Slite: OS Support for Near Zero-Cost, Configurable Scheduling *

Phani Kishore Gadepalli, Runyu Pan, Gabriel Parmer

The George Washington University
Washington, DC
{phanikishoreg,panrunyu,gparmer} @ gwu.edu

Abstract—Despite over 35 years of wildly changing require-
ments and applications, real-time systems have treated the kernel
implementation of system scheduling policy as given. New time
management policies are either adapted to the kernel, and rarely
adopted, or emulated in user-level under the restriction that
they must stay within the confines of the underlying system’s
mechanisms. This not only hinders the agility of the system
to adapt to new requirements, but also harms non-functional
properties of the system such as the effective use of parallelism,
and the application of isolation to promote security.

This paper introduces Slite, a system designed to investigate
the possibilities of near zero-cost scheduling of system-level threads
at user-level. This system efficiently and predictably enables the
user-level implementation of configurable scheduling policies.
This capability has wide-ranging impact, and we investigate how
it can increase the isolation, thus dependability, of a user-level
real-time OS, and how it can provide a real-time parallel runtime
with better analytical properties using thread-based - rather
than the conventional task-based — scheduling. We believe these
benefits motivate a strong reconsideration of the fundamental
scheduling structure in future real-time systems.

I. INTRODUCTION

Real-time systems have a broad breadth of requirements,
many of which have only come to prevalence only in the last
decade. These include strong security, reliability, effective use
of multi-core, and the ability to meet the timing requirements
of software of varying assurances and functionalities. Despite
the flux in system capabilities and requirements, schedul-
ing has maintained the same essential structure since the
first systems that required temporal multiplexing. Due to the
close interaction with system’s concurrency and parallelism
primitives — including the synchronization, interrupts, and
coordination facilities — the scheduler is a fundamental service
of the kernel. As scheduling is effectively baked into the
system, this leads to a tension with the constant pressure to
adapt the timing properties of the system to new environments
and specifications.

On the other hand, the immensely varying systems have
yielded new scheduling challenges and directions: multi-core
systems have spawned compiler and library support for run-
to-completion task scheduling exemplified by OpenMP [1],
Cilk [2], and Intel TBB [3]; middleware systems used for
coordination of applications have motivated user-level control
of scheduling for QoS [4], [5], while coarse CPU share
control is a fundamental aspect of container runtimes [6],
[7]; mixed-criticality systems [8] require new scheduling and

*This material is based upon work supported by the National Science
Foundation (NSF) under Grant No. CNS-1815690. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the NSF.

synchronization policies, whose adoption is complicated by the
all-or-nothing replacement of existing policies; the invalidation
of assumptions about non-preemptivity in virtual machines
leads to degenerate spinlock behavior which requires cross-
layer scheduler coordination [9]; motivated by security and
architectural goals, non-preemptive, user-level control of dis-
patching between protection domains [10], [11]; information
leakage security concerns in real-time scheduling and synchro-
nization [12] require active obfuscation logic in the sched-
uler [13], while architectural support for speculation requires
new dispatching mechanisms to maintain confidentiality [14].
Even the scheduling heuristics in monolithic POSIX systems
are evolving [15] to the challenging multi-core landscape.
The continual introduction of new timing and coordination
behaviors demands new system functionality and temporal
semantics. It is the position of this paper that the fundamen-
tal structure of scheduling should address the increasingly
complicated timing landscape of modern systems. It should
be possible for untrusted developers to implement scheduling
and synchronization facilities that have the potential to control
system execution with the fidelity of a system scheduler.

§9 99 %

user Active

Scheduling
Policy

Thread
kernel

55 9% 995

User-level threading System-level scheduling Slite scheduling

Fig. 1: Three scheduling models. Dashed arrows indicate the path for
context switches. Green threads on the left contend with decoupled
scheduling policies and threads. System-level scheduling manages
threads across all applications. Slite defines policy only at user-
level, and enables direct user-level dispatch. This allows inconsistency
between which thread user- and kernel-level see as active.

Figure 1 depicts user-level threading (often called “green
threads”) which implements dispatching functionality and
scheduling policy in a library at user-level, and normal system-
level scheduling in which scheduling policy and dispatch logic
are kernel-defined. The former empowers the user-level sched-
uler to control only threads within its own scheduler, and has
limited visibility of system-wide thread state, thus complicat-
ing coordination between user- and kernel-level policies. This
has led to complicated schemes for coordinating around kernel
thread blocking and waking events [16], application allocation
to cores [17], and efficient, predictable locking [9]. The latter



makes application-specific scheduling logic implausible, and
requires overhead (including system calls) to access scheduling
and synchronization constructs.

We argue that the kernel-based implementation of schedul-
ing policy is the key inhibitor to configurable policy which
is preventing a tighter co-design of applications, systems, and
schedulers. Elphinstone et al. [18] argue that time management
is one of the last resource management policies to resist config-
urable implementation at user-level in p-kernels. Though past
work [19], [20], [21] has focused on this goal, it requires costly
system calls and extensive application/kernel coordination.

Slite (on the right in Figure 1) — short for “scheduling
light” — introduces a mechanism in which both the user- and
kernel-level track the same set of threads, yet user-level defines
scheduling policy and dispatching logic. In common cases,
this enables both near zero-cost, direct thread dispatch without
kernel involvement, and the integration of applications with
timing policy. Real-time and time-sensitive systems benefit
from this both due to the decrease in synchronization over-
heads (for example, blocking operations on locks and message
queues), and the use of specialized policy for timely execution.

Slite allows direct user-level thread switches to cause in-
coherence with the kernel’s notion of the currently active
thread. Later, the kernel recovers coherence when activated.
We pair this with non-blocking OS APIs, even for Inter-
Process Communication (IPC), to enable the system-level
scheduling of threads that execute across different protection
domains. By providing efficient access to timing policy at
user-level, Slite counters the intuition that extracting a policy
from the kernel decreases performance. Similar to research
that moves networking to user-level [22], Slite effectively
implements “kernel-bypass” for scheduling.

This paper asks if the user-level dispatching of system-
level threads has near-zero cost, can we more effectively meet
the demands of modern applications by integrating them with
scheduling logic? Thus, we focus on demonstrating the utility
of co-designing the timing policy and the application. Toward
this, we focus on two domains:

e increasing system security in a Real-Time Operating
System (RTOS) by enabling the isolated, user-level execution
of system services with the predictability and performance
properties of a legacy, unprotected, kernel-resident RTOS; and

« enhancing a task-based, non-preemptive parallel runtime

often used in real-time systems (OpenMP) that has signifi-
cant worst-case synchronization constraints that prevent work-
conserving execution, with a thread-based execution model
that avoids these problems, thus enabling the use of high-
utilization real-time schedulability analysis.
Both of these applications are only possible given the efficient
thread dispatch and coordination facilities of Slite. They
demonstrate that a re-imagining of the structure of system
scheduling can have wide-ranging implications for depend-
able, parallel, and predictable systems.

Contributions. This paper’s contributions include
o the design (§IIT) and implementation (§IV) of the efficient,

predictable user-level scheduling of system threads,

« the application of Slite to a RTOS (§VI) focused on
bare-metal performance while providing strong isolation, and
a parallel runtime (§VII) to demonstrate the effectiveness of
integrating scheduling with applications, and

« the evaluation (§VIII) of Slite and its application domains.

II. BACKGROUND AND RELATED WORK

Configurable kernel scheduling (CKS). There is a long
tradition of extensible frameworks in the kernel for scheduling
policy customization. The frameworks range from hierarchical
composition of schedulers [23], to languages for extensibil-
ity [24], to APIs for pluggable policies [25]. Though these
frameworks demonstrate the utility of policy customization,
these techniques focus on kernel-level policies (Figure 1,
center) without a tight co-design with applications.
User-Level Scheduling (ULS). Real-time frameworks [5],
and concurrency management within processes in response to
IPC [26] use user-level scheduling (Figure 1, left) to manage
threads within that protection domain. These approaches can-
not schedule threads in other protection domains. ULS enables
efficient thread dispatch, but requires consideration of and inte-
gration with blocking system calls. Scheduler Activations [16]
define a protocol for dynamically binding kernel- to user-level
threads based on blocking system call usage. Unfortunately,
systems that have implemented scheduler activations — Solaris
being the most prominent — have since removed them due
to implementation complexity. Slite instead maintains a one-
to-one correspondence between user and kernel contexts but
enables active thread user/kernel incoherence.
Middleware Schedulers (MWS). An alternate approach uses
the kernel’s APIs around prioritization to indirectly control the
active thread, for example, by explicitly assigning priorities so
that only a single target thread has the highest priority [4],
[27]. This enables the scheduling of threads even outside
of the scheduler’s protection domain by cleverly utilizing
existing kernel policies and abstractions. These systems have
a number of challenges: (1) These systems not only require
kernel-mediated dispatch, but also have the overhead of double
the kernel context switches (i.e. by switching to a scheduler
thread) and of the APIs for priority management. (2) Thread’s
blocking on system calls, and more importantly, waking up at
non-deterministic times provides a challenge for the scheduler
to accurately track its state. Aswathanarayana et al. [4] trusts
applications and modifies libc to catch all syscall returns,
while Lyons et al. [27] narrows the scope to track only thread
timeouts and cooperative blocking thus preventing, for exam-
ple, general synchronous IPC with servers. Fiasco L4 [28]
has kernel API support for directed yields between threads,
and the association of prioritized CPU reservations with those
threads. This simplifies user-level scheduler design, but —
similar to [27] — the user-level schedulers are not integrated
with the system-wide blocking semantics. This limits thread
interactions with blocking kernel APIs (e.g. for IPC).

In contrast to these systems, Slite enables the direct dispatch
between threads in the scheduler’s protection domain. It also



System Policy Location | Dispatch Mechanism Scope of Concurrency Control Preemptivity
CKS [23], [24], [25] e kernel-level kernel-level inter-process, system scheduling preemptive
ULS [5], [26], [16] user-level user-level . process—localJr preemptive
MWS [4], [27], [28] user-level* e API-driven dispatch inter-process, system scheduling preemptive
PSS (e.g. OpenMP) user-level user-level, closure activation | e process-local, cooperative e non-preemptive
UL-SS [21], [19], [20] user-level kernel-level inter-process, system scheduling preemptive
Slite user-level user-level inter-process, system scheduling preemptive

TABLE I: A summary of configurable scheduling research. Acronyms reference the classifications defined in §II. Options are color-coded
from efficient and flexible (o) to slower and less flexible (o). The T indicates complicated integration with kernel blocking/wakeup behaviors
that exhibit additional overhead, and * denotes that these techniques rely on limited use of the blocking/waking APIs of the system.

leverages existing OS support in Composite to avoid blocking
system calls even for protection domain traversing IPC, thus
enabling the scheduler to define the blocking and waking
system semantics.

User-Level, System Scheduling (UL-SS). Previous schedul-
ing systems [19], [21], [20] were designed for the user-
level control of system-level threads (i.e. across multiple
protection domains). They enable the vectoring of thread
block and wakeup events to schedulers [19], [21]. In contrast,
Composite [20] takes a clean-slate approach and designs a
minimal p-kernel that avoids blocking APIs, instead relying
on explicit communication with the scheduler components
for concurrency. IPC between protection domains uses thread
migration [29], thus avoiding scheduler interactions on IPC.
However, such approaches require kernel mediation of thread
dispatch, thus preventing its use in applications that require
near-zero-cost scheduling.

Parallel system scheduling (PSS). Large-scale multi-core
systems have challenged the ability of real-time systems to
schedule and synchronize effectively. Applications that wish
to leverage the system’s parallelism to increase performance
often use parallel runtimes, and significant work in real-time
systems has used OpenMP. The scheduling of parallel tasks in
such runtimes [30], [31], [32] for real-time processing offers
a unique set of challenges.

To maximize the use of a large number of cores, parallel
runtimes break computation into fine-grained fasks that exe-
cute non-preemptively and run-to-completion by default on a
smaller number of system threads. They often define schedul-
ing points when a task performs an operation that delays its
progress (for example, awaiting another task’s completion) at
which point the runtime runs a pending task on the same
thread. A set of common features complicate the ability of a
system to maintain high utilization while analytically meeting
deadlines: (1) scheduling points at which a task effectively
blocks, (2) at which point the thread context is re-used to
execute pending tasks, (3) while access to intra-task shared
data-structures uses critical section primitives, and (4) tasks
execute non-preemptively. Deadlock can easily occur if a task
holding a critical section hits a scheduling point, and the
same thread executes a task that attempts to enter the same
critical section. OpenMP solves this deadlock using runtime-
provided avoidance. To avoid this deadlock, all tasks are,
by default, tied tasks [33], [34] that constrain the runtime
from ever executing a task that could possibly attempt to take
such a critical section. Unfortunately, this runtime constraint

is particularly challenging in real-time systems, as it prevents
work conservation [33], [34]. We investigate the maximum
impact of the runtime constraint on worst-case deadline cal-
culations for parallel tasks, and can easily trigger worst-cases
100% larger than without the constraint. For more details, see
the Appendix A. Additionally, effective schedulability analysis
for parallel runtimes [35], [30] (based on earlier versions of
OpenMP) make a strong assumption of work conservation.
This means that, effectively, high-utilization analysis cannot
apply to default OpenMP programs.

In contrast, Slite focuses on a preemptive scheduling run-
time based on threads rather than tasks. Each OpenMP task
is executed in its own thread, thus avoiding this deadlock by
design. SliteOMP, a Slite-based OpenMP runtime, leverages
the preemptive task scheduling and Slite’s near-zero-cost
scheduling, and aims to be at least as efficient as traditional
OpenMP implementations based on the efficient task model,
while also providing work conservation.

III. SLITE DESIGN

The goals of Slite’s design are:

o User-level dispatch. Thread context switches avoid
system-calls in the common case. This enables scheduling
libraries to be tightly paired with applications with near
zero-cost scheduling, and enables scheduling components to
efficiently manage threads.

o Scheduling policy customization. As the scheduling policy
is library- or scheduling component-defined, applications con-
figure it appropriately. The Slite infrastructure should make
writing policies simple by abstracting the synchronization and
thread management functions.

Slite’s user-level dispatch causes the active thread (e.g.
current in Linux) to be incoherent between user-level
scheduling code, and kernel-level. The main challenges in the
design of Slite involve enabling incoherence to empower the
avoidance of user-kernel transitions. Fast user-level dispatch-
ing, thus user/kernel incoherence, requires (1) lazy user/ker-
nel synchronization to re-achieve coherence when necessary,
(2) user/kernel synchronization that avoids mutual exclusion
as the kernel cannot trust user-level schedulers, and (3) syn-
chronization facilities within scheduling libraries.

A. User-Kernel Synchronization

There are two causes for the inconsistency between user-
and kernel-level’s view of the active thread: (1) direct user-
level switches update user-level scheduler’s active thread, and



sched SchedLib |
thread
Policy
~ (EDF, FP, ...) runqueue
} ) \current .
BT TH =~ user
—— - -evts ————— —— ——— — — ——
il e LA o5, . kernel
DCB\ \ \. SCB
\ < XK < o\
N timer/
* interrupt

thread control blocks

Fig. 2: The thread and scheduling data-structures in Slite. SchedLib
enables configurable policy, and tracks threads and synchronizes with
the kernel using shared structures.

(2) kernel-level interrupts lead to thread switches that update
the kernel’s active thread. In these cases, the kernel and user-
level scheduler, respectively, need to re-achieve a coherent
view of the active thread. To achieve this, Slite uses two
shared memory regions between user-level and the kernel for
synchronization: the Dispatch Control Block (DCB) which
contains a set of entries, one per-thread, and the Scheduler
Control Block (SCB) which contains per-core data. The SCB
includes a token identifying the currently active thread (see
current in Figure 2). The current value enables the user-
level scheduler to asynchronously notify the kernel when
it dispatches to another thread. Later, when a system-call,
exception, or interrupt triggers kernel execution, it determines
if current has changed, and updates its record of the active
thread (e.g. to save the preempted registers into).

The DCB synchronizes each thread’s register contents. As
the user-level scheduler dispatches away from a thread, it saves
its general purpose registers onto its stack, and its stack pointer
(sp) and instruction pointer (ip) into the DCB. If the kernel
later must switch to that thread (due to an interrupt, or through
a cross-protection domain dispatch), it checks if the DCB ip/sp
are non-zero, and if so, it restores those registers.

When the kernel activates a thread, it switches threads with-
out scheduler involvement. In doing so, it sends an activation
notification to the component scheduler including the number
of cycles the previous thread ran before preemption. Slite
uses a wait-free queue (labeled evts in Figure 2) in the SCB
which the kernel uses to pass these events to the component
scheduler. This queue ensures the independent progress of both
the user-level scheduler and kernel. If the kernel needs to send
more events than fit into the queue, a system call retrieves the
next batch of events, thus amortizing the system call overhead.

When a thread is preempted, the kernel saves all of its
registers. Thus, when the user-level scheduler wants to switch
back to the preempted thread, it cannot use the user-level
dispatch fastpath, and must do so using kernel dispatch.
Real-time systems often bound the rate of preemptions, thus
bounding the frequency of kernel-mediated dispatches.
Security concerns. As the kernel and user-level share the DCB
and SCB, Slite’s design is careful to prevent undue kernel
manipulation. When a thread’s ip and sp are in a scheduler’s

DCB - and are to be used when dispatching to that thread —
the kernel validates that the thread was last executing in user-
level in that address space, before using them. This validates
that the kernel uses a thread’s register contents in the DCB
only if the scheduler was allowed to previously dispatch way
from that thread. Only the kernel publishes events to the SCB’s
event queue, and any user-level corruption can only delay or
impair event deliver to that user-level scheduler.

B. Modular Scheduler Library

To enable real-time system developers to easily imple-
ment scheduling policies, we provide a scheduling library
(SchedLib) that encodes the common logic to handle con-
currency, parallelism, and synchronization at user-level. The
SchedLib exports a number of functions for (1) creating and
destroying threads, (2) blocking and waking threads, (3) peri-
odic or one-shot timeouts, and (4) abstracting task parameters.
Concurrency control. SchedLib includes data-structures for
threads and a timeout queue. Without access to instructions
to enable and disable interrupts, SchedLib serializes access
to these data-structures with a single per-core lock that im-
plements priority-inheritance [36]. The lock is implemented
using an atomic compare-and-swap instruction and user-level
dispatch upon contention. As the lock variable is per-core, the
lock prefix is not used on x86 to improve performance by
preventing cross-core synchronization. A per-core scheduler
thread is activated in response to kernel timer interrupts, and
pending kernel events.

Extensible policy. Figure 2 depicts the configurable schedul-
ing policy that manages its own runqueue. SchedLib enables
extensible scheduling policy modules by requiring each policy
to implement an API including functions to (1) add a new
thread, (2) program and receive one-shot, cycle-accurate timers
(hardware permitting), (3) modify thread’s parameters (e.g.
priority and periodicity), and (4) block or wakeup threads.
We’ve implemented preemptive and non-preemptive fixed-
priority (152 lines of code), earliest deadline first (265 lines
of code), and rate-limiting servers (deferrable and sporadic).

IV. SLITE IMPLEMENTATION

The implementation of Slite requires architecture-specific
dispatch code and a tight interplay with the kernel. Regard-
less, we believe the core abstractions are general as we’ve
implemented them on both x86 and ARM Cortex-M7 micro-
processors, two dissimilar architectures.

The SCB and DCB. The SCB maintains per-core information
that the scheduler and kernel use to synchronize. In addition
to the current thread identifier and the kernel event queue,
the SCB contains a scheduler epoch. The latter solves a race
between when the scheduling policy chooses to switch to
a thread, and when it actually dispatches to that thread. A
preemption at which the kernel activates a higher-priority
thread can change the policy’s intended target, thus this epoch
enables the detection of stale scheduling decisions.

Near zero-cost thread-switches. During a direct user-level
context switch, the SchedLib must update (1) the thread’s ip



; Previously: read scheduler epoch, policy decision,
; confirm no kernel events, save registers
store restore_addr —> *%curr_thd_dcb.ip
store %sp —> x%curr_thd_dcb.sp

load *%next_thd_dcb.sp —> %tmp_sp

je %tmp_sp, 0, slowpath_addr

store %next_thd — =xscb_active_thd
move %tmp_sp —> %sp

jmp *%next_thd_dcb.ip

NelieBEN Re R R O S

11 slowpath_addr:
12 call slowpath_dispatch(next_thd)

14 | .align 8

15 restore_addr:

16 | store 0 — *%next_thd_dcb.sp
17 | .align 8

18 | kern_restore_addr:

19 | restore registers , check for stale

scheduler epoch

Fig. 3: Slite x86 implementation of direct user-level dispatch.

and sp in the DCB, (2) the current thread capability in the SCB,
and (3) its local copy of the scheduler epoch. The variables
are spread across multiple words which raises the question of
how to atomically update all of them. To reason about this,
we organize the system around some scheduling invariants.
Scheduling invariants. A combination of the scheduler (an-
notated usr) and the kernel (kern) ensure a number of DCB
invariants:

« A thread’s sp is zero when executing (usr and kern) or
when preempted (kern).

o A thread saves its ip before its sp (usr), thus a non-zero
sp implies a valid ip.

o A thread’s ip and sp are only set to non-zero values by
the thread itself (usr).

o A thread’s sp is set to zero (USr) upon dispatching to it,

« If and only if sp (thus ip) is non-zero, the DCB’s ip and
sp are used to restore the thread’s context (Usr and kern).

e The current thread in the SCB is always representative of
a thread which can be activated (with valid sp/ip) (usr).

In addition, the kernel is modified in two ways. (1) When the
kernel is entered, it updates its current thread by looking at an
active scheduler’s SCB’s current thread. (2) When the kernel
switches to a thread in response to an event (e.g. interrupt), it
checks the thread’s DCB record and if the sp is non-zero, it
restores only the instruction and stack pointer from the DCB.

The stylized assembly in Figure 3 details the Slite x86
implementation of direct user-level dispatch which implements
the scheduling invariants. Registers start with “%?”, and have
names according to their function. Thread’s save their con-
text to be later restored on lines 3 and 4. When switched
to, that thread’s execution will continue on line 15, and it
will proceed to restore its registers. However, if the kernel
restores the thread, it will restore the DCB’s ip + 8 (thus at
kern restore addr) as the register for %next thd dcb
is stale. Line 6 determines if the thread we are switching to
can be directly dispatched (i.e. if it wasn’t preempted) or if
should use the kernel slowpath (at line 12). Otherwise, the
current thread is updated, and the ip and sp of the target thread
are loaded into registers (lines 8 and 9), thus completing the
switch. The scheduler invariants result in a proper context

switch if preemptions occur at any point in this sequence.

V. SLITE IMPLEMENTATION IN COMPOSITE

So far, §III and §IV have focused on efficiently dispatching
to threads within the scheduler’s protection domain. These
techniques alone enable kernel/user-level scheduler coordi-
nation around concurrency. However, to schedule not only
threads in the scheduler’s protection domain, but also those
outside, thus providing a system-level scheduling service,
some OS support is required. Toward this, we build Slite on
the Composite component-based operating system [20] (http:
/lcomposite.seas.gwu.edu), and discuss Composite-specific
design in this section.

A. Composite Background

Composite is a p-kernel that focuses composing executable
systems from user-level components each of which adds func-
tionality to the system. The resources available to a component
are strictly access-controlled [37]: each has a separate page-
table — to subset accessible memory, and capability-tables [38],
[39] — to subset access to abstract resources such as threads,
and communication end-points.

User-level, component-based scheduling. Components are
schedulers if they have access to threads (via capabilities).
Activating a thread capability via system call triggers kernel-
driven dispatch to that thread. Importantly, that context switch
can execute the thread in the scheduler, or in another com-
ponent where it was previously preempted. The ability to
context switch to threads in other components (with sufficient
capability-based permission) forms the basis for the ability of
a user-level component scheduler to schedule system-wide ex-
ecution, and also the ability to restrict which subset of threads
each scheduler manages in a multi-scheduler system [40], [41].
Components communicate via thread migration-based
IPC [29] enabled by synchronous invocation (sinv) com-
munication end-point capabilities. Thread migration enables
the same schedulable entity executing in a client component
that activates a sinv capability to invoke a function defined
by a server in which it continues execution. Later it can
return (by invoking a sret capability) to the client. A per-
thread component invocation stack in the kernel tracks these
invocations. Unlike synchronous thread rendezvous between
threads [42], [18] that involves thread blocking and activation,
thread migration avoids such thread state transitions. This is
significant: scheduling components — and not kernel — provide
thread and synchronization interfaces to block and wakeup
threads. Scheduling components have the power and respon-
sibility to manage thread interleaving and synchronization.
Temporal Capabilities (TCaps) and interrupts. Despite the
ability of schedulers to dispatch threads, interrupts signif-
icantly complicate user-level scheduling. In p-kernels that
export device drivers to user-level such as Composite, in-
terrupt execution (with the exception of the timer-interrupt)
causes the activation of an interrupt thread which handles
the logic for the device. This exports device drivers from
the kernel to user-level. However, when an interrupt occurs,


http://composite.seas.gwu.edu
http://composite.seas.gwu.edu

the kernel must decide if it should immediately switch to the
interrupt thread, thus preempting current execution. Naively
activating a user-level scheduling component to make this
decision on each interrupt has significant overhead. Instead,
Composite provides a mechanism, called “Temporal Capa-
bilities” (TCaps) [41], that enables schedulers to pass relative
prioritization information to the kernel that is used to make a
scheduling decision upon interrupt.

Each interrupt thread is associated with a TCap, as is a
thread when it is dispatched to by a scheduler. As such,
all thread execution is associated a TCap. Each TCap is
programmed by a scheduler with a priority. Priorities are in
a 64-bit namespace, thus easily enabling dynamic priorities
that might use the priority as a timeline (as in EDF). Thus,
when an interrupt triggers, its handler compares the priority
of the active thread’s TCap with that of the interrupt thread
and preeempts accordingly. TCaps enable user-level schedulers
to control policy, while interrupt service routines are able to
quickly make preemption decisions.

Mirroring Slite’s active thread incoherence due to user-
level dispatch, Composite’s kernel interrupt thread dispatch
switches threads causing incoherence. To re-achieve coher-
ence, the Composite kernel provides an event channel of
interrupt thread activations and their execution times that
component schedulers retrieve via a system call. Thus, a
component scheduler has an accurate record of active threads,
and can maintain cycle-accurate accounting.

TCaps additionally provide means for multiple schedulers
in the system to interact by delegating controlled slices of time
among each other. Each TCap consists of a (cycle-accurate)
slice of time, and a set of priorities, one per-scheduler. The
former is expended as the TCap is used for execution, and
the latter enables all schedulers that have delegated time to
properly constrain preemption decisions. In this way, TCaps
provide access control for the computation time of the system.
Multi-scheduler systems. One of the key benefits of Slite,
is its ability to integrate customized policy with applications.
This implies that each application has its own policy, and that
a system-level scheduling component multiplexes applications.

Composite supports hierarchical scheduling [40] which de-
fines parent and child scheduler coordination protocols. These
protocols revolve around parents scheduling child scheduler
threads, while timer-interrupts sent to the root scheduler enable
global multiplexing. In contrast, 7Caps enable even sibling
schedulers to coordinate by delegating slices of time.

B. Slite in Composite

Slite adapts Composite by using a thread’s capability to de-
note the currently active thread, and replaces the Composite,
in-kernel queue of interrupt events for a scheduler, with the
Slite event queue. Slite works with the Composite design
to additionally provide scheduling threads across the entire
system, and to enable multiple Slite schedulers to co-exist.
System-level scheduling. Slite supports the system-level
scheduling of threads not only in a scheduling component, but
also those executing in other components. This is possible in

Composite as a scheduler can dispatch to a thread preempted
in another component, which not only restores the thread’s reg-
ister context, but also switches page-tables. Thread-migration-
based IPC means not only that scheduling decisions aren’t
required on IPC, but also that blocking and synchronization
abstractions are implemented in scheduling components and
accessed via IPC. As such, to block or wakeup a thread,
a component scheduler modifies its own runqueue, and dis-
patches away from, or to the thread. Thus, Slite schedulers
manage threads outside of the scheduler component (as a
system service), and define the concurrency primitives of the
system. Slite enables efficient definition of these concurrency
primitives using direct, user-level scheduling when possible,
and kernel-based dispatch across page-table boundaries to
provide full-system policy.

Scheduler security considerations. Slite differentiates be-
tween 1) trusting a component for scheduling services, and
2) trusting it with the ability to modify register contents
(thus potentially causing faults). The schedulers control thread
interleaving, but must not be able to alter register contents
of the threads in other protection domains. Therefore, the
kernel dispatch path must be used to switch between protection
domains — thus to threads preempted while executing in other
components, and if a thread’s DCB entry has ip/sp values, the
kernel validates that the thread is not, in fact, executing in
another component. This constraints a Slite scheduler from
unduely controlling the control flow integrity of a thread in
another component.

Inter-core, scheduler coordination. To maintain the effi-
ciency of Slite, we avoid any inter-core synchronization on
the common scheduling path. Thus, our current integration of
Slite into multi-core systems focuses on partitioned scheduling
(i.e. separate runqueues per-core). The coordination between
cores, orchestrated by the SchedLib, uses shared structures,
and Composite support for Inter-Processor Interrupts (IPI)
for timely notification.

VI. SLITE APPLICATION: RTOS

A potential benefit of enabling efficient and predictable
implementation of scheduling at user-level is the increased iso-
lation afforded to the system. Traditional RTOSes implement
all their services and often run applications in kernel mode
to achieve the efficiency and predictability requirements. In
such systems, the only scheduler is the kernel’s which appli-
cations leverage through direct function calls. This design is
most common in resource-constrained microcontroller systems
(< 200 MHz and < 256 KiB SRAM). Unfortunately, the
increasing exposure of our embedded systems to the network
is threatening a constant stream of security compromises.

A. SliteOS Design

To enable systems to both leverage user-level isolation of
different subsystems, and efficient scheduling, we implement
SliteOS, a new RTOS. The goals of this system are to provide
component-based scheduling with performance properties on



the order of a bare-metal OS, and to pair Slite with multi-
component isolation for dependable embedded computation.
SliteOS provides the abstractions of threads, access to in-
terrupts (via interrupt threads), timers, communication, and
synchronization between threads. These coordination facilities
including bounded-size message queues for inter-thread com-
munication, and mutexes for inter-thread synchronization.

SliteOS leverages the efficient scheduling infrastructure of
Slite including its support for timeouts and integration with
Composite interrupts to provide preemptive, priority-driven
execution. Though previous research found [43] that user-
level handling of interrupts has a small overhead, the cost on
microcontrollers [44] was significant. Pan et al. [44] provided
a virtualization environment for Cortex-M microcontrollers
capable of running 8 VMs in 128 KiB SRAM. The goal of
that work was to bolster the security properties of the system
by increasing the system’s inter-application isolation. Notably
that work provided a systems scheduler that scheduled between
VMs, and paravirtualized RTOS VMs that scheduled their
own threads. Unfortunately, the scheduling infrastructure in
that work used Composite user-level scheduling support that
added significant overhead relative to FreeRTOS, a common,
efficient RTOS. This forced system designers to choose be-
tween isolation, and efficiency. Thus, we first apply SliteOS
to resource constrained microcontrollers to achieve both user-
level, isolated execution, and interrupt response times on the
order of FreeRTOS. SliteOS compensates for this overhead
by enabling context switch costs on the order of unprotected,
kernel-based RTOSes.

Second, we study the use of different isolation structures
with Slite, and the integration of RTOS abstractions (notably
message queues) with scheduling functionality. We consider
two isolation structures: (1) process-style isolation of different
system functionalities (e.g. drivers) that use RTOS services via
IPC, and (2) a hierarchical scheduling system in which OS
instances are co-located with applications, but isolated from
each other. A root scheduler multiplexes the instances.

B. SliteOS Implementation

Cortex-M port. We port the Slite implementation on top
of the Composite kernel to a ARM Cortex-M7 MCU-
based architecture and implement the SliteOS API similar
to FreeRTOS, including message queues (a FreeRTOS queue
counterpart) and mutexes. The most significant difference
between the x86 and Cortex-M port is the user-level context
switch assembly routine implementation. Unlike x86 where
an interrupt or exception causes the pushing of an activation
record onto the kernel stack, Cortex-M7 processor hardware
pushes a stackframe onto the user-level stack which contains
the ip to return to when transitioning back to user-level. Thus,
unlike on x86, a kernel return to user-level from the kernel
expects to restore it from the user stack. This presents a
challenge when the kernel switches to a thread that previously
saved its register context during user-level dispatch. The kernel
has no means to set the ip when switching back to the thread as
the ip is in the stackframe (the kernel in Composite does not

access user-memory directly). Thus, Slite redundantly saves
the thread’s ip in the DCB (for user-level dispatches), and in
a stackframe on the thread’s stack (for kernel dispatches).

Co-design of message queues and scheduling. We leverage
the ability to customize and co-design scheduling logic with
the surrounding runtime. Bounded message queues transmit
messages between threads, thus involve the waking and block-
ing of threads. We optimize message queues in SliteOS
such that whenever a producer publishes a message, they
directly switch to the consumer (thus eliding scheduling policy
execution). To maintain correctness, this optimization is only
used if the message queue has a single consumer, and that
consumer has a higher fixed priority than producers.

VII. SLITE APPLICATION: PARALLEL RUNTIME

The effective use of multi-core processors in embedded
systems is not optional in many domains. The sensor com-
plexity in domains such as autonomous vehicles requires more
computation than can be performed by a single core. As
writing multi-threaded code with synchronization at a low-
level is error prone and challenging, parallel runtimes such
as OpenMP, Cilk, and TBB provide run-to-completion task
abstractions, and higher-level constructs to orchestrate com-
putation. OpenMP is widely used in the real-time literature,
and runtimes exist for gcc, 11vm, and Intel’s icc. OpenMP
is an extension to the C/C++ language that takes the form
of pragma preprocessor directives, we refer the readers to
the specification [45] for complete details of the OpenMP
directives presented hereafter.

OpenMP execution model and tied tasks. All tasks (created
with parallel or task constructs) are run-to-completion,
which means that they have a defined termination point,
and no inter-task preemptions (only inter-thread). However,
there are points in their execution when they are awaiting
synchronization with other tasks (e.g. barrier synchronization
or taskwait), and OpenMP specifies these as fask scheduling
points (TSPs). At these points, another pending task (task B)
can be executed using the same shared stack of the synchro-
nizing task (task A). This creates an execution dependency
between tasks as task A only continues execution after task
B completes its execution. TSPs include task creation and
completion, taskwait, taskyield, and barrier constructs.

By default all tasks that are created (with task construct)
are tied. A Task Scheduling Constraint (TSC)! specifies that
the “Scheduling of new tied tasks is constrained by the set
of task regions that are currently tied to the thread and that
are not suspended in a barrier region. If this set is empty, any
new tied task may be scheduled. Otherwise, a new tied task
may be scheduled only if it is a descendent task of every task
in the set”” (The emphasis is ours.) Effectively, this prevents
the execution of “sibling” tasks in the same thread at TSPs.
One of the motivations for the tied task scheduling constraint
is that untied tasks can easily lead to deadlock (i.e. if they
are not subject to the TSC). As described in §II (and detailed

ISpecified in section 2.10.6 of the OpenMP specification [45].



in the Appendix A), a trivial OpenMP program’s worst-case
is practically inflated by 100% due to the TSC. This makes
OpenMP’s TSC solution impractical for real-time systems.

GOMP and work-conservation. GOMP, the gcc OpenMP
runtime, is implemented as a co-design between the com-
piler that generates a set of closures for the parallel tasks,
and invocations to the GOMP library that orchestrates and
schedules the execution of those tasks. The GOMP library
interface is well-documented, and we implement a version
of the library based on Slite, which we call SliteOMP. The
goal of this library is to integrate task with thread scheduling
to enable more flexible OpenMP execution. Specifically, tight
theoretical results assume that the OpenMP runtime is work-
conserving, that is, that if there are tasks to execute, they
will always be executed on an idle core [35], [30]. This is
more challenging than it seems: (1) the default behavior of all
tasks being tied prevents work-conservation at TSPs due to the
TSC as some tasks cannot be migrated to idle parallel threads,
(2) tasks awaiting a critical section either spin awaiting access,
or block the entire thread, and (3) the dependencies created at
TSPs prevent the progress of a thread with context deeper into
the stack, can delay their computation. Thus, SliteOMP co-
designs the scheduler with the parallel runtime, and executes
all tasks as separate threads. This removes the need for tied
tasks as stack-based dependencies are avoided by design, and
threads can block when awaiting critical sections.

An OpenMP example in Appendix A demonstrates a 100%
increase in worst-case executions for runtimes that use the TSC
to avoid deadlock, while SliteOMP avoids the same deadlock
using a thread-based scheduling model that is work con-
serving. Thus, SliteOMP provides the required semantics for
existing work on parallel fork/join, and DAG execution [30],
[34], [46]. Critical sections and scheduling points are handled
using thread blocking, thus enabling other tasks to execute in
separate threads. In this way, it should be noted that SliteOMP
explicitly does not adhere to the TSC.

A. SliteOMP Runtime Design

The SliteOMP runtime uses the Slite support for config-
urable scheduling policies by (1) using a FIFO scheduling
module (within the parallel application) to minimize over-
heads, (2) integrating the work-stealing deque with predictable
stealing into the runqueue logic, (3) using efficient access to
system IPIs for barrier coordination between threads — for
example, to wake a blocked master thread, and (4) using an
efficient implementation of locks for critical sections. We co-
design the SliteOMP parallel runtime with the Slite thread
scheduling leveraging the traditional techniques for balancing
parallel tasks (task closures) across cores, tracking parent-
child and sibling relationships in the scheduling structures and
using simple barriers for parallel. We use common task
queue data-structures (e.g. work-stealing deques [47], [48])
to balance tasks between cores. SliteOMP provides threaded
computation for all tasks, yet only dequeues pending tasks
into a thread when necessary to maintain work-conservation.
This is in stark contrast to existing operating systems that

support thread migration using heavyweight protocols that
require the migration of an entire thread’s context, rather than
a simple task closure. We believe that SliteOMP demonstrates
the multi-dimensional value that near-zero-cost scheduling can
provide to a runtime system by simplifying the programming
model, ensuring work conservation, and maintaining high
performance and predictability.

B. SliteOMP Runtime Implementation

We implement the work-stealing deque [47], [48] for ex-

plicit tasks generated using task construct. We only modify
the deque operation to steal work from a deque for another
core by stealing from random deques that we haven’t tried
to steal from yet, before assuming there are no tasks to steal.
This guarantee is necessary to bound the execution time of
the stealing operation, thus ensure predictability. Comparably,
to ensure bounded data parallelism, removing work from a
data-parallel tasks is wait-free and uses fetch-and-add. For
simplicity, we omit the nested fork/join implementation details
and disable nesting in the SliteOMP runtime.
Thread pool and scheduling. On each core, a pool of N
threads are created upon initialization of the runtime that
immediately block until asked to perform task computation.
Thus, SliteOMP runtime explicitly controls the scope of
parallelism. A single data-parallel task is active when a
parallel construct is created, and it is executed by threads
in the pool if there is more than one thread in the team. The
scheduling policy is FIFO with one exception: if the runqueue
of SliteOMP threads is empty, a low-priority idle task wakes
up a thread, to execute a pending task, or a portion of the work
in a data-parallel task. This policy focuses on executing tasks
to completion where possible, thus leaving tasks and work
in the work-stealing deque where can be efficiently migrated
between cores. SliteOMP does not differentiate between tied
and untied tasks as they are all run in a separate thread context.
Synchronization. SlitetOMP converts task suspensions on
barriers and taskwait, and mutex contention events into
simple thread blocking. If a task was blocked in this way, and
is awoken upon — for example, rest of the threads reaching a
barrier, a child task completion, or a mutex release — cross-
core messages and IPIs are used to promptly activate it.

SliteOMP runtime coverage of OpenMP. We implement
SliteOMP as a library written to the GOMP API, and is
linked directly into the applications. At the moment, Sli-
teOMP supports most common OpenMP constructs including
parallel, for, single, sections, critical, barrier,
task and taskwait.

VIII. EVALUATION

The x86 hardware environment used in the experiments is a
Dell Optiplex XE3 running a 3.2 GHz Intel i7-8700 processor
with six physical cores (with hyper-threading disabled) and 8
GB physical memory. In Linux experiments, we used a Ubuntu
14.04 32 Bit OS running Linux 4.4.148 with Real-Time
(RT) patch version 4.4.148-rt165, which we call LinuxRTp.



9380 et 15805

9000 composite
sliteos

“ 6000 linuxrtp T 7
9]
5 00
O 2000 T B
~ 1000
]
o
o 750 T+ B
& 500 + -
&)

250 T y

0 T T T

ctx-s m-12h m-p2p sync sync-ic async

(a) (b)
Fig. 4: Microbenchmarks for system primitives (labeled on x-axis)
on x86 hardware. (a) OS Primimitives: ctx-s = One-way thread
switch (Kernel primitives in Composite and LinuxRTp), m-12h =
Message Queues - sending from a low priority thread to a high
priority thread (m-p2p — using One-to-One Message Queues). (b)
Kernel Primitives: sync = Synchronous Communication (sync-ic
— with lazy-coherence), async = Asynchronous Communication.
Shaded bars without borders indicate the WCMT and with borders
indicate WCMT with first measurement filtered out, and dark bars
indicate average costs.

In the microcontroller experiments, we use an ARM Cortex-
M7 microcontroller running at 216MHz (STM32F7671GT6),
with 512KB embedded SRAM and 1024KB embedded flash.
The 16KB instruction cache, 16KB data cache, and flash
prefetch accelerators are enabled on the microcontroller. We
use the gcc compiler version 4.9.4 for x86 with OpenMP 4.0
support and version 5.4.1 on microcontrollers, with the -O3
optimization flag for all cases.

A. Microbenchmarks

Figure 4 presents the costs of dispatch and communication
operations in the underlying Composite kernel, SliteOS user-
level scheduling, and comparable operations in LinuxRTp on
the x86 architecture. The average costs indicated as darkest
bars, are a measure over a million iterations and the lighter bars
indicate the measured worst-case execution times (WCMT).
The synchronous communication uses thread migration in
both Composite and SliteOS, and pipe round-trip (RPC)
in LinuxRTp. To understand the overhead of Slite’s lazy
coherence between user- and kernel-level on the IPC fastpath,
also plot sync-ic, the IPC overhead with lazy coherence. The
asynchronous communication uses asynchronous end-points in
Composite, and pipes in LinuxRTp.

Discussion. Composite is an optimized p-kernel and there-
fore its communication premitives are efficient compared to
the general-purpose Linux. However, at 41 cycles (13 nanosec-
onds), it is clear that Slite is approaching zero-cost dispatch-
ing. The improvement of this value over a native Composite
thread switch is mainly due to the inherent overheads in
mode switching when making the system call. Importantly,
when analyzing the increase in the cost of synchronous
communication, we see that the kernel check for incoherence
with the user-scheduler doesn’t impose much common-case
overhead (7 cycles), and even the lazy updating of the current
thread adds only 50 cycles which is less than if the thread
switch were conducted through the kernel (250 cycles). The

10216 6414
(10984)  (6836)
T

3500

T T T
composite
sliteos
freertos

w

o

o

o
T

2500
2000
1500
1000

CPU clock cycles

v
o
o

0
i-12h mtx-n mtx-c

ctx-r m-h2l m-12h i-raw i-h2l

Fig. 5: Microbenchmarks for system primitives (labeled on x-axis)
on ARM Cortex-M7 microcontroller. Shaded bars indicate WCMT,
error-bars for standard deviation (SD) and dark bars for average costs.

SliteOS API for communication between threads in the same
protection domain leverages user-level scheduling, and even
the somewhat immature message queues show improvement
over Composite. More importantly, the optimized one-to-
one message queues show significant improvement in the
average cost compared to Composite due to Slite near-zero-
cost dispatching at user-level.

B. SliteOS Benchmarks

To study the efficiency and predictability properties of
SliteOS together with the user-level isolation as compared
against a bare-metal (kernel-mode, no isolation) RTOS, we
measure the computational cost of primitive system services
on the Cortex-M7 microcontroller. For response time anal-
yses, these costs are integrated as system overheads into a
schedulability analysis, thus directly translating into a decrease
in system utilization. We compare the following systems:
(1) Composite with the SliteOS APIs implemented using
the kernel-mediated context switches, (2) SliteOS with Slite
user-level dispatching, and (3) FreeRTOS, a widely deployed,
efficient microcontroller RTOS.

Figure 5 depicts the average (the bottom darker bar), stdev
(the error bar displayed on the average bar), and maximum (the
lighter top bar) costs of these core operations over ten thou-
sand iterations. The Composite and SliteOS measurements
in this experiment are all intra-component and thus do not
include protection domain switch costs. The different system
primitives measured in Figure 5 are:

o Context switches: The round-trip context switch, ctx-r,
is measured for thd yield(tid) in Composite and Sli-
teOS and portYIELD() in FreeRTOS. FreeRTOS does not
allow the user to control which thread to yield to, while
Composite and SliteOS provide directed yields, which avoids
scheduler policy involvement.

o Message queues: Messages are restricted to 4 bytes
(a single word) to minimize the transfer overhead in the
measurements. For FreeRTOS we use xQueueSend() and
xQueueReceive (). Sending from a high-priority to a low-
priority thread (m-h21), and vice-versa (m-12h) are measured.

o Interrupt response-time latency: The interrupt handling
is divided into “top half” execution in the Interrupt Service
Routine (ISR) and the “bottom half” execution in a thread
context. In Composite and SliteOS systems, the threads exe-
cute in user-level components, while for FreeRTOS, both ISR



and thread execute in kernel-mode. Interrupt latency (i-raw)
measured is the time interval between the activation of the ISR,
and the start of the corresponding interrupt handler thread’s ex-
ecution. In FreeRTOS, the ISR uses xQueueSendFromISR()
to send to a queue, thus activating the interrupt thread. In
Composite and SliteOS, the ISR uses “asynchronous send”
(asnd) endpoint to activate the user-level interrupt thread
waiting on the “receive” (rcv) endpoint.

It is common for an interrupt thread to perform device-
specific operations, then send the interpreted data to an appli-
cation thread. Thus, we study the end-to-end interrupt latency
(1) when interrupt thread is higher priority (i-h21), and
(2) when the interrupt thread is lower priority (i-12h) than the
application thread, respectively. We measure the total time to
relay the message from the ISR handler to the interrupt thread
(in i-raw) and application thread (in i-h21 and i-12h).

e Mutexes: mtx-n measures the total time to acquire and
release a mutex without contention, which is the most com-
mon case. mtx-c measures the contention case in which
two threads contend for a lock. In the latter case, this in-
cludes a context switch to the second thread that owns the
lock (mtx-c). In FreeRTOS, we use xSemaphoreTake() and
xSemaphoreGive().

Discussion. The overheads of system calls on resource-
constrained microcontrollers are significant. Slite enables iso-
lated code to have overheads on the order of an unprotected
RTOS code by avoiding expensive privilege-level switches.

As interrupts activate user-level threads in Composite and
SliteOS, the raw interrupt latencies (i-raw) are higher when
compared to FreeRTOS. However, when holistically looking
at the end-to-end interrupt latency in the common case (the
device driver at high priority (i-h21)), we observe that the
latency in SliteOS scheduling is lower than FreeRTOS.

Importantly, SliteOS demonstrates (compared to the com-
parably massive overheads of Composite), that interrupt
response times and OS abstraction costs comparable to a
kernel-resident RTOS are possible in an isolated, user-level
component. Therefore, SliteOS constraints the scope of faults
at a relatively small cost. We belive that SliteOS when paired
with infrastructures for inter-component isolation [44], shows
the value of user-level, configurable near zero-cost scheduling.

Isolation and Predictability. Many real-time systems struc-
ture software as a pipeline of filters and transformations,
triggered from interrupt execution. For example, the core
Flight System (https://cfs.gsfc.nasa.gov/) used in many NASA
satellite missions and quad-copters facilitate a software bus
that is used by pipeline of tasks for sensor fusion, actuator con-
trol and for telemetry application to communicate the system
state with the ground station. Further, timely execution of real-
time software is crucial in these embedded and cyber-physical
systems that often have a pipeline of tasks processing data in a
pipeline to predictably control the actuators [49]. To study the
impact of SliteOS on software isolation, we measure com-
munication latencies in software pipeline architectures, with
the tasks using SliteOS message queues for communication.

f's s

@

S | sinv. sret
BE . ]

H H

L N3y

ROOT S |

S ’ Ss

. K4 Migrated Scheduler
N7 Interrupt -(EO-» Pipe N Thread Ss Thread

(@ (b)
Fig. 6: Multi-component isolation structures. (a) Pipeline process-
ing in hierarchical subsystem isolation. (b) Pipeline processing in
process-style software isolation.

The end-to-end costs of communication impact the real-time
system utilization when applying a schedulability analysis.
Thus, we focus on benchmarking the system primitives in the
following setups as they emphasize the overheads that directly
impact the worst-case response times of the system. (1) a
hierarchical system in which the real-time (RTOS) software
is isolated via hierarchical scheduling from the best-effort
software (Figure 6(a)). (2) a process-style isolation of different
pipeline processing stages (e.g. device driver) from each other
(Figure 6(b)). We conduct these experiments on the x86 ar-
chitecture to compare with the existing process-based isolation
in LinuxRTp. In Composite and SliteOS, we use the High-
Precision Event Timer (HPET) to emulate a sensor interrupt.
Interrupts arrive at an inter-arrival of 20 milliseconds, which
triggers the pipeline processing in SlittOS and Composite
systems. We measure the end-to-end latency from arrival of
the interrupt to completion of pipeline processing.

9 T T T T 80 -
composite Hm—
8 1 60 | sliteos i
linuxrtp
6L ] 4of .

IS
T
1

Cost (Thousand Cycles)
N

o

1 1 4

2 3 2 3
Pipe Length Pipe Length

(a) (b)

Fig. 7: Isolation and communication costs in different systems on
x86. (a) Pipeline processing using separate, hierarchical subsystems
for isolation. (b) Pipeline processing in process-style software isola-
tion. Shaded bars without borders indicate the WCMT, shaded bars
with borders indicate WCMT with first measurement filtered out,
error-bars indicate SD and dark bars indicate average costs over
hundred thousand iterations. Reported “pipe length” does not include
the interrupt thread.

Figure 6(a) depicts a high-priority real-time subsystem
containing pipeline processing, along side a low-priority best-
effort subsystem running an infinite loop to cause interference.
These subsystems are scheduled by the root scheduler.
Discussion. Figure 7(a) confirms that the SliteOS pipeline
latency is lower than Composite, though the speedup is not
as impactful as that of the microcontroller. More importantly,
SliteOS does so while maintaining the strict isolation and


https://cfs.gsfc.nasa.gov/

predictability that the underlying Composite system provides
through hierarchical partitioning.

Figure 6(b) depicts a system that selectively isolates dif-
ferent pipeline stages. Different pipeline processing stages
implemented in separate, isolated protection domains that
access the message queues via synchronous invocation-based
IPC, or as scheduler-resident computations (e.g. representing
communication stacks). The pipeline processing stages alter-
nate between isolated, and scheduler co-located tasks as shown
in the Figure 6(b). The comparable LinuxRTp system uses
inter-process pipe communication and we measure the end-to-
end latency from an event generated by timer delivery (using
timerfd create) to the end of the pipeline computation.
Discussion. Figure 7(b) shows that the SliteOS pipeline la-
tency based on Slite significantly lowers overheads compared
to the general-purpose Linux pipes. More importantly, the Sli-
teOS pipeline latency is lower than the underlying Composite
u-kernel despite the synchronous communication costs that
are slightly higher due to kernel checking on active thread
inconsistencies. SliteOS enables predictable and efficient end-
to-end communication latencies together with the Composite-
enabled isolated execution.

C. SliteOMP Benchmarks

In SliteOMP, the use of IPIs enable efficient coordi-
nation between threads blocked at a synchronization point
instead of spinning in the synchronizing threads. This en-
ables the system to efficiently schedule between multiple
threads that could then steal work from a work-stealing
deque. To study the performance benefits of Slite in Sli-
teOMP and to understand the scalability properties of the
nascent SliteOMP runtime, we evaluate and compare with
the GOMP runtime in LinuxRTp on x86 architecture. In
LinuxRTp, we measure the costs of both spin (gomp-spin)
and block (gomp-blk) implementations in GOMP runtime
with OMP_WAIT_POLICY set to ACTIVE and PASSIVE
respectively and GOMP_SPINCOUNT=INFINITY for spin.
The number of threads in the team of data parallel execution
are set to be equal to number of cores enabled in the system.
Nested fork/join parallelism is disabled in all runtimes.
SliteOMP microbenchmarks. To understand the perfor-
mance of the SliteOMP runtime, we evaluate the microbench-
marks for the following OpenMP constructs shown in Figure 8.
(a) parallel that creates a fork/join data-parallel execu-
tion, and (b) parallel + task + taskwait that creates a
fork/join data-parallel execution and each thread in the team
creates a task and waits for the completion of its child task.

Figure 9 depicts the average costs (solid bar) and WCMT
(empty bar) over a thousand iterations for varying team-sizes
on SliteOMP, gomp-spin, and gomp-blk runtimes.
Discussion. Though this is a relatively small scale multi-
core system, we believe it is representative of many in the
field. Even at this scale, SliteOMP generally demonstrates
fewer overheads with increasing cores than GOMP. These
benchmarks measure the impact of thread-based scheduling in
SliteOMP on the worst-case timing of the parallel runtime.

/* (a) empty parallel construct =/
#pragma omp parallel {

/+* (b) empty parallel + task + taskwait constructs =/
#pragma omp parallel {
#pragma omp task {

#pragma omp taskwait

Fig. 8: OpenMP constructs for microbenchmarks.

sliteomp C—1 gomp-spin gomp-blk C—

108
_ (a) (b)
o 107 F iF -
o
é 106 | 1F 1
& 105 F 1 ]
S
o 104 3 1F 1
o
& 103k 1F 1
102

Team-size (Number of cores)

Fig. 9: OpenMP microbenchmarks for (a) and (b) in Figure 8.

It is necessary to control and bound the worst-case over-
heads such system effects when using OpenMP in real-time
environments as those overheads must factor into a system
schedulability analysis, thus overheads directly translate into
utilization decreases. However, both GOMP implementations
demonstrate significant WCMT spikes due to the complexity
of the GOMP runtime and the underlying Linux system. At
6 cores, the SliteOMP runtime is about 3 times faster in
Figure 8(a)/(b) benchmarks and the WCMT of Figure 8(b)
benchmark with “tied” tasks is 8.7 times faster when compared
to gomp-blk on LinuxRTp, while the gomp-spin shows
significantly higher WCMT spikes. The SliteOMP runtime
simplicity and the promotion of task- to thread-execution with-
out significant decreases worst-case performance demonstrate
the ability of SliteOMP to remove the pessimism introduced
by the deadlock-avoiding scheduling constraints in OpenMP,
while maintaining work conservation so as to meet the as-
sumptions of efficient analysis. We believe this demonstrates
that integrating Slite into SliteOMP enables significant gains
in the efficiency and opens up the use of the tight analytical
approaches necessary for practical real-time adoption.

OpenMP application benchmarks. Tied tasks have been
shown to have bad work-conservation properties due to the
OpenMP specification’s scheduling constraints (TSCs). Sli-
teOMP uses a thread-based rather than a task-based parallel
scheduling model. It is important to understand the average-
case overhead that this imposes on the system. Though the
worst-case in Figure 9 is necessary for real-time systems,
the average case often determines the practical utility. We
use conventional parallel data-structures so do not expect a
significant speedup, but assess the overheads of the thread-
based scheduling of SliteOMP over a task-based model.

To assess the SliteOMP performance, we study the perfor-
mance of Barcelona OpenMP Task Suite (BOTS) benchmarks
(http://www.github.com/bsc-pm/bots) that use “tied tasks”.


http://www.github.com/bsc-pm/bots

The BOTS applications measured are, (1) fib: Computes
fibonacci numbers. (2) sort: Uses a mixture of sorting algo-
rithms to sort a vector. (3) strassen: Computes matrix mul-
tiplication using strassen’s method. (4) sparselu: Computes
the LU factorization of a sparse matrix. We use the single
version for our benchmarks.

sliteomp HEEEE gomp-spin EEEEE  gomp-blk H—

0.04 = 3.5
fib 3
0.03 125
2
% 0.02 b
5 1.5
C
g 0.01 11
I I 0.5
- 0 0
€
© 0.4 T T T 12 F T T L
2 strassen sparselu-single
£ 03} 1 101 ]
g o ]
0.2 1 L i
= 6
01} 1 47 I
2 - .
0 0
1 2 4 6 1 2 4 6

Team-size (Number of cores)
Fig. 10: Execution time (in seconds) of BOTS programs.

Figure 10 measures the execution time of the BOTS appli-
cations on SliteOMP, gomp-spin, and gomp-blk runtimes for
increasing number of cores (team-size).

Discussion. The f£ib application uses very fine-grained tasks
each with very little computation, thus significantly stresses
the task runtime. For one and two cores, SliteOMP is slower
than GOMP. For one core, GOMP has checks to avoid the
runtime’s data-structures, instead directly calling tasks. Sli-
teOMP does not special-case one core. At up to six cores, Sli-
teOMP is the only implementation to lower execution times.
For the computationally intensive benchmarks (coarser tasks)
sort, strassen and sparselu, SliteOMP is comparable
to GOMP runtime if not better. The practical performance
of SliteOMP is competitive and benefits from the simplicity
derived from promoting all task execution to separate threads.
More importantly, this enables a work-conserving runtime
preventing degenerate task orderings that can increase worst-
case execution.

IX. CONCLUSIONS

This paper has presented Slite, a system for the near zero-
cost, user-level scheduling of system threads. The key mecha-
nism for direct user-level dispatch (in ~40 cycles on x86) en-
ables incoherence between which thread user- and kernel- level
believe is executing, with lazy synchronization using shared
structures. We have applied Slite to create a parallel runtime in
SliteOMP which promotes traditionally task-based scheduling
to instead use full threads, thus removing inefficient non-
work-conserving constraints that challenge effective real-time
computation. We have implemented SliteOS, which enables
isolated user-level computation with performance properties
on par with the bare-metal FreeRTOS on microcontrollers.

To emphasize the isolation that SliteOS enables, we demon-
strate hierarchical partitioned system support and fine-grained
process-based isolation support that both benefit from Slite
support. We see this as a necessary step toward providing se-
cure real-time, embedded systems. Slite effectively challenges
the existing dominant structure of kernel-resident scheduling,
and demonstrates that the user-level scheduling of system
threads can be more efficient, predictable, and flexible.
Acknowledgments. We’d like to thank the anonymous review-
ers, Bryan Ward, and Rick Skowyra for their helpful feedback
and our shepherd for helping to significantly improve the
quality of this paper.

APPENDIX A
WORK CONSERVATION IN OPENMP IMPLEMENTATIONS

#pragma omp parallel { /+ a. fork */
#pragma omp single { /+* b. enter single */
#pragma omp task { /% c. create task (A) */
#pragma omp task { /x d. create task (B) x/
spin_100ms () /* e. spin for 100ms */

}
#pragma omp taskwait /« f. wait for B */
#pragma omp task { /x g. create task (C) x/
spin_100ms () /* h. spin for 100ms */

}

spin_100ms () /* 1. spin for 100ms */
#pragma omp taskwait /% j. wait for A and C =x/
} /% k. implicit barrier =/
} /x 1. join */

T 10— 000 0 o
T OO0 O w0
T OO I OWI O

>
TIMELINE
z. steal/run task C

X. steal/run task A y. steal/run task B

Fig. 11: An OpenMP program and a timeline for a valid interleaving
of the work-conservation problem with “tied tasks” and the TSC.

Figure 11 shows a valid OpenMP program and an ad-
versarial interleaving among three threads in a GOMP team
to demonstrate that “tied tasks” and the TSC significantly
impact the worst-case execution. The spin 100ms function
synthesizes a 100 milliseconds workload in the tasks. Across
three cores, we expect the total execution time to be around
100ms. We break computation into a number of labelled steps,
and show a valid sequence of steps in Figure 11’s timeline that
leads to non-work conserving behavior due to TSC.

Discussion. Only a single thread (71) executes the single
construct creating tasks A and C while the rest of the threads
wait at the implicit barrier at the end of the block. The thread,
To schedules task A to create the task B before waiting at
taskwait for its child task B executed by 7o. However, the
TSC prevents 79 from scheduling a non-decendant task C,
causing WCMT of 200ms for 37% of the 1000 iterations in the
GOMP runtime. We validate this program on the SliteOMP
runtime and observe that the execution time is always 100ms
(for 1000 iterations), thus preserving the work-conservation
required in real-time systems.



[1]
[2]

[3

[t

[4

=

[5]

[6]
[7]

[8

[t}

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

“OpenMP: http://www.openmp.org, retrieved 9/21/12.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
in Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), Jul. 1995, pp. 207-216.
“Intel Thread Building Blocks: http://threadingbuildingblocks.org/, re-
trieved 9/21/12.

T. Aswathanarayana, D. Niehaus, V. Subramonian, and C. Gill, “Design
and performance of configurable endsystem scheduling mechanisms,”
in RTAS ’05: Proceedings of the 11th IEEE Real Time on Embedded
Technology and Applications Symposium. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 32-43.

J. H. Anderson and M. S. Mollison, “Bringing theory into practice: A
userspace library for multicore real-time scheduling,” in Proceedings
of the 2013 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2013, pp. 283-292.

“Docker: https://www.docker.com/,” 2018.

G. Banga, P. Druschel, and J. C. Mogul, “Resource containers: a new
facility for resource management in server systems,” in OSDI ’99:
Proceedings of the third symposium on Operating systems design and
implementation. Berkeley, CA, USA: USENIX Association, 1999, pp.
45-58.

A. Burns and R. Davis, “Mixed criticality systems-a review,” Department
of Computer Science, University of York, Tech. Rep, 2013.

B. Teabe, V. Nitu, A. Tchana, and D. Hagimont, “The lock holder
and the lock waiter pre-emption problems: Nip them in the bud using
informed spinlocks (i-spinlock),” in Proceedings of the Twelfth European
Conference on Computer Systems (EuroSys ’17), 2017.

J. Litton, A. Vahldiek-Oberwagner, E. Elnikety, D. Garg, B. Bhattachar-
jee, and P. Druschel, “Light-weight contexts: An os abstraction for safety
and performance,” in Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation (OSDI), 2016.

I. El Hajj, A. Merritt, G. Zellweger, D. Milojicic, R. Achermann,
P. Faraboschi, W.-m. Hwu, T. Roscoe, and K. Schwan, “Spacejmp:
Programming with multiple virtual address spaces,” in Proceedings of
the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2016.

B. Engel, H. Hartig, C.-J. Hamann, and M. Volp, “On confidentiality-
preserving real-time locking protocols,” in Proceedings of the 2013 IEEE
19th Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2013.

M. Nasri, T. T. Chantem, G. Bloom, and R. M. Gerdes, “On the pitfalls
and vulnerabilities of schedule randomization against schedule-based
attacks,” in Proceedings of the Twenty Fifth IEEE Real-Time Technology
and Applications Symposium (RTAS ’19), 2019.

Q. Ge, Y. Yarom, T. Chothia, and G. Heiser, “Time protection: The
missing os abstraction,” in Proceedings of the Fourteenth EuroSys
Conference (EuroSys ’19), 2019.

J. Bouron, S. Chevalley, B. Lepers, W. Zwaenepoel, R. Gouicem,
J. Lawall, G. Muller, and J. Sopena, “The battle of the schedulers:
Freebsd ULE vs. linux CFS,” in 2018 USENIX Annual Technical
Conference (USENIX ATC 18), 2018.

T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy,
“Scheduler activations: effective kernel support for the user-level man-
agement of parallelism,” in SOSP '91: Proceedings of the thirteenth
ACM symposium on Operating systems principles. New York, NY,
USA: ACM Press, 1991, pp. 95-109.

H. Qin, Q. Li, J. Speiser, P. Kraft, and J. Ousterhout, “Arachne: Core-
aware thread management,” in Proceedings of the 12th USENIX Con-
ference on Operating Systems Design and Implementation (OSDI’18),
2018.

K. Elphinstone and G. Heiser, “From L3 to seL4 what have we learnt
in 20 years of L4 microkernels?” in Proceedings of the 24th ACM
Symposium on Operating Systems Principles (SOSP), 2013, pp. 133—
150.

J. Stoess, “Towards effective user-controlled scheduling for microkernel-
based systems,” SIGOPS Oper. Syst. Rev., vol. 41, no. 4, pp. 59-68,
2007.

G. Parmer and R. West, “Predictable interrupt management and schedul-
ing in the Composite component-based system,” in Proceedings of the
IEEE International Real-Time Systems Symposium (RTSS), 2008.

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

B. Ford and S. Susarla, “Cpu inheritance scheduling,” in OSDI '96:
Proceedings of the second USENIX symposium on Operating systems
design and implementation. New York, NY, USA: ACM Press, 1996,
pp- 91-105.

S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe, “Arrakis: The operating system is the
control plane,” ACM Trans. Comput. Syst., vol. 33, no. 4, Nov. 2015.
J. Regehr and J. A. Stankovic, “HLS: A framework for composing
soft real-time schedulers,” in Proceedings of the 22nd IEEE Real-Time
Systems Symposium (RTSS 2001), London, UK, Dec. 2001, pp. 3—-14.
L. P. Barreto and G. Muller, “Bossa: a language-based approach to the
design of real-time schedulers,” in 10th International Conference on
Real-Time Systems (RTS’2002), Paris, France, mar 2002, pp. 19-31.

B. B. Brandenburg, “Scheduling and locking in multiprocessor real-time
operating systems,” Ph.D. dissertation, The University of North Carolina
at Chapel Hill, 2011.

“Scheduling in k42, whitepaper: http://www.research.ibm.com/k42/white-
papers/scheduling.pdf.”

A. Lyons, K. McLeod, H. Almatary, and G. Heiser, “Scheduling-context
capabilities: A principled, light-weight operating-system mechanism for
managing time,” in Proceedings of the Thirteenth EuroSys Conference
(Eurosys ’18), 2018.

A. Lackorzynski, A. Warg, M. Volp, and H. Hirtig, “Flattening hier-
archical scheduling,” in Proceedings of the Tenth ACM International
Conference on Embedded Software, ser. EMSOFT °12, 2012, pp. 93—
102.

B. Ford and J. Lepreau, “Evolving Mach 3.0 to a migrating thread
model,” in Proceedings of the Winter 1994 USENIX Technical Con-
ference and Exhibition, 1994.

D. Ferry, J. Li, M. Mahadevan, K. Agrawal, C. Gill, and C. Lu, “A
real-time scheduling service for parallel tasks,” in Proceedings of the
2013 19th IEEE Symposium on Real-Time and Embedded Technology
and Applications, 2013.

J. Li, S. Dinh, K. Kieselbach, K. Agrawal, C. D. Gill, and C. Lu,
“Randomized work stealing for large scale soft real-time systems.” in
Proceeedings of the IEEE Real-Time Systems Symposium (RTSS), 2016.
W. Qi and G. Parmer, “FJOS: Practical, predictable, and efficient system
support for fork/join parallelism,” in Proceedings of the 2014 20th IEEE
Symposium on Real-Time and Embedded Technology and Applications
(RTAS), 2014.

J. Sun, N. Guan, Y. Wang, Q. He, and W. yi, “Real-time scheduling and
analysis of openmp task systems with tied tasks,” in Proceeedings of
the IEEE Real-Time Systems Symposium (RTSS ’17), 2017.

M. A. Serrano, A. Melani, R. Vargas, A. Marongiu, M. Bertogna, and
E. Quifiones, “Timing characterization of openmp4 tasking model,” in
2015 International Conference on Compilers, Architecture and Synthesis
for Embedded Systems, (CASES ’15) 2015, 2015.

X. Jiang, N. Guan, X. Long, and W. Yi, “Semi-federated scheduling of
parallel real-time tasks on multiprocessors,” in IEEE Real-Time Systems
Symposium (RTSS ’17), 2017.

L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance proto-
cols: An approach to real-time synchronization,” IEEE Trans. Comput.,
vol. 39, no. 9, pp. 1175-1185, 1990.

Q. Wang, Y. Ren, M. Scaperoth, and G. Parmer, “Speck: A kernel for
scalable predictability,” in Proceedings of the 21st IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2015.

J. S. Shapiro, J. M. Smith, and D. J. Farber, “EROS: a fast capability
system,” in Symposium on Operating Systems Principles, 1999, pp.
170-185. [Online]. Available: citeseer.ist.psu.edu/shapiro99eros.html

J. B. Dennis and E. C. V. Horn, “Programming semantics for multi-
programmed computations,” Commun. ACM, vol. 26, no. 1, pp. 29-35,
1983.

G. Parmer and R. West, “HiRes: A system for predictable hierarchical
resource management,” in Proceedings of the 17th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2011.

P. K. Gadepalli, R. Gifford, L. Baier, M. Kelly, and G. Parmer,
“Temporal capabilities: Access control for time,” in Proceedings of the
38th IEEE Real-Time Systems Symposium, 2017.

J. Liedtke, “On micro-kernel construction,” in Proceedings of the 15th
ACM Symposium on Operating System Principles. ACM, December
1995.

F. Mehnert, M. Hohmuth, and H. Hirtig, “Cost and benefit of separate
address spaces in real-time operating systems,” in In Proc. of the 23rd
IEEE Real-Time Systems Symposium (RTSS), December 2002.


citeseer.ist.psu.edu/shapiro99eros.html

[44]

[45]

[46]

[47]

[48]

[49]

R. Pan, G. Peach, Y. Ren, and G. Parmer, “Predictable virtualization
on memory protection unit-based microcontrollers,” in 24th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2018.

“’openMP application programming interface”, version 5.0, november
2018, https://www.openmp.org/specifications/, retrieved may 2019.”

J. Li, Z. Luo, D. Ferry, K. Agrawal, C. Gill, and C. Lu, “Global edf
scheduling for parallel real-time tasks,” Real-Time Systems, vol. 51,
2015.

D. Chase and Y. Lev, “Dynamic circular work-stealing deque,” in
SPAA °05: Proceedings of the seventeenth annual ACM symposium on
Parallelism in algorithms and architectures. New York, NY, USA:
ACM, 2005, pp. 21-28.

N. M. Le, A. Pop, A. Cohen, and F. Zappa Nardelli, “Correct and
efficient work-stealing for weak memory models,” in Principles and
Practice of Parallel Programming (PPoPP ’13), 2013.

Z. Cheng, R. West, and C. Einstein, “End-to-end analysis and design of
a drone flight controller,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. PP, 2018.



