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Abstract—The incentive to minimize size, weight and power
(SWaP) in embedded systems has driven the consolidation both
of disparate processors into single multi-core systems, and of
software of various functionalities onto shared hardware. These
consolidated systems must address a number of challenges that
include providing strong isolation of the highly-critical tasks
that impact human or equipment safety from the more feature-
rich, less trustworthy applications, and the effective use of
spare system capacity to increase functionality. The coordination
between high and low criticality tasks is particularly challenging,
and is common, for example, in autonomous vehicles where
controllers, planners, sensor fusion, telemetry processing, cloud
communication, and logging all must be orchestrated together. In
such a case, they must share the code of the software run-time
system that manages resources, and provides communication
abstractions.

This paper presents the Chaos system that uses devirtual-
ization to extract high-criticality tasks from shared software
environments, thus alleviating interference, and runs them
in a minimal runtime. To maintain access to more feature-
rich software, Chaos provides low-level coordination through
proxies that tightly bound the overheads for coordination. We
demonstrate Chaos’s ability to scalably use multiple cores
while maintaining high isolation with controlled inter-criticality
coordination. For a sensor/actuation loop in satellite software
experiencing inter-core interference, Chaos lowers processing
latency by a factor of 2.7, while reducing worst-case by a factor
3.5 over a real-time Linux variant.

I. INTRODUCTION

Embedded systems are increasingly required to provide

both complicated feature-sets, and high-confidence in the cor-

rectness of mission-critical computations. From self-driving

cars and Unmanned Aerial Vehicles (UAVs) to CubeSats, soft-

ware systems must provide more communication facilities and

more complicated sensor fusion, while still maintaining the

expected physical dynamics of the systems. This challenge is

complicated by the trend in these and other domains that func-

tionalities traditionally performed by disparate computational

elements are consolidated onto less expensive and more capa-

ble multi-core, commodity processors. Unfortunately, current

systems have difficulty in both supporting feature rich, general

computation provided by large amounts of code, and the

high-confidence physical control that often requires software

simplicity while also providing high resource utilization.

In response to these trends, Mixed-Criticality Systems

(MCS) [1] explicitly consider co-hosting software of various

assurance-levels and mission-criticality on shared hardware.

Higher-criticality tasks are those that are mission critical,
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and often impact human and equipment safety, while lower-

criticality tasks include those that are desirable, but less safety

critical (including, for example, logging, user-interface man-

agement, and cloud communications). Tasks are segregated

by criticality to make explicit the desired service degradation

properties: should the system not be able to meet all deadlines,

lower-criticality tasks should receive degraded service first.

As high-confidence is required in high-criticality tasks,

significant effort is often placed into assuring they behave

according to specification. This is reflected in the assurance-

level of the code that implements tasks. High-assurance code

achieves certifications, has rigorous testing regimes, and, in

the extreme, is formally verified. Such procedures are often

expensive and thus are undesirable for complex software or

for software whose failure is less impactful, including many

lower-criticality tasks. Moreover, tasks of varying confiden-

tiality execute within complicated software stacks composed

of various subsystems. Each subsystem is a collections of code

of the same assurance level (e.g. kernels, virtual machines

(VMs), or applications), often isolated (for example, using

hardware mechanisms) from surrounding subsystems. Impor-

tantly, system design for mixed-criticality, multi-assurance-

level systems should provide isolation of high-assurance sub-

systems executing high-criticality tasks from potential faults

in lower-assurance subsystems. This is particularly difficult

as even high-criticality tasks wish to communicate with

the broader system, and in doing so, harness the increased

functionality of lower-assurance code. In contrast, traditional

embedded systems eschew isolation and aim to ensure that all

system software executes in a single subsystem and is at least

the assurance-level required by the highest-criticality task.

Multi-core systems complicate the isolation between sub-

systems of different assurance levels. Abstractions shared

between cores require inter-core coordination that can cause

interference across assurance levels. Data-structures such as

scheduler run-queues, shared between cores, can introduce

significant interference as synchronization serializes oper-

ations. In contrast, Inter-Processor Interrupts (IPIs) enable

preemptive message passing between cores, but high-priority

interrupt execution interferes with preempted tasks. As all

system software is dependent on the kernel, such coordination

can disrupt high-criticality tasks, especially when generated

by low-criticality (possibly faulty or compromised) code.

This research introduces Chaos, which is designed to

devirtualize high-criticality tasks, a process that exports them

out of possibly low-assurance subsystems that host low-

assurance tasks, to remove interference due to the shared

subsystem. Such tasks are imported into a ChaosRT exe-

cution environment with minimal controlled interference and



strictly predictable execution. This allows high-assurance,

high-criticality tasks to execute simple I/O and perform

computations predictably with a simple runtime, while still

leveraging the high-functionality of low-assurance code. De-

virtualization is enabled by asynchronous communication be-

tween proxies that ensure that communication has a bounded

latency, and incurs a bounded interference on the surrounding

system. The core focus of ChaosRT is to remove interference

from shared subsystems of varying assurance-levels through

devirtualization1 and to bound the IPI interference using

proxy-implemented rate-limiting servers.

Contributions.

• §II introduces a number of forms of interference that low-

assurance tasks can have on those of high-criticality due

to inter-core coordination.

• In response, §III and §IV detail devirtualization to extract

high-criticality subsystems from lower-assurance legacy

systems – while maintaining functional dependencies –

and predictable inter-core message passing mechanisms.

• We introduce an IPI rate-limiting technique in §III which

enables Chaos to bound the IPI interference and latency

of notifications for inter-core coordination.

• Finally, in §V, we evaluate Chaos relative to both Linux

and other reliability-focused systems.

II. MOTIVATION

Software of various assurance levels that rely on the shared

abstractions of a subsystem, is impacted by the overheads of

the underlying mechanisms. The overhead, and inter-task in-

terference of these mechanisms are particularly pronounced in

multicore systems, which necessitate inter-core coordination.

Here we study the impact of this sharing and coordination on

the software running in Linux, seL4 [3], Fiasco OC [4], [5],

and Composite [6]. Details of the experimental setup are in

Section V.

A. Impact of Shared Memory on Predictability

Mutually exclusive access to shared memory data-

structures serializes parallel operations, thus impacting the

execution times of software across cores. We will use schedul-

ing run-queues as an example as they are often synchronized

using locks. Systems that use global scheduling contest a

shared lock from all cores. More practically, many systems

(e.g. Linux) use per-core runqueues and inter-thread commu-

nication between cores often requires taking locks for other

core’s runqueues. Though predictable sharing techniques can

bound the latency of such operations, the required cache-

coherency and serialization overheads can have a significant

impact on common operations.

Figure 1 shows the impact of these shared runqueues on

various systems. We run a high-criticality task on a target

core making a system call and on a varying number of other

cores, we run low-criticality tasks generating an adversarial

1We use the term “devirtualization” as it often involves exporting tasks
out of virtual machine subsystems. We would like to disambiguate from
devirtualization in programming languages [2], an optimization to convert
virtual calls to direct calls.
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Fig. 1: Measured worst-case execution times of core-local system-
call operation with adversarial workload on other cores.

workload that contests the target’s runqueue’s lock and shared

data-structures in the kernel. The seL4 Call is a synchronous

IPC system call in seL4 in which two tasks perform a

synchronous rendezvous with one task calling seL4 Call API

and the other calling the seL4 ReplyRecv. The seL4 Yield

is a system call to donate the remaining timeslice to a thread

of same priority, similar to sched yield in LinuxRT-Yield.

This experiment demonstrates that low-assurance – possibly

compromised and malicious code – can cause significant

interference on the execution of high-criticality code,

even when executed on a different core. These problems

become worse at scale, especially with NUMA. Linux kernel

developers found that on a 4 way NUMA machine with 40

cores, runqueue contention cause over 1ms of interference2.

These overheads are fundamentally determined by hardware

operation costs, thus a new software structure is required to

remove them.

It is important to note that if predictable locks are used (e.g.

FMLP+ [7], or simply non-preemptive FIFO spinlocks [8]),

this overhead is bounded. However, these overheads can recur

on each interaction with the shared structures (e.g. on each

interrupt, each scheduling decision, and each communication

operation), and since they increase with the number of cores,

they significantly harm the overall utilization of the system.

seL4 is an interesting example, as it has a non-preemptive

kernel, and a full worst-case execution time (WCET) analysis

has been conducted [9] on it. Even after optimization [10],

this overhead is on the order of hundreds of µ-seconds.

Though global locks are immensely valuable to maintain the

verification guarantees of the system, an increasing number

of cores multiplies the timing impact of the WCET on each

kernel operation.

B. Inter-Criticality Interference via IPIs

An alternative to shared memory for inter-core coordination

is using message passing via IPIs [11]. With this approach,

data-structure access and modification is coordinated using

message passing and IPIs for event notification. For example,

an IPI is sent to activate a blocked, low-priority thread on

another core. However, such IPIs cause high-priority interrupt

execution on the target core which might be executing high-

criticality tasks. Similar to shared memory, this interrupt

2See the email by Mike Galbraith on the Linux Kernel Mailing List titled
“Re: [RFC][PATCH RT 4/4 v2] sched/rt: Use IPI to trigger RT task push
migration instead of pulling” on 21st of December, 2012.



execution represents interference caused by low-criticality

tasks on high-criticality tasks.
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Fig. 2: Measured maximum %-slowdown of high-priority execution
on a target core with a number of interfering cores attempting to
unblock lower-priority tasks on the target core. Numbers on bars
indicate the actual measured maximum %-slowdown for >1000%
slowdown and INF indicates a livelock on the target core.

Figure 2 shows the impact of IPIs on the execution of a

high-priority task with an increasing number of cores for a

number of systems. A high-criticality task executes for 10

µ-seconds on a target core, and a number of low-criticality

tasks on different cores attempt to unblock a lower-priority

task on the target core. A 10 µ-seconds worload is chosen

to emphasize the IPI kernel overheads, and their ability to

cluster around a small timespan, thus generalizing to larger

timespans. Similar to shared memory approaches, IPI-based

coordination caused by low-assurance code can induce

highest-priority interrupt interference on high-criticality

tasks executing on different cores.

It is difficult to choose between using shared memory

coordination – that has serialization and cache-coherency

overheads that increase with larger numbers of cores – and

IPI coordination – that can cause interference from high-

priority interrupt execution overheads. For example, on using

IPIs for such coordination, Thomas Gleixner points out that

“...it avoids fiddling with the remote [runqueue] lock, but

it becomes massively non deterministic.”3. We show here

that either choice has significant repercussions in that low-

assurance code can increasingly impact the execution times

of high-criticality tasks with rising core counts.

IPIs are used to coordinate many aspects of complex

systems including synchronization primitives, work-queues,

RCU quiescence [12], scheduling runqueue balancing, and

TLB coherence. These experiments do not conduct an ex-

haustive study of these uses, instead showing that at least

one of them can be used to cause significant interference on

high-criticality tasks.

C. Overhead of Hierarchical Systems

An important goal of mixed criticality systems is to “rec-

oncile the conflicting requirements of partitioning for (safety)

assurance and sharing for efficient resource usage” [1]. Espe-

cially on multi-core systems, the efficient use of processing

resources means allowing best-effort (often low-criticality)

3 Email titled “Re: [RFC][PATCH RT 3/4] sched/rt: Use IPI to trigger RT
task push migration instead of pulling” on the 11th of December, 2012 to
the Linux Kernel Mailing List at https://lkml.org/lkml/2012/12/11/172.

Round-trip Comm. Host ↔ Host Host ↔ VM VM ↔ VM

Same-Core 26670 105228 (295%) 15064*

Cross-Core 33155 91205 (175%) 77807 (135%)

Nanosleep Host VM

Wakeup 3602 13019 (261%)

TABLE I: Round-trip socket communication and timer notification
overheads with virtualization in Linux. % numbers indicate the %-
slowdown from Host-only operation. * is explained in text.

tasks to consume the remaining cycles after real-time tasks

execute. Thus, partitioning (epitomized by separation ker-

nels [13], [14]) is resource-inefficient.

One means of addressing the sources of inter-core coordi-

nation interference, is to place all tasks of a specific criticality,

or assurance level in a VM. Virtual machine infrastructures

enable memory partitioning (e.g. separate runqueues across

different VMs), along with the sharing of cores (between

VMs). Within that VM, that kernel’s interference should not

impact tasks outside of the VM. Tasks of different confi-

dentialities interact using inter-VM communication. Here we

study the costs of communication involving VMs including

the interrupt delivery latencies.

Table I shows (1) the overheads of round-trip UDP

communication between a real-time Linux host process and a

non-real-time Linux process in a VM (Host ↔ VM), between

processes on the host (Host ↔ Host), and between processes

within a VM (VM ↔ VM), and (2) the propagation latency of

a timer from the hardware interrupt to a host process, and to

a process in a VM. The communication between processes in

the VM is faster (depicted with * in the table) as it is running

a non-real-time Linux that does not incur the overheads of a

real-time fully-preemptible Linux. Even systems that focus on

removing the overheads of the virtualization hierarchy [15],

still suffer from significant timer propagation delays. Addi-

tionally, virtualizing VM IPIs has significant overhead, even

with hyperupcalls [16]. Though VMs enable isolation of

high-criticality tasks from low-assurance code, virtualization

induces significant overheads in inter-VM and inter-core

communication and timer propagation that significantly

impact the execution times of the MCS tasks and the

system schedulability.

III. CHAOS DESIGN

A. Example MCS

Sensing/

Actuation/

Control

Telemetry/

Comms

Safety

Controller

Planning/

Command

Scheduling

Payload

Processing

Core Flight Executive
Includes: Scheduling, Communication, Configuration, Sync, ...

Underlying OS (e.g. Linux)
Includes: Scheduling, Networking, Filesystem, ...

H BELM M

Fig. 3: Core software in a cFS system. The darker the software
component, the higher assurance it is. Letters H, M, L, and BE
denote high, medium, low, and best effort criticalities.

We use the software stack of an autonomous vehicle as an

exemplar of a MCS. For this, we use the core Flight System



(cFS)4 that is used in many NASA satellite missions, and has

also been deployed in quad-copters. The cFS configuration

we use includes 137,483 lines of code, and includes a number

of applications, some of which handle control tasks, while

others communicate with the ground station. cFS is low-

level middleware that relies on an OS-specific backend that

includes support for full-featured network communication

with the ground-station and logging to disk. Our setup also

includes a safety controller that maintains stability in the case

of failure (similar to the Simplex model [17]). Figure 3 shows

the logical subsystems on the system and the dependencies

between them.
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Fig. 4: Two cFS setups. Dotted lines indicate isolation boundaries.
(a) cFS runs in a process shared with all its applications, on top of
Linux. (b) Software split across two VMs.

Two concrete implementations of this system appear in

Figure 4. In the first implementation in Figure 4(a) (which

is a conventional cFS deployment), Linux provides POSIX

services, and cFS is implemented with a Linux backend for

its operations. Temporal or functional failures in the kernel

can trivially impact cFS execution, and a failure in some

of the more complicated (and network-facing) cFS tasks

such as telemetry input and output can similarly impact

the safety controllers. This, somewhat traditional, system

structure motivates MCSes due to trivial interference between

criticalities. Figure 4(b) isolates cFS into a separate VM,

but constraints its functionality to that provided by a more

minimal runtime RTOS. The best effort or low-criticality

tasks remain in the Linux VM. This organization has the

benefit that cFS tasks are insulated from failures in the

Linux VM and from coordination interference. Unfortunately,

expensive inter-VM communication constrains the ability to

use VMs, and it might not be possible to move latency

sensitive applications into separate VMs (the safety controller

here). Most RTOSes do not have a full networking stack to

perform virtualized network communication with other VMs.

4See https://cfs.gsfc.nasa.gov/ and http://coreflightsystem.org/. We use the
OpenSatKit configuration (https://opensatkit.github.io/).

Importantly, interference between VMs might remain if the

base kernel (hypervisor, in this case) demonstrates any of the

overheads discussed in §II.

B. Devirtualization to Control Inter-Criticality Interference

Chaos enables the devirtualization of tasks of criticalities

that are not compatible with the assurance levels of the

subsystems they are dependent on. For example, the safety

controller in Figure 4(b) should be higher assurance than

the large cFS code-base, thus should be devirtualized. De-

virtualization removes the task in question from the resource

management domain of that subsystem, thus insulating it from

potential interference via the abstractions and coordination

within that subsystem. The task executes in a minimal Run-

Time environment – that we call ChaosRT – that provides

processing and memory facilities, and maintains transparent

access to functionalities and APIs in the VM subsystem

through proxies. These proxies insulate the high-criticality

tasks from shared memory and IPI overheads within the low-

assurance subsystem while routing requests for functionality

to that subsystem. The safety controller sees the same func-

tionality as it did in cFS, but avoids low-assurance subsystem

interference. cFS subsystem sees the proxy as the safety

controller.

Safety

Controller

Speck Microkernel

ChaosRT

CFS

RTOS

Sensing/

Actuation/

Control

M

Proxy

Proxy

core 0 1core

H

Fig. 5: Safety controller is exported from the cFS, executes in
ChaosRT, but still predictably communicates with cFS via proxies.

Proxies to access low-assurance functionalities. Figure 5

depicts Chaos’s proxies. They enable the decoupling of the

low-level resource management of CPU and memory, from

the functional requests (e.g. for network or filesystem I/O)

for specific tasks. Proxies provide the routing machinery

necessary to map specific functional requests made by a

task into the communication mechanisms, and data-movement

facilities provided by Chaos.

The high-criticality safety controller might depend on

access to sensors, actuators, time-triggered processing, and

sends sensor readings to further processing steps such as

sensor fusion, planning, telemetry management, and logging.

The sensor, actuator, processing, and memory management

would be handled with tight predictability properties by

ChaosRT, while the more complicated functions integrated

into a larger, lower-assurance system would be sent through

proxies to cFS that handles complex communication chan-

nel abstractions, and complicated software stacks. Similarly,

applications in cFS that wish to send and receive telemetery

via the network use proxies to the lower-assurance, best-effort

POSIX environment.



Chaos requires that the underlying kernel that provides

the virtualization and execution contexts not, itself, suffer

from the shared memory and IPI interference problems

demonstrated in §II. Composite’s kernel [6] helps with this

as it does not use mutual exclusion to protect its shared

data-structures, thus avoiding much of the shared memory

interferences in §II-A. It instead relies on wait-free operations

based on raw atomic instructions. However, §II-B shows that

Composite exposes asynchronous communication APIs that

enable immense IPI interference. We address this in §III-D.

Devirtualization of legacy embedded systems. Many legacy

embedded systems are specialized enough and have simple

enough code bases that all software is compiled as a single

binary with no memory isolation. This complicates inter-

posing proxies that provide memory isolation. Regardless,

the underlying RTOS exposes well-defined APIs used by

each task to interact with the broader system. Past research

has used these interfaces, along with stub code to emulate

the C API, to separate the applications from the RTOS in

separate protection domains [18]. Similarly, Chaos currently

interposes proxies on the system call interface at the bottom

of libc, or at the API-level of middleware. The former requires

few changes to the POSIX applications and the latter is

specific to the API.

In Chaos, subsystems require some code modifications

that are common in paravirtualization approaches. We treat

the complex cFS system’s documented APIs as the interface

between the applications and the core cFS system, and use

Composite’s thread-migration-based synchronous invocation

to the server, cFS system. Proxies interpose on such in-

vocations to the server in the cases where we need asyn-

chrony. Though this breaks some backwards compatibility

(for example, in the rare case when applications directly

access each other’s memory), most core cFS applications

continue to function. Not all applications are at a different

assurance level than the cFS core, thus they all do not

require isolation. Regardless, we err on the side of isolation

to increase reliability and security.

Interface routing between subsystems. An important part of

our design is the ability to discriminate between devirtualized

functional requests for the VM subsystem (e.g. complex I/O

requests), and for the ChaosRT. Application binaries are

linked by binding unresolved function symbols to the de-

pendencies of the appropriate proxies. Currently, this enables

functionality to be split based on functions, but extensions to

allow routing based on parameters (e.g. file descriptors) are

straightforward. As we are currently focusing on embedded

systems (e.g. FREERTOS and cFS) that often have simpler

APIs, so we have not investigated this extension.

C. Inter-Assurance-Level Communication

Tasks that are devirtualized and moved out of the VM

must communicate via proxies to make functional requests

to the VM. We consider the case when a task (the client)

requests functionality from the VM subsystem (the server).

If client and server have different assurance levels, Chaos

must provide predictable service degradation. Here we ana-

lyze the required properties of this communication along the

following dimensions: (1) synchronization properties of the

communication (asynchronous or synchronous), (2) locality

of communication (intra- or inter-core), and (3) the budget

and priority of the threads involved in the communication.

Asynchronous vs. synchronous communication and local-

ity. Synchronous communication semantics mimic function

calls; the client does not resume execution until server compu-

tation is completed. In L4 variants, this is often achieved using

the call and the reply and wait APIs in the client and

server, respectively [19], while Composite kernel uses thread

migration [20], [21] in which the same kernel abstraction

migrates between separate isolated execution contexts. In

either case, synchronous invocations couple the execution of

the client with that of the server, thus complicating temporal

isolation [22]. Should the server fail – for example, by

experiencing unbounded execution – while servicing a client

request, the failure propagates to the client thread. On the

other hand, synchronous IPC has the significant benefit that

in many implementations it is highly optimized (§V-A) and

predictable. In contrast, inter-core synchronous invocations

can be very expensive as they often rely on IPIs whose

overheads dwarf those of typical synchronous IPC [23], and

can cause interference (§II-B).

Asynchronous communication removes synchronization

between the client and server execution. As client and server

threads are executed with separate budgets and priorities,

and only execute code within their protection domains, they

insulate communicating threads from each other’s execution

properties. In the extreme, only a shared buffer to transfer

data is required, and both client and server can poll the

buffer to determine when to act. To maintain low-latency

and remain compatible with existing software, we consider

asynchronous communication that includes event notification

– the activation of the destination task. This is important

for real-time tasks as it enables activation of high-priority

tasks awaiting communication. In UNIX, this might include

sending a signal to another task, or writing to a pipe to

activate a reading task. seL4 and Composite both include

asynchronous notification end-points whereby a notification

is sent to the end-point which unblocks the awaiting thread.

As a client sending an asynchronous notification to a server

continues execution, it is not temporally coupled to the server

as in synchronous communication. This is a natural fit for

notifications between parallel tasks as it avoids serialization,

and mimics the parallelism of the underlying cores.

§II depicts two different implementations of this function-

ality. seL4 and Linux use shared data-structures across all

cores and locks to synchronize parallel accesses to kernel

data-structures. Thus, an asynchronous notification modifies

the scheduling runqueue to wake up the receiving thread, and

sends an IPI if it is now the highest-priority thread on the core.

In contrast, Fiasco L4 and Composite rely on IPIs to avoid

synchronization overheads, and to avoid accessing scheduling

data-structures, respectively.

Chaos uses the underlying Composite kernel’s syn-

chronous invocations facility implemented with thread migra-



tion in the case where a client of the same assurance level as

the server code attempts to harness the server’s functionality.

This enables efficient and predicable communication in the

common case. If the server provides scheduling services

(e.g. if it is a VM), then such client threads are scheduled

directly by it, and the communication mimics conventional

system-call semantics. Comparably, Chaos proxies use the

Composite’s asynchronous communication if there is an

assurance mis-match between client and server, or if the

client has been devirtualized onto a separate core. This

enables predictable temporal fault degradation for clients in

spite of server failures. Importantly, as we are leveraging

the asynchronous notification facilities of the kernel, clients

with higher assurance requirements can be scheduled in a

different environment than that in the VM, thereby providing

stronger temporal isolation for client execution. Thus, high-

criticality tasks that require higher assurance than that of their

default VM subsystem, can leverage the minimal ChaosRT

scheduling and memory management facilities.

Scheduling context during communication. When commu-

nicating between different subsystems, end-to-end timing of

execution is determined not only by the execution in each

subsystem, but also by how client and server execution is

prioritized, and with which budget they execute – in short,

which scheduling context the client and server use for exe-

cution. Service degradation properties are also determined by

how scheduling contexts are managed, as this determines, for

example, the timing properties of client and server if the client

generates an unbounded number of requests. Microkernels

have handled this in a variety of ways [24], by either executing

in different contexts, or by non-deterministically using the

client’s context until a timer interrupt occurs.

More recently, a variety of techniques unify client and

server execution into the same context: thread migration

facilities in the underlying Composite kernel explicitly use

the same scheduling context for both client and server ex-

ecution (though it switches page-tables, and C execution

stacks), Credo [25] and Nova [26] decouple scheduling from

execution context; and seL4 extensions [27] pass budgets

between client and server threads. Thread migration com-

pletely avoids scheduling decisions during communication,

thus enables scheduling policy and data-structures to be

defined and implemented separately in each subsystem. This

Composite facility provides the foundation in Chaos for

devirtualizing high-criticality tasks and minimizing system

coordination overheads.

Asynchronous communication has similar complications,

especially in mixed-criticality systems [23], [27]. A high-

criticality client task should be paired with a server task with

scheduling properties that enable predictable, and sufficient

progress within the necessary timing bounds. High-criticality

tasks (especially those at a higher-assurance level) should

generate a bounded workload on the server, so that traditional

analyses are sufficient to choose a server execution budget and

priority. However, such an allocation is necessarily pessimistic

as it is based on worst-case executions in the server. In

contrast, lower-assurance tasks might generate unbounded

workload, either due to faults, or due to best-effort client

behavior attempting to maximize throughput. This further

complicates server scheduling parameter selection, and might

pessimistically either decrease best-effort throughput, or lower

aggregate real-time task utilization.

One of the fundamental challenges that asynchronous

communication via proxies must address is how predictable

communication can be performed between subsystems, even

when those subsystems are controlled by different schedulers.

Composite requires the definition of user-level scheduling

policies [28], thus each of the subsystem’s schedulers define

their own timing properties and priorities.

Chaos takes three approaches to this problem. (1) Higher-

assurance client’s requests are scheduled on server tasks

according to the server’s scheduling policy. In NetBSD,

this means running them in a real-time thread, while in

cFS, this means choosing the appropriate fixed priority.

Neither system provides budget-based servers, but so long as

the client is higher-, or same-assurance-level as the server

(NetBSD/cFS), the amount of execution requested should

be predictable from the server’s perspective. (2) Similarly,

asynchronous invocations between cores use per-subsystem,

per-core scheduling parameters. To avoid sharing the com-

putational abstraction across cores in Chaos, cross-core no-

tifications must run in the server context using a separate

budget and priority. In the case of best-effort (unbounded)

requests, conservative budget and priority selection is neces-

sary. (3) Low-assurance clients requesting service from high-

assurance/criticality servers must be treated carefully. Bound-

ing the workload of these client requests, while enabling them

to also utilize spare cycles is not straightforward. Chaos

uses Temporal Capabilities (TCaps) [23] that require client

proxies to delegate a span of time which the server uses for

its computation. Computation in the server uses this time,

and inherits the priorities from the client. TCaps are used to

coordinate time management between untrusting subsystems,

and importantly handles the transitive delegation of time

across multiple subsystems by tracking different subsystem’s

priorities in a manner similar to how labels are tracked in

distributed information flow systems [29].

D. Bounding IPI Interference and Latency

§II-B demonstrated that Composite provides an effective

means for generating high frequencies of IPIs via its asyn-

chronous communication primitives. The low-overhead mech-

anism for sending notifications easily livelocks a destination

core with a striking amount of interference. Chaos, then,

bounds IPI interference while also bounding the latency of

notifications.

To bound the interference from IPIs from lower-assurance

subsystems, we use rate-limiting servers to control the num-

ber of IPIs over windows of time. Specifically, for task i, over

periods of time p
ipi
i , only e

ipi
i notifications can be sent. In the

design of these servers, Chaos uses deferrable servers [30],

thus defining p
ipi
i over fixed, periodic windows of time.

Though more complex servers such as sporadic servers [31]

can make tighter guarantees and limit the system to e
ipi
i IPIs



over a sliding window of p
ipi
i , the simpler code for deferrable

servers, and the constant memory requirements are consistent

with the high-assurance requirements of the code in ChaosRT

and proxies. Though deferrable servers suffer from a “double

hit” effect in which e
ipi
i IPIs arrive at the end of a window,

immediately followed by another e
ipi
i IPIs at the start of the

next – causing 2 × e
ipi
i IPIs over a short window of time,

they have been shown to have only a small impact on system

utilization [32] for realistic workloads.

Perhaps surprisingly, Chaos silently drops any notification

above the allowed rate. For real-time tasks that send a

bounded number of notifications such over-runs should not

happen. For faulty real-time tasks, and for best-effort tasks,

such a policy is not sufficient. All event notifications for

asynchronous communications are accompanied with data in

shared memory, wait-free ring buffers, thus even when a no-

tification is dropped, the corresponding data is still published.

However, this can still lead to unbounded communication

latencies: if data is queued but the rate is exceeded, and there-

after no additional notifications are sent, the receiving side

will never be activated to handle the data. In response to these

challenges, Chaos augments notifications with polling on the

receive side of the communication. To bound the latency

for processing asynchronous communication, this polling is

performed with a period of p
poll
i by the same thread (in the

proxy) that handles asynchronous activations, thus it uses the

budget and priority discussed in §III-C. Thus, in the worst

case, asynchronous communication processing is bounded by

this polling latency, and the latency of e′i notifications p
ipi
i is

0, and bounded by p
ipi
i otherwise.

E. Example MCS System in Chaos

Safety

Controller

Speck Microkernel

ChaosRT

CFS

RTOSP

P

core 0 1core

Payload

Processing

NetBSD 

P

P

Fig. 6: The prototype cFS system in Chaos. Proxies (Ps) aid in
communication between the safety controller, cFS, and the best-
effort system’s networking subsystem.

Figure 6 shows the Chaos implementation of the system

from §III-A. The cFS is devirtualized out of the POSIX VM

(implemented using a base of a NetBSD rumpkernel [33]),

and the safety controller is devirtualized out of both. Though

cFS is a traditional embedded system with no spatial iso-

lation between tasks, we devirtualize its tasks into separate

protection domains, to enable mutual isolation between tasks.

Though each subsystem can be assigned to multiple cores,

higher-criticality tasks are isolated from the shared memory

and IPI interference from lower-assurance code, yet functional

dependencies are still resolved by proxies. The proxies use

appropriate forms of communication given the assurance-level

of the communicating code. The rigid hierarchy imposed by

virtualization is replaced with a somewhat more chaotic, but

predictable structure.

IV. CHAOS IMPLEMENTATION

A. Leveraging Composite

The Composite kernel, Speck [6], uses capability-based

access-control [34] to mediate operations on a small set of

kernel-provided abstractions. A capability is an unforgeable

token that conveys access to a system resource, ownership

of which provides the ability to perform specific operations

on that resource. The system resources accessible through ca-

pabilities include TCaps [23], threads, synchronous commu-

nication end-points, and asynchronous communication end-

points (of which interrupts are a subtype). Composite is

composed of a number of components that host user-level

execution and consist only of a pair of a capability- and a

page-table. Thus, components are a unit of isolation and the

capabilities (entries in their capability-tables) constrain their

scope of resource accesses. Capability-based isolation, and a

fine-grained system decomposition enable the strict isolation

required by the constraints in §III.

Chaos relies on a few key facilities of Composite:

• A lock-less kernel that uses wait-free kernel operations

to update shared data-structures – this avoids shared

memory serialization and coherence overheads. All shared

data-structures are read-only for common operations, and

synchronize using wait-free operations otherwise. This

prevents the kernel from inhibiting the potential scalability

of the component-defined policies.

• All kernel operations have bounded execution times –

which enables bounded higher-level subsystem operations.

• All system resources are protected and referenced via

capability-based access control [34] – which enables

strong isolation via confinement [35], [36].

• IPIs are not used for kernel coordination, instead only

by optimized asynchronous communication between user-

level end-points – which enables rate-limiting policies.

Even TLB coherence is ensured via quescence [6], relying

on user-level policies to ensure TLBs are flushed before

reusing unmapped virtual ranges.

• Highly optimized communication mechanisms for syn-

chronous and asynchronous communication – enabling the

finer-grained isolation.

• The kernel does not have scheduling policy [28], thus

scheduling policy is implemented in user-level – enabling

the separation of scheduling policy across subsystems.

Importantly, this moves shared scheduling data-structures

such as runqueues out of the kernel, thus both remov-

ing system-wide interference from serialization of data-

structure access, and the IPIs necessary for in-kernel

coordination.

• Components provide spatial isolation by leveraging hard-

ware page-tables and provide controlled access to a set of

kernel resources through their capability table – enabling

a general mechanism for VM, ChaosRT and application

protection.



B. Virtualization in ChaosRT

We use the NetBSD rumpkernel infrastructure to support

legacy POSIX requests for service. This gives us access

not only to device drivers, but also file systems and a

fully-featured networking stack. However, Chaos takes an

aggressive stance on paravirtualization [37]: all system calls

to the NetBSD “kernel” (which runs as a user-space compo-

nent) are modified to explicitly use Composite synchronous

invocations. This is done by redirecting the libc system calls

to minimal stubs that are paired with corresponding stubs

in NetBSD. In Linux this might be done by appropriately

redefining the vsyscall page which would decrease the

number of required code modifications. NetBSD context

switches are modified to use Composite thread dispatch,

thus implementing a user-level scheduler. Rumpkernels do not

provide virtual memory facilities (e.g. fork, mmap), but given

our focus on embedded systems, and the use of the best-

effort VM subsystem as a provider of higher-level POSIX

functionality, this has not been prohibitive.

C. ChaosRT, User-level Scheduling, and Coordination

Chaos avoids interference from shared memory data-

structures on an increasing number of cores by devirtualizing

higher-assurance tasks, thus moving them out of the schedul-

ing domain of the VM subsystem into ChaosRT. Instead the

core scheduling and memory interfaces are emulated in the

minimal ChaosRT environment that avoids such overheads.

As such, ChaosRT uses minimal libraries that provide fixed

priority, round-robin scheduling, and memory allocation, and

export these services through synchronous communication

to the devirtualized task. ChaosRT is a fully multiplexing

runtime and multiple tasks can be devirtualized into it.

One of the fundamental challenges that asynchronous com-

munication via proxies must address is how to predictably

communicate directly between subsystems, even when those

subsystems are controlled by different schedulers. Composite

requires the definition of user-level scheduling policies [28],

thus each of the subsystem’s schedulers define their own

timing properties and priorities. An asynchronous notification

through proxies of a thread in another subsystem must use

the scheduling context as determined in §III-C. A notification

will only cause a preemption, and immediately execute the

receiving thread if all schedulers agree that the receiving

thread has higher priority. This consensus decision between

schedulers is implemented using TCaps, as each scheduler

can associate its priority with a TCap. An asynchronous

notification compares this vector of priorities for the client

and the server, and only if the priorities are uniformly the

same or higher in the server, does a preemption occur. Thus,

TCaps act as an efficient and predictable means to make

cross-scheduler CPU-allocation decisions, thus avoiding the

hierarchical overheads of inter-VM coordination (§II-C, [15]).

Table I demonstrates that communication from within a

VM to outside can have significant overhead. It also depends

on the VM to orchestrate the communication that could entail

scheduling decisions, access to shared runqueues between

cores and IPIs, both within and outside the VM. In contrast,

Chaos uses the direct, asynchronous communication between

isolated subsystems via proxies. Proxies use asynchronous

end-points in Composite and TCaps to properly schedule

the cross-subsystem, and cross-core communication.

D. Proxy Implementation
Client

I/F stub

ChaosRT

Proxyc

Proxys

Server

I/F stub

I/F

A

B

C
D

1

2

3

3'

4

E

Fig. 7: Proxy interposition for a
synchronous invocation. Step-by-
step control-flow transfer is shown
with numbers in the circles and the
solid arrows. Letters indicate labels
described in text.

Proxies are meant to di-

rectly pass data for co-

ordination from a client

to a server, while orches-

trating control flow and

scheduling according to

the criteria in §III-C. A

synchronous invocation is

simply an activation of

a capability corresponding

to the function being in-

voked (i.e. the system call).

This simple implementa-

tion has a significant ben-

efit: the capabilities are

polymorphic to each of

the communication mecha-

nisms. Chaos enables the transparent interposition of proxies

on the invocation path using proxies on the client- and

server-side (Proxyc and Proxys). Even legacy Composite

code that directly uses asynchronous activations harnesses the

same technique: Chaos replaces the asynchronous endpoint

capability with a synchronous invocation to the proxy. Re-

gardless if the client believes it is invoking a synchronous

or asynchronous communication channel, the actual kernel

resource referenced by the specific capability is controlled

by Chaos, thus activating proxies. This effectively updates

interposition agents [38] to a secure, capability-based system.

Figure 7 shows the Chaos proxy interposition data- and

control-flow for a client synchronously invoking a server’s

functionality. All proxies rely on client- and server-side inter-

face (I/F) stubs to marshal and demarshal arguments and re-

turn values (labeled
✄

✂

�

✁
A &

✄

✂

�

✁
B ). Thus, data is passed between

client and server independent of the means of transferring

control flow ( 1 to 4 ):

1 Chaos replaces the synchronous invocation capability in

the client’s capability-table (
✄

✂

�

✁
C ) with a Proxyc-emulated

API that makes the client synchronously invoke the proxy

instead of the server.

2 The Proxyc interacts with the ChaosRT scheduler,

3 Asynchronous communication (with IPI rate-limiting in-

terposition for inter-core co-ordination) is used to notify

Proxys of a request, and the thread awaits a reply. If the

proxies execute on different cores, this involves sending

an IPI ( 3’ ).

4 Proxys then translates the asynchronous requests into the

equivalent synchronous invocations (
✄

✂

�

✁
D ) to the server.

E. Bounded Communication Interference & Latency

Devirtualized tasks indirectly interact with the VM through

proxies that route their requests through asynchronous end-



Operation Composite seL4 Fiasco.OC Linux w/ RT

Thread 307 327 245 1548

switch 431 1231 470 9380

Synchronous 741 934 1236 17801

communication 6930 1428 3834 185551

Cross-core 2386 4723 7615 8628

communication 2716 4934 10495 52696

TABLE II: Kernel operations measured in cycles (3200 cycles
= µ-second). Synchronous communication is round-trip and cross-
core communication is one-way. For each operation, the first row
indicates the average costs and the second row indicates the Worst-
Case Measured Time (WCMT).

points. If this communication spans cores, IPIs are generated

which may interfere with high-criticality execution on the

destination core (§II-B). As described in §III-D, Chaos

proxies apply rate limits and polling (depicted as
✄

✂

�

✁
E ) to

asynchronous communication between assurance-levels. In-

stead of modifying the kernel to provide the rate-limiting

policy (thus cementing deferrable server policies in the kernel,

an undesirable design in a µ-kernel [19]), we observe that

the overhead for the synchronous invocation to the proxy is

significantly less than the hardware overhead of sending the

IPI (see §V-A), and instead define rate-limiting policy in the

proxies.

ChaosRT tracks the deferrable server, and asynchronous

end-point meta-data information. When invoked by a proxy,

ChaosRT uses Composite to directly pass the address of

the corresponding end-point’s meta-data (avoiding lookups

and locks). The number of IPIs sent and the timestamp of

the last budget replenishment (a multiple of p
ipi
i ) are directly

updated using atomic instructions to minimize overhead and

interference. The proxy within the server environment (e.g.

legacy VM) awakens either due to notifications, or due

to periodic timeouts. Either way, it processes the pending

requests placed into the shared memory queue.

V. EVALUATION

Most of our evaluations are performed on a Dell Optiplex

XE3 running a 3.20 GHz Intel Core i7-8700 8 GB physical

memory (less than 256MB are used in Chaos evaluations)

with Hyper-threading disabled. The number of physical cores

enabled is varied in different experiments. In all our Linux

experiments, we use Ubuntu 14.04 with the standard Ubuntu

Linux 4.4.0-133 for the VM and a recompiled Linux 4.4.148

with the Real-Time(RT) Linux patch version 4.4.148-rt165

for the host Linux. We used a Intel desktop processor in

our experiments to be able to evaluate different reliability-

focused operating systems on a common, compabile, multi-

core hardware.

This evaluation has a number of goals:

• To understand the performance properties of the underly-

ing Composite kernel operations, and the overheads of

Chaos over this Composite baseline.

• To understand the devirtualization overheads in Chaos

comparable to Table I.

• To study the interference bounds, end-to-end latency guar-

antees and scheduling overheads for various rate-limiting

server configurations w.r.t rate-limits and server polling

periods.

• To understand the ability of ChaosRT to provide strong

predictability guarantees to high-criticality safety con-

troller and the real-time cFS subsystem in the presense

of IPI interference from a low-assurance subsystem.

• Lastly, to understand the performance of best-effort com-

putation in Chaos relative to existing systems.

A. Microbenchmarks

We conduct a set of micro-benchmarks to measure the

average and measured worst-case costs of various kernel

operations. Table II presents the costs of dispatch and commu-

nication operations in the underlying Composite kernel and

comparable operations in other real-time systems. We used

sel4bench benchmarking suite for measuring seL4 system

call costs, and modified it to collect more samples, and

not warm the cache. The average costs are measured over

a million iterations (10K iterations in seL4). Synchronous

communication uses thread migration in Composite and in

L4 variants we use call and reply and wait. The cross-

core communication uses the asynchronous end-points in

Composite and send and recv equivalents in seL4 and

Fiasco OC.

Discussion. These results show that the underlying Compos-

ite kernel is efficient, relative to existing optimized systems.

Taken with Figure 1 where other real-time systems suffered

from shared memory contention with an increasing number of

cores, these results show that Speck is a strong foundation for

Chaos to enable multi-core, predictable execution. However,

the use of IPIs in Composite for cross-core communication

could cause immense interference as shown in Figure 2.

Chaos solves this problem by interposing proxies on the

cross-core asynchronous communication and rate-limiting

IPIs, as discussed in §III-D.
Thread yield 654

(user-level scheduling) 2166

Cross-core comm. 2934

(w/ proxy interposition) 3323

TABLE III: ChaosRT
scheduling and cross-core
communication costs in cycles.
(Average cost in first row and
WCMT in the second row).

Table III depicts the indi-

rect IPI rate-limiting costs in

ChaosRT for interposing on

invocations with proxies and

the costs in ChaosRT user-

level scheduling.

Discussion. As expected, the

cross-core IPC latency is the

cost of raw asynchronous communication in the underlying

Composite kernel plus the overhead of a synchronous invo-

cation to the IPI rate-limiting server. This demonstrates that

the proxy implementation of the IPI rate-limiting servers is

efficient.

B. Chaos Devirtualization Overheads

The virtual machine infrastructure presents a number of

overheads as studied in Table I. To evaluate the overheads in

devirtualization in Chaos, we study the round-trip costs of

asynchronous communication and interrupt thread activation

in different subsystems. In this experiment, we have two

threads that execute in, and are scheduled by either the root



Round-trip Comm. root ↔ root root ↔ VM VM ↔ VM

Same-Core 1497 1513 1495

Cross-Core 5569 5562 5490

Timer Int. root V M

Activation 951 901

TABLE IV: Round-trip communication and interrupt activation
costs in Chaos, comparing with the virtualization overheads Linux
in Table I.

or the VM subsystem, similar to a host process and a VM

process respectively in §II-C.

Table IV shows the average costs of round-trip communica-

tion between threads in different subsystems on the same core,

and cross-core. It also shows the interrupt response time in

different subsystems. This measures communication between

threads that do not directly share a scheduler. To measure

the round-trip communication latency, threads in subsystems

root and VM are associated with a receive endpoint and have

a send capability to the thread in the other subsystem. To

measure the interrupt delivery latency, a low-priority thread

spins updating a shared timestamp variable and the high-

priority thread is attached to the HPET interrupt in that

subsystem.

Discussion. TCaps enable direct asynchronous notification

delivery, regardless of depth in the scheduling hierarchy of

the sender and receiver. This is shown here for both for inter-

thread communication, and for interrupt delivery. Compared

to Table I, Chaos is able to devirtualize tasks thus ensure

bounded inter-assurance-level interference, without adding

significant overheads. In this way, Chaos provides a light-

weight alternative to VMs with strong, fine-grained isolation.

C. Bounding IPI Interference
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Fig. 8: Measured %-slowdown of high-priority execution on a target
core with different IPI rate-limiting factors and an increasing number
of cores sending to lower-priority tasks on the target core. (a) with
aggregate IPI rate-limiting factors. (b) with per-core IPI rate-limiting
factors.

In the Composite kernel, cross-core, asynchronous com-

munication sends IPIs to the target core. ChaosRT interposes

on asynchronous notifications, and implements rate-limiting

deferrable servers at user-level. Chaos’s rate-limiting mecha-

nism bounds the IPI interference on high-criticality execution

from possibly malicious low-assurance software running on

other cores, as discussed in §III-D. To study the IPI inter-

ference bounds from different rate-limiting server configura-

tions, we evaluate the %-slowdown of a high-criticality task

monopolizing a target core with a number of interfering cores

flooding with asynchronous notifications, similar to Figure 2.

Figure 8 shows two different setups and the %-slowdown of

a high-criticality task on core 0, with m interfering cores each

flooding with asynchronous notifications. (a) and (b) send

notifications to 1 and m asynchronous receive end-point(s) on

the target core respectively. The high-criticality, high-priority

task on the target core executes a 1 millisecond workload in

both (a) and (b). The 1 millisecond workload is chosen and

not 10 µ-seconds similar to Figure 2, because the workload

has to be small enough to be negatively impacted by the

double-hit in the deferrable-server policy and large enough

to demonstrate the impact of rate-limiting.

The interference and therefore the %-slowdown in high-

criticality execution is expected to remain constant in (a)

as we place an aggregate IPI rate-limit for any number of

interfering cores and expect a linear increase in slowdown

in (b) as we increase the number of interfering cores. How-

ever, Intel’s APIC design limits IPIs to a maximum of two

pending requests per interrupt line (in this case, interrupt

line for asynchronous communication) and therefore the %-

slowdown actually decreases with the increase in the number

of interfering cores and plateaus in (b) for higher rate-limiting

factors and/or higher number of interfering cores, as the IPIs

are coalesced.

Discussion. As expected, in (a), increasing the number of

cores shows a decrease in the %-slowdown of high-criticality

execution because of the aggregate rate-limit plus the APIC

limitation of two pending requests per interrupt line. (b) also

shows the expected increase in the %-slowdown with the

increasing number of interfering cores with per-core rate-

limits, and plateaus for higher rate-limiting factors and higher

number of cores. It is important to note that, while the Com-

posite system exhibits unbounded interference and livelocks

as shown in Figure 2, Chaos’s rate-limiting technique enable

the system to limit the interference from IPIs over windows

of time thereby smoothing-out and bounding the amount of

interference in that window.

D. IPC Latency Trade-off in Rate-Limiting

IPI rate-limiting requires that the receiving subsystem in-

volved in the communication poll for requests as the requests

that exceed a given rate do not cause IPIs or send notifications.

To evaluate the latency, interference trade-off, Figure 9 studies

how polling rates, and IPI rate-limits impact communica-

tion latency. The client on one core sends 50 notifications

uniformly throughout a millisecond to a server running on

another core.

Discussion. The average latency while the IPI rate or the send

rate is lower than the rate limit is constant for different polling

periods. Once it increases above the limit or the rate-limiting
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factor is decreased to below the send rate, then the latency

increases with the polling frequency. This result demonstrates

that the polling rate enables bounds to be placed on the

latency, while IPIs enable fast notifications.

E. Polling Overheads

Polling servers induce extra scheduling overheads in the

system as the schedulers are required to track their timeout

and activate the threads on their timeout expiry. To evaluate

the polling scheduling overheads, we run a low-priority task

with a 10 second workload and a high-priority task polling

at different rates. We compare against the baseline of the

workload with no polling.

Polling Scheduler / %

Application Slowdown

1 ms Scheduler 0.044

Application 0.047

10 ms Scheduler 0.039

Application 0.038

100 ms Scheduler 0.029

Application 0.031

TABLE V: Polling overheads in
schedulers and applications.

Table V shows the

%-slowdown in workload

execution with different

polling periods. We

evaluate polling in the

scheduler (to receive

scheduler notifications

from other cores), and

proxies performing polling

in another component.

Discussion. The polling slowdown is small enough that it

is essentially “in the noise” of the system. Given these

measurements, we do not expect polling to cause prohibitive

overhead.

F. Real-time Predictability

To evaluate the predictability properties of Chaos we

conduct experiments that measure the round-trip time in

sensor and actuator processing in cFS that is described in

§III-A. The different systems that we evaluate: (1) LinuxRT

running the cFS with all the applications co-hosted in the

same protection domain as the cFS system (as in Figure 4(a)).

(2) The Chaos system where the applications are spatially

isolated and communicate with the cFS core subsystem using

synchronous IPC. The cFS system’s ground station commu-

nication harnesses the NetBSD networking services running

on a separate core, through ChaosRT proxies. (3) The Chaos

system with the high-criticality safety controller execution

isolated from the cFS subsystem. The high-criticality safety

controller interacts with the cFS subsystem using proxies.

(4) The Chaos and LinuxRT systems with cross-core interfer-

ence on the core running the cFS system and its applications.

cFS applications are spatially isolated from the core cFS in

Chaos and the interactions with the core cFS are through

synchronous invocation. The cFS system interaction with

the COSMOS ground-station is via OpenSatKit’s KIT TO

(Telemetry Output) and KIT CI(Command Ingress) appli-

cations. Normally, OpenSatKit interacts with a simulator of

the physical model of satellite dynamics called 42. It is hard

to achieve real-time behavior with the simulator in the loop,

so we have emulated the sensor data by capturing a trace

from the 42 Simulator. This sensor information is sent every

500 ms. We use HPET periodic timers to emulate the 500

millisecond periods and replay the sensor data to the cFS

system. In LinuxRT environment, we use timerfd functionality

to emulate the sensor periodicity. The Round-Trip Time (RTT)

is measured from the activation of the interrupt thread to

the end of sensor processing and actuator data output. We

measure the RTT for a thousand iterations and Table VI plots

the average and worst-case measured costs in cycles for each

system.

System Average WCMT σ

Chaos w/ NetBSD 98817 124033 5212.5

Chaos w/ NetBSD

and safety controller 101250 126214 5030.2

devirtualized from cFS

safety controller 2484 3206 88.4

response time

LinuxRT 85478 247817 9084.1

Chaos w/ NetBSD

w/ IPI RL=1/500ms 98909 127819 5085.6

w/ interference

LinuxRT

w/ interference 267584 450277 18265.0

slowdown vs Chaos 2.7x 3.5x

TABLE VI: cFS Sensor Round-Trip Time (RTT) Average, WCMT
and Standard Deviation (σ) costs.

Discussion. The measured RTT between sensor and actuator

in Chaos is slightly higher than LinuxRT. The additional

overhead is due to the increased application isolation – which

includes a large amount of data copying – that Chaos added.

We saw in §II, that Composite suffers from IPI interfer-

ence, and LinuxRT suffers from shared run-queue contention

interference. Here we determine if this complex software

infrastructure can be adversarially impacted by low-assurance

tasks on other cores. The last two evaluations in Table VI

depict these results. For Chaos, four cores generate asyn-

chronous notifications, but the IPI (and polling) rate is set

commensurate with the sensor rate. In contrast, for LinuxRT,

we use a tight loop of sched yield on four cores to generate

runqueue contention.

Discussion. The LinuxRT cFS execution is slowed down

significantly which affect both the measured worst-case and

the average-case latencies. The rate limiting and polling

overheads in Chaos do not impact the responsiveness of the

system. It is important to note that Chaos lowers the average

latency by a factor of 2.7, while reducing the worst-case by

a factor of 3.5 over LinuxRT with interference.



G. Best-effort Throughput

In order to assess the best-effort performance, we study

the throughput of the system. We study the network UDP

throughput performance of Linux, NetBSD and Chaos run-

ning iperf3 version 3.1.3. As Chaos uses the NetBSD stack

for networking and device drivers, we compare these sim-

ilar best-effort software code-bases. While NetBSD’s device

drivers and the networking stack are in the kernel, Chaos runs

a non-preemptive Rumpkernel that hosts NetBSD drivers in a

user-level component. NetBSD 7.1 and Ubuntu 14.04 running

Linux 4.4.0-133 are used in this experiment. The network

controller used is a Intel 82571EB Gigabit NIC. All systems

run iperf3 as a UDP server and we measure the throughput

with a iperf3 UDP client running on a host machine.
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Fig. 10: Throughput of iperf3 server running on different systems.

Figure 10 presents the iperf3 throughput for different block

sizes on two different hardware setups. Because of hardware

compatibility issues with the NetBSD, we used an older

hardware, system 1, running Intel Core i7-2600S processor

running at 2.80 GHz with 4 GB of physical memory. We

evaluate NetBSD, Linux and Chaos systems on system 1,

and on system 2, which is the same Dell Optiplex XE3 used

in the rest of the evaluations, we evaluate Linux, Chaos

and Chaos-x. In Chaos-x, iperf3 is running on a separate

core with cross-core communication through ChaosRT rate-

limiting proxy interposing on NetBSD syscalls. Note that, the

number of datagrams transmitted/received decrease with an

increase in block size. The Linux system uses a far more

efficient networking stack and the throughput measurements

presented here are for context only.

Discussion. Chaos is at least as performant as an existing

software code-base that has same device drivers and network-

ing stack, NetBSD. We believe that the improved throughput

of Chaos over NetBSD is due to (1) the best-effort NetBSD

software in Chaos runs as a library thus avoiding virtual

memory overheads. (2) the non-preemptive design of the

Rumpkernel unikernel that cause fewer context switches.

The Chaos-x on the other hand shows better throughput

for larger block sizes. With the large block sizes, Chaos-

x is comparable to Chaos with iperf3 running on the same

core. For larger block sizes, fewer datagrams are transmitted

between the Rumpkernel subsystem and iperf3 running on a

separate core, thereby incurring fewer cross-core communi-

cation overheads. For smaller block sizes, the hardware IPI

overheads can cause significant performance degradation.

VI. RELATED WORK

Chaos devirtualizes high-criticality tasks to remove inter-

ference, often harnessing inter-core communication. A num-

ber of other systems structurally encourage inter-core commu-

nication. To reduce overheads for using multicores, systems

have partitioned kernel- and user-level across cores to min-

imize micro-architectural interference [39], dedicated a core

to scheduling and accessed it via message passing [40], and

designed kernels around message passing [41]. Systems such

as MC-IPC [42] have added mixed-criticality constraints into

the managing of parallel requests for service from a server.

In contrast, Chaos takes a simple and practical approach to

inter-core communication: efficient event notification, with

rate limits to constrain interference, and polling to provide

latency guarantees.

A strong form of isolation segregates hardware across

software boundaries, either by running different criticali-

ties on different cores [14], [13], or by multiplexing cores

across VMs [43] with expensive context switches that include

flushing the caches. Going further, shared hardware such

as caches and memory can be carefully partitioned (as in

MARACAS [44]) to further constrain interference. With these

approaches, the interference between VMs is quite limited,

but processing throughput is wasted, especially with best-

effort tasks that wish to maximize throughput. In contrast,

other systems [45] have shown the benefit of dynamically

managing budget and locality to better use spare resources.

In this vain, Chaos enables cores to host VMs of multiple

criticalities, isolates the interference from inter-core commu-

nication, and removes inter-criticality, contention on shared

data-structures.

VII. CONCLUSIONS

Chaos is motivated by the twin goals of effectively using

the increased throughput of multi-core machines, and ensuring

the necessary isolation between tasks of different criticalities

and assurance-levels. Specifically, we have demonstrated that

the inter-core coordination necessary in existing systems can

cause undue and significant interference on high-criticality

tasks due to shared memory contention on key data-structures,

and IPI processing. To remove such overheads, Chaos devir-

tualizes high-criticality tasks by exporting them out of sub-

systems (e.g. out of VMs) and into a minimal ChaosRT en-

vironment. Yet Chaos maintains the efficient and predictable

interaction between those tasks and the higher-functionality

VM using proxies that bound both interference and latency.

We have shown that Chaos is effective at removing inter-

ference due to cross-core coordination, while maintaining

high performance. While existing systems suffer from signif-

icant cross-core interference from low-assurance tasks (either

through shared memory synchronization, or IPIs), Chaos

controls interference, while not resorting to partitioning. For a

sensor/actuation loop in satellite software experiencing inter-

core interference, Chaos lowers processing latency by a

factor of 2.7, while reducing worst-case by a factor 3.5 over

a real-time Linux variant.
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