang Cui, Jiansong Li, Tao Guo, Jianxin Wang, and Ding Ma.
Code comparison system based on abstract syntax tree. In 2010 3rd
IEEE International Conference on Broadband Network and Multimedia
Technology (IC-BNMT), pages 668–673. IEEE, 2010.

[35] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent
variable models for structured data. In International Conference on
Machine Learning, pages 2702–2711, 2016.

[36] Jianyong Dai, Ratan K Guha, and Joohan Lee. Efficient virus detection
using dynamic instruction sequences. JCP, 4(5):405–414, 2009.

[37] Marc Damashek. Gauging similarity with n-grams: Language-
independent categorization of text. Science, 267(5199):843–848, 1995.

[38] Yaniv David, Nimrod Partush, and Eran Yahav. Statistical similarity of
binaries. ACM SIGPLAN Notices, 51(6):266–280, 2016.

[39] Yaniv David and Eran Yahav. Tracelet-based code search in executables.
Acm Sigplan Notices, 49(6):349–360, 2014.

[40] Thomas G Dietterich. An experimental comparison of three methods
for constructing ensembles of decision trees: Bagging, boosting, and
randomization. Machine learning, 40(2):139–157, 2000.

[41] Ioannis Doudalis, James Clause, Guru Venkataramani, Milos Prvulovic,
and Alessandro Orso. Effective and efficient memory protection using
dynamic tainting. IEEE Transactions on Computers, 61(1):87–100, 2012.

[42] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification.
John Wiley & Sons, 2012.

[43] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. dis-
covre: Efficient cross-architecture identification of bugs in binary code.
In NDSS, 2016.

[44] Mark Everingham, Andrew Zisserman, Christopher KI Williams, Luc
Van Gool, Moray Allan, Christopher M Bishop, Olivier Chapelle,
Navneet Dalal, Thomas Deselaers, Gyuri Dorkó, et al. The 2005 pascal
visual object classes challenge. In Machine Learning Challenges. Evalu-
ating Predictive Uncertainty, Visual Object Classification, and Recognis-
ing Tectual Entailment, pages 117–176. Springer, 2006.

[45] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin. Liblinear: A library for large linear classification. Journal
of machine learning research, 9(Aug):1871–1874, 2008.

[46] Qian Feng, Minghua Wang, Mu Zhang, Rundong Zhou, Andrew Hender-
son, and Heng Yin. Extracting conditional formulas for cross-platform
bug search. In Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, pages 346–359. ACM, 2017.

[47] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa,
and Heng Yin. Scalable graph-based bug search for firmware images.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 480–491. ACM, 2016.

[48] Qian Feng, Rundong Zhou, Yanhui Zhao, Jia Ma, Yifei Wang, Na Yu,
Xudong Jin, Jian Wang, Ahmed Azab, and Peng Ning. Learning binary
representation for automatic patch detection. In 2019 16th IEEE Annual
Consumer Communications & Networking Conference (CCNC), pages
1–6. IEEE, 2019.

22 VOLUME 4, 2016

[49] Ivan Firdausi, Alva Erwin, Anto Satriyo Nugroho, et al. Analysis of ma-
chine learning techniques used in behavior-based malware detection. In
Advances in Computing, Control and Telecommunication Technologies
(ACT), 2010 Second International Conference on, pages 201–203. IEEE,
2010.

[50] Stephanie Forrest, Steven A Hofmeyr, Anil Somayaji, and Thomas A
Longstaff. A sense of self for unix processes. In Security and Privacy,
1996. Proceedings., 1996 IEEE Symposium on, pages 120–128. IEEE,
1996.

[51] Yoav Freund and Llew Mason. The alternating decision tree learning
algorithm. In icml, volume 99, pages 124–133, 1999.

[52] Brendan J Frey and Delbert Dueck. Clustering by passing messages
between data points. science, 315(5814):972–976, 2007.

[53] Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namolaru,
Elad Yom-Tov, Ayal Zaks, Bilha Mendelson, Edwin Bonilla, John Thom-
son, Hugh Leather, et al. Milepost gcc: machine learning based research
compiler. In GCC summit, 2008.

[54] Dragoş Gavriluţ, Mihai Cimpoeşu, Dan Anton, and Liviu Ciortuz. Mal-
ware detection using machine learning. In Computer Science and Infor-
mation Technology, 2009. IMCSIT’09. International Multiconference on,
pages 735–741. IEEE, 2009.

[55] Teofilo F Gonzalez. Clustering to minimize the maximum intercluster
distance. Theoretical Computer Science, 38:293–306, 1985.

[56] Anjana Gosain and Ganga Sharma. A survey of dynamic program
analysis techniques and tools. In Proceedings of the 3rd International
Conference on Frontiers of Intelligent Computing: Theory and Applica-
tions (FICTA) 2014, pages 113–122. Springer, 2015.

[57] Gustavo Grieco, Guillermo Luis Grinblat, Lucas Uzal, Sanjay Rawat,
Josselin Feist, and Laurent Mounier. Toward large-scale vulnerability
discovery using machine learning. In Proceedings of the Sixth ACM
Conference on Data and Application Security and Privacy, pages 85–96.
ACM, 2016.

[58] Haoran Guo, Jianmin Pang, Yichi Zhang, Feng Yue, and Rongcai Zhao.
Hero: A novel malware detection framework based on binary translation.
In Intelligent Computing and Intelligent Systems (ICIS), 2010 IEEE
International Conference on, volume 1, pages 411–415. IEEE, 2010.

[59] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu
Xing. Lemna: Explaining deep learning based security applications. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 364–379. ACM, 2018.

[60] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H Witten. The weka data mining software: an update.
ACM SIGKDD explorations newsletter, 11(1):10–18, 2009.

[61] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means
clustering algorithm. Journal of the Royal Statistical Society. Series C
(Applied Statistics), 28(1):100–108, 1979.

[62] Tin Kam Ho. Random decision forests. In Document analysis and
recognition, 1995., proceedings of the third international conference on,
volume 1, pages 278–282. IEEE, 1995.

[63] Jeffrey K Hollingsworth, Barton Paul Miller, and Jon Cargille. Dynamic
program instrumentation for scalable performance tools. In Scalable
High-Performance Computing Conference, 1994., Proceedings of the,
pages 841–850. IEEE, 1994.

[64] John J Hopfield. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the national academy
of sciences, 79(8):2554–2558, 1982.

[65] Diane Duros Hosfelt. Automated detection and classification of crypto-
graphic algorithms in binary programs through machine learning. arXiv
preprint arXiv:1503.01186, 2015.

[66] Yikun Hu, Yuanyuan Zhang, Juanru Li, and Dawu Gu. Binary code clone
detection across architectures and compiling configurations. In Proceed-
ings of the 25th International Conference on Program Comprehension,
pages 88–98. IEEE Press, 2017.

[67] OECD Insights and Increase Revenue. The internet of things, 2017.
[68] Rafiqul Islam, Ronghua Tian, Lynn Batten, and Steve Versteeg. Clas-

sification of malware based on string and function feature selection. In
Cybercrime and Trustworthy Computing Workshop (CTC), 2010 Second,
pages 9–17. IEEE, 2010.

[69] Rafiqul Islam, Ronghua Tian, Lynn M Batten, and Steve Versteeg. Clas-
sification of malware based on integrated static and dynamic features.
Journal of Network and Computer Applications, 36(2):646–656, 2013.

[70] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu.
Deckard: Scalable and accurate tree-based detection of code clones. In

Proceedings of the 29th international conference on Software Engineer-
ing, pages 96–105. IEEE Computer Society, 2007.

[71] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D
Piatko, Ruth Silverman, and Angela Y Wu. An efficient k-means
clustering algorithm: Analysis and implementation. IEEE Transactions
on Pattern Analysis & Machine Intelligence, (7):881–892, 2002.

[72] Deborah S Katz, Jason Ruchti, and Eric Schulte. Using recurrent neural
networks for decompilation. In 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER), pages
346–356. IEEE, 2018.

[73] Michael Kearns and Yishay Mansour. On the boosting ability of top–
down decision tree learning algorithms. Journal of Computer and System
Sciences, 58(1):109–128, 1999.

[74] Mazen Kharbutli, Xiaowei Jiang, Yan Solihin, Guru Venkataramani, and
Milos Prvulovic. Comprehensively and efficiently protecting the heap.
ACM SIGOPS Operating Systems Review, 40(5):207–218, 2006.

[75] Johannes Kinder, Florian Zuleger, and Helmut Veith. An abstract
interpretation-based framework for control flow reconstruction from bi-
naries. In International Workshop on Verification, Model Checking, and
Abstract Interpretation, pages 214–228. Springer, 2009.

[76] Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection using
abstract syntax suffix trees. In 2006 13th Working Conference on Reverse
Engineering, pages 253–262. IEEE, 2006.

[77] Christopher Kruegel, William Robertson, Fredrik Valeur, and Giovanni
Vigna. Static disassembly of obfuscated binaries. In USENIX security
Symposium, volume 13, pages 18–18, 2004.

[78] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backprop-
agation applied to handwritten zip code recognition. Neural computation,
1(4):541–551, 1989.

[79] JongHyup Lee, Thanassis Avgerinos, and David Brumley. Tie: Principled
reverse engineering of types in binary programs. 2011.

[80] Wenke Lee, Salvatore J Stolfo, and Philip K Chan. Learning patterns
from unix process execution traces for intrusion detection. In AAAI
Workshop on AI Approaches to Fraud Detection and Risk Management,
pages 50–56, 1997.

[81] Dor Levy and Lior Wolf. Learning to align the source code to the com-
piled object code. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 2043–2051. JMLR. org, 2017.

[82] Yongbo Li, Fan Yao, Tian Lan, and Guru Venkataramani. Sarre:
semantics-aware rule recommendation and enforcement for event paths
on android. IEEE Transactions on Information Forensics and Security,
11(12):2748–2762, 2016.

[83] Chatchai Liangboonprakong and Ohm Sornil. Classification of malware
families based on n-grams sequential pattern features. In Industrial
Electronics and Applications (ICIEA), 2013 8th IEEE Conference on,
pages 777–782. IEEE, 2013.

[84] Martin C Libicki, Lillian Ablon, and Tim Webb. The defenderâĂŹs
dilemma: Charting a course toward cybersecurity. Rand Corporation,
2015.

[85] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Automatic reverse
engineering of data structures from binary execution. In Proceedings
of the 11th Annual Information Security Symposium, page 5. CERIAS-
Purdue University, 2010.

[86] Cullen Linn and Saumya Debray. Obfuscation of executable code to
improve resistance to static disassembly. In Proceedings of the 10th ACM
conference on Computer and communications security, pages 290–299.
ACM, 2003.

[87] Ya-shu Liu, Yu-Kun Lai, Zhi-Hai Wang, and Han-Bing Yan. A new
learning approach to malware classification using discriminative feature
extraction. IEEE Access, 7:13015–13023, 2019.

[88] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on
information theory, 28(2):129–137, 1982.

[89] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. Pin: building customized program analysis tools with dynamic
instrumentation. In Acm sigplan notices, volume 40, pages 190–200.
ACM, 2005.

[90] Larry J McKenzie, Michael S Trevisan, Denny C Davis, and Steven W
Beyerlein. Capstone design courses and assessment: A national study.
In Proceedings of the 2004 American Society of Engineering Education
Annual Conference & Exposition, pages 1–14, 2004.

VOLUME 4, 2016 23

[91] Xiaozhu Meng, Barton P Miller, and Kwang-Sung Jun. Identifying
multiple authors in a binary program. In European Symposium on
Research in Computer Security, pages 286–304. Springer, 2017.

[92] Peter Miller. Hexdump. online publication, 2000.
[93] Iulian Neamtiu, Jeffrey S Foster, and Michael Hicks. Understanding

source code evolution using abstract syntax tree matching. ACM SIG-
SOFT Software Engineering Notes, 30(4):1–5, 2005.

[94] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering:
Analysis and an algorithm. In Advances in neural information processing
systems, pages 849–856, 2002.

[95] Jungju Oh, Christopher J Hughes, Guru Venkataramani, and Milos
Prvulovic. Lime: A framework for debugging load imbalance in multi-
threaded execution. In Proceedings of the 33rd International Conference
on Software Engineering, pages 201–210. ACM, 2011.

[96] Digit Oktavianto and Iqbal Muhardianto. Cuckoo malware analysis.
Packt Publishing Ltd, 2013.

[97] Bindu Madhavi Padmanabhuni and Hee Beng Kuan Tan. Buffer overflow
vulnerability prediction from x86 executables using static analysis and
machine learning. In 2015 IEEE 39th Annual Computer Software and
Applications Conference, volume 2, pages 450–459. IEEE, 2015.

[98] Hao Peng, Lili Mou, Ge Li, Yuxuan Liu, Lu Zhang, and Zhi Jin. Build-
ing program vector representations for deep learning. In International
Conference on Knowledge Science, Engineering and Management, pages
547–553. Springer, 2015.

[99] Natasa Pržulj, Derek G Corneil, and Igor Jurisica. Modeling interactome:
scale-free or geometric? Bioinformatics, 20(18):3508–3515, 2004.

[100] Pavel Pudil, FJ Ferri, Jana Novovicova, and Josef Kittler. Floating search
methods for feature selection with nonmonotonic criterion functions. In
Pattern Recognition, 1994. Vol. 2-Conference B: Computer Vision & Im-
age Processing., Proceedings of the 12th IAPR International. Conference
on, volume 2, pages 279–283. IEEE, 1994.

[101] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.
[102] Data Rescue. Ida pro disassembler, 2006.
[103] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz.

Automatic analysis of malware behavior using machine learning. Journal
of Computer Security, 19(4):639–668, 2011.

[104] Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386,
1958.

[105] Nathan Rosenblum, Barton P Miller, and Xiaojin Zhu. Recovering
the toolchain provenance of binary code. In Proceedings of the 2011
International Symposium on Software Testing and Analysis, pages 100–
110. ACM, 2011.

[106] Nathan Rosenblum, Xiaojin Zhu, Barton Miller, and Karen Hunt. Ma-
chine learning-assisted binary code analysis. In NIPS Workshop on
Machine Learning in Adversarial Environments for Computer Security,
Whistler, British Columbia, Canada, December, 2007.

[107] Nathan Rosenblum, Xiaojin Zhu, and Barton P Miller. Who wrote
this code? identifying the authors of program binaries. In European
Symposium on Research in Computer Security, pages 172–189. Springer,
2011.

[108] Nathan E Rosenblum, Barton P Miller, and Xiaojin Zhu. Extracting
compiler provenance from program binaries. In Proceedings of the 9th
ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, pages 21–28. ACM, 2010.

[109] Nathan E Rosenblum, Xiaojin Zhu, Barton P Miller, and Karen Hunt.
Learning to analyze binary computer code. In AAAI, pages 798–804,
2008.

[110] Andreas Sæbjørnsen, Jeremiah Willcock, Thomas Panas, Daniel Quinlan,
and Zhendong Su. Detecting code clones in binary executables. In
Proceedings of the eighteenth international symposium on Software
testing and analysis, pages 117–128. ACM, 2009.

[111] Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model
for automatic indexing. Communications of the ACM, 18(11):613–620,
1975.

[112] Joshua Saxe and Konstantin Berlin. Deep neural network based malware
detection using two dimensional binary program features. In Malicious
and Unwanted Software (MALWARE), 2015 10th International Confer-
ence on, pages 11–20. IEEE, 2015.

[113] Bernhard Scholkopf, Kah-Kay Sung, Christopher JC Burges, Federico
Girosi, Partha Niyogi, Tomaso Poggio, and Vladimir Vapnik. Comparing
support vector machines with gaussian kernels to radial basis function
classifiers. IEEE transactions on Signal Processing, 45(11):2758–2765,
1997.

[114] Sebastian Schrittwieser and Stefan Katzenbeisser. Code obfuscation
against static and dynamic reverse engineering. In International Work-
shop on Information Hiding, pages 270–284. Springer, 2011.

[115] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg
Merzdovnik, and Edgar Weippl. Protecting software through obfuscation:
Can it keep pace with progress in code analysis? ACM Computing
Surveys (CSUR), 49(1):4, 2016.

[116] Matthew G Schultz, Eleazar Eskin, F Zadok, and Salvatore J Stolfo. Data
mining methods for detection of new malicious executables. In Security
and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium on,
pages 38–49. IEEE, 2001.

[117] Fabrizio Sebastiani. Machine learning in automated text categorization.
ACM computing surveys (CSUR), 34(1):1–47, 2002.

[118] Monirul Sharif, Andrea Lanzi, Jonathon Giffin, and Wenke Lee. Auto-
matic reverse engineering of malware emulators. In Security and Privacy,
2009 30th IEEE Symposium on, pages 94–109. IEEE, 2009.

[119] Jianli Shen, Guru Venkataramani, and Milos Prvulovic. Tradeoffs in fine-
grained heap memory protection. In Proceedings of the 1st workshop on
Architectural and system support for improving software dependability,
pages 52–57. ACM, 2006.

[120] PV Shijo and A Salim. Integrated static and dynamic analysis for
malware detection. Procedia Computer Science, 46:804–811, 2015.

[121] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. Recognizing
functions in binaries with neural networks. In USENIX Security Sympo-
sium, pages 611–626, 2015.

[122] Guosong Sun and Quan Qian. Deep learning and visualization for
identifying malware families. IEEE Transactions on Dependable and
Secure Computing, 2018.

[123] Gerald J Tesauro, Jeffrey O Kephart, and Gregory B Sorkin. Neural
networks for computer virus recognition. IEEE expert, 11(4):5–6, 1996.

[124] Henrik Theiling. Extracting safe and precise control flow from binaries.
In Real-Time Computing Systems and Applications, 2000. Proceedings.
Seventh International Conference on, pages 23–30. IEEE, 2000.

[125] Philipp Trinius, Carsten Willems, Thorsten Holz, and Konrad Rieck. A
malware instruction set for behavior-based analysis. 2009.

[126] Guru Venkataramani, Ioannis Doudalis, Yan Solihin, and Milos
Prvulovic. Flexitaint: A programmable accelerator for dynamic taint
propagation. In 2008 IEEE 14th International Symposium on High
Performance Computer Architecture, pages 173–184. IEEE, 2008.

[127] Guru Venkataramani, Ioannis Doudalis, Yan Solihin, and Milos
Prvulovic. Memtracker: An accelerator for memory debugging and
monitoring. ACM Transactions on Architecture and Code Optimization
(TACO), 6(2):5, 2009.

[128] Guru Venkataramani, Christopher J Hughes, Sanjeev Kumar, and Milos
Prvulovic. Deft: Design space exploration for on-the-fly detection of
coherence misses. ACM Transactions on Architecture and Code Opti-
mization (TACO), 8(2):8, 2011.

[129] Markus Wagner, Fabian Fischer, Robert Luh, Andrea Haberson, Alexan-
der Rind, Daniel A Keim, Wolfgang Aigner, Rita Borgo, Fabio Ganovelli,
and Ivan Viola. A survey of visualization systems for malware analysis.
In EG Conference on Visualization (EuroVis)-STARs, pages 105–125,
2015.

[130] Shuai Wang, Pei Wang, and Dinghao Wu. Semantics-aware machine
learning for function recognition in binary code. In Software Mainte-
nance and Evolution (ICSME), 2017 IEEE International Conference on,
pages 388–398. IEEE, 2017.

[131] Yunchao Wang, Zehui Wu, Qiang Wei, and Qingxian Wang. Neufuzz:
Efficient fuzzing with deep neural network. IEEE Access, 7:36340–
36352, 2019.

[132] Kilian Q Weinberger and Lawrence K Saul. Distance metric learning
for large margin nearest neighbor classification. Journal of Machine
Learning Research, 10(Feb):207–244, 2009.

[133] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshy-
vanyk. Deep learning code fragments for code clone detection. In Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, pages 87–98. ACM, 2016.

[134] Carsten Willems, Thorsten Holz, and Felix Freiling. Cwsandbox: To-
wards automated dynamic binary analysis. IEEE Security and Privacy,
5(2):32–39, 2007.

[135] Zhenyu Wu, Steven Gianvecchio, Mengjun Xie, and Haining Wang.
Mimimorphism: A new approach to binary code obfuscation. In Pro-
ceedings of the 17th ACM conference on Computer and communications
security, pages 536–546. ACM, 2010.

24 VOLUME 4, 2016

[136] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn
Song. Neural network-based graph embedding for cross-platform binary
code similarity detection. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 363–376.
ACM, 2017.

[137] Hongfa Xue, Yurong Chen, Guru Venkataramani, Tian Lan, Guang Jin,
and Jason Li. Morph: Enhancing system security through interactive
customization of application and communication protocol features. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 2315–2317. ACM, 2018.

[138] Hongfa Xue, Yurong Chen, Fan Yao, Yongbo Li, Tian Lan, and Guru
Venkataramani. Simber: Eliminating redundant memory bound checks
via statistical inference. In IFIP International Conference on ICT Systems
Security and Privacy Protection, pages 413–426. Springer, 2017.

[139] Hongfa Xue, Guru Venkataramani, and Tian Lan. Clone-hunter: accel-
erated bound checks elimination via binary code clone detection. In
Proceedings of the 2nd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages, pages 11–19. ACM,
2018.

[140] Hongfa Xue, Guru Venkataramani, and Tian Lan. Clone-slicer: Detecting
domain specific binary code clones through program slicing. 2018.

[141] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya De-
bray. A generic approach to automatic deobfuscation of executable code.
In 2015 IEEE Symposium on Security and Privacy (SP), pages 674–691.
IEEE, 2015.

[142] Fabian Yamaguchi, Markus Lottmann, and Konrad Rieck. Generalized
vulnerability extrapolation using abstract syntax trees. In Proceedings
of the 28th Annual Computer Security Applications Conference, pages
359–368. ACM, 2012.

[143] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and Konrad Rieck.
Automatic inference of search patterns for taint-style vulnerabilities. In
2015 IEEE Symposium on Security and Privacy, pages 797–812. IEEE,
2015.

[144] Fabian Yamaguchi, Christian Wressnegger, Hugo Gascon, and Konrad
Rieck. Chucky: Exposing missing checks in source code for vulnerability
discovery. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 499–510. ACM, 2013.

[145] Fan Yao, Milos Doroslovacki, and Guru Venkataramani. Are coher-
ence protocol states vulnerable to information leakage? In 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 168–179. IEEE, 2018.

[146] Fan Yao, Yongbo Li, Yurong Chen, Hongfa Xue, Tian Lan, and Guru
Venkataramani. Statsym: vulnerable path discovery through statistics-
guided symbolic execution. In 2017 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 109–
120. IEEE, 2017.

[147] Fan Yao, Guru Venkataramani, and Miloš Doroslovački. Covert timing
channels exploiting non-uniform memory access based architectures. In
Proceedings of the on Great Lakes Symposium on VLSI 2017, pages
155–160. ACM, 2017.

[148] Oleh Yuschuk. Ollydbg. http://www. ollydbg. de/, 2007.
[149] Richard Zak, Edward Raff, and Charles Nicholas. What can n-grams

learn for malware detection? In 2017 12th International Conference on
Malicious and Unwanted Software (MALWARE), pages 109–118. IEEE,
2017.

[150] Junyuan Zeng, Yangchun Fu, Kenneth A Miller, Zhiqiang Lin, Xiangyu
Zhang, and Dongyan Xu. Obfuscation resilient binary code reuse through
trace-oriented programming. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages 487–498.
ACM, 2013.

[151] Zhihua zhou. Machine Learning. Qing hua da xue chu ban she, 2016.
[152] Fei Zuo, Xiaopeng Li, Zhexin Zhang, Patrick Young, Lannan Luo, and

Qiang Zeng. Neural machine translation inspired binary code similarity
comparison beyond function pairs. arXiv preprint arXiv:1808.04706,
2018.

SHAOWEN SUN received the B.E. degree in the
North China University of Technology, Beijing,
China, in 2017. He is currently pursuing M.S. de-
gree with the Department of Electrical and Com-
puter Engineering, the George Washington Uni-
versity. His research interests include networking
and system security.

HONGFA XUE is currently pursuing the Ph.D.
degree with the Department of Electrical and
Computer Engineering, The George Washington
University. His research interests are System se-
curity and Machine Learning optimization.

GURU VENKATARAMANI (SM ’15) received
the Ph.D. degree from the Georgia Institute of
Technology, Atlanta, in 2009. He has been an As-
sociate Professor of Electrical and Computer En-
gineering with The George Washington University
since 2009. His research area is computer architec-
ture, and his current interests are hardware support
for energy/power optimization, debugging, and se-
curity. He was a general chair for HPCA’19 and a
recipient of the NSF Faculty Early Career Award

in 2012.

TIAN LAN received the Ph.D. degree from the
Department of Electrical Engineering, Princeton
University, in 2010. He joined the Department of
Electrical and Computer Engineering, The George
Washington University, in 2010, where he is cur-
rently an Associate Professor. His interests include
mobile energy accounting, cloud computing, and
cyber security. He received the best paper award
from the IEEE Signal Processing Society 2008,
the IEEE GLOBECOM 2009, and the IEEE IN-

FOCOM 2012.

VOLUME 4, 2016 25

