
Bounded Incoherence: A Programming Model for
Non-Cache-Coherent Shared Memory Architectures

Yuxin Ren
The George Washington University

Washington, DC, USA
ryx@gwmail.gwu.edu

Gabriel Parmer
The George Washington University

Washington, DC, USA
gparmer@gwu.edu

Dejan Milojicic
Hewlett Packard Labs
Palo Alto, CA, USA

dejan.milojicic@hpe.com

Abstract
Cache coherence in modern computer architectures enables easier
programming by sharing data across multiple processors. Unfortu-
nately, it can also limit scalability due to cache coherency traffic
initiated by competing memory accesses. Rack-scale systems intro-
duce shared memory across a whole rack, but without inter-node
cache coherence. This poses memory management and concur-
rency control challenges for applications that must explicitly man-
age cache-lines. To fully utilize rack-scale systems for low-latency
and scalable computation, applications need to maintain cached
memory accesses in spite of non-coherency.

This paper introduces Bounded Incoherence, a programming and
memory consistency model that enables cached access to shared
data-structures in non-cache-coherency memory. It ensures that up-
dates to memory on one node are visible within at most a bounded
amount of time on all other nodes. We evaluate this memory model
on modified PowerGraph graph processing framework, and boost
its performance by 30% with eight sockets by enabling cached-
access to data-structures.

CCS Concepts • Computer systems organization → Multi-
core architectures; • Computing methodologies → Parallel
computing methodologies;

Keywords rack-scale architectures, non-cache-coherent shared
memory, scalability

ACM Reference Format:
Yuxin Ren, Gabriel Parmer, and Dejan Milojicic. 2020. Bounded Incoher-
ence: A Programming Model for Non-Cache-Coherent Shared Memory
Architectures . In The 11th International Workshop on Programming Mod-
els and Applications for Multicores and Manycores (PMAM’20), February
22, 2020, San Diego, CA, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3380536.3380541

1 Introduction
Recently, rack-scale systems have been gaining momentum. These
include FireBox [2] from Berkeley, Rack-scale Architecture [25]
from Intel, and The Machine from Hewlett Packard Enterprise [17].
These instantiations are comprised of tens of thousands of cores
and petabytes of persistent byte-addressable memory. This pool
of memory is accessible from any node in the system over fast

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
PMAM’20 , February 22, 2020, San Diego, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7522-1/20/02. . . $15.00
https://doi.org/10.1145/3380536.3380541

photonic interconnects that enable load-store accesses at close to
DRAM speeds. These systems promise to enable memory-centric
computing in which many nodes that would traditionally be imple-
mented as a distributed system can communicate and coordinate
directly through memory. However, due to the scale of the system,
there is no cache coherency support between the nodes, instead
only among the cores on a single node. This complicates the use
of the shared memory pool for inter-node collaboration via shared
data-structures, as explicit software support is required to achieve
synchronization and coherency among different nodes accessing
memory. To meet the promise of the massive pool of shared mem-
ory for low-latency, high-throughput processing, new techniques
to handle non-Cache Coherent (non-CC) memory are required in
rack-scale systems.

To coordinate incoherent memory across nodes, we introduce a
consistency model based around Bounded Incoherence (BI) for rack-
scale architectures. This system enables multiple nodes that share
only non-CC memory to have many of the benefits of typical multi-
core shared memory multiprocessors. In non-CC architectures, BI
enables controlled access to cache-lines that are incoherent with
changes made by other nodes for at most a bounded window of
time. Thus, lookups and loads in shared data-structures use effi-
cient, cached access. BI trades time-to-consistency for this efficient,
cache-based local access to data-structures. BI makes the observa-
tion that access to stale cache-lines can be tracked similarly to the
parallel references that are implicitly tracked by Scalable Memory
Reclamation (SMR) techniques [14, 23, 40, 41, 47]. The SMR in the
BI runtime is based on logical clocks and efficient cache-line in-
validation that together provide bounds on the staleness of cache
contents. In a nutshell, BI tracks references to data-structures, peri-
odically invalidates possibly stale cache-lines and delays memory
reuse.

In many ways, the goal is to maintain the convenience of shared
memory processing even across non-CC nodes. The lack of a cache-
coherent memory fabric in rack-scale systems complicates the im-
plementation of traditional shared-memory data-structures that
span multiple nodes. Instead of using shared-memory, the hardware
can be treated as a share-nothing distributed system, using message-
passing-based distributed consensus to coordinate between nodes,
often at the significant cost of network overheads compared to
cache overheads. Figure 1 depicts a taxonomy of trade-offs between
the hardware support for consistency via cache coherency and the

cache-
coherency

distributed
consensus

HW consistency

transactional
memory

Bounded Incoherence
for non-CC, shared mem

Scalability challenges
more less

Figure 1. Varying hardware support for consistency.

https://doi.org/10.1145/3380536.3380541
https://doi.org/10.1145/3380536.3380541
https://doi.org/10.1145/3380536.3380541

scalability of distributed systems. Most prior research focuses on
the right end of the spectrum [3, 21, 37, 38, 44], leaving alterna-
tives in the design space unexplored. As pointed out by Harris [22],
solely relying on message passing does not suit some workloads,
and what programming models are appropriate for combining mes-
sage passing with shared memory is still an open research question.
BI makes an effort to answer this question, as it enables cached
access to shared memory on read-path, while it exploits message
passing to ease synchronization on update-path.

We first have a general discussion about the overhead and chal-
lenge when sharing data-structures on top of incoherence cache
in §2. After discussing the design and implementation of BI in §3,
we apply BI to a modified PowerGraph (§4) and compare against
distributed implementations. The evaluation in §5 validates BI’s
ability to maintain common case performance comparable to cache-
coherent multi-processors for contemporary hardware, and to en-
able an infrastructure for managing the non-coherent memory. The
contributions of this paper include:
• the design and implementation of bounded incoherence as a
means for reasoning about data-structure modification in non-
CC architectures,

• the application of BI to the PowerGraph system, and
• the evaluation of BI versus distributed approaches to cache co-
herency management.

2 Motivation
The substantial memory scaling of rack-scale systems is enabled by
Non Volatile Memory (NVM). In this paper we assume that local
DRAM and global NVM are accessed independently. Our design is
applicable to other models, such as DRAM serving as a cache to
NVM.We focus on creating abstractions to handle non-CCmemory,
instead of on its non-volatility.

2.1 Cache Operation Overheads
There are three typical cache operations: (1) invalidate, whichmarks
a cache line as invalid. (2) write-back, which only writes a dirty
cache line back tomemory, leaving the cache still valid, and (3) flush,
which combines invalidate andwrite-back. To better understand the
interactions between data-structure accesses, and cache operations
in non-CC memory, Figure 2 reports the per-cache-line overhead
for a number of different memory and cache operations. Results
are from HPE Superdome Flex server (more hardware details can
be found in §5).

The data-structure read and flush+read lines in Figure 2
represent random-accesses to cache-lines of a given working set.
This represents the cost of accessing a simple data-structure using
only reads (loads), versus pre-pending each of those reads with a
cache-line invalidation to ensure that the read accesses the most
up-to-date value.

Conclusion #1: frequently executed data-structure operations should
avoid cache operations. Requiring explicit flush operations on each
access of shared memory data-structures has significant overhead.
This motivates bounded incoherence to enable cache-speed access
to shared data-structures.

The lines for clflush demonstrate the cost of flushing a ran-
dom sequence of cache-lines after either reading the data into cache
(r), modifying it (m), or invalidating it (i). This shows the cost of
flushing cache-lines in different states in the cache. Alternatively,

 2
 4
 8

 16
 32
 64

 128
 256
 512

 1024
 2048

64B 256B 1K 4K 16K 64K 256K 1M 4M 16M 64M

C
o
st

 (
C

y
cl

e
s)

Working Set Size

data-structure flush+read
clflush (m)
clflush (r)
clflush (i)

clflushopt (m)
clflushopt (r)
clflushopt (i)

data-structure read

Figure 2. Cache operation per-cache-line overheads.

the clflushopt instruction, available on modern x86 processors,
enables micro-architectural pipelining of the flush instructions.
All accesses are serialized after the flushes with a memory bar-
rier (via mfence). For small numbers of flushes, the cost of this
barrier dominates, but for larger numbers of flushes, its impact is
marginalized. Manipulating invalidated cache-lines has the largest
cost. Because the current core is not able to ascertain other cores’
cache-line status, it has to broadcast the invalidation request to
its cache coherency domain and waits for the responses from all
the other cores. There is more overhead for cache-lines that are
modified and require write-backs, than if they are only read or not
present in the cache. The decreased pipeline serialization seen in
clflushopt decreases the cost of flushing cache-lines for large
buffers. These results show that for this processor, it is beneficial
to both leverage architectural support for pipelined flushes, and to
batch those flushes to the largest extent possible.

Conclusion #2: systems should batch cache-line flush operations
and use non-serializing instructions. The integration of clflushopt,
and its use on large ranges of non-modified memory minimizes
cache operation overheads.

2.2 Cache-Incoherence & Data-structure Consistency
To investigate the impact of incoherent memory accesses on the
consistency properties of a data-structure, Figure 3 depicts a simple
linked list data-structure undergoing modification with non-CC
caches. We use a node to refer to the computational elements in a
coherency domain, and objects to reference the constituent alloca-
tions within a data-structure. A number of different inconsistencies
arise.
• Stale access: in (b), the reference from the first to the second
object can still remain in node’s caches, despite the new object
being linked after the first.

• Resolution failure: in (b), the new object is not visible on nodes
with stale cache-lines, thus attempting to resolve that object (i.e.
do a lookup on it) fails.

• Dangling references: in (c), stale cache-lines still reference a re-
moved and freed object.

• Type inconsistency: additionally, in (d), the previously removed
node is reallocated as a different type of memory and used in
another data-structure. The type of the resource can be different

(a) (b) (c) (d)

Figure 3. A singly-linked list going through a sequence of modi-
fications with non-CC memory. Each list is a configuration after
a modification. Dashed lines and boxes represent stale cache con-
tents for that object, while dark continuous lines denote the state in
memory. (a) is the initial configuration, (b) adds an object, leaving a
stale link in some node’s caches, (c) removes and frees the second
to last object, but it remains in stale cache-lines on other nodes,
and (d) the freed object is allocated as a different type (shape).

if accessed from a stale cache-line, and even if the type is the
same, the context is different.
Dangling references and type inconsistencies have a direct anal-

ogy in non-blocking data-structures concerning the ABA prob-
lem [39]. In the absence of a mutually exclusive abstraction over
all data-structure modifications and access (e.g. locks), the ABA
problem stems from races between object access, and memory
management operations on that object. An object can be both ac-
cessed by one node, and concurrently freed then malloced as
an object of a different type on another node. Thus, non-blocking
algorithms are often paired with SMR techniques [14, 23, 34, 47]
to avoid re-allocating objects until there are no parallel threads
possibly accessing them.

Conclusion #3: Just as lock-free algorithms often use SMR to han-
dle stale parallel access to read-mostly data-structures, comparable
techniques can be used to handle stale cache references to shared
data-structures between non-coherent nodes. While SMR prevents
the re-use of memory while a parallel thread can be accessing the
object, BI is designed to prevent the re-use of memory while any
node can have the object in its cache. This is a key observation of
this paper, and is (to the best of our knowledge) the first instance
of SMR applied to non-coherence systems.

3 BI Design and Implementation
This paper introduces the Bounded Incoherence (BI) memory con-
sistency model that enables efficient, cache-based access for shared
data-structures on non-cache-coherent architectures. BI also fo-
cuses on general applicability and adheres to classic RCU API,
allowing it to be employed in, from lowest-level system component,
such as kernel, up to higher-level data center applications.

3.1 The Bounded Incoherence Consistency Model
To provide the benefits of cached read-path access, and to avoid
many of the consistency problems from §2.2, BI is designed to have
a number of properties:
P1 Cached object access is used for all read-paths, thus eliding

expensive cache-line invalidation operations.
P2 Cache-lines are stale only for at most a bounded amount of

time.
P3 The memory backing stale freed data-structure objects will not

be reused while any cache references to them can exist. This

avoids dangling references and type inconsistencies, but also
delays the reuse of memory thus increasing memory require-
ments.

P4 As accesses to stale data-structure cache-lines are allowed,mod-
ifications to that data-structure must be atomic with respect to
reads.
Given these properties, BI is a memory consistency model with

specific visibility constraints between loads and stores in different
nodes. For example, sequential consistency [30] ensures that loads
and stores on a specific node are visible in the same order, and
not reordered with respect to loads and stores on another node. In
contrast, BI is a relaxed consistency model in that it admits looser
orderings between loads and stores across nodes:
• Stores of one node are visible to other node’s loads in at most
a bounded amount of time. Due to cached-access, loads don’t
immediately observe another node’s store.

• Stores are made directly to memory and those made to a single
address are seen in sequential order.

• Stores to different addresses can be reordered on another node.
Loads of different cache-lines can subsequently observe cached,
then uncached data, which can reverse the order of stores.

3.2 BI API
The BI API mainly inherits from RCU [14], but extends it to explic-
itly manage cache coherence. On the reader side, BI use the same
API as RCU to access shared data-structures.
• bi_enter() to declare the start of a code section in which refer-
ences to objects can exist. Its usage is the same as rcu_read_lock()
in RCU.

• bi_exit() to declare the end of that section, same as the RCU
counterpart, rcu_read_unlock(). No thread-local references
to objects can remain after this.

• bi_dereference(void *) to fetch a shared pointer which can
be safely dereferenced. It also executes any needed memory
barrier.

BI introduces two additional APIs for readers to achieve cache
coherence.
• bi_free_object_quiescent() flushes local cache to drop any
reference to freed objects. While a thread does not hold any
references to objects after bi_read_unlock(), those references
can still exist in the processor’s local cache. Hence, a reader needs
to call this API properly to flush its cache.

• bi_stale_object_quiescent(call_back_fn) to invalidate
stale cache lines to get their updated value. While BI provides
built-in support to track modified objects (§3.4), it also allows
users to pass in a call back function. The call back function
enables applications to flush any necessary cache lines in their
specific way.

The BI runtime invokes above quiescent APIs periodically on every
reader core to achieve cache quiescence. However, applications can
also explicitly call them, which provides self-managed, on-demand
cache quiescence (§3.5).

On the writer side, BI needs more APIs to manage cache and
coordinate concurrent readers.
• synchronize_bi() detects an elapsed grace period. It differs
from synchronize_rcu() in two ways. First, it does not block
waiting for quiescence. Instead it calculates the most recent time

1 void writer (D, identifier) {
2 n = bi_alloc(size, flag); // allocate a new node
3 bi_enter();
4 p = lookup(D, identifier); // find existing node
5 copy(n, bi_dereference(p)); // copy p to n
6 modify(n); // update the contents
7 bi_assign_pointer(p, n); // add n and remove p
8 bi_free(p); // add to quiescence queue
9 bi_exit();
10 ...
11 synchronize_bi(); // detect quiescence
12 bi_relcaim(); // free after quiescence
13 }
14 void reader (D, identifier) {
15 bi_enter();
16 p = lookup(D, identifier);
17 e = bi_dereference(p);
18 process (e);
19 bi_exit();
20 ...
21 // drop reference to free nodes (e)
22 bi_free_object_quiescent();
23 // drop stale cache of modified memory (p)
24 bi_stale_object_quiescent();
25 }

Figure 4. Typical usage of BI API with a shared data-structure D.

in the past when quiescence was achieved. Second, in addition
to checking if readers exit read-side section, it also checks if
necessary cache flushes are performed.

• bi_assign_pointer(void *, value) to assign a new value
to a shared pointer. It also writes back the new value to memory,
and records the modified object if BI modification tracking is
enabled.

To integrate memory and cache coherency management, BI pro-
vides an extra set memory operations. BI runtime invokes above
quiescent APIs periodically on every reader core to achieve cache
quiescence. However, applications can also explicitly call them,
which provides self-managed, on-demand cache quiescence (§3.5).

On the writer side, BI needs more APIs to manage cache and
coordinate concurrent readers.
• bi_alloc(size, flag)which allocatesmemory for usewithin
the data-structure. flag indicates if BI tracks modifications to the
allocated memory.

• bi_free(void *) to deallocate the object without actually free-
ing up its memory.

• bi_reclaim() to reclaim and free previously deallocated ob-
jects. It uses synchronize_bi() to make sure all reclaimed
objects can be safely reused.
Figure 4 depicts example pseudocode illustrating the use of BI

to operate a shared data-structure. A reader (writer) finds the node
of interest and processes (modifies) it. All such read operations are
delimited by bi_enter and bi_exit. To perform a modification,
the writer first allocates a new node (line 2), then performs the
update by copying (a part of) the old node (line 5), updating the
copy (line 6), and replacing the old version with the new one (line
7). The old node is marked to be freed later (line 8). The reclamation
of freed nodes (line 12) happens after quiescence detection (line

11), which contains the logic to ensure a quiescence period has
elapsed. On the reader side, extra care needs to be taken to deal
with incoherent cache. After bi_exit() (line 19), while readers
do not hold any references to freed node, stale cache lines could
still contain those reference. Thus the reader has to flush stale
lines of freed nodes (line 22). Furthermore, as the reference itself is
modified by a writer, the reader needs to invalidate that cache line
(line 24) as well in order to see the updated reference. Those cache
invalidation can be delayed to a later point to batch more cache
flushes, but introduce staleness before then as a result. Therefore,
it is essential for BI to guarantee the staleness is sustained within
at most a bounded amount of time.

3.3 Data-structure Semantics for BI
To understandwhich data-structures can benefit fromBI, we discuss
the interplay between the semantics of the data-structures, and the
BI properties. Here we’ll separately consider data-structure lookups
(read-paths) and modifications.
Data-structure lookups with BI. Lookups exclusively use loads
on objects. Modifications to these objects from other nodes do not
have guaranteed immediate visibility (P1). Thus it is necessary that
even stale versions of objects result in fault-free lookups. Different
data-structure semantics admit trade-offs here.

Tolerable delayed freshness on lookups. The most lenient data-
structure consistency requirements allow lookups to access stale
objects. This has the potential to violate causality. For example, a
hash-table shared between nodes can have a put operation add a
key/value to the data-structure, while a get serviced by another node
will only be guaranteed to return that key/value after a bounded
latency. This might be acceptable if the hash-table is simply a cache
for web objects, and failure to find a key after it’s addition is com-
pensated by logic that assumes transparent cache evictions.

Lazy invalidation on lookup resolution failure. As part of BI, we
investigate another option that has stronger consistency properties
between additions and subsequent accesses. If a lookup fails to
find the object it is looking for, then the lookup is retried while
invalidating all cache-lines along the lookup path before loading
them. This enables additions to the data-structure to be immediately
visible to parallel lookups. We call this lazily invalidating cache-
lines. Using the same hash-table example, additions of keys on one
node are immediately visible on another. However, modification
and removal of existing keys will be visible after at most a bounded
amount of time (P2).
Data-structure modifications with BI. When multiple nodes
can modify the same objects in a data-structure, they require con-
sistency with concurrent lookups. In linked data-structures, (e.g. a
simple linked list), an object might be added after an existing ob-
ject while a parallel modification has already removed the existing
object from the list. This has the effect of adding a node without
actually making it visible within the structure. Synchronizing be-
tween concurrent modifications is generally a difficult problem,
even for parallel systems using SMR [1, 10, 32]. To cope with such
difficulty, BI supports two mechanisms:
• Mutually exclusive writers. Mutual exclusion alone is not suffi-
cient, and must be paired with explicit cache-line writeback and
invalidation operations.

• Partitioned writers. To avoid the overhead of flushing possibly
stale cache-lines in objects to be modified, data-structures can

be partitioned across nodes, thus avoiding synchronization of
cache-lines between writers. Given the partitioning of the data-
structure modifications to specific nodes, message passing is
required to steer the modification request.

Summary. BI trades time-to-coherency for increased locality of data
access and the ability to avoid explicit cache operations on read-
paths. It complicates update-paths as they must be atomic with
respect to parallel lookups and other modifications. This was we
are optimizing the common case and moving complexity to less fre-
quent case. These limitations are similar, but more restrictive than
those around non-blocking data-structures that use SMR techniques.
BI is similar to RCU in that it uses quiescence as a fundamental
mechanism. However, BI is the first system to associate quiescence
with data-structure coherency on a non-coherent system. This re-
quires new mechanisms to provide quiescence on non-coherent
systems. The wide-spread use of RCU in the Linux kernel [14, 32]
demonstrates that there are data-structures with relaxed consis-
tency requirements. The question is if the additional requirements
of BI prohibit interesting applications.

3.4 Bounded Incoherence Runtime
We implement BI prototype as a run-time library off of ParSec [47]
which provides a slab allocator, Scalable Memory Reclamation
(SMR) to track possible parallel accesses to a non-blocking data-
structure, and delays the re-use of freed memory until no such
accesses can exist. BI extends ParSec to implement RCU-style APIs
in §3.2. ParSec uses invariant TSC [24] support to compare different
core’s accesses with the case when memory was freed, to determine
if it can be reused. This implementation minimizes loads and stores
to SMR variables for other cores, thus enabling stronger scalability
compared to U-RCU [47].

The use of synchronized time stamp counters in ParSec is con-
venient, and scalable. Unfortunately, in rack-scale systems, such
architectural support cannot be assumed as nodes are more loosely
coupled than cores on sockets. §3.5 details how BI extends ParSec
to use a logical clock that is monotonically increasing at a frequency
related to the periodicity of data-structure cache-line invalidation.

When a node frees an object, its header is annotated with the
current logical time, it is tracked on a quiescence queue, and it
is only removed and re-used once the logical clock increases to
the point where the object cannot be in a stale cache-line (nor
referenced) on any node. This delay effectively converts the cache-
incoherence problems around dangling references and type in-
consistencies, into an SMR problem that can prevent type incon-
sistencies. Quiescence queues are ordered by logical clock value
which enables a batched reclamation of multiple objects for a sin-
gle computed quiescence value (Q). To track modified objects, BI
uses another set of modification queues, which are similar to above
quiescence queues. When an object is updated, it is put into the
modification queue along with the current logical time. It will be
removed only after the BI runtime determines that all cores have
dropped their old cache lines, and are able to see the updated value.
All above queues are per core and are implemented as a ring buffer
instead of as a linked list in ParSec.

3.5 Cache Quiescence
Cache quiescence ensures no stale cache-lines exist at the point
of quiescence. Global quiescence is achieved by invalidating stale

cache-lines on each node. Any resources or objects deactivated
before that time may then be reused. To determine this ordering,
each node has to have access to the time when each other node has
flushed stale entries from their cache.

A simple implementation atomically increments a single logical
clock each time an object is deallocated. The logical time is the value
of that counter at any point in time, and tracks deallocations. The
logical time when each node invalidates its data-structure cache-
lines is recorded. Unfortunately, this requires frequent modifica-
tions to the shared logical clock which not only involves memory-
scale latency, but also contends in-fabric atomic operation units.
Instead, the BI runtime uses a time-based implementation in which
the logical counter is incremented periodically at some granularity
related to the timer tick of each node, and only when the node is
quiescent.

The BI runtime assumes that each node has an accurate source of
time such as a periodic timer, or a steadily increasing cycle counter.
Each node maintains a logical clock (Qi for node i) that it updates
each time it performs quiescence. When a node needs to calculate
what time all nodes in the system have quiesced (Q = min∀i (Qi)),
it simply iterates through each node’s logical times. Thus memory
freed at time t < Qi can only be reused if no core can have it in
stale cache-lines, thus if t < Q . However, it is possible that when
computing if t < Q , thatQ is pessimistic as it is based on reading the
last cache-invalidation period for a node, Q j where the cache-line
holding that logical time itself is stale. This stale logical clock value
is updated by the periodic flushes on the local core, thus this might
delay memory reclamation by a logical tick, Q = min∀i (Qi) − 1.
Achieving quiescence. Invalidating stale cache-lines is performed
in one of three ways: (1) invalidate all data-structure cache-lines,
(2) invalidate all accessed cache-lines since last quiescing, or (3) inval-
idate allmodified objects on all nodes. Each option entails trade-offs
depending on the dimensions of data-structure size, working set,
and fraction of data-structure objects modified, respectively. In-
validating the whole data-structure saves extra tracking overhead,
but only works with small data-structure. When the working set is
not large, invalidating only accessed cache lines efficiently avoids
unnecessary flush of unused memory. Invalidating modified objects
works best in the case of read-heavy workload.

Currently BI provides built-in support to periodically invalidate
cache lines of freed objects and modified objects tracked by BI.
Despite this built-in support, BI also provides on-demand cache
quiescence to allow applications to employ their specific object
tracking and cache quiescence policy. To utilize the on-demand
cache quiescence, an application marks its objects as self-managed
during their memory allocation. During BI quiescence detection,
it passes in a call back function, which iterates and flushes its
managed objects. Furthermore, an application can also invoke BI
quiescence regardless of BI built-in quiescence period. §4 presents
how to utilize both periodic and on-demand BI cache quiescence in
a graph processing framework.
Maintaining and using logical time. In our prototype, we use
the cycle counter (via rdtsc) on each node to calculate the logi-
cal time. BI assumes that nodes, though not tightly coupled, can
maintain logical times within an error margin of a single logical
tick. This means quiescence calculations must assume a logical tick
offset between nodes: Q = min∀i (Qi) − 2.

This design enables the efficient, cached access to all node’s
logical clocks. Updating a node’s own logical clock requires only

update vertex data

update vertex data

master vertex

send gather resultgather result
vertex data

vertex data

read
vertex
data

send gather result

replica vertex

edge

message passing

local memory
access

partition 1 partition 2

2

2

1

3

3

vertex data

gather result
vertex data

Figure 5. The communication pattern in the original PowerGraph.
During the gather phase, a vertex reads adjacent vertices data locally
(1). Then each replica sends gather result to themaster viamessage
passing (2). The master sends message with the updated vertex
data to its all replicas (3).

writing the cache-line back to memory, and does not require atomic
memory operations (e.g. a write-back via clwb is sufficient). The
frequency of cache quiescence on each node represents a system
trade-off between time-to-consistency and cache operation over-
heads. High frequencies will incur more overhead due to the activa-
tion of the thread to perform quiescence, and due to more frequent
cache misses for data-structures, but will achieve quiescence at a
finer granularity, thus enabling the reuse of data-structure objects
sooner. Conversely, low frequencies decrease the cache quiescence
thread’s activation overheads, and more effectively batches cache
flush operations, but provide a coarser granularity of quiescence.
Determining the best frequency is out of scope for this work.

4 BI Use Case: PowerGraph
4.1 PowerGraph Background
PowerGraph [19] is a high performance graph computation frame-
work. It supports both shared memory multi-processors and dis-
tributed clusters, and we investigate extending this support to non-
CC memory. PowerGraph introduces vertex cut to partition power-
law graphs and a programming abstraction that supports parallel
execution within a vertex computation. As a result, PowerGraph
can scale to graphs with billions of vertices and edges.
Vertex Cut. PowerGraph evenly assigns edges to computation
nodes and allows vertices to span multiple nodes. For each vertex
that spans multiple nodes, it has a replica on each spanning node.
One of the replicas is randomly assigned the master role, the rest
are read-only replicas. While vertex data can be retrieved locally
from local read-only replica, changes to vertex must be broadcast to
all its replicas by the master. Such communication is implemented
by MPI-based message passing. Since each edge is stored exactly
once on the node it is assigned to, changes to edge data do not need
any communication or synchronization across nodes.
GAS Vertex-Programs. Computation in PowerGraph is encoded
as a state-less vertex-program, which implements the GAS model
and explicitly factors into three conceptual phases: gather, apply,
and scatter. The gather phase is applied to all replicas of vertices
in parallel. During the gather phase, a vertex (maybe a replica) col-
lects information about adjacent vertices and edges locally through
a user-defined sum function. The sum function is required to be
commutative and associative. Every replica sends its local result
to its master replica, which combines all the result using the same
sum function. The final combined result is passed to apply phase.

gather result
vertex reference

read gather result

master vertex

read
vertex
reference

read vertex data

replica vertex

edge

remote memory
access

local memory
access

partition 1 partition 2

2

2

1

3

3
gather result
vertex data

gather result
vertex data

read vertex data

read gather result

gather result
vertex reference

Figure 6. The communication pattern in the BI enabled
PowerGraph. For every replica, BI replaces the actual vertex data
with a reference to its master, and save the gather result locally.
During the gather phase, a vertex first gets the reference to adja-
cent vertices master (1)), then fetches the actual data from remote
master (2). After replicas calculate and save gather results locally,
the master collects gather results from its remote replicas (3), and
update the vertex data accordingly. The master no longer needs to
update remote replicas thenceforth.

After the gather phase has completed, the apply phase is invoked
only on master replica. Each master replica uses the gather result to
update the vertex data via a user-defined apply function. The up-
dated vertex data is then copied to all replicas by message passing.
The scatter phase runs in parallel on all adjacent edges of updated
vertices. It updates the edge data according to the new vertex data.
Figure 5 shows the communication among replicas and masters
within each phase.

4.2 Challenges with non-CC memory
With non-CC memory, there are a number of complications to
PowerGraph design. The communication across replicas makes no
use of shared-memory and it exposes message passing overhead.
At scale, these message passing can prohibit effective use of an
increasing number of cores. The potential large amount of memory
used by PowerGraph also complicates the cache quiescence, which
might require a huge amount of cache invalidation. Worse still,
the apply phase can be update intensive, where traditional SMR
and RCU techniques offer very little benefit. Care is taken to mini-
mize modifications to remote cache lines in other cache coherence
domains. Fortunately, some parts of PowerGraph abstractions do
have some appealing characteristics for non-CC memory systems.
Primarily, the whole graph is well partitioned, requiring no concur-
rent or atomic modifications. Edge data is totally local, therefore
we only need to focus on maintenance of vertex data.

4.3 BI PowerGraph Implementation
We port PowerGraph to BI based on the open source GraphLab
C++ implementation1. It provides different options to configure the
PowerGraph engine, and we use the synchronous option. With
the synchronous engine, PowerGraph employs the bulk synchro-
nous parallel (BSP) model, and executes the gather, apply, and
scatter phases in order with a barrier at the end of each phase. the
porting process involves replacing the memory management facili-
ties with theBI run-time allocator with non-CCmemory as backend.
All message passing of vertex replica maintenance is replaced by us-
ing global shared memory. Access to the shared memory in gather
1https://github.com/jegonzal/PowerGraph

https://github.com/jegonzal/PowerGraph

and apply phase is managed by the BI runtime, which manages
the non-coherent cache and limits stale data to at most a bounded
amount of time. The rest of the system, such as partition strategy,
vertex scheduling and scatter phase are left unchanged.
Gather Phase. During the gather phase, all replicas send their
local gather result to their masters. For BI, we augment the vertex
data-structure with a new field to save the gather result locally.
At the end of the gather phase, instead of each replica sending its
own result to the master, the master replica directly accesses all its
replicas data-structures to read their results and combine them to
get the final result. Consequently, all modifications in this phase
are pure local. Only masters need to read remote cache lines, which
are made visible by BI runtime.
Apply Phase. The apply phase updates all replicas with the up-
dated vertex data. To avoid remote modifications, BI changes the
replica structure by saving a reference to its corresponding master
replica, instead of saving the actual data. Hence, after the master up-
dates the vertex data, it no longer needs to send a message to notify
its replicas. On the contrary, whenever a replica requires its vertex
data (e.g. in the gather or scatter phase), it reads the data from its
master via the reference. BI runtime guarantees that master’s up-to-
date data will become visible to replicas within at most a bounded
amount of time. This totally eliminates message passing and remote
modifications. Figure 6 shows the details of the communication
among replicas and masters in BI enabled PowerGraph.
Cache Quiescence. Cache quiescence is necessary to provide
cache coherence in two cases. First, in the gather phase, local gather
results are required to be visible to the master. Second, in the apply
phase, vertex replicas need to see updated vertex data. In both cases,
we choose to invalidate only modified cache lines as PowerGraph
potentially access a huge amount of unmodified memory.

Cache quiescence is implemented in two ways. First, we mark
gather result and replica structure as BI manageable. This enables
BI built-in support to track modified objects and flush them period-
ically in the background. The cache flush is carried out by one core
per socket, as invalidation on one core will flush all other cores
within the same socket. In this way, the application is totally freed
from reasoning about cache coherence. In the second implementa-
tion, we utilize the fact that PowerGraph already has information
about active and modified vertices. Therefore, we extend the BSP
barrier to invoke the BI cache quiescence on-demand. This iterates
PowerGraph internal vertex set structure to identify all modified
objects and invalidates their cache lines. While this implementation
requires more changes to the application, it greatly reduces the
memory usage by eliminating BI quiescence queues. It also achieves
less staleness which is discussed next.
Staleness Analysis. Staleness is introduced by BI periodic cache
flush. If a core reads a modified remote cache line before BI in-
validates that cache line, it will see the stale value instead of the
updated one. This happens in both gather and apply phase, where
a master may use an old gather result or a replica can see vertex
data from previous iteration. However, such staleness is bounded
by BI quiescence period. As studied in previous research [12, 45],
a large class of iterative graph and machine learning algorithms
are proved to be converged even in the face of staleness between
iterations, as long as such staleness is restricted within a limited
amount of time.

On the other hand, on-demand cache quiescence gives applica-
tions full control of data consistency. When PowerGraph invokes

 4

 16

 64

 256

 1024

 4096

 16384

 65536

64B 256B 1K 4K 16K 64K 256K

C
o
st

 (
C

y
cl

e
s)

Working Set Size

clflushopt (m)
clflushopt (i)
clflushopt (r)

clwb (m)
clwb (i)
clwb (r)

Figure 7. clwb and clflushopt overhead.

BI cache quiescence inside the BSP barrier, it guarantees that all
changes made in the current phase will be seen by the next phase.
As a consequence, no stale data is generated in such implementa-
tion. While not implemented in this work, we can also trigger cache
quiescence only within specific iterations to achieve the A-BSP or
SSP model [12];

5 Evaluation
Experiment Platform. All experiments are run on HPE Super-
dome Flex servers2. We deploy two enclosures, with four 28-core
sockets per enclosure. Intel(R) Xeon(R) Platinum 8180 CPU is used,
which is clocked at 2.5GHz. Each core has a 32KB L1 cache and
1MB L2 cache, and each socket has 38.5MB L3 cache. Each enclo-
sure has 1.568TB local memory. There are 3.008TB global memory
shared between two enclosures via the NUMALink fabric. Custom
firmware is installed to configure cache coherency on top of global
shared memory. Cache coherency domain is at socket level. That
is to say, when cache coherency is disabled, only cores inside the
same socket are coherent, cache between different sockets (even
within the same enclosure) is non-coherent. Each enclosure runs
an independent copy of the SLES-15 operating system, with Linux
4.12.14 kernel.

5.1 Cache Operation Overheads
BI uses clwb and clflushopt instructions to achieve bounded
cache coherency. clwb is used by writers to commit modifications
to memory, and clflushopt is used by readers to invalidate stale
cache lines. To investigate the overhead of those instructions, Fig-
ure 7 depicts their cost of operating on an increasing amount of
continuous non-coherent memory. This experiment runs on a single
core and measures the cost under different cache-line status.

Those overheads are linear with the working set size. With large
working set, the memory latency dominates the cache overhead, so
all of their cost have negligible difference, and we only show results
from working set smaller than 256KB. With small working set, the
cost of both instructions are observable but not prohibitive. More
important, on the non-coherent architecture, such overhead does
not increase with the scale of the machine, as their impact is limited
only to its own socket. In general, clwb has a little less overhead
than clflushopt, as it does not invalidate operated cache lines.
Furthermore, this avoids cache miss of following memory access.
The cache line status has a bigger impact on the cache operation

2https://www.hpe.com/us/en/servers/superdome.html

https://www.hpe.com/us/en/servers/superdome.html

 0

 0.2

 0.4

 0.6

 0.8

 1

4K 512K 8M 64M

N
o
rm

a
liz

e
d
 L

o
a
d
 T

h
ro

u
g
h
p
u
t

Working Set

 noflush 100ms 10ms aggressive

Figure 8. load throughput on a single core.

 0

 0.2

 0.4

 0.6

 0.8

 1

4K 512K 8M 64M

N
o
rm

a
liz

e
d
 L

o
a
d
 T

h
ro

u
g
h
p
u
t

Working Set

 noflush 100ms 10ms aggressive

Figure 9. load throughput on two cores.

as expected. Operations on read-only cache lines have the least
overhead, as no memory access is triggered. On the other hand,
operations on modified cache lines are the most expensive, since
modifications are written back to memory. When cache lines are
invalidated, the operating core is not aware if other cores contain
the same cache line, thus, it needs to wait for other cores in the co-
herency domain (one socket in this case), causing some overheads.

5.2 Periodic Cache Invalidation Overheads
When BI is configured to use periodic cache quiescence, two factors
determine the total overhead of its cache invalidation: invalidation
frequency and working set size. Furthermore, the cache invalidation
impacts application performance in two ways. First it reduces the
available CPU time to applications running on the same core with
cache invalidation. Second, it causes cache misses of operations
accessing the invalidated memory on other cores inside the same
coherency domain. To understand the impact of these factors, we
measure memory load throughput over different working sets in
the presence of cache invalidation at various frequencies.

Figure 8 depicts the load throughput while cache invalidation is
executed on the same core as the test. Figure 9 reports results of
tests running on a different core. All throughput are normalized
to the performance without periodic cache invalidation (noflush).
aggressive represents the case that cache is invalidated immedi-
ately once it is assessed, instead of being delayed to periodic invali-
dation. Those results show aggressive cache invalidation performs
the worst in all cases. With larger working set, cache invalidation

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 2 3 4 5 6 7 8

R
u
n
n
in

g
 T

im
e
 (

se
c)

#sockets

stock
bi-periodic

bi-on-demand

Figure 10. pagerank on twitter graph.

has more impact as expected, due to the increased cache miss over-
head. For example, when working set fits into L2 cache, periodic
cache invalidation at most introduce 2% performance degradation.
When working set becomes 64MB, load throughout decreases 20%
and 10%, on the same and separate core, respectively. Similarly,
more frequent cache invalidation has more overhead as well. For
example, in Figure 9, 100ms invalidation period has 2% throughput
degradation, while 10ms period has 10% degradation.

5.3 Graph Processing Framework
This section evaluates how PowerGraph can harness the benefit
of BI. To study the different trade-offs of different approaches,
we compare the original distributed PowerGraph with the two BI
variants discussed in §4.3.
MethodologyWe run one PowerGraph instance per socket, which
uses all available cores in that socket. All graph vertex data is
loaded into the global shared memory, and is coordinated among
PowerGraph instances differently according to different implemen-
tations. Edge data is saved in local memory, and needs no synchro-
nization. To compare alternative design decisions studied in the
literature, we consider three implementations. (1) stock – all data
synchronisation is achieved by message passing. (2) BI-on-demand
– cache quiescence is invoked by PowerGraph inside BSP barrier
after each phase. (3) BI-periodic – data coherency is handled by
BI periodic cache quiescence.
Experiment Set-up. To characterize the performance, we mea-
sure the total running time of PageRank algorithm provided by
PowerGraph. PageRank runs on Twitter follower graph [29], which
has 4.1 million vertices and 1.4 billion edges. Message passing is
based onMPICH2 library. The cache quiescence period inBI-periodic
is set to one millisecond.
Result Discussion. Figure 10 reports the running time with dif-
ferent number of sockets. All sockets are evenly assigned to two
enclosures. With small number of sockets, BI variants run slightly
slower than the original PowerGraph. Fox example, on two sock-
ets, BI-on-demand and BI-periodic is 11% and 6% slower respec-
tively. This is because PowerGraph incurs less message passing
overhead on fewer sockets, while BI pays the cost of its cache
quiescence. When socket count grows, as expected, PowerGraph
degrades due to the high communication overhead among instances.
On the other hand, both BI implementations become faster than
the original version, thanks to their shared memory access. With
eight sockets, BI-on-demand and BI-periodic runs 32% and 21%

faster respectively. This confirms that the batched cache invalida-
tion made by BI has much less cost than message passing, while
providing local cache access and data coherency within bounded
time. On average, BI-on-demand runs 5% faster than BI-periodic
resulting from two factors. First, BI-on-demand tracks modified
cache lines more accurately because it utilizes more application
specific information. Second, BI-on-demand avoids stale data by
flushing cache lines immediately after each phase.

6 Related Work
Scalable memory reclamation. BI borrows heavily from SMR
techniques such as epoch-based reclamation [23], RCU [14], Par-
Sec [47] and IBR [48]. Such approaches seek to determine if refer-
ences exist into a data-structure from any parallel execution before
re-using a freed allocation. However, these techniques only check
if parallel executions are completed, ignoring that references are
possible to remain in stale cache. BI extends these techniques to
determine if stale cache references can exist on any node, and by
optimizing batched flushes.
Data-consistency and non-CCmemory.Atlas [7] integrates the
cache flushes into an acquire/release concurrency model based on
locks, mainly targeting NVM. Atlas takes advantage of the acquire-
release consistency guarantees provided by locks, and batches cache
operations until a lock is released, at that point making all memory
changes globally visible. In this way, cache operations on objects
accessed in a critical section are delayed until its exit. BI instead
focuses on cache-latency data-structure lookups, and batched, de-
layed cache-line invalidation, and trades being less general across
data-structures. Similarly, Treadmarks [28] integrates consistency
with lock semantics, and distributed shared memory implementa-
tions manually overlays consistency over a network [26, 42, 43].
Some research [12, 45] explicitly relaxed data consistency and in-
troduce data staleness in distributed systems. Bounded staleness
is exploited by [12] to accelerate big data analytics, where the al-
gorithm can see old data from previous iterations. Lazygraph [45]
proposes lazy data coherency among vertex replicas, causing repli-
cas to have different views of each other.
Non-CC nodes as a distributed system. Scale-out systems dis-
tribute data across a cluster [18], in some cases by relaxing con-
sistency [13]. Some systems treat a single system as one that is
distributed [4, 8, 20], and use message-passing-based coordina-
tion [3]. Message passing is traditionally used to implement dis-
tributed shared memory [6, 26–28, 35, 42] and provide partitioned
global address space (PGAS) abstraction [9, 11]. Grappa [35] dis-
tributes computation across a cluster with an optimized PGAS
implementation. Argo [27], a software distributed shared mem-
ory system, distributes coherence decisions using self-invalidation
and self-downgrade combined with hierarchical queue delegation
locks. Hare [21] uses message passing to implement a distributed
file-system across nodes in a non-CC system. libMPNode [31] im-
plements an OpenMP runtime for incoherent domains. It leverages
thread migration and distributed shared memory to provide consis-
tency between incoherent nodes. Instead, BI enables global shared
data-structures to be accessed locally at cache-latency, while avoid-
ing message passing as much as possible.
CREW data-structures and RDMA. The concurrent-read, exclu-
sive writer model simplifies modifications as it prevents writer
concurrency. Many Read-Copy-Update (RCU) structures require

this model, and rely on single atomic modification to update the
data-structure.These structures often require locks to serialize con-
current modifications [14, 47], though some techniques use fine-
grained locking [1, 10, 32].

GAM [5] provides a directory-based cache coherence protocol
over RDMA. Systems such as FaRM and RackOut [15, 16, 36] treat
a cluster as a non-CC NUMA machine with RDMA-accessible re-
mote memory. They use similar techniques (e.g. epoch-based mem-
ory reclamation [23]), but don’t support cached-access to remote
memory. In contrast, BI enables the cache-based access to global
structures on rack-scale systems.

7 Future Work
There is much room for future research with non-coherent memory
architectures and BI. After current BI prototype, we aim to improve
it and apply it to more application domains.
BI optimization. There are lots of opportunities to improve BI
performance, especially optimizing its cache quiescence frequency
and cache invalidation. First, we seek to expose more control of
cache quiescence frequency to users, or even better, to change
the frequency adaptively at runtime. Second, we could run cache
invalidation more intelligently based on the working set and access
pattern, as discussed in §3.5. Last, we can exploit and integrate more
application specific information to provide cache consistency. With
the help of application itself, we are able to identify stale cache
more accurately while reducing the BI tracking overhead.
BI application.We are working on to apply BI to board applica-
tion domains, including more graph analytic algorithms, machine
learning platforms and key value stores. Especially, quiescence-
based techniques are successfully applied to operating system ker-
nels [10, 32, 33, 46]. We envision BI can also be integrated into
kernels to enable a single OS image to consistently manage all
memory between incoherent nodes.

8 Conclusions
This paper has introduced the bounded incoherence memory con-
sistency model for non-CC systems that enables cache-speed reads,
and effective use of delayed, batched coherence. We apply BI to
PowerGraph, and demonstrate that efficient, local access to cached
data-structures can provide 30% performance improvements over
distributed approaches. We believe that BI mark significant steps
toward enabling efficient management and sharing of non-coherent
memory in future rack-scale systems.
Acknowledgments.We’d like to thank the anonymous reviewers
for their feedback that has significantly improved the quality of
this paper. We also thank Brad Tanner, Rocky Craig, Bill Hayes,
Michael Woodacre, Keith Packard, Paolo Faraboschi and Robert
Peter Haddad for their enormous help.

References
[1] Maya Arbel and Hagit Attiya. 2014. Concurrent Updates with RCU: Search

Tree As an Example. In Proceedings of the 2014 ACM Symposium on Principles of
Distributed Computing (PODC ’14).

[2] Krste Asanovic. 2014. FireBox: A Hardware Building Block for 2020 Warehouse-
Scale Computers. In Proceedings of the 12th USENIX Conference on File and Storage
Technologies (FAST’14). Santa Clara, CA, USA.

[3] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
2009. The Multikernel: A new OS architecture for scalable multicore systems. In
Symposium on Operating System Principles (SOSP).

[4] Edouard Bugnion, Scott Devine, and Mendel Rosenblum. 1997. Disco: running
commodity operating systems on scalable multiprocessors. In SOSP ’97: Proceed-
ings of the sixteenth ACM symposium on Operating systems principles. ACM Press,
New York, NY, USA, 143–156. https://doi.org/10.1145/268998.266672

[5] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant Agrawal, Gang Chen,
Beng Chin Ooi, Kian-Lee Tan, Yong Meng Teo, and Sheng Wang. 2018. Effi-
cient distributed memory management with RDMA and caching. Proceedings of
the VLDB Endowment 11, 11 (2018), 1604–1617.

[6] J. B. Carter and W. Zwaenepoel. 1990. Munin: Distributed shared memory based
on type-specific memory coherence. In Proceedings of the 2nd ACM Symposium
on Principles and Practice of Parallel Programming.

[7] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014. Atlas:
Leveraging Locks for Non-volatile Memory Consistency. In Proceedings of the
2014 ACM International Conference on Object Oriented Programming Systems
Languages & Applications (OOPSLA ’14).

[8] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu, and A. Gupta. 1995.
Hive: fault containment for shared-memory multiprocessors. SIGOPS Operating
Systems Review 29, 5 (1995), 12–25.

[9] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. 2005. X10: An
Object-oriented Approach to Non-uniform Cluster Computing. In Proceedings
of the 20th Annual ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA ’05).

[10] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. 2013. RadixVM:
Scalable address spaces for multithreaded applications. In Proceedings of the ACM
EuroSys Conference (EuroSys 2013). Prague, Czech Republic.

[11] Cristian Coarfa, Yuri Dotsenko, John Mellor-Crummey, François Cantonnet,
Tarek El-Ghazawi, Ashrujit Mohanti, Yiyi Yao, and Daniel Chavarría-Miranda.
2005. An Evaluation of Global Address Space Languages: Co-array Fortran and
Unified Parallel C. In Proceedings of the Tenth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP ’05).

[12] Henggang Cui, James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Abhimanu
Kumar, Jinliang Wei, Wei Dai, Gregory R. Ganger, Phillip B. Gibbons, Garth A.
Gibson, and Eric P. Xing. 2014. Exploiting Bounded Staleness to Speed Up Big
Data Analytics. In 2014 USENIX Annual Technical Conference (USENIX ATC 14).
Philadelphia, PA, 37–48.

[13] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-
value Store. In Proceedings of the 21st ACM Symposium on Operating Systems
Principles (SOSP’07), Stevenson, Washington, USA, October 14-17.

[14] Mathieu Desnoyers, Paul E. McKenney, Alan S. Stern, Michel R. Dagenais, and
Jonathan Walpole. 2012. User-Level Implementations of Read-Copy Update. IEEE
Transactions on Parallel and Distributed Systems 23, 2 (2012).

[15] Aleksandar Dragojević, Dushyanth Narayanan, OrionHodson, andMiguel Castro.
2014. FaRM: Fast Remote Memory. In Proceedings of the 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’14), Seattle, WA, USA,
April 2-4.

[16] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. 2015. No Compro-
mises: Distributed Transactions with Consistency, Availability, and Performance.
In Proceedings of the 25th Symposium on Operating Systems Principles (SOSP’15),
Monterey, CA, USA, October 4-7.

[17] Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and Dejan Milojicic. 2015.
Beyond Processor-centric Operating Systems. In 15th Workshop on Hot Topics in
Operating Systems, HotOS XV, Kartause, Ittingen, Switzerland, May 18-20.

[18] Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy, and Thomas An-
derson. 2011. Scalable Consistency in Scatter. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (SOSP’11), Cascais, Portugal, October
23-26.

[19] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.
In Presented as part of the 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12). Hollywood, CA.

[20] Kinshuk Govil, Dan Teodosiu, Yongqiang Huang, and Mendel Rosenblum. 1999.
Cellular Disco: Resource Management Using Virtual Clusters on Shared-memory
Multiprocessors. In Proceedings of the 17th ACM Symposium on Operating System
Principles (SOSP’99), Kiawah Island Resort, South Carolina, USA, December 12-15.

[21] Charles Gruenwald, III, Filippo Sironi, M. Frans Kaashoek, and Nickolai Zeldovich.
2015. Hare: A File System for Non-cache-coherent Multicores. In Proceedings of
the Tenth European Conference on Computer Systems (Eurosys ’15).

[22] Tim Harris. 2015. Hardware Trends: Challenges and Opportunities in Distributed
Computing. ACM SIGACT News 46, 2 (2015), 89–95.

[23] Thomas E. Hart, Paul E. McKenney, Angela Demke Brown, and JonathanWalpole.
2007. Performance of Memory Reclamation for Lockless Synchronization. J.
Parallel Distrib. Comput. 67, 12 (2007).

[24] Intel Corporation [n. d.]. Intel-64 and IA-32 architectures software developer’s
manual, Volume 3A: System Programming Guide, Part 1. Intel Corporation.

[25] Intel Corporation. 2016. Intel Rack Scale Design. Online. http:
//www.intel.com/content/www/us/en/architecture-and-technology/

rack-scale-architecture/intel-rack-scale-architecture-resources.html.
[26] K. L. Johnson, M. F. Kaashoek, and D. A. Wallach. 1995. CRL: High-performance

All-software Distributed Shared Memory. In Proceedings of the 15th ACM Sympo-
sium on Operating System Principles (SOSP’95), Copper Mountain Resort, Colorado,
USA, December 3-6.

[27] Stefanos Kaxiras, David Klaftenegger, Magnus Norgren, Alberto Ros, and Kon-
stantinos Sagonas. 2015. Turning Centralized Coherence and Distributed Critical-
Section Execution on Their Head: A New Approach for Scalable Distributed
Shared Memory. In Proceedings of the 24th International Symposium on High-
Performance Parallel and Distributed Computing (HPDC ’15).

[28] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. 1994.
TreadMarks: Distributed Shared Memory on Standard Workstations and Op-
erating Systems. In USENIX Winter 1994 Technical Conference, San Francisco,
California, January 17-21.

[29] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a Social Network or a News Media?. In Proceedings of the 19th Interna-
tional Conference on World Wide Web (WWW ’10).

[30] Leslie. Lamport. 1979. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Trans. Comput. 28, 9 (Sept. 1979).

[31] Robert Lyerly, Sang-Hoon Kim, and Binoy Ravindran. 2019. libMPNode: An
OpenMP Runtime For Parallel Processing Across Incoherent Domains. In Proceed-
ings of the 10th International Workshop on Programming Models and Applications
for Multicores and Manycores (PMAM’19).

[32] Alexander Matveev, Nir Shavit, Pascal Felber, and Patrick Marlier. 2015. Read-log-
update: A Lightweight SynchronizationMechanism for Concurrent Programming.
In Proceedings of the 25th Symposium on Operating Systems Principles (SOSP ’15).

[33] Paul E McKenney, Silas Boyd-Wickizer, and Jonathan Walpole. 2013. RCU usage
in the linux kernel: One decade later. Technical report (2013).

[34] Maged M. Michael. 2004. Hazard Pointers: Safe Memory Reclamation for Lock-
Free Objects. IEEE Transactions on Parallel and Distributed Systems (2004).

[35] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon
Kahan, and Mark Oskin. 2015. Latency-Tolerant Software Distributed Shared
Memory. In 2015 USENIX Annual Technical Conference (USENIX ATC 15). Santa
Clara, CA.

[36] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi, and
Boris Grot. 2016. The Case for RackOut: Scalable Data Serving Using Rack-Scale
Systems. In Proceedings of the 7th ACM Symposium on Cloud Computing (SoCC’16),
Santa Clara, CA, USA, October 5-7.

[37] Simon Peter, Jana Giceva, Pravin Shinde, Gustavo Alonso, and Timothy Roscoe.
2011. POSTER: OS design for non-cache-coherent systems. In Proceedings of
the 23rd ACM Symposium on Operating Systems Principles (SOSP’11), Cascais,
Portugal, October 23-26.

[38] Simon Peter, Adrian Schüpbach, Dominik Menzi, and Timothy Roscoe. 2011.
Early experience with the Barrelfish OS and the Single-Chip Cloud Computer..
In Proceedings of the 3rd Many-core Applications Research Community Symposium
(MARC), Ettlingen, Germany, July 5-6.

[39] S. Prakash, Yann Hang Lee, and T. Johnson. 1994. A Nonblocking Algorithm for
Shared Queues Using Compare-and-Swap. IEEE Trans. Comput. (1994).

[40] Aravinda Prasad and K. Gopinath. 2016. Prudent Memory Reclamation in
Procrastination-Based Synchronization. In Proceedings of the Twenty-First In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’16), Atlanta, GA, USA, April 2-6.

[41] Yuxin Ren, Liu Guyue, Gabriel Parmer, and Björn Brandenburg. 2018. Scalable
Memory Reclamation for Multi-Core, Real-Time Systems. In 24th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS).

[42] Daniel J. Scales and Kourosh Gharachorloo. 1997. Towards Transparent and
Efficient Software Distributed Shared Memory. In Proceedings of the 16th ACM
Symposium on Operating System Principles (SOSP’97), St. Malo, France, October
5-8.

[43] Robert Stets, Sandhya Dwarkadas, Nikolaos Hardavellas, Galen Hunt, Leonidas
Kontothanassis, Srinivasan Parthasarathy, and Michael Scott. 1997. Cashmere-2L:
Software Coherent Shared Memory on a Clustered Remote-write Network. In
Proceedings of the 16th ACM Symposium on Operating System Principles (SOSP’97),
St. Malo, France, October 5-8.

[44] Rob F Van der Wijngaart, Timothy G Mattson, and Werner Haas. 2011. Light-
weight communications on Intel’s single-chip cloud computer processor. ACM
SIGOPS Operating Systems Review 45, 1 (2011), 73–83.

[45] Lei Wang, Liangji Zhuang, Junhang Chen, Huimin Cui, Fang Lv, Ying Liu, and
Xiaobing Feng. 2018. Lazygraph: Lazy Data Coherency for Replicas in Distributed
Graph-parallel Computation. In Proceedings of the 23rd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP ’18).

[46] Qi Wang, Yuxin Ren, Matt Scaperoth, and Gabriel Parmer. 2015. Speck: A Kernel
for Scalable Predictability. In Proceedings of the 21st IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS).

[47] Qi Wang, Tim Stamler, and Gabriel Parmer. 2016. Parallel Sections: Scaling
System-Level Data-Structures. In Proceedings of the ACM EuroSys Conference.

[48] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H. Alan Beadle, and Michael L.
Scott. 2018. Interval-Based Memory Reclamation. (2018).

https://doi.org/10.1145/268998.266672
http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-architecture/intel-rack-scale-architecture-resources.html
http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-architecture/intel-rack-scale-architecture-resources.html
http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-architecture/intel-rack-scale-architecture-resources.html

	Abstract
	1 Introduction
	2 Motivation
	2.1 Cache Operation Overheads
	2.2 Cache-Incoherence & Data-structure Consistency

	3 BI Design and Implementation
	3.1 The Bounded Incoherence Consistency Model
	3.2 BI API
	3.3 Data-structure Semantics for BI
	3.4 Bounded Incoherence Runtime
	3.5 Cache Quiescence

	4 BI Use Case: PowerGraph
	4.1 PowerGraph Background
	4.2 Challenges with non-CC memory
	4.3 BI PowerGraph Implementation

	5 Evaluation
	5.1 Cache Operation Overheads
	5.2 Periodic Cache Invalidation Overheads
	5.3 Graph Processing Framework

	6 Related Work
	7 Future Work
	8 Conclusions
	References

