
Edge-RT: OS Support for Controlled Latency in the Multi-Tenant, Real-Time Edge
Wenyuan Shao, Bite Ye, Huachuan Wang, Gabriel Parmer, Yuxin Ren

The George Washington University
Washington, DC

{shaowy,bitye,hcwang,gparmer,ryx}@gwu.edu

Abstract—Embedded and real-time devices in many domains
are increasingly dependent on network connectivity. The ability
to offload computations encourages Cost, Size, Weight and
Power (C-SWaP) optimizations, while coordination over the
network effectively enables systems to sense the environment
beyond their own local sensors, and to collaborate globally. The
promise is significant: Autonomous Vehicles (AVs) coordinating
with each other through infrastructure, factories aggregating
data for global optimization, and power-constrained devices
leveraging offloaded inference tasks. Low-latency wireless (e.g.,
5G) technologies paired with the edge cloud, are further enabling
these trends. Unfortunately, computation at the edge poses
significant challenges due to the challenging combination of
limited resources, required high performance, security due to
multi-tenancy, and real-time latency.

This paper introduces Edge-RT, a set of OS extensions for
the edge designed to meet the end-to-end (packet reception
to transmission) deadlines across chains of computations. It
supports strong security by executing a chain per-client de-
vice, thus isolating tenant and device computations. Despite a
practical focus on deadlines and strong isolation, it maintains
high system efficiency. To do so, Edge-RT focuses on per-packet
deadlines inherited by the computations that operate on it. It
introduces mechanisms to avoid per-packet system overheads,
while trading only bounded impacts on predictable scheduling.
Results show that compared to Linux and EdgeOS, Edge-RT
can both maintain higher throughput and meet significantly
more deadlines both for systems with bimodal workloads with
utilization above 60%, in the presence of malicious tasks, and
as the system scales up in clients.

I. INTRODUCTION

Embedded and real-time systems are increasingly required
to provide features that must interact with the broader en-
vironment beyond their local sensors and actuators. Though
IoT systems are notable for their Internet connectivity, even
systems with strict predictability requirements are now com-
monly network-connected to leverage distributed sensors and
computation. Industry 4.0 focuses on the interlinking of
real-time machinery with network-connected aggregation and
analytics to better manage factories, and vehicle-to-everything
(V2X) communications acknowledge that vehicular decisions
are empowered by communicating with and understanding
the environment. Empowering this, modern millimeter-wave
wireless technologies such as 5G aim for 1ms round-trip times
(RTT) – current latencies are sub-10ms [1] – thus providing
latency levels that can potentially fit into the decision loops of
many real-time systems. In contrast to computation hosted in
the cloud’s datacenters whose access imposes the significant
jitter and high latency of the WAN, the edge cloud has
basestations that are proximate to the embedded systems. For
example, high-frequency 5G basestations have an effective

This material is based upon work supported by the National Science
Foundation under Grants No. CNS 1815690 and CPS 1837382, through
SRC under grants GRC task 2911.001 and SRC JUMP task 2779.030,
and ONR N000142212084. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of these agencies.

range in the 100s of meters, enabling low-latency RTTs.
Embedded systems can benefit from low-latency access to
the edge for (1) offloading [2] of computation from embedded
devices to leverage the more capable hardware of the edge for
higher-performance or memory-hungry computations while
potentially lowering device power requirements, and (2) for
sensor aggregation in which the sensor information from
many devices can be aggregated, thus decisions can consider
a more global state of the physical environment.

Unfortunately, unlike traditional cloud datacenters that con-
tain hundreds of thousands of cores and provide the illusion of
capacity elasticity, edge-clouds have much more constrained
resources [3], [4]. Despite this, the multi-tenant model that
has driven the prominence of the cloud is desirable – and
in some cases, necessary – in the edge-cloud. A multi-tenant
infrastructure enables the execution of untrusted code, pro-
vided by potentially many different tenants that rent capacity
on the server. Multi-tenancy is common on current edge
deployments: (1) network slicing enables multiple cellular
carriers to process packets using Network Functions (NFs)
to share the basestation infrastructure [5], [6], [7], [8], and
(2) edge computation providers, such as Fastly, support tenant
executions in isolated Webassembly sandboxes. For embed-
ded systems to leverage the edge in general deployments (e.g.,
5G basestations), there is a strong need for multi-tenancy.
Unfortunately, this is difficult due to the relatively constrained
resources of the edge cloud.

To effectively leverage edge-cloud systems, system soft-
ware must meet the following requirements:
• End-to-end deadlines – at its core, the real-time edge

must accommodate computations with the deadline re-
quirements on the order of a few milliseconds – given
the lower-bound of 1ms RTT for 5G. The edge must
manage the end-to-end latency of requests between when
they arrive, and when the reply is transmitted.

• Performance – the edge-cloud requires an efficiency capa-
ble of driving many 10s of Gbs network throughput. High
performance makes worst-case provisioning unappealing,
motivating a system that seeks to provide predictable
latencies with unpredictable workloads.

• Density – unlike the traditional cloud that uses VMs and
containers to isolate tenants, the smaller computational
resource availability at the edge requires abstractions and
mechanisms that efficiently enable higher-density.

• Multi-tenancy – similar to data-center-based clouds, the
edge must support multi-tenancy. For example, content de-
livery network (CDNs) already find such support necessary
(Fastly and Cloudflare). This requires untrusted code to
execute in the edge, with unknown execution times, and
potentially faulty or malicious logic.

• Dynamic workloads – the client workload changes with the
environment. As autonomous vehicles (AVs), drones, and

Edge Configurations Deadline-aware Preemptivity Client Isolation Computation Chain Dynamic Workloads Scalability
CFS (§II-B) # not deadline-aware preemptive process-based per-client chain supported > 2000
DPDK+OVS/SR-IOV (§II-A) # not deadline-aware # non-preemptive process-based # no chain supported ∼ 256
SCHED DEADLINE (§II-B) per-thread preemptive # process-based # no chain # not supported < 1000
eBPF+XDP (§II-A) # not deadline-aware # non-preemptive G# no isolation G# no chain G# not supported -
EdgeOS (§II-C) # not deadline-aware preemptive FWP-based per-client chain supported > 2000
Edge-RT (§III) per-packet preemptive FWP-based per-client chain supported > 2000

TABLE I: A summary of edge-cloud configurations in §II. Entries labelled with bullets from fully supported (), complicated (please
refer to the text for details) (G#), and not supported (#).

pedestrians are mobile, the client number and frequency
of service requests vary over time.

• Network processing – basestations traditionally focus on
network processing including properly accounting for
bandwidth, and slicing the network [5], [6], [7], [8] across
carriers. This network processing is done by network
functions (NFs) that transform and filter packets, and are
often composed into chains that process packets, and pass
them on to the next NF. Chains of isolated NFs enable
multiple applications to process on packets, and enable
NFs to provide limitations on each other. For example, the
first and last NFs can provide firewall-like functionality to
limit which packets can be processed and transmitted by
NFs in the middle of the chain.

The core question this paper seeks to answer is: is it possi-
ble to practically meet end-to-end deadlines of packets while
still maintaining high-throughput and strong isolation in a
multi-tenant, edge-cloud for dynamic and dense workloads?

One tempting answer is to directly adapt existing deadline-
driven scheduling systems (e.g., EDF) to edge-clouds. We
argue that this is not sufficient because (1) many edge cloud
infrastructures do not support preemptive scheduling (§II-A),
(2) to optimize for meeting end-to-end deadlines across chains
of computations, normal per-thread prioritization is not a good
fit for dynamic workloads (§III), and (3) high-throughput
network systems seek to avoid per-message overheads, which
is a bad match for OS abstractions that require locks and
Inter-Processor Interrupts (IPIs) for coordination (§III).

This paper presents Edge-RT, an OS infrastructure built on
the public EdgeOS [9], that focuses on packet- or message-
based deadline scheduling across chains of computations,
while maintaining high performance, density, and isolation
between client computations. Edge-RT focuses on practical
mechanisms to meet deadlines while minimising per-message
system overheads: (1) it associates deadlines with pack-
ets, and threads inherit these message deadlines as packets
flow through the computation chains to provide end-to-end,
deadline-based scheduling, and (2) creates mechanisms for
coordination and execution that avoid per-message overheads
for scheduling, batching, and inter-FWP, inter-core coordina-
tion while bounding interference.
Contributions. Edge-RT’s contributions center on providing
deadline-focused computation in a high-throughput, high-
density environment. The contributions include:
• a system design that (1) focuses on per-packet end-to-end

deadline scheduling with dynamic, dense workloads, and
(2) minimizes per-message system overheads.

• the mechanisms and abstractions for predictable buffering,
inter-core coordination, and scheduling that enable effi-
cient packet processing.

• The implementation of Edge-RT and the parameter stud-
ies to understand system overhead trade-offs to guide the
system’s configuration.

• The evaluation of Edge-RT for various workloads com-
pared with Linux and EdgeOS.

II. BACKGROUND

A. Linux Kernel Bypass and In-kernel Sandbox

Kernel-bypass networking. Kernel-bypass networking (e.g.,
Data Plane Development Kit (DPDK) [10]) enables user-level
to directly interact with networking devices. DPDK avoids
both system call and interrupt overheads by polling. Using
interrupt-driven execution increases the round-trip time to
110µs, which is close to the overheads of Linux sockets.
Despite DPDK’s efficiency, it has limitations in the edge
cloud: low scalability and non-preemptive packet processing.

Tenant isolation requires the use of a separate DPDK
instance per tenant. This is accomplished using virtual NICs
through SR-IOV, or using Open vSwitch (OVS) [11]. SR-
IOV only supports up to 256 virtual NICs, thus cannot scale
up to many tenants. OVS can scale as it acts as a virtual
switch to route packets among multiple DPDK applications.
Unfortunately, OVS limits scalability and density. For appli-
cations using DPDK and virtio [12], OVS with 256 DPDK
applications requires one polling thread per 160K PPS, and
each (minimal) application requires 110 MiB of memory.

Each tenant’s DPDK application processes their client’s
requests sequentially, thus non-preemptively. To understand
this effect, we run two types of computations in each
DPDK application, a “Light” computation which is quick
to process (40µs), and a “Heavy” computation (varying be-
tween 10-25ms). This sequential execution model is common
in throughput-centric network processing systems such as
E2 [13] and Netbricks [14]. Figure 1 compares the tail latency
of bypass techniques to native Linux sockets. In contrast,
Linux execution of clients in separate processes is preemptive,
in contrast to the sequential execution of client requests
in bypass systems. Note that adding preemptive execution
into the bypass requires multiple threads or processes, which
incurs kernel overheads that bypass systems are designed
to avoid. The workload maintains 50% utilization across 48
cores. Four cores are devoted to OVS, and four DPDK tenants
execute per core. Each receives four concurrent client requests
at 200 packets per second for light computation, and the
heavy computation rate is adjusted with its changing weight
(x-axis). Linux socket applications use a process per client.
The hardware is detailed in §VI.

This example demonstrates that maintaining kernel bypass
for each tenant imposes non-preemptive execution in which
the most latency-sensitive tasks suffer from convoy effects

 0

 20000

 40000

 60000

 80000

 100000

 10000 15000 20000 25000

9
9

th
 p

e
rc

e
n
ti

le
 L

a
te

n
cy

 (
u

s)

Execution time of heavy computations (us)

Bypass light
Bypass heavy

Socket light
Socket heavy

Fig. 1: 99th percentile latency of bimodal workloads when
using kernel bypass techniques.

 0

 50000

 100000

 150000

 200000

 240 480 720 960 1200 1440 1680 1920

9
9

th
 p

e
rc

e
n
ti

le
 L

a
te

n
cy

 (
u

s)

Total number of tasks

sched_deadline
CFS

Fig. 2: 99th percentile latency of light task with an increasing
number of total tasks and constant number of heavy tasks.

from heavy computations. Bypass properties are summarized
in Table I. The edge cloud must re-imagine such high-
throughput networking techniques to intelligently, preemp-
tively schedule clients.
Extended Berkeley Packet Filter (eBPF). eBPF [15] is an
in-kernel virtual machine which allows injecting application
logic into the kernel at run time. XDP [16] executes an eBPF
program to process packets as part of the in-kernel packet
reception path. eBPF has a few limitations [15], [17]. (1) An
eBPF program is restricted to an execution budget of 1 million
instructions. (2) eBPF programs execute non-preemptively
(unless their budget runs out), even if executing in a high-
priority NIC interrupt. (3) Loading eBPF programs is a
privileged operation (e.g., root user) as they have sensitive
access to kernel abstractions. These factors (summarized in
Table I) make eBPF a challenging choice for a multi-tenant
execution environment – especially one that requires chains
of computations and deadline-aware scheduling.

B. Thread-base Prioritization Deadline Scheduling.

Given our focus on deadline-based scheduling, it is impor-
tant to understand SCHED DEADLINE in Linux and its applica-
bility to the edge cloud. SCHED DEADLINE adds EDF support
to Linux, along with constant bandwidth server (CBS) [18]
logic to rate-limit computation. We use a process-per-client
so that they can each be preemptively scheduled with separate
deadlines, and use budget reclaiming to handle budget under-
utilization. Heavy tasks have 5ms executions, 10ms budgets,
100ms deadlines, and receive 10 requests per second. Light
tasks reply immediately, have a sufficient budget of 8µs, a
deadline of 5ms, and receive 100 requests per second.

The utilization of the system is low (from 6% up to
50%), yet Figure 2 demonstrates that with an increasing
number of light tasks, tail latency increases significantly. The
request workload is not perfectly periodic which mimics the
dynamic workload on the edge. SCHED DEADLINE relies on
per-thread prioritization. Thus, aperiodic workloads will cause
significant deviation in desired executions. In contrast, the
CFS Linux scheduler is designed for accommodating dynamic
workloads and requires no periodicity, budget, nor deadline
parameters. Correspondingly, this figure demonstrates its abil-
ity to maintain tight latency properties for the light tasks.

We argue that SCHED DEADLINE under-performs CFS be-
cause (1) thread-based prioritization is not a good fit for the
edge cloud which aims to meet deadlines for packets/requests;
(2) SCHED DEADLINE is a bad fit for dynamic workloads on

the multi-tenant edge in which execution time and request
distributions are unknown; (3) the red-black tree based imple-
mentation of SCHED DEADLINE imposes overheads (§VI-A)
with many computations (over 1200). Generally, we have
observed CFS to have better properties on scheduling high-
throughput, dynamic workloads. Table I includes a summary
of some of the properties of Linux scheduling options.

C. EdgeOS Background
Edge-RT adds real-time capabilities to the publicly avail-

able EdgeOS system [9]. EdgeOS is implemented as a set of
user-level components above the Composite [19] µ-kernel. In
EdgeOS, each tenant provides chains of computations that
process client requests. EdgeOS isolates the computations
into Feather Weight Processes (FWPs). Each FWP is single-
threaded, and has memory accesses restricted by hardware
page-tables. EdgeOS uses DPDK for efficient networking.
Two cores in EdgeOS are dedicated to poll/send packets
directly from/to the NIC. Two additional cores provide FWP
creation and fast message1 movement in an FWP chain, a
service called the Memory Movement Accelerator (MMA).
All other cores run preemptively-scheduled FWPs. Table I
summarizes key features of EdgeOS, and also how Edge-
RT expands on them.

III. SYSTEM MODEL

Edge-RT aims to provide predictable services to clients
with dynamic workloads [20], [21] provided by tenant com-
putations. As such, we make three workload assumptions:
• Tenant-provided deadlines. Each tenant provides deadlines

for its services. For example, an AV manufacturer provides
deadlines for chains focusing on planning or control.

• Unknown execution profiles. In contrast, it isn’t practical
for a tenant to understand its computation’s execution time
due to inaccessible edge hardware. Given this, we assume
no knowledge on the edge system about average or worst-
case execution time.

• Controlled utilization. This research focuses on predictable
scheduling, and not on admission control. We assume load
balancers sitting before computation nodes control utiliza-
tion to not exceed capacity in nominal conditions. We do
study the impact of malicious or erroneous clients that
cause certain computation to over-consume CPU in §VI-D.
Edge-RT can be extended in the future to provide work-
load shaping (e.g., by incorportating reservations [22]).

1We’ll use the terms messages and packets synonymously.

To describe Edge-RT’s system design in detail, we intro-
duce a general model for the processing on packets throughout
the system. The focus of this model is not to assess schedu-
lability or analyse the system given the unknown execution
properties of tenant computations, instead to precisely de-
scribe the timing properties of systems.

A number of tenants execute computations concurrently,
and each tenant has multiple network application chains that
process latency-sensitive requests from clients. As client’s
input to Internet-facing services is not necessarily trustworthy,
we assume it is desirable that the edge cloud deploys a new
chain of application computations for each client. This has
two side effects that increase inter-client isolation: (1) the
scope of errant or malicious memory manipulations is con-
fined to a client’s single computation, and (2) each client’s
computations are separately, preemptively scheduled which
enables per-client latency optimization.
Ci denotes a per-client computation chain, which processes

all requests from the i-th client. Without loss of generality,
we assume that each client communicates with only a single
chain. Ci consists of K computation stages, and the initial (s0i)
and final (sK+1

i) stages represent NIC driver packet reception
and transmission, respectively: Ci = {s0i , . . . , sxi , . . . , s

K+1
i }.

Each stage sx−1
i processes a message and generates another

message to the next stage sxi . Each stage runs in a separate
thread, thus the chain can be separated across cores. mi,n is
the nth packet sent by client i. The goal is for each packet
to be processed at or before a relative deadline di from the
packet arrival.

To describe the execution of client chains and the timing
properties of that execution:
1) sxi begins processing a previously received message mi,n

at time rxi,n. This could be due to the stage activating and
dequeueing the message, or finishing processing mi,n−1,
and dequeueing mi,n.

2) Stage sxi finishes processing mi,n and enqueues the result-
ing message for transmission to sx+1

i at time txi,n.
3) r0i,n and tK+1

i,n represent NIC reception and transmission
for mi,n, respectively.

Given this, a chain Ci meets its deadline for mi,n only if
rK+1
i,n − t0i,n ≤ di. As such, we assume, for simplicity,

that execution measured against the deadline doesn’t include
necessary NIC processing. Thus a specific packet’s (mi,n’s)
absolute deadline is di,n = t0i,n + di ≤ rK+1

i,n .
System delays include overheads from passing messages,

triggering their events to coordinate between threads, and
scheduling interference from other chains:

K+1∑
k=1

rki,n − tk−1
i,n (1)

Equation 1 includes interference that delays the reception of
a message. The scheduling interference, ∆interference, includes
(1) computation from other stages/chains executing at a
higher-priority, (2) lower-priority stage computation (e.g., due
to resource sharing [23], [24]), and (3) the processing of a
previous message from the same client. ∆interference also factors
into how long a stage that has already received a message,
takes to transmit it (

∑K
k=1 t

k
i,n − rki,n).

di,3 di,2 di,1 di,0

di,1 di,0di,3

s i
1 s i

2 s i
3 s i

4

Core 0 Core 1 Core 2

* * *

Fig. 3: Four stage’s threads spread across three cores and process
messages with deadlines (di,0, . . . , di,3). A thread inherits the clos-
est deadline of those messages it is processing. The ∆∗ denotes
overheads for passing messages between stages.

Equation 1 also includes per-message system overheads:
(1) latencies in the scheduling policy implementation (∆impl);
(2) event notification costs (∆evt) to activate the receiver
stage’s thread; and (3) message queueing and copying (∆msg).
Core optimizations in Edge-RT focus around minimizing per-
message costs.

A. Prioritization

Thread-based prioritization. OS threads are the unit of
prioritization in most OSes, even in those that use dynamic
priorities (e.g., EDF) and/or consider inter-thread event-chain
coordination. The interference from higher-priority threads
factors into rki,n − tk−1

i,n , and is based on the workload on
ski ’s thread’s core, and the relative prioritization of threads.
Priorities are often chosen with knowledge of ski ’s execution
time. In our case, the workload and execution distributions
are not necessarily known for the edge (see the assumption
in §III).
Edge-RT and per-packet prioritization. Edge-RT’s key
design is to prioritize computation (threads) based on the
specific message they are processing. Edge-RT uses EDF
scheduling, thus stage’s threads inherit each packet’s (mi,n)
deadline, di,n, as shown in Figure 3. Though this does
not guarantee meeting the deadline (recall, we make few
assumptions about workload), carrying a packet’s deadline
through the processing of all stages ensures that delays in
one stage causes more urgency in later stages.

Batching complicates this analysis. High-throughput sys-
tems must strategically use batching, often directly in shared
memory, to amortize system overheads [25], [26], [27]. Per-
message context switching and system call overheads are
explicitly avoided in many high throughput systems [28], [29],
[30], [31]. Instead, computations iteratively process multiple
packets for each activation. Batching of up to m messages in
shared memory in sxi happens when tx−1

i,n+m−1 < txi,n + ∆msg.
The ∆msg acknowledges that the message might not be copied
out of sxi immediately upon transmission. When m messages
are accessible to a stage, the system cannot know which of
the priorities (in [di,n+m−1, di,n]) the stage should inherit.
Edge-RT’s policy inherits the closest deadline of all batched
messages, minn+m+1

k=n (dxi,k).

B. Case Studies

Linux. Linux provides multiple means of interfacing with the
packet processing (§II-A):
• Linux uses thread-based prioritization, and either
SCHED DEADLINE or CFS. While SCHED DEADLINE can

bound ∆interference for sporadic packets, Figure 2 shows
that irregular workloads cause significant deviations from
desired execution. CFS’s prioritization of short-running
tasks practically scales while maintaining a low latency,
but does not bound ∆interference, due to the unpredictable
number and execution times of computations in the
runqueue. ∆impl includes scheduling implementation
overheads from runqueue updates at time txi,n, while ∆evt
includes IPI overheads and runqueue lock contention.
∆msg includes message copying overheads with shared
memory, or into and out of kernel buffers with pipes or
sockets.

• eBPF-based techniques suffer from long, non-preemptive
∆interference, and is scheduled based on events, not on
priorities. The benefit of this event driven activation is that
it minimizes ∆evt and ∆msg.

• Kernel bypass techniques rely on the ∆interference and
∆evt properties of Linux. ∆msg data movement costs are
minimal with only a fixed, small number of computations
(NIC DMA) or involve copying with OVS and virtio.

EdgeOS. EdgeOS provides high-throughput edge process-
ing, and uses simple round-robin scheduling (RR) to min-
imise ∆impl. Though RR is a predictable scheduling policy,
EdgeOS isn’t aware of the computation execution times
nor the number of computations that be in the runqueue.
In these conditions, ∆interference is not predictable. Per-packet
overheads on FWP-processing cores are minimized (∆evt = 0)
by instead simply cycling through that core’s FWPs via RR.
Thus the overheads are parameterized by the number of
clients, not the rate of messages. To maintain strong spatial
isolation between stage computations (“FWPs” in EdgeOS),
the MMA copies packets between FWPs, thus defining ∆msg.
Though EdgeOS focuses strongly on minimizing system
overheads, it does not provide any latency-aware execution
of FWPs.
Edge-RT. Like EdgeOS, Edge-RT devotes a core to the
MMA to transfer messages between stages, thus imposes
the corresponding ∆msg overheads. Unlike EdgeOS, Edge-
RT tightly coordinates between the MMA and each core’s
scheduler logic. The scheduler is aware of packet dead-
lines tracked by the MMA, and the MMA understands stage
thread execution to provide deadline-aware batching. This
coordination between the MMA and the scheduler constitutes
∆evt. Edge-RT shrinks per-message processing costs (e.g.,
of waking and scheduling stages) by ensuring that, despite
implementing EDF scheduling, ∆impl has a constant overhead
(§IV-C). A core tension in the design of Edge-RT is between
accurate, end-to-end deadline scheduling of packets, and high
throughput. Nowhere is the tension more apparent than in the
batching of messages for stages. In managing this, Edge-
RT ensures a bounded inaccuracy in the deadline for which
a stage’s thread executes. All optimizations in Edge-RT are
designed to have a bounded impact on end-to-end message
processing latency, thus maintaining practical, end-to-end,
per-packet, deadline scheduling.

IV. SYSTEM DESIGN

In this section we focus on introducing Edge-RT’s mech-
anisms and abstractions to reduce per-message system over-
heads, and to practically meet end-to-end, message deadlines.

To reduce system overheads (∆interference, ∆impl, ∆msg, and
∆evt from §III), Edge-RT employs three mechanisms:
• deadline-aware batching of messages to reduce overhead

of messaging and event notification,
• periodic (rather than event-driven) inter-core coordination

to amortize the costs of coordination, and
• a constant-time EDF design with constant overhead inde-

pendent to the number of computations in the run-queue.

A. Deadline-aware Batching
Batching is a general technique [25], [26], [27] to improve

system throughput. The overheads of a single thread activation
– including, context switching, system calls, and cross-core
activations – are amortized across multiple messages. Batch-
ing often trades away some latency by delaying the processing
of a message until more are available. Thus, batching is often
paired with timeouts to bound the delays.

Edge-RT enables batching of messages in each stage
to reduce per-message data-copying, scheduling implemen-
tation, and event notification overheads (∆msg, ∆impl, and
∆evt, respectively). Recall that a 40GiB link can generate
80M packets/second and multiple stages require additional
message transfers. This motivates avoiding system calls, IPC,
and anything other than shared memory access of batched
messages. As discussed in §III-A, stage computation in Edge-
RT inherits the priority of the nearest deadline of buffered
messages. Unfortunately, this policy can lead to unpredictable
execution if a stage inherits a priority di,m, finishes processing
the message, and then processes a message with di,m+1 �
di,m

2. The stage inherits the higher priority processing of
mi,m+1, which leads to priority inversion. In this example,
inversion occurs when the stage processing mi,m+1 inherits
di,m when a stage is runnable with deadline dj,k where
di,m < dj,k < di,m+1.

12

12

12

12

18

18

12

12

21

35

26

35 26

21

26

35 21

35

18

12

12

21

(a) (b) (c)

Fig. 4: Before (top) and after (bottom) system states when a stage
transmits a message from the previous stage (left thread) to the
next stage (right thread). A stage’s (thread’s) inherited deadline is
below the thread, and greyed out messages are annotated with their
deadline. Each of (a), (b), and (c) demonstrate batching deadline
inheritance where ∆batch = 10.

We identify this priority inheritance as a key challenge
in achieving both end-to-end packet scheduling for latency-
centric scheduling, and batching for performance. To bound
the impact of the inversion, Edge-RT creates a deadline-
limited batching policy. This allows the batching a new

2Note here that calling the system after processing a message to update
priority defeats the benefit of batching that avoids the per-message overheads
for system calls, IPC, and scheduling.

message in the stage only if its deadline is at most a fixed
amount later than any of the stage’s already batched messages.
That is, batching of mi,n is allowed only if di,n − di,n−m ≤
∆batch where mi,n−m is the previously batched message with
closest absolute deadline. Given this, message mi,n is always
processed with an effective deadline in [di,n −∆batch, di,n].

Figure 4 shows an example of batching and deadline
inheritance with the deadline-limited batching policy with
∆batch = 10. (a) A message with deadline 12 is transmitted
to the next stage resulting in the stage inheriting this deadline
priority. (b) Two additional messages are transmitted. Packets
are buffered as their deadlines fall within ∆batch of the
initial message’s deadline, while the thread still inherits the
closest deadline (12). (c) The left stage attempts to transfer
a message with deadline 35, but it cannot be buffered as
processing of that message could inherit too high a priority
(35−21 > ∆batch). As execution continues, and messages are
processed (bottom right), the deadlines fall within the allowed
window, and a transfer could commence.

Batching of messages in computation stages presents a
trade-off. Larger ∆batch values enable the batching of more
messages. Though this decreases the costs of ∆evt and ∆impl,
it increases impact of priority inversion, bounded by ∆batch.

We characterize the impact of the trade-off around ∆batch
in Figure 6a. For this experiment we use 16 cores. To stress
the system, a workload generates 90% utilization across cores
that run stages. We use a bimodal workload which consists
of light and heavy tasks to emphasize scheduling accuracy.
Each task is served by a chain of four computation stages,
each with identical execution times. The workload includes
160 clients, thus 480 computation stages in total. Light
computations execute for 20µs with a deadline of 5ms which
emulates the Extended Kalman Filter [32] test application
on GPS data. Heavy computations execute for 5ms with
a deadline of 500ms which emulates the CMSIS-NN [33]
neural network inference on one input image from the CIFAR-
10 [34] dataset. Each client sends requests using minimal
UDP packets at a constant rate: 625 packets per second per
task for computation light tasks and 20 packets per second
per task for computation heavy tasks. Figure 6a displays what
fraction of the latency-sensitive light computation packets are
dropped (due to buffers filling), miss their deadlines, and meet
their deadlines. See §VI for more details on experiment setup.

The values of ∆batch are chosen to show the progression
from overload into inversion. The results demonstrate that
without batching (∆batch = 0), the system drops around 20%
packets, which indicates overload due to increased system
overheads. This validates that batching is a requirement for
high-throughput systems which result in frequent activation-
s/deactivations. The fraction of deadlines missed decreases
till ∆batch = 8ms, and increases thereafter. The decrease up
to 8ms is due to smaller per-message overheads as batching
decreases the impact of ∆evt and ∆impl.The increase after 8ms
is due to increased priority inversion.

Figure 5 demonstrates a timeline of processing over three
stages with the potential delays, including ∆batch in the
deadline bounds for message processing.

B. Periodic Event Notification
In conventional systems, inter-core notifications and coor-

dination often use locks to synchronize access [23], and IPIs

s i
1 s i

2 s i
3

timer

time
msg

d ∈ [d - max(,), d]i,m i,mbatch window

impl timermsg impl

Fig. 5: A timeline of processing a packet through stages s1i , . . . , s
3
i .

In between stage computation, maximum system overheads for MMA
processing (∆msg), event notification triggered by frequent timers
(∆timer), and scheduler implementation (∆impl), impact end-to-end
latency. The deadline used by the scheduling logic (including priority
inversion) for the end-to-end processing of each message/packet, d,
is bounded by batch and timer window size.

for immediate event notification (e.g., to trigger a reschedule).
Unfortunately, these potentially per-message costs to activate
the next stage’s thread, ∆evt, cause significant overhead and
inversion due to mutual exclusion, cache-coherency, and high-
priority IPI execution [35].

In contrast, Edge-RT aims to largely remove per-message
overheads for event notification and stage activation. Edge-
RT uses partitioned scheduling to avoid locks and cache-
coherency overheads. The MMA processes stage transmis-
sions, copies the message, and notifies the receiving stage’s
core’s scheduler logic (all of this constitutes ∆msg). These
stage activation notifications to the scheduler from the MMA
are passed via wait-free queues. To avoid the potentially
per-message overheads of IPIs, Edge-RT instead uses per-
core, periodic timers to poll MMA notifications. This has the
benefit of requiring near constant overhead, but also delays
notification processing by up to the timer periodicity, ∆timer,
potentially causing bounded priority inversion. Specifically, a
stage sxi activated by the MMA by time tx−1

i +∆msg will have
its activation delayed till up to tx−1

i + ∆msg + ∆timer. Though
this can result in priority inversion, it is naturally bounded by
∆timer. Thus, ∆evt is dominated by ∆timer in Edge-RT.

The value of ∆timer represents a trade-off between tighter
bounds on priority inversion on stage activation, and the over-
head of frequent timer processing. Using the same workload
described in §IV-A, Figure 6b depicts the behavior of the
light tasks for various ∆timer values. we choose ∆timer to show
the progression from overload (due to frequent timer process-
ing) to interference (heavy computations significantly delay
the execution of light computations). With a frequent timer
(50µs), the overhead of handling timers is significant, causing
deadline misses. As the quantum is increased to 250µs, the
system achieves high (> 98%) rates of met deadlines. As
the quantum is increased to 500µs, over 15% deadlines are
missed, and when ∆timer ≥ 750µs, all deadlines are missed.
Given the tight deadlines of light tasks (5ms), delays of up to
1ms for each of four stages of computation can cause misses.
Guided by these results, Edge-RT uses ∆timer = 250µs.
Though this is higher frequency than traditional systems, it
enables Edge-RT to maintain a constant level of overhead
despite potentially frequent activations.

Figure 5 demonstrates a timeline of processing over three
stages with the potential inter-stage delays, including ∆timer.

C. Constant-time EDF Scheduling

Most real-time systems are designed for 10s to the low
100s of latency-sensitive tasks. However, Edge-RT targets

 0

 20

 40

 60

 80

 100

0 3.2 6.4 8 9.6 12.8%
 d

e
a
d
lin

e
s

m
e
t/

m
is

se
d
/d

ro
p
p
e
d

Deadline spread batch size (ms)

dropped missed met

(a) Max. batch deadline spread, ∆batch, in milliseconds.

 0

 20

 40

 60

 80

 100

50 250 500 750 1000%
 d

e
a
d
lin

e
s

m
e
t/

m
is

se
d
/d

ro
p
p
e
d

Quantum size (us)

dropped missed met

(b) Quantum, ∆timer, in µ-seconds

Fig. 6: The impact of maximum spread between batched messages (∆batch) and the quantum size (∆timer) on system deadlines. Each bar
is stacked with lightest shade being packets dropped, then deadlines missed, then the darkest shade is deadlines met, all for the lightest
workload.

the edge whose limited hardware resources require high
density, multi-tenant workloads. Thus we design it to handle
1000s of stage computations. At this level of load, with fast
per-message computation, even the logarithmic overheads of
EDF’s deadline sorting are significant. Given this, Edge-
RT investigates a Constant-Time EDF (CT-EDF) design that
achieves constant ∆impl by trading a bounded coarsening of
deadline resolution.

Instead of using a typical O(log(N)) balanced tree data
structure sorted by the deadline, CT-EDF’s core data structure
is implemented using three core techniques:
1) quantize time into a set of fixed-sized quanta, ∆window,
2) track a relative timeline of quanta as an array, and
3) each quanta index holds a linked list of stage computations

with deadlines within that quanta into the future.
To find the stage with the nearest deadline, requires a scan of
the array. Though this is constant (given a fixed-size array), it
is expensive. Thus, inspired by fixed priority implementations,
we use a trie of bitmaps to index the timeline and provide
both constant and efficient lookup of the stage with earliest
deadline. A side-effect of CT-EDF’s quantization is that all
computations with deadlines that fall into the same quantum
are identically prioritized. This effectively means that mes-
sages inherit a deadline at most ∆window higher than its normal
deadline (with reasoning similar to that for ∆batch).

As overflow conditions aren’t a focus of this research, we
choose a simple policy for when a stage’s thread misses its
deadline. Threads that miss their deadline are run at a lower
priority than EDF threads, and are arbitrated using round-
robin (to prevent starvation among such threads) with a quan-
tum ∆timer. Once a stage’s thread finishes its computation,
its next activation will place it back into the normal EDF
scheduling logic.

Figure 5 demonstrates a timeline of processing over three
stages with the deadline being bounded by ∆window, and
constant EDF contributing a small delay of ∆impl.

D. Analysis of Timing Properties

Reflecting on the model in §III, Edge-RT aims to reduce
per-message system overheads around ∆evt and ∆impl, while
increasing ∆interference by a bounded amount. ∆evt is limited
to the overhead of dequeuing from a wait-free ring buffer

which is on the order of 200 cycles (depending on cache-
coherency overheads from access patterns). ∆impl is domi-
nated by CT-EDF which is constant and low (see §VI-A).

The message passing overheads, ∆msg, are due to the
MMA, and constitute a straightforward delay in the activation
of a receiving stage. To pass messages between stages, the
MMA iterates through all inter-stage connections, processes
the delayed batching logic, and sends/receives notifications
from each core’s scheduler logic. This adds a latency into
message delivery, thus the activation of computations. Though
we assessed adding intelligence to the MMA to separately
prioritize different computation chains to control their latency,
the performance of the MMA is sensitive, and such attempts
negatively impacted system throughput by complicating the
tight loop. We find that in a 48-core system (details in §VI)
with almost two thousand computations, the latency for the
MMA to cycle through all connections is around 1ms for a
system at around 80% load.

There are two types of priority inversions in Edge-RT that
contribute to ∆interference.

1) Bounded priority inversion. Event notification is per-
formed periodically using polling (§IV-B), thus avoiding
per-message overheads. However, this a message trans-
mitted to a stage might be delayed by ∆timer, causing a
bounded inversion. Figure 5 depicts this overhead as sim-
ply contributing to the delay of the next stage’s activation.

2) Deadline coarsening. Edge-RT’s deadline-bounded batch-
ing (§IV-A) results in a message’s computation poten-
tially inheriting an earlier deadline only if the deadlines
are within a sliding window of ∆batch. Similarly, the
quantization of deadlines to enable O(1) EDF (§IV-C)
“bins” stages together with deadlines within a fixed win-
dow of ∆window. Figure 5 depicts this as the deadline
for the end-to-end processing of a message being d ∈
[di,m − max(∆batch,∆window), di,m]. Were the workload
predictable, this deadline inaccuracy could be compensated
by practically lowering the system’s effective utilization
by a factor related to di−d

di
. Recall that both ∆batch and

∆window are on the order of 0.5ms, which limits their
impact.

MMA

core core

Constant-Time EDF Scheduler

FWPs

NIC rx

flow tbl
NIC tx

time-bounded
notifications

deadline-aware batching

Fig. 7: Edge-RT components. Many FWPs execute for each client
and tenant. The grey FWPs are a chain computing on a sequence
of messages for a client. Received from the NIC, a packet’s chain
and deadline is identified through a flow-table. This deadline drives
all resource management policy as the message processing flows
through the system. The MMA copies messages (black squares)
between the driver and FWPs, and between isolated FWPs. To
wake FWPs, the MMA notifies the scheduler, passing the message’s
deadline. Notifications are handled with high-frequency time-triggers
to avoid IPI overhead. The scheduler is a constant-time EDF that
has FWPs inherit the deadline of messages. The MMA batches
messages only up until message deadlines diverge by a limit to
avoid interference. The scheduler notifies the MMA when additional
messages can be transmitted. Finally, the MMA transfers messages
to the NIC driver which transits them onto the network.

V. IMPLEMENTATION

Edge-RT extends EdgeOS (§II-C) which is built as a set
of user-level components on the Composite µ-kernel [19].
Edge-RT changes the core policies for message movement,
event notification, and scheduling to focus on timely per-
client execution on edge clouds. We make no modifications
to Composite kernel.

A. Edge-RT Core Services

To reduce per-message overheads, and provide end-to-
end packet deadline scheduling, §IV introduces per-packet
deadlines, deadline-aware batching, periodic inter-core coor-
dination and constant-time EDF scheduling. Figure 7 gives
an overview of Edge-RT. Edge-RT uses a number of mech-
anisms and policies to support the implementation of end-
to-end packet deadline scheduling. (1) The client chain to
process a packet that arrives from the NIC is identified using
a flow-table. The flow-table maps IP/port values to the chain,
and the relative deadline to use for the packet. Both the
chain of computations, and this deadline are provided by the
tenant. (2) The MMA is significantly enhanced to track FWP
deadlines (described in §IV-A) and perform deadline-aware
batching. (3) The MMA interacts with per-core scheduling
logic by sending FWP activation events and receiving FWP
blocking notifications. (4) the scheduler is replaced with a par-
titioned, preemptive, EDF implementation that uses constant-
time logic, and frequent timer activations and polling for event
handling and inter-core coordination.

B. Deadline-aware, MMA-based Message Processing

Figure 7 depicts the flow of messages through the system.
Packets received by DPDK are queued into a per-chain queue
with the deadline retrieved from the flow-table. The MMA
transfers this packet to the first FWP’s input queue, and
sends an activation notification with the deadline of the FWP
to the scheduler. As such, all deadline tracking and policy,

FWPt FWPr

sched

1
2

3

1 2

3 4

FWPt

Δmsg

Δtimer FWPr
time

Δimpl

MMA
4

Fig. 8: Flow of data (dashed lines) and control (solid lines). Top:
Message transfer from a transmitting FWP to a receiver, annotated
with steps. Bottom: A timeline annotated with the various software
and steps.

from flow-table to transmission, are coordinated by system
components.

The MMA is central to providing end-to-end packet
scheduling, and Figure 8 depicts the coordination between
MMA and scheduler to transmit a message between stages.
The MMA’s core role is to transfer messages between trans-
mission and reception rings. When an FWP enqueues a
message for transfer (1), Edge-RT’s MMA does the fol-
lowing: (1) track the deadline of each message in shadow
message rings that are inaccessible to FWPs; (2) transfer
a message, mi,m, from a transmission ring to a reception
ring only if the deadline of each message already in the
reception ring are in [di,m − ∆batch, di,m] (2); (3) when
message data is transferred between FWPs, also transfer their
deadlines between shadow message rings; (4) when a transfer
to an FWP is made, if there were no messages already in
its ring, send an FWP thread activation notification to its
core’s scheduler logic (3); and (5) receive notifications
from each core’s scheduler logic for when an FWP blocks
awaiting messages, which enables the MMA to transfer the
next deadline-limited batch messages.

The scheduler will execute an activated FWP according to
its EDF policy (4). Note that if a receiving FWP is already
active, messages transferred to it are batched, and avoid event
notifications.

A side-effect of the MMA’s limitations on batching is that
back-pressure is provided naturally. If an FWP is not exe-
cuted, any messages awaiting transfer into it (with deadlines
higher than ∆batch + di,m) are not transferred out of the
upstream FWP. This logic repeats until the receive ring of
NIC driver cannot receive any more packets for the flow, thus
dropping packets. Though this outcome isn’t ideal, deadline-
aware work shedding is necessary in an over-committed
system.

C. Inter-core Coordination
FWPs on separate cores interact through the MMA and

its coordination with core scheduling logic. Conventional im-
plementations of inter-process coordination use shared data-
structures and IPIs with the accompanying costs [35]. In
contrast, Edge-RT’s design minimizes these potentially per-
message overheads by remaking OS coordination primitives
based on message passing and frequent periodic polling for
events. Edge-RT implements a new user-level scheduler [36],
[37] that integrates with the MMA to enable this coordination.

110 000 00

000 100 00 010 000 01

C

Fig. 9: CT-EDF data-structures. The current time is marked “cur-
rent”, and the two-level bitmap index tracks times into the future
with runnable threads.

This scheduler’s key functionalities include the following.
(1) When switching to a thread (i.e. FWP), it passes a timeout
in cycles which is used to program the LAPIC timer, at
which point a timer interrupt will reactivate the scheduler. We
reprogram the timer to happen periodically at ∆timer to bound
notification latency. (2) The scheduler currently uses simple
partitioned scheduling. Each core’s scheduler code shares two
wait-free ring buffers with the MMA used to pass notifications
in both directions. When the timer activates the scheduler, it
polls for FWP activation notifications from the MMA and
handles them. Each notification includes a deadline with
which to execute the FWP. As such, this tight coordination
between MMA and scheduler enables the thread’s inheritance
of message deadline. (3) When an FWP blocks after finishing
message processing, the scheduler uses the other ring to send
a corresponding notification to the MMA. This enables the
MMA to resume transferring messages to the FWP if more
were pending, but not sent due to the deadline-aware batching.

D. Constant-Time Earliest Deadline First Scheduling
A traditional implementation of EDF sorts threads by

deadline often using a balanced binary tree (e.g., a min-heap
or red-black tree). Most real-time systems contain a small
number of tasks (on the order of 10s or low 100s), so any data-
structure overheads are sufficiently small. However, Edge-
RT is focused on dense, multi-tenant execution of chains of
concurrent computations, thus must be able to run on the order
of 1000s of threads (>6000 in §VI). This has two negative
effects: (1) with such high density, the frequency of FWP
activation/blocking – bounded only by packets per-second
– forces frequent scheduling decisions, and (2) the number
of active threads makes the per-scheduling decision sorting
overheads have a non-trivial impact.

CT-EDF enables constant time and fast EDF decisions. The
key idea is that the timeline is quantized into fixed quanta of a
specific length, ∆window, and is represented as a circular array
(i.e. with wrap-around logic) with an entry-per-quantum. If
the array has S entries, it tracks up to ∆window × S time
units into the future. The current time, C, defines an index
into the array, and all times into the future are indexed from
there (treating the array as a circular array). Calculating times
relative to the current time means that at each quanta, only C
needs to be incremented rather than shifting all entries down.
Finding the FWP with the lowest deadline means finding the
first quantum that contains an FWP starting the search at the
index C. At each quanta, any tasks that miss their deadlines
are placed into the lower-priority, round-robin queue. Future

enhancements can include more intelligent failure logic. In
this paper, we restrict our focus on meeting end-to-end packet
deadlines.

The data-structures for CT-EDF are depicted in Figure 9.
Finding the first quantum into the future involves iterating
through potentially the entire array, which is unacceptably
expensive. As such we use a set of bitmaps to index the
quanta that have runnable FWPs. If a quantum in the timeline
has runnable FWPs, the bit corresponding to that quanta is
1. We use the clz instruction to efficiently count the leading
zeros within the bitmap. Additionally, to avoid needing to
iterate through the words of the bitmap – using clz on
each – we define multiple levels (2 in our case) of bitmaps
that each index the next level. At each level, a bit is 1 if
the corresponding next level bitmap indexes a quantum with
runnable FWPs. This multi-level bitmap index forms a radix-
trie, and enables constant-time, efficient identification of the
earliest-deadline FWPs (with accuracy within ∆window).

Edge-RT uses a 32-bit level-1 index, that index 32, 32
bit level-2 indices (for a total of 1024 tracked quanta). This
enables using only two clz to determine the earliest deadline.
Each CT-EDF quantum is 0.5ms for a maximum deadline of
0.5s. The timeline can be extended by adding another index
level (to support 16s), or increasing the quantum.

VI. EVALUATION

This section evaluates Edge-RT relative to EdgeOS and
Linux. All experiments use a PowerEdge R740 servers
with two socket Intel(R) Xeon(R) Platinum 8160 CPUs @
2.10GHz each with 24 cores. We use an Intel X710 for 10GbE
SFP+ for networking and a similarly equipped client drives
workload generation. DPDK and OVS versions for the results
in §II-A are 19.11 LTS and 2.13, respectively. Linux results
use kernel version 5.4. We don’t use the PREEMPT RT patches
as tight interrupt response times (on the order of a µs) are
not the focus. Client machines use a modified memblaster to
generate workloads and measure round-trip latencies. Edge-
RT uses DPDK version 17.11.

A. CT-EDF Overheads
CT-EDF uses a constant-time data-structure to find the

task with the earliest deadline (§IV-C). Figure 10 investigates

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100

C
P
U

 c
lo

ck
 c

y
cl

e
s

(a) Insert
 0 20 40 60 80 100

Thread number
(b) Removal

O(1) fixed priority
CT-EDF

Binary tree EDF

Fig. 10: The overheads for key data-structure operations with an
increasing runqueue size. The y-axis plots the average overhead.

 0

 20

 40

 60

 80

 100

60% 70% 80% 90% 100%%
 d

e
a
d
lin

e
s

m
e
t/

m
is

se
d
/d

ro
p
p
e
d

Linux
dropped

EdgeOS
missed

Edge-RT
met

(a) The behavior of light tasks with increasing utilization.

 0

 20

 40

 60

 80

 100

60% 70% 80% 90% 100%%
 d

e
a
d
lin

e
s

m
e
t/

m
is

se
d
/d

ro
p
p
e
d

Linux
dropped

EdgeOS
missed

Edge-RT
met

(b) The behavior of heavy tasks with increasing utilization.

Fig. 11: Comparison between Edge-RT and Linux for a bimodal workload. y axis is the fraction of deadlines met, missed and fraction
of packets dropped.

the overhead of insertion and removal for scheduling data-
structures. We compare the following. (1) A traditional O(1)
fixed priority, round-robin (O(1) fixed priority) struc-
ture which includes an array of linked lists that track threads
within a priority. It uses a two-level bitmap index – queried
with the clz instruction – that tracks priorities with active
threads. (2) CT-EDF is detailed in §V-D. (3) A traditional
EDF implementation (Binary tree EDF) using a red-black
tree to sort threads by deadline. Not shown here, we used an
in-place heap and found it to have more overhead.

Threads with uniformly random deadlines are added to the
queue (i.e. they are woken), and the thread with the highest
priority (earliest deadline) is removed from the queue (i.e.
blocks).
Discussion. With an increasing number of threads, the tradi-
tional EDF with O(log(N)) complexity imposes increasing
overheads, while the other two approaches demonstrate near-
constant overheads. The CT-EDF policy demonstrates higher
overhead than fixed priority when inserting, despite using a
similar index. This is due to wrap-around logic in CT-EDF:
1) if the current time is half-way into the timeline, the clz
operations must be performed only on indices after a circular
shift has been performed; and 2) at the second level index
node, it is possible not all bits should be queried (if the current
time is indexed by this node).

B. Linux and Edge-RT Utilization Sensitivity

§II argues that system organizations and policies that
target high throughput such as kernel-bypass and eBPF, or
predictable execution such as SCHED DEADLINE, have trouble
scaling to multi-tenant, deadline-driven environments. Table I
summarizes these arguments. Figures 2 and 1 demonstrate that
Linux’s CFS scheduling, and normal sockets perform the best
with increasing tenants and uncertain workloads. Therefore,
we configure Linux using sockets for networking and CFS for
scheduling. To provide the same level of isolation as Edge-
RT, we use separate processes for each stage in Linux. For
chain processing on Linux, pipes slightly outperform socket
variants for event notification latency. Thus, we use pipes for
IPC between processes in chains. To avoid data copying costs,
we pass only 8 byte messages to provide event notification
while larger messages use shared memory.

In this evaluation, we configure both Linux and Edge-
RT to use 48 cores, with Edge-RT specializing four cores
(§II-C). Thus Edge-RT has a practical maximum utilization
of around 91.6%. Figure 11 depicts a bimodal workload
with a varying system utilization. Utilization is reported as
a fraction of application computation of the 48 cores. Edge-
RT is configured with ∆batch = 8ms and ∆timer = 250µs
guided by Figure 6a and Figure 6b. On the client side, we
use the same bimodal workload from Figure 6a with light
tasks that execute 40µs, and heavy that execute 5ms with
deadlines 10ms and 500ms, respectively. As a result, light
tasks comprise 80% of the total execution of the workload.
We control the utilization of the workload by adjusting the
sending rate (proportionately for light and heavy) on the client
side. We use 480 clients/chains with 1920 FWPs.

We also compare against Linux using SCHED DEADLINE.
To admit enough tasks onto the system to be able to use
100% utilization, we set the CFS budgets equal to the average
execution time for heavy and light. We omit these results
as light tasks meet only 0.25% of their deadlines at 60%
utilization while even heavy tasks only meet 57% of deadlines
at 60% utilization, decreasing to 32% at 100% utilization.
This provides further evidence for the claims in §II-A that
SCHED DEADLINE is not a good fit for systems with dynamic
workloads that are not periodic.
Discussion. Figure 11a shows high-throughput systems have
difficulty meeting deadlines. As the utilization increases from
60% to 100%, the percent of deadlines met by Linux drops
from 95.9% to 15.9%. Additionally, Linux starts dropping
packets on light flows when utilization grows over 90%. In
case of heavy tasks in Figure 11b, Linux does not drop
packets, and meets deadlines even under 100% utilization.
Linux’s best-effort focus on fairness favors heavy workloads
despite CFS’s heuristic prioritization of I/O-bound workloads.

EdgeOS meets most of the deadlines when the system
is relatively low utilized (less than 80% utilization). Since
EdgeOS is not deadline-aware and uses a fixed-priority
round-robin scheduler, it misses most of the deadlines when
utilization grows over 80% and barely meets any deadline
at 100% utilization. Recall that the four specialized cores
decrease the effective maximum utilization to around 91%.
However, EdgeOS drops fewer packets for heavy tasks
compared to Edge-RT at 100% utilization. This is due to

 0

 5

 10

 15

 20

 1000 2000 3000 4000 50009
9
th

 p
e
rc

e
n
ti

le
 L

a
te

n
cy

 (
m

s)

Number of tasks in total

 Linux
 Edge-RT

Fig. 12: The 99% latencies of light tasks
with increasing number of tasks in total

 20

 40

 60

 80

 100

 1000 2000 3000 4000 50009
9
th

 p
e
rc

e
n
ti

le
 L

a
te

n
cy

 (
m

s)

Number of tasks in total

 Linux
 Edge-RT

Fig. 13: The 99% latencies of heavy tasks
with increasing number of tasks in total

 0

 20

 40

 60

 80

 100

0 2 4

%
 o

f
d
e
a
d
lin

e
 m

e
t

Unpredictable flows per core

Linux EdgeOS Edge-RT

Fig. 14: Behavior of well-behaved tasks in
the presence of malicious tasks.

EdgeOS’s focus on throughput.
At 90% utilization, Edge-RT meets over 95% deadlines

on both light and heavy computations. Even at 100% utiliza-
tion, Edge-RT meets 92.13% deadlines on light tasks (com-
pares to Linux’s 15.95% and EdgeOS’s 0%). In contrast,
heavy tasks cause backpressure through chains, and Edge-
RT drops 25.6% with continued progress on other tasks.
This demonstrates Edge-RT’s focus on end-to-end, deadline-
centric scheduling, while still maintaining high throughput.

We don’t compare against the kernel bypass techniques
given challenges with non-preemptive client execution in
§II-A. The round-trip latency for Linux sockets is only 20µs
(15%) slower than DPDK using interrupt mode (which is
necessary with more tenants than cores), so we believe that
Linux is a competitive environment for these comparisons.

C. Scalability
Edge-RT is designed to use constant overhead mechanisms

where possible. CT-EDF and periodic activation processing
both enable schedulers to spend more time running FWPs
regardless the number of FWPs. Thus, we want to evaluate
the performance of Edge-RT when scheduling thousands of
FWPs. Here we evaluate Edge-RT’s and Linux’s ability to
control latency while increasing the number of processes.
We use the same system setup as the previous bimodal
tests, by default. As we scale up the number of tasks, we
proportionately adjust the sending rate for light and heavy
tasks to keep the system utilization equal to 50% to avoid
either system dropping packets. Thus, the 99th percentile
latency depicts the system’s ability to bound latency.
Discussion. As shown in Figure 12, with 1000 computations,
Linux and Edge-RT have similar tail latencies around 5ms.
Edge-RT maintains a flat tail latency between 4 and 5ms
up to 5000 tasks. In contrast, the tail latency of light tasks
on Linux grows as the number of tasks increases. At 5000
tasks, the tail latency of light tasks in Linux is 18ms (recall:
deadline 10ms). The tail latency of heavy tasks for both Linux
and Edge-RT increases when having an increasing number
of tasks in Figure 13, but both remain below their deadline of
500ms. Linux slightly outperforms Edge-RT on heavy tasks,
because CFS’s fairness ensures constant progress for heavy
tasks over light tasks. These results demonstrate that Edge-
RT can maintain its focus on end-to-end deadline scheduling
despite significantly scaling up the number of clients.

D. Unpredictable Workloads
The edge must be able to handle workloads with unpre-

dictable execution. Tenants can provide code that attempts to

monopolize CPU resources, and clients can provide inputs
to cause errant behavior. To evaluate the impact of execu-
tion overruns, we maintain a consistent workload, with an
increasing number of malicious tasks. We use 48 cores and
768 clients with 768 FWPs. System utilization is 80% without
malicious tasks. The well-behaved tasks execute for 5ms and
clients send a request every 100ms with a 500ms deadline.
Chain lengths are set to one (K = 1) to emphasize that ma-
licious tasks can cause significant interference even without
back-pressure from chains of computations. Malicious tasks
are simply infinite loops to monopolize the CPU. Figure 14
shows the behavior of well-behaved tasks in the presence of
CPU-hogging malicious tasks. In these results, we filter out
the deadlines missed due to the malicious tasks themselves.
Discussion. With even a small number of malicious tasks,
EdgeOS’s round-robin scheduling policy – that focuses on
progress and fairness – demonstrates an inability to ade-
quately isolate the deadline-sensitive tasks from those that
are simply CPU-hogs. At only two malicious tasks per core,
on average, nearly all deadlines are missed.

CFS in Linux fairs better with this workload. This is
because it attempts to prioritize newly arrived (I/O-bound)
threads over malicious tasks who are CPU-bound. As such,
it is able to meet 63% of the deadlines with two malicious
tasks present, but quickly degrades to 39% with four.

Once a deadline is missed in Edge-RT, the FWP is depri-
oritized and moved to a best-effort round-robin low priority
queue. This simple policy is relatively effective at constraining
this malicious computation by deprioritizing it. This demon-
strates the unintuitive benefit of a end-to-end, deadline-centric
policy for the edge: deadlines provide semantic information
about expected execution behavior. The edge can use them
to constrain FWP’s negative behaviors when deadlines are
overrun. Though stronger assumptions about FWP execution
times could further constrain their impact – for example, by
enabling rate-limiting – such assumptions are challenging in
the high-throughput, dynamic environments.

VII. RELATED WORK

Edge applications. Offloading computation from devices to
infrastructure has a long history. For example, it has been
shown to prolong batteries [38], [2], and even service mission-
critical tasks [39] with degraded local computation. It enables
global coordination to get benefit beyond a system’s local
sensors [40]. Edge-RT assumes an unreliable network, but
one that is low-latency enough to motivate deadline-sensitive
computation. It attempts to enable these benefits in a high-
throughput, high-density, and real-time infrastructure. This

assumption does not prevent Edge-RT from including fall-
back logic to enable detection and retransmission of dropped
packets in the future.
Shared hardware resources. Edge-RT focuses mainly on
sharing NIC hardware resources. FWPs share no memory as
the MMA arbitrates copying messages between them. We do
not focus on shared resources like caches [41], [42], [43],
[44] and memory buses [45]. Approaches that increase their
sharing and access are complementary to Edge-RT.
Data-age in cause-effect chains. Chains of computation are
a common abstraction in embedded systems (e.g., robotics
systems such as ROS) and represent stages of computation
from sensing to actuation. They are often called cause-effect
chains, and real-time systems are concerned with controlling
and constraining the data-age (the latency of chain computa-
tion from sensing to actuation).

Large bodies of work have focused on creating policies
and analysis to provide predictable, bounded data-age across
chains [46], [47], [48], [49], [50]. Recent work [51] focuses
on end-to-end response time analysis of event chains. This
work is often concerned with strong predictability and meet-
ing all deadlines, and does so by assuming knowledge about
execution properties such as fixed rates and WCETs.

Edge-RT is focused on controlled latency in a high-
throughput environment. Instead of the traditional approach
that often separately prioritizes chain computations, controls
their periodicity, and orchestrates dependencies, Edge-RT
focuses on end-to-end deadline scheduling of messages, rather
than of computations.

Blass et al. [52] take a more dynamic approach by moni-
toring latencies and dependencies in chains, and dynamically
updating priorities, reservations, and affinities to control end-
to-end latency. Edge-RT doesn’t attempt to optimize parame-
ters to control latencies, and instead explicitly maintains end-
to-end deadline scheduling mechanisms and policies.
Network Function Virtualization. The edge must exe-
cute not only multi-tenant, offloaded computation, but also
Network Functions (NFs) for slicing, transformation, and
shaping. Network Function Virtualization (NFV) [53] pro-
vides a software environment for the isolated execution of
NFs. Edge-RT is based on EdgeOS [9], which supports
high-throughput, high density NFV, but additionally aims to
provide strong latency properties. Similarly, systems have
focused on soft-real-time NFV computation [54], [55], but
are not focused on high-throughput systems nor resource
management focused on average computation (not WCET).
Rethinking OS-level batching and scheduling. The trade-off
in batching between throughput and latency is well known and
has enabled efficient core specialization [56], and a successful
decoupling of OS control and datapaths [27]. It has also
been an integral technique in shaping back-pressure [57],
controlling cross-core interference [35] in real-time systems.
It has been paired with fine-grained inter-core coordination
to control µ-second level latencies in the presence of head-
of-line blocking [58]. User defined scheduling [59], [30] is
another approach which aims to reduce latency by deploying a
user-defined scheduling policy. Edge-RT is inspired by these
approaches, and uses batching to achieve high throughput,
but constrains the impact that large batches of processing can
have on the latency of other system computations.

Summary. Edge-RT’s contributions are in a less-investigated
direction for real-time systems: high-throughput, network
systems that aim to meeting deadlines despite high-density,
multi-tenancy. The techniques it must use to achieve all of
these goals aim to practically meet end-to-end deadlines while
making efficient use of limited resources.

VIII. CONCLUSIONS

In this paper we introduce the Edge-RT. It represents a
significant step into the direction of novel real-time policies
and mechanisms for high-throughput, and high-density multi-
tenant systems. Edge-RT introduces a practical policy to
control latency over a chain of isolated computations: dead-
lines are associated with packets/messages, and computations
inherit them, enabling optimization toward controlled end-to-
end latency. We investigate policies that increase throughput,
while having limited impact on latency. Results demonstrate
that the system can effectively handle significantly higher load
while meeting deadlines, as the number of clients scales up,
and in the presence of malicious tasks, thus enabling higher
edge density and decreasing the amount of computational
resources at each basestation. We believe this marks a sig-
nificant advance toward principled latency management for
the multi-tenant edge.

REFERENCES

[1] D. Xu, A. Zhou, X. Zhang, G. Wang, X. Liu, C. An, Y. Shi, L. Liu,
and H. Ma, “Understanding operational 5g: A first measurement study
on its coverage, performance and energy consumption,” in Proceedings
of the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM), 2020.

[2] B. Li, W. Dong, and Y. Gao, “Wiprog: A webassembly-based approach
to integrated iot programming,” in IEEE INFOCOM 2021 - IEEE
Conference on Computer Communications, 2021.

[3] “Telecommunications industry association. edge data centers.
https://www.tiaonline.org/wp-content/uploads/2018/10/TIA Position
Paper Edge Data Centers-18Oct18.pdf,” 2018.

[4] “Micro-data centers out in the wild: How dense is the edge?, https:
//www.datacenterknowledge.com/archives/2017/05/02/edge-densities,”
2017.

[5] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz,
J. Lorca, and J. Folgueira, “Network slicing for 5g with sdn/nfv: Con-
cepts, architectures, and challenges,” IEEE Communications Magazine,
vol. 55, no. 5, pp. 80–87, 2017.

[6] “5g network slicing in 5gtango, https://www.5gtango.eu/blog/
36-5g-network-slicing-in-5gtango.html,” 2019.

[7] “Ngmn alliance, description of network slicing concept,” 2017.
[8] P. Rost, C. Mannweiler, D. S. Michalopoulos, C. Sartori, V. Sciancale-

pore, N. Sastry, O. Holland, S. Tayade, B. Han, D. Bega, D. Aziz, and
H. Bakker, “Network slicing to enable scalability and flexibility in 5g
mobile networks,” IEEE Communications Magazine, 2017.

[9] Y. Ren, G. Liu, V. Nitu, W. Shao, R. Kennedy, G. Parmer, T. Wood,
and A. Tchana, “Fine-grained isolation for scalable, dynamic, multi-
tenant edge clouds,” in Proceedings of the USENIX Annual Technical
Conference (USENIX ATC), 2020.

[10] “Intel Data Plane Development Kit (DPDK). http://dpdk.org/.”
[11] “Open vSwitch (OVS). https://www.openvswitch.org/.”
[12] “Virtual I/O devices. https://docs.oasis-open.org/virtio/virtio/v1.1/

csprd01/virtio-v1.1-csprd01.html.”
[13] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,

and S. Shenker, “E2: A framework for nfv applications,” in Proceedings
of the 25th Symposium on Operating Systems Principles (SOSP), 2015.

[14] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“Netbricks: Taking the v out of nfv,” in Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation (OSDI),
2016.

[15] “extended Berkeley Packet Filter (eBPF). https://ebpf.io/.”

https://www.tiaonline.org/wp-content/uploads/2018/10/TIA_Position_Paper_Edge_Data_Centers-18Oct18.pdf
https://www.tiaonline.org/wp-content/uploads/2018/10/TIA_Position_Paper_Edge_Data_Centers-18Oct18.pdf
https://www.datacenterknowledge.com/archives/2017/05/02/edge-densities
https://www.datacenterknowledge.com/archives/2017/05/02/edge-densities
https://www.5gtango.eu/blog/36-5g-network-slicing-in-5gtango.html
https://www.5gtango.eu/blog/36-5g-network-slicing-in-5gtango.html
http://dpdk.org/
https://www.openvswitch.org/
https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html
https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html
https://ebpf.io/

[16] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend,
T. Herbert, D. Ahern, and D. Miller, “The express data path: Fast
programmable packet processing in the operating system kernel,” in
Proceedings of the 14th international conference on emerging network-
ing experiments and technologies, 2018, pp. 54–66.

[17] S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal,
“Creating complex network services with ebpf: Experience and lessons
learned,” in 2018 IEEE 19th International Conference on High Perfor-
mance Switching and Routing (HPSR). IEEE, 2018, pp. 1–8.

[18] L. Abeni, G. Lipari, and J. Lelli, “Constant bandwidth server revisited,”
SIGBED Review., vol. 11, no. 4, 2015.

[19] Q. Wang, Y. Ren, M. Scaperoth, and G. Parmer, “Speck: A kernel for
scalable predictability,” in Proceedings of the 21st IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2015.

[20] “Ngmn alliance, 5g white paper,” 2017.
[21] “Ngmn alliance, 5g end-to-end architecture framework,” 2017.
[22] L. Abeni, A. Balsini, and T. Cucinotta, “Container-based real-time

scheduling in the linux kernel,” ACM SIGBED Review, vol. 16, no. 3,
pp. 33–38, 2019.

[23] A. Biondi and B. B. Brandenburg, “Lightweight real-time synchroniza-
tion under p-edf on symmetric and asymmetric multiprocessors,” in
28th Euromicro Conference on Real-Time Systems (ECRTS), 2016.

[24] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols:
An approach to real-time synchronization,” IEEE Trans. Comput., 1990.

[25] L. Soares and M. Stumm, “{FlexSC}: Flexible system call scheduling
with {Exception-Less} system calls,” in 9th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 10), 2010.

[26] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe, “Arrakis: The operating system is the
control plane,” ACM Trans. Comput. Syst., vol. 33, no. 4, Nov. 2015.

[27] A. Belay, G. Prekas, M. Primorac, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion, “The ix operating system: Combining
low latency, high throughput, and efficiency in a protected dataplane,”
ACM Trans. Comput. Syst., vol. 34, no. 4, 2016.

[28] S. Kuenzer, V.-A. Bădoiu, H. Lefeuvre, S. Santhanam, A. Jung, G. Gain,
C. Soldani, C. Lupu, S. Teodorescu, C. Răducanu et al., “Unikraft: fast,
specialized unikernels the easy way,” in Proceedings of the Sixteenth
European Conference on Computer Systems, 2021, pp. 376–394.

[29] I. Zhang, A. Raybuck, P. Patel, K. Olynyk, J. Nelson, O. S. N. Leija,
A. Martinez, J. Liu, A. K. Simpson, S. Jayakar et al., “The demikernel
datapath os architecture for microsecond-scale datacenter systems,”
in Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, 2021, pp. 195–211.

[30] J. T. Humphries, N. Natu, A. Chaugule, O. Weisse, B. Rhoden, J. Don,
L. Rizzo, O. Rombakh, P. Turner, and C. Kozyrakis, “ghost: Fast &
flexible user-space delegation of linux scheduling,” in Proceedings of
the ACM SIGOPS 28th Symposium on Operating Systems Principles,
2021, pp. 588–604.

[31] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan,
“Shenango: Achieving high {CPU} efficiency for latency-sensitive
datacenter workloads,” in 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), 2019, pp. 361–378.

[32] “TinyEKF: Lightweight C/C++ Extended Kalman Filter with Python
for prototyping, https://github.com/simondlevy/TinyEKF.git,” 2019.

[33] “CMSIS NN Software Library, https://arm-
software.github.io/CMSIS 5/NN/html/index.html,” 2019.

[34] “The CIFAR-10 dataset, https://www.cs.toronto.edu/ kriz/cifar.html,”
2009.

[35] P. K. Gadepalli, G. Peach, G. Parmer, J. Espy, and Z. Day, “Chaos:
a system for criticality-aware, multi-core coordination,” in 25th IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2019.

[36] G. Parmer and R. West, “Predictable interrupt management and schedul-
ing in the Composite component-based system,” in Proceedings of the
IEEE International Real-Time Systems Symposium (RTSS), 2008.

[37] P. K. Gadepalli, R. Pan, and G. Parmer, “Slite: OS support for near zero-
cost, configurable scheduling,” in 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2020, pp.
160–173.

[38] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer with
code offload,” in Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, 2010.

[39] L. Schönberger, G. von der Brüggen, K.-H. Chen, B. Sliwa, H. Youssef,
A. K. R. Venkatapathy, C. Wietfeld, M. ten Hompel, and J.-J. Chen,
“Offloading Safety- and Mission-Critical Tasks via Unreliable Connec-
tions,” in 32nd Euromicro Conference on Real-Time Systems (ECRTS
2020), 2020.

[40] C. Wang, C. Gill, and C. Lu, “Frame: Fault tolerant and real-time
messaging for edge computing,” in Proceedings of the IEEE 39th

International Conference on Distributed Computing Systems (ICDCS),
2019.

[41] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting inter-thread
cache contention on a chip multi-processor architecture,” in 11th
International Symposium on High-Performance Computer Architecture.
IEEE, 2005, pp. 340–351.

[42] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and
R. Pellizzoni, “Real-time cache management framework for multi-core
architectures,” in 2013 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 2013, pp. 45–54.

[43] X. Zhang, S. Dwarkadas, and K. Shen, “Towards practical page
coloring-based multicore cache management,” in Proceedings of the
4th ACM European conference on Computer systems, 2009, pp. 89–
102.

[44] J. Kim, I. Kim, and Y. I. Eom, “Code-based cache partitioning for
improving hardware cache performance,” in Proceedings of the 6th
International Conference on Ubiquitous Information Management and
Communication, 2012, pp. 1–5.

[45] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memguard:
Memory bandwidth reservation system for efficient performance iso-
lation in multi-core platforms,” in 2013 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE,
2013, pp. 55–64.

[46] M. Günzel, K.-H. Chen, N. Ueter, G. von der Brüggen andMarco
Dürr, and J.-J. Chen, “Timing analysis of asynchronized distributed
cause-effect chains,” in IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2021.

[47] T. Klaus, M. Becker, W. Schröder-Preikschat, and P. Ulbrich, “Con-
strained age with job-level dependencies: How to reconcile tight bounds
and overheads,” in IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2021.

[48] A. M. Kordon and N. Tang, “Evaluation of the age latency of a real-
time communicating system using the let paradigm,” in 32nd Euromicro
Conference on Real-Time Systems (ECRTS), 2020.

[49] H. Choi, Y. Xiang, and H. Kim, “Picas: New design of priority-driven
chain-aware scheduling for ros2,” in IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2021.

[50] D. Casini, T. Blaß, I. Lütkebohle, and B. Brandenburg, “Response-time
analysis of ros 2 processing chains under reservation-based schedul-
ing,” in 31st Euromicro Conference on Real-Time Systems. Schloss
Dagstuhl, 2019, pp. 1–23.

[51] D. Dasari, M. Becker, D. Casini, and T. Blaß, “End-to-end analysis of
event chains under the qnx adaptive partitioning scheduler,” in 2022
IEEE 28th Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2022, pp. 214–227.

[52] T. Blass, A. Hamann, R. Lange, D. Ziegenbein, and B. B. Brandenburg,
“Automatic latency management for ros 2: Benefits, challenges, and
open problems,” in IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2021.

[53] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi,
K. Ramakrishnan, and T. Wood, “OpenNetVM: A Platform for
High Performance Network Service Chains,” in Proceedings of the
2016 ACM SIGCOMM Workshop on Hot Topics in Middleboxes
and Network Function Virtualization, 2016. [Online]. Available:
http://faculty.cs.gwu.edu/timwood/papers/16-HotMiddlebox-onvm.pdf

[54] Y. Li, L. T. Xuan Phan, and B. T. Loo, “Network functions virtualization
with soft real-time guarantees,” in IEEE INFOCOM - The 35th Annual
IEEE International Conference on Computer Communications, 2016.

[55] S. Abedi, N. Gandhi, H. M. Demoulin, Y. Li, Y. Wu, and L. T. X. Phan,
“Rtnf: Predictable latency for network function virtualization,” in IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2019.

[56] L. Soares and M. Stumm, “Flexsc: Flexible system call scheduling
with exception-less system calls,” in Proceedings of the conference on
Symposium on Operating Systems Design & Implementation, 2010.

[57] M. Welsh, D. Culler, and E. Brewer, “Seda: an architecture for well-
conditioned, scalable internet services,” in SOSP ’01: Proceedings of
the eighteenth ACM symposium on Operating systems principles. New
York, NY, USA: ACM Press, 2001, pp. 230–243.

[58] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Mazières, and
C. Kozyrakis, “Shinjuku: Preemptive scheduling for µsecond-scale tail
latency,” in Proceedings of the 16th USENIX Conference on Networked
Systems Design and Implementation (NSDI), 2019.

[59] K. Kaffes, J. T. Humphries, D. Mazières, and C. Kozyrakis, “Syrup:
User-defined scheduling across the stack,” in Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles, 2021, pp.
605–620.

http://faculty.cs.gwu.edu/ timwood/papers/16-HotMiddlebox-onvm.pdf

	Introduction
	Background
	Linux Kernel Bypass and In-kernel Sandbox
	Thread-base Prioritization Deadline Scheduling.
	EdgeOS Background

	System Model
	Prioritization
	Case Studies

	System Design
	Deadline-aware Batching
	Periodic Event Notification
	Constant-time EDF Scheduling
	Analysis of Timing Properties

	Implementation
	Edge-RT Core Services
	Deadline-aware, MMA-based Message Processing
	Inter-core Coordination
	Constant-Time Earliest Deadline First Scheduling

	Evaluation
	CT-EDF Overheads
	Linux and Edge-RT Utilization Sensitivity
	Scalability
	Unpredictable Workloads

	Related Work
	Conclusions
	References

