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ABSTRACT

Scaling data-structures up to the increasing number of cores
provided by modern systems is challenging. The quest for
scalability is complicated by the non-uniform memory ac-
cesses (NUMA) of multi-socket machines that often prohibit
the effective use of data-structures that span memory locali-
ties. Conventional shared memory data-structures using effi-
cient non-blocking or lock-based implementations inevitably
suffer from cache-coherency overheads, and non-local mem-
ory accesses between sockets. Multi-socket systems are com-
mon in cloud hardware, and many products are pushing
shared memory systems to greater scales, thus making the
ability to scale data-structures all the more pressing.

In this paper, we present the Distributed, Delegated Parallel
Sections (DPS) runtime system that uses message-passing
to move the computation on portions of data-structures be-
tween memory localities, while leveraging efficient shared
memory implementations within each locality to harness effi-
cient parallelism. We show through a series of data-structure

scalability evaluations, and through an adaptation of memcached,

that DPS enables strong data-structure scalability. DPS pro-
vides more than a factor of 3.1 improvements in throughput,
and 23x decreases in tail latency for memcached.
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1 INTRODUCTION

Even more than a decade since the multicore revolution
started, it is still depressingly difficult to scale basic data-
structures to an increasing number of cores and sockets.
The fundamental challenge is that shared memory data-
structures must maintain consistency between parallel op-
erations, and using locks or various techniques that rely on
atomic instructions cause expensive cross-core and -socket
memory traffic. The cache-coherency resulting from stores
to shared memory — either due to lock’s implementation,
or to modifications to data-structure — cause inter-core and
-socket messages. These memory accesses manifest in over-
heads that can prevent scalability, and even decrease the
aggregate throughput of data-structure operations.

Locks provide mutual exclusion, thus serializing execu-
tion from multiple cores and limiting the upper bounds on
speedup with increasing numbers of cores. Other approaches
such as lock-free data-structures avoid critical sections by
instead using retry semantics, and linearizability [24] is used
to reason about correctness. In this way, they trade often
increased parallelism for complexity. As we’ll show later,
such approaches scale well within a socket (when sharing
only a last-level-cache (LLC)), but succumb to the significant
overheads of non-local memory access across sockets.

To avoid the cache-coherency and remote memory over-
heads, delegation [42] serializes data-structure access using
a “server core”. All “client cores” use message passing to pass
requests to the server, and it performs the data-structure
operations on behalf of the clients. As the data-structure is
only accessed by the server, no remote memory accesses are
made, nor is there contention. In contrast to shared memory
data-structures that move memory to computation, delegation
moves computation to the memory. However, this approach
is limited by the throughput of the server core, and requires
total allocation of the server core whose computation is used
for polling. Additionally, the separation of clients and server
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Figure 1: (a) Shared memory, (b) delegation, and (c)
DPS-based data-structures. Circles with threads are cores,
squares are sockets (i.e. memory localities), and trees are
data-structures that are resident in the memory for a spe-
cific socket, and might be synchronized using locks or non-
blocking means.

cores means that data-structures with large working sets

only use the server’s cache capacity, missing the opportunity
to use the aggregate LLC capacity.

In this paper we introduce Distributed, Delegated Paral-
lel Sections (DPS), which provides a set of mechanisms and
abstractions to partition data-structure namespace across a
number of memory localities (e.g. sockets). In doing so, oper-
ations use either local accesses, or a form of optimized, pos-
sibly asynchronous, delegation between peer computations.
An underlying set of observations motivate the structure and
mechanisms in DPS: First, shared-memory data-structures
are often very efficient when parallel accesses share a LLC.
Second, using message passing to distribute computation
between sockets effectively avoids remote memory accesses.
Figure 1 depicts shared memory, delegation-based, and DPS-
based data-structures. Darker, red lines denote the bottleneck
to scalability. Shared memory structures are shared between
sockets, thus resulting in synchronization and memory over-
heads, while delegation moves all data-structure computa-
tion to a server core. DPS partitions the namespaces of the
items stored in the data-structure, moves computation to the
memory locality (not server) that contains that item, and uses
the efficient parallelism of shared structures where they are
effective. Any core can perform data-structure operations
within its locality, on behalf of others, thus allowing data-
structure computations to scale across sockets.

The contributions of this research include (i) the design
of DPS that both avoids remote memory accesses, and ef-
fectively uses parallelism, (ii) the implementation of DPS
provides efficient and scalable distribution of data-structures
while enabling locality-aware computation, (iii) the appli-
cation of DPS to existing state-of-the-art concurrent data-
structures, and an evaluation that demonstrates significant
gains in performance and scalability for microbenchmarks,
concurrent data-structures, and the memcached application.

2 BACKGROUND AND MOTIVATION

Shared memory data-structures. To better understand
the properties of existing parallel data-structure approaches,
we evaluate a number of configurations on a four socket
system (see §5 more hardware details). Figure 2 plots perfor-
mance of the (fine-grained) lock-based (1b-) and lock-free
(1£-) versions of a binary search tree (bst) and skiplist (s1)
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Figure 2: The throughput and cache misses per operation
for binary tree and skiplist on a 40 core (80 hyperthread) sys-
tem. The vertical line represents aggregate LLC capacity.
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Figure 3: ffwd and DPS throughput with variant data-
structure operation length on 40 cores (80 hyperthreads).

from ASCYLIB [3]. The top and bottom graphs show through-
put and cache misses per operation, respectively. The left
graphs vary the workload’s update fraction which increase
cache coherency traffic and contention. In both graphs, the
data-structure fits into L2 cache. The right graphs vary the
data-structure size which increases cache capacity misses,
thus increasing non-local memory accesses.

The differences between lock-free and lock-based data-
structures have been thoroughly investigated in [14]. A num-
ber of trends are shared by both. Increasing the number of
necessary stores to the data-structure (due to the synchro-
nization to coordinate them) and the update rate forces cache
coherency and (remote) memory access overheads. As data-
structure size increases, capacity cache misses cause signifi-
cant increases in the number of (remote) memory accesses.
As the data-structure grows past the size of the LLC capac-
ity supported by each socket (as opposed to aggregate LLC
capacity), capacity misses significantly decrease throughput.
Delegation-based data-structure serialization. Delega-
tion partitions cores into those running non-data-structure
code (clients), and cores performing data-structure opera-
tions on behalf of the others (servers). £fwd [42] provides
an optimized implementation of this. Unfortunately, data-
structure accesses are serialized by servers, and as the data-
structure operations increase in length, or the number of
clients increases, data-structure computation throughput



complexity | coherence | locality | parallelism

lock-based easy large poor low
non-blocking | hard medium poor high
delegation easy none good low
DPS easy none good highest

Table 1: Comparison of data-structure implementations.

proportionally decreases. Figure 3 shows ffwd’s throughput

with an increasing data-structure operation length using 1

(s1) and 4 (s4) servers. Note that using one server is more

common as any data-structure with a serial implementation

is easily adapted to it.

Discussion. These results demonstrate the limitations of

the existing approaches. Importantly, their weaknesses are

often due to different factors:

o Shared data-structures fail to scale on NUMA machines
due to cache-coherency, and capacity misses that cause
remote memory accesses.

o Delegation is limited by the capacity of a statically fixed
set of data-structure servers.

DPS carefully combines both approaches to avoid these
weaknesses by partitioning the data-structure item’s names-
pace between localities, and moving associated data-structure
operations to those localities. Concurrent data-structures
are used within a memory locality (which includes multiple
cores). This enables a key balance: concurrent data-structures
are used up to, but not past their scalability limits, and dis-
tribution of computation is used to move computation to the
locality charged with the relevant portion of the data-structure.

Table 1 summarizes this comparison. Non-blocking data-
structures tend to be complicated, and the shared memory
implementations have non-trivial coherence overheads, and
since data-structure memory is spread across sockets, local-
ity is poor. Delegation’s parallelism is limited by the server
core’s capacity.

3 DPS DESIGN

DPS is designed to provide a simple interface that inter-
poses between the client performing operations on the data-
structure, and the data-structure operation logic itself. Its
runtime transparently moves computation to the locality con-
taining the requested data-structure items, and distributes
computation within that locality between multiple cores.
Therefore, it harnesses the parallelism of each core in the
system yet avoids remote memory accesses.

3.1 Interface
DPS provides a small and simple API:

® dps_t create(ds_init_fn, ds_args, partition_cnt, ns_sz, hash_fn)
Create a data-structure accessible via the DPS interface. The
ds_init_fn and ds_args are a data-structure specific initializa-
tion function, and arguments to it. The partition_cnt, ns_sz

and hash_fn specify the number of partitions the key names-
pace is spread across, size of the key namespace, and the hash
function to distribute keys across the namespace. Though
not listed here, there is a corresponding destroy function.

e completion_rec_t execute(ps_t dps, key, op_fn, args. . .)
Execute an operation (op_fn) with the specified arguments
on the dps DPS instance. The operation is to be performed on
data associated with key that is used to determine the locality
on which to execute the operation. This function does not
necessarily return the value of the data-structure’s execution
as it might execute asynchronously on a different socket.
Instead it returns a pointer to a completion record which is
used to determine when the return value is available.

e await_completion(completion_rec_t, *retval)

This function is called on a completion record, and returns
a boolean value to indicate if the data-structure’s output
is available. When the computation is done, the retval is
populated with the computation’s output.

The separation between execute and await_completion
enables DPS to use peer-based inter-socket communication
to move computation to the data-structure, and makes the
data-structure partitioning explicit. To avoid changing the
structure of client code, a synchronous API emulating a sim-
ple function call is easily built from this interface by directly
following execute with a loop on await_completion. Though
we use synchronous semantics for client code in most exam-
ples, we will describe an optimization using asynchronous
communication implemented on the same API (§4.4). Please
note, DPS does not offer synchronization to data-structures
it manages. It relies on users to provide their concurrent
implementation to execute.

3.2 System Architecture

Figure 4 depicts DPS’s system architecture. Data-structure
operation requests come from clients into the DPS runtime,
which then either executes them locally if they are destined
for the requesting core’s partition, or pass them to the des-
tination locality via efficient and scalable message passing
structures. Any core within a locality that requests execu-
tion or awaits a computation completion will also process
requests being made to its partition. This is the core of the
peer-based distributed delegation used by DPS, since every
core is used for data-structure processing. This avoids con-
straining the parallelism caused by devoting specific cores
solely to data-structure processing (as in delegation).

The design optimizes around a number of goals:

Memory locality. By splitting the data-structure names-
pace (indexed by key) across partitions that each map to the
underlying memory organization of the system, computa-
tion is performed where it has high locality to the memory,
within a single the LLC and socket.
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Figure 4: DPS architecture. In DPS, each namespace parti-
tion binds a portion of the data-structure to the cores and
memory on its associated locality. An operation is executed
either locally or remotely according to its key.

Workload- and data-structure-driven parallelism. The
parallelism of DPS is driven by the workload, and by the
scalability of the data-structure implementations. First, since
each core is active in processing data-structure operations
within its locality, the amount of parallelism of DPS is bound
only by the number of cores in the system. Second, within a
locality, all cores access their data-structure using concurrent
data-structures that can scale well up to the locality size. The
hashing function is chosen to spread computation among
partitions as much as possible to leverage inter-partition par-
allelism and the distributed bandwidth of NUMA memories.
Inter-partition communication efficiency. A message-
passing layer transfers data-structure operation requests be-
tween partitions. This communication layer is implemented
using shared memory structures, and as it is in the fast-path
to execute data-structure operations, it must be optimized.
Two factors impact cost of delegation path, the costs of syn-
chronization and cache efficiency. The data-structures back-
ing the communication paths focus on using wait-free struc-
tures that guarantee each core’s progress without spinning,
and replicate them to ensure that cache-lines are pair-wise
shared between requesting cores and partitions, to avoid
globally shared, non-scalable cache-line modifications.
Maximize resource utilization. In previous delegation sys-
tems, some cores are reserved for server threads and cannot
carry out other work. Additionally, after sending a request
to a server, a synchronous client naively spins waiting for
a reply. Such spinning wastes CPU cycles and decreases
whole system utilization as operation length increases (see
Figure 3). In contrast, since each core can execute both client
code and data-structure operations in DPS, when execute
and await_completion are called, they additionally query for
data-structure operation requests from other partitions. Thus
they overlap data-structure computation in their partition,
with their own requests for other partitions. This signif-
icantly increases throughput, and enables the peer-based
computation of data-structure logic on all cores.

3.3 Assumptions and Consistency

To split a data-structure across multiple localities, DPS makes
some assumptions about the properties of the data-structure

and execution environment. Each item in the data-structure
must be associated with a key (e.g. a hash). This defines
a namespace for the data-structure, which DPS partitions
across localities. Though it is possible to perform the parti-
tioning dynamically, and balance between sockets, in this
paper we assume a static partitioning.

By leveraging concurrent implementations, DPS preserves
any ordering and consistency guarantees of that implemen-
tation (e.g. linearizability [24]) within a partition. However,
data-structure operations that touch data spread across dif-
ferent partitions are issued to the corresponding localities in
parallel. The DPS prototype does not maintain ordering guar-
antees across all partitions. To discuss the consistency proper-
ties of the system, we leverage the taxonomies of consistency
from Highly Available Transactions [4] and Adya [50].

Despite the lack of ordering guarantees across partitions,
DPS provides “read you writes” and monotonic writes as it
focuses on partitioning, not replication of data. Simply put, a
thread that writes two values will see (read) those writes in
order. However, it does not, by default, provide transaction-
level consistency such as read uncommitted. That is to say,
dirty writes [6] are possible: two parallel writes across par-
titions can be committed to partitions in different orders.
However, we observe that strong consistency can be pro-
vided in a few common situations:

Each operation’s modifications are local to a single par-
tition. DPS inherits the same consistency properties if data-
structure writes each only modify a single partition. This is a
relatively common-case as data-structure updates often im-
pact only a single data value. Even common APIs for B+-trees
(a range-optimized data-structure) often only provide single
value insert and delete. A study of key-value stores in [52]
shows that 3/4 of the studied systems provide no consistency
for multi-key operations, thus making DPS trivially applica-
ble to most studied data-structures. If data-structures must
provide atomic updates to multiple data-values, the user-
provided hash function can partition the data such that all
of an operation’s updates are localized to a single partition.
Application-assisted serialization. A large body of highly
concurrent data-structures [8, 12, 28, 30, 32, 43] do not pro-
vide transaction-level consistency solely by their implemen-
tation, and need application assistance to support transac-
tions. For example, all data-structure operations submitted
to the data-structure can be tagged with a monotonically
increasing timestamp that the backing data-structure uses
to serialize updates. This avoids dirty writes [5], and pro-
vides read uncommitted consistency. Anna [52] uses this
technique to order updates. Silo [49], as another example,
supports transaction by adding additional transaction ver-
sion and locks on top of Masstree [32]. The downside is that
data-structures must be designed to adhere to the applica-
tion specific logic (such as version or timestamp ordering),



exe(op,k) |
| I false ‘true

id = hash(k) op(k) —
| query @ wait

completion(op)

ns_lookup(id) }
local ~
| remote

delegate op, k) S op'(k') k

(1ol I | @l 1]

Figure 5: The work-flow of DPS on a single core. The hash-
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but these technique are widely used in practical systems to
provide read uncommited consistency.

Relaxed semantics and weak consistency are common [1,
19, 22] and desirable for such concurrent data-structures
as they can provide increased performance. Motivated by
the inherent difficulty in providing strong consistency (e.g.
linearizability) with high availability in a distributed environ-
ment (see the CAP Theorem [7] and HAT [4]), §4.4 discusses
DPS extensions which further relax consistency to further
increase performance.

3.4 Generality

DPS trivially supports operations that perform data-structure
reads, and single-partition updates. In this paper, we mainly
evaluate DPS support for these data-structures. However,
some data-structure operations require context across the en-
tire data-structure. For example, sorting and priority queues
encode an ordering constraint across all data items, and
stack and queue operations encode relative insertion-time
constraints. DPS broadcasts an operation across all partitions
and determine on which partition to perform further opera-
tions. For example, to support a priority queue in §5, DPS
peeks at the head of each partition’s queue, and dequeues
from the one with the highest priority.

4 DPS IMPLEMENTATION

DPS is implemented as a run-time library on top of Par-
Sec [51], which provides memory reclamation, locking sup-
port and namespace management. The DPS runtime par-
titions namespace, delegates data-structure operations to
proper partitions and serves remote computation requests.
Figure 5 gives the overview of the work-flow on a single core.
When DPS handles a data-structure operation, it first looks
up the operating key in the data-structure’s namespace to
determine the operation’s destination partition (§4.1) (step

(D). If the determined (orange, left) partition is not local, DPS
migrates the operation to the remote partition (§4.2) (step
). Instead of busy waiting for the response, DPS queries
and processes data-structure operations within its (green,
right) partition that are requested by others (§4.3, see step
(3)). If instead the operation is local (or if a query determines
another core has performed a delegation), it is carried out
immediately on the data-structure (step )

4.1 Namespace Partition and Lookup

A DPS namespace partition consists of a subset of the data-
structure key space. A data-structure node belongs to a par-
tition when its key falls into the range of that partition. Each
namespace partition is bound to a subset of cores that all
share a single NUMA node that we call a “locality” (as in
“memory locality”). Only threads running within that locality
can create or manipulate portions of data-structure belong-
ing to the corresponding partition. Moreover, memory are
by default allocated on NUMA node local to the allocating
threads. Thus, DPS creates a one-to-one mapping between
a namespace partition and a designated NUMA memory
locality and threads running within that NUMA node.

The size and count of partitions are assigned by clients.
Usually one should choose the locality size smaller than the
scalability “knee” of the managed concurrent data-structure.
A DPS partition structure holds both its metadata (such as
its id and size), and data-structure-specific data for the par-
tition (such as the data-structure root and lock). DPS ex-
poses additional interfaces to set and retrieve the user speci-
fied data. Furthermore, the lookup in ParSec namespaces is
synchronization-free, incurring negligible overhead in DPS.

In order to convert arbitrary key (e.g. strings) into the flat
scalar ParSec namespace, DPS first hashes the key into an
integer using a (user-provided) hash function. This function
gives applications the ability to control the namespace map-
ping. For instance, users can use an uniform hash to evenly
distribute hot keys or use a consistent hash to preserve some
locality in the original key space.

4.2 Task Delegation

If a key’s partition is the local (i.e. the current core is in its
locality), DPS executes the operation locally via function
call. Otherwise, it delegates the operation to the remote lo-
cality via message passing. For simplicity, the current DPS
implementation packs both delegation request and comple-
tion record into the same message. Each message occupies
one cache line and contains a pointer to the target partition,
a function pointer, a return value, a toggle bit and up to 4
arguments. The toggle bit is set by threads when they send
new requests and is unset by the remote partition when it
finishes processing the request.



Each (core, locality) pair maintains a dedicated fixed size
ring buffer of messages, which is allocated on the locality’s
NUMA node. Thanks to the toggle bit in request structure,
we do not need to compare head and tail of the ring buffer
to check its status. When a sending thread finds an entry
whose toggle bit is set, the ring buffer is full, and it waits
for remote partition to finish. Similar logic applies to the
receive-side, which is discussed next.

4.3 Overlapped Delegation Request and
Data-Structure Processing

To better utilize parallel resources, DPS processing in a local-
ity neither reserves cores nor busy waits. All threads in the
DPS runtime are identical peers. They both delegate opera-
tions to remote localities, and serve requests delegated to the
current locality. DPS accomplishes this by internally switch-
ing the role of a thread. Specifically, as shown in Figure 5,
after a thread sends a request message, it goes to check its
assigned ring buffers (§4.2), and handles requests if there are
any. As a result, a thread alternatively checks for its response,
and for requests from remote localities within a loop until the
response is available. However, if multiple cores in the same
locality concurrently retrieve delegation requests from the
same ring buffer synchronization (and the associated over-
head) is necessary. To avoid synchronization around the ring
buffer, we organize request ring buffers of the same locality
into a flat array, and this array is also divided across cores in
the partition. In this way, different cores access disjoint parts
of the array of ring buffers, and need no synchronization.
DPS exposes a parameter to determine the number of checks
performed on the ring buffer for each of its own requests.
This enables users to control the trade-off between latency
of local and remote operations. Though that parameter is
static in our current implementation, a back-off strategy can
adjust it adaptively based on the workload.

4.4 Extensions and Optimizations

The basic implementation of DPS is simple, but we’ve ex-
tended and optimized it in several important ways:

Range operations. Operations over a range of keys are
challenging as the key range can be scattered over multi-
ple partitions. To support range operations, DPS offers an
additional API, which broadcasts range operations to all lo-
calities, and requires users to provide an aggregate function
to merge the results. Through this simple mechanism, DPS
supports a large range of operations. For example, to support
findMin method in priority queue, we use an aggregation
function to return the object with the smallest key among
all localities’ output. However, the range operation is not lin-
earizable, because the execution of aggregation and parallel
data-structure operations in each partition are not atomic.

Local execution. DPS migrates computations to a remote
locality and in doing so it pays the cost of message pass-
ing. If the cost of message passing is larger than the cost of
memory locality, then delegation will decrease performance.
Thus, it is valuable to control whether an operation is ex-
ecuted locally or remotely. An additional DPS API allows
local execution of specific operations. As DPS works over
the already linearizable concurrent data-structure, the com-
putational locality does not impact operation’s correctness.
However, memory modifications and coordination across
sockets are expensive (motivating DPS in the first place).
Thus, we mainly use local execution of operations for read-
only data-structure operations, especially with lock-free data-
structures. With this, DPS enables the flexible use of com-
putation placement to best trade delegation versus shared
memory coordination.

Asynchronous execution. Computation outside of data-
structure processing can increase DPS latency (we study this
effect in §5.1). This latency can be hidden when an operation
has no return values, it does not necessarily need to wait for
a response. In such a case, DPS includes an asynchronous
API, which returns immediately after delivering requests
for remote execution. However, asynchronous executions
accumulate requests and can fill up the ring buffer. In that
case, the thread waits for an available request slot, while per-
forming operations delegated to it. Asynchronous requests
reduce cache-coherency traffic, and further overlap client
and data-structure computation. await_completion needs
to be inserted properly as a barrier to enforce ordering of
dependent asynchronous operations. DPS with asynchro-
nous execution can be easily integrated into an event-driven
programming model, which we leave as future work.
Liveness and responsiveness. If a thread is blocked, pre-
empted or doing computation outside DPS, it cannot respond
to delegation requests in a timely manner. To improve re-
sponsiveness, as shown in §5.1, applications can use the
asynchronous API to hide the latency caused by non-DPS
operations. To ensure liveness, one can also devote one core
in each locality only for delegation handling. For this pur-
pose, DPS exposes an interface which is used to check all
request ring buffers in the requesting locality and process
any pending delegations. As the designated core causes con-
current access to request ring buffers, each ring buffer is
extended with a lock which rarely contended only when the
designated core polls incoming ring-buffers.

4.5 Porting Code to DPS

Overall, porting data-structure to DPS is straightforward
and requires little effort. Global variables need to be turned
into partition-wide variables, and are retrieved through DPS
partitions. Additionally, the underneath memory allocator
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is required to promote NUMA-local memory allocation. Ex-
cept to memcached, we port all data-structures used in §5
with less than 50 lines modification. Because memcached
uses a large number of global variables, porting memcached
involves more effort: 1598 lines of code are modified. How-
ever, all those modifications are mechanical, and no core
memcached logic (such as slab allocator and LRU lists) is
changed. To ease data-structure partitioning, DPS provides
macros to define and use partition-wide variables (similar to
per-cpu variables in the Linux kernel).

5 EVALUATION

We use a system with 48 GB RAM and four Intel Xeon E7-
4850 sockets. Each socket is a NUMA node with 10 cores, a
shared 24 MB L3 cache, and a private per-core L2 (L1) cache
of 256 (64) KB. Cache lines are 64 bytes, and our processor
fetches cache-lines from memory as 128 byte aligned regions.
Each core operates at 2.0 GHz and has two hyperthreads,
leading to 80 hyperthreads in total. All experiments are run-
ning under 64 bit Ubuntu 14.04 with Linux kernel 4.4. All
threads are pinned to hyperthreads. For tests with n “cores”,
n is the number of hyperthreads. For a value of n, we allocate
a minimal number of sockets with a single hyperthread per
core, then (n > 40) add hyperthreads across a minimal num-
ber of sockets. We report the aggregate throughput across
all testing threads, and each result is the average value of 3
repetitions of 10 second runs. All micro benchmarks (§5.1)
choose keys uniformly, while §5.2 and §5.3 discuss skewed
workloads . DPS fixes its locality size to 10 hyperthreads,
which are spread across the minimal number of cores and
sockets. Unless otherwise stated, DPS runs in synchronous
mode without the local execution optimization. The default
NUMA memory allocation policy is node local.

5.1 Micro-benchmarks

Delegation Overhead. We first perform micro-benchmarks
to compare delegation overhead of DPS with ffwd [42]. For
ffwd, we measure its performance using both a single server
(s1) and four servers (s4), the maximal number of servers
it currently supports. To focus on the overhead of the dele-
gation mechanisms, the operation just spins for a specified

amount of time. Figure 6(a) shows the aggregate throughput
with two operation lengths: empty and 500 cycles.

First, we examine empty operations. At very low core
counts, DPS’s throughput is high as all execution is via func-
tion call within a locality. When core count is smaller than
60, DPS has higher throughput than ffwd-s1, because DPS
harnesses more parallelism. However, with more cores, the
benefits of ffwd’s batching (very short) delegation requests
becomes more apparent, resulting in higher throughput than
DPS. £fwd-s4 haslower throughput than DPS with less than
40 cores, because ffwd incurs more cache traffic than DPS.
ffwd statically binds one server to one socket which means
that it incurs cache traffic across all sockets, even when client
threads need fewer sockets. After all sockets are involved,
ffwd-s4 starts to get higher throughput than DPS. To anal-
yse the batch optimization impact on ffwd performance, let
us consider the number of cache transactions in the delega-
tion path. A ffwd client has two cache-coherency operations
per request (one for sending and one for receiving). A server
has one cache miss for receiving each request, but only one
cache coherency operation for sending a batch of (up to 15)
responses. When able to maximally batch replies, ffwd im-
poses 46 cache operations per batch, while the same number
of operations in DPS causes 60, a 30% increase. These results
confirm that ffwd’s implementation is highly optimized.

However, as operations length increase, the advantages of
fftwd diminish. For operation lengths of 500 cycles, neither
ffwd-s1 nor ffwd-s4 are competitive with DPS. Servers
in ffwd quickly saturate, resulting in flatlined performance.
With an increasing operation duration (Figure 3 in §2), ffwd’s
throughput degrades steeply due to the delegation server
serialization (for both 1 and 4 servers). In contrast, DPS per-
forms better with a modest operation length (400 cycles), as
its hierarchical design enables it to utilize all available cores.
Furthermore, the performance decrease in DPS is very small,
illustrating the effectiveness of overlapping computation in
different localities.

Delegation Responsiveness. In DPS, the processing of del-
egated operations is carried out when waiting for response
(i.e. threads need to issue data-structure operations using
DPS). Thus, as computation outside of the data-structure
increases, DPS risks poor responsiveness. Figure 6(b) shows
the throughput of empty operations, as we increase the delay
between consecutive two operation. In addition to basic DPS
and ffwd, we also include the result of DPS with the asyn-
chronous optimization from §4.4 (DPS-a). Although ffwd
performs better than basic DPS for empty operations, it is
not competitive with the asynchronous DPS. The results
demonstrate that the asynchronous execution in DPS suc-
cessfully hides the delays between invocations.

Working set and cache contention. This experiment per-
forms a synthetic benchmark that allows us to alter working
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set (by increasing the number of objects), and the number of
modified cache-lines (thus the amount of cache-coherency
overhead). Each thread uniformly at random chooses an ob-
ject and performs the data-structure operation. Ffwd deploys
four servers and statically partitions the data-structure across
servers. Each client delegates its operation to the appropri-
ate server. We compare against locking, where each object
is protected with a separate MCS lock [34]. The same lock-
ing implementation is used in DPS to synchronize multiple
threads within a locality, and the index of the object is used
as the namespace key. Figure 7 compares the throughput of
these techniques under various setups.

Figure 7(a) has 64 objects, each with 4 cache-line modi-
fications. With fewer cores, the contention is minor, as the
number of objects are sufficiently larger than the number of
cores. In such a case, the fine-grain locking can take the ad-
vantage of parallelism, and achieves the highest throughput.
DPS also gets benefits from parallelism, but its interposi-
tion on data-structure processing adds a slight overhead
over MCS. As we increase the core count, contention also
increases, continuously decreasing MCS throughput. This
contention also limits DPS’s scalability, but its ability to local-
ize cache traffic within a socket enables it to perform better
than the locking method. In this case, ffwd steadily gains
in throughput with increasing workload since operations
are short.Though not the best option for these settings, DPS
remains more consistently competitive across core counts
than the other options.

When more capacity or coherency cache misses are pro-
duced, DPS presents a substantial performance boost. Fig-
ure 7(b) extends the object size to 64 cache lines, pressuring
cache capacityWith only 64 locks, cache-coherency over-
heads prevent MCS from scaling. ffwd benefits from avoid-
ing contention, but longer operations prevent it scaling at

a rate of DPS. 512 objects are used in Figure 7(c). This de-
creases lock contention for both MCS and each locality in
DPS, increasing throughput relative to ffwd. For higher core
counts, the preservation of memory locality in DPS enables
it to scale well versus MCS. However, when cache-coherency
overheads shrink in Figure 7(d) (only 4 cache-lines are modi-
fied), MCS locks suffer little overhead. In Figure 7(d), opera-
tions are short, thus ffwd increases in throughput (tracking
DPS with the exception of for low core counts).

To better understand the system factors that impact which
approach is most scalable, we measure their throughput on
80 cores as we vary the number of objects (Figure 8(a)), and
cache-lines (Figure 8(b)). In Figure 8(a), the object size is fixed
to 32 cache lines. For a small number of objects, MCS con-
tends a small number of locks while DPS and ffwd effectively
avoid expensive contention. With an increasing number of
objects, ffwd’s performance degrades due to less effective use
of L1 and L2 caches while DPS and MCS effectively use the
decreased lock contention, and distributed caches to scale
well. Figure 8(b) uses 128 objects, and varies the modified
working set. Ffwd does well with short data-structure opera-
tions (few cache-line modifications), but degrades as they in-
crease. MCS locks struggle to maintain sufficient parallelism
with only 128 striped locks. Both DPS and MCS decrease in
performance due to increased critical section length (even if
it is restricted to a locality in DPS).

Figures 8(c) and (d) plot the LLC cache-miss rates for the
same setups. These confirm that (1) locking does signifi-
cantly increase the number of cache misses (vertical offset
of MCS versus other techniques); (2) shared memory struc-
tures that modify multiple cache-lines entail unavoidable
overheads (increasing MCS line in 8(b)); and (3) the ffwd
implementation that batches replies is able to decrease the
number of cache misses compared to DPS. The design of
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DPS
929.385

ffwd-s4
844.839

MCS (local)
365.922

MCS (interleave)
907.051

Table 2: Micro-benchmarks: throughput (ops/s) of atomic
read-write object with 5GB working set.

DPS compensates for the additional overhead over ffwd by
increasing available parallelism.

To further assess the use of DPS with large working sets,
Table 2 reports the throughput on 80 cores with a 5GB
working set, with 512 10MB-sized objects. MCS performs
worst under the default node local NUMA memory allo-
cation policy, as a single NUMA node is saturated. Using the
interleave NUMA policy increases throughput by a fac-
tor of 2.5. Despite ffwd’s NUMA awareness, it’s throughput
suffers due to the lack of sufficient parallelism. Though this
workload is memory-bound in the data-structure, DPS best
uses NUMA locality and effectively uses parallelism.

5.2 Data structures

This section presents an exhaustive evaluation of the state-of-
the-art concurrent data-structure algorithms and parallelism
techniques, and compares them with DPS. These experi-
ments study four data-structures, a sorted singly linked list
(11), a binary search tree (bst), a skip list (s1) and a pri-
ority queue (pq). All these data-structures represent a set
of nodes, each of them having a unique key and value. 11,
bst and sl have three main operations, lookup, insert
and remove. pq provides two extra operations, findMin
and removeMin. All data-structure implementations and the
benchmark framework are taken from ASCYLIB library [3].
Our benchmarks explore a broad range of parameter set-
tings, including workload type (uniform or skewed), update
percentage, data-structures size and core count. Each bench-
mark populates the data-structure with the given size, and a
key range doubling the initial size. In each thread’s iteration,
the benchmark picks a key from the key range based on the
specified distribution, then determines if the operation is an
update operation according to the update percentage. Update
operations include half insertions, half removals.

The DPS versions use one of the existing concurrent data-
structures within each locality shown in Figure 9, which
depicts the performance of existing version and the DPS re-
sult (overlaid). The findMin operation in pq is implemented
using DPS range operations (§4.4). The system configura-
tions shown here are those that existing implementations
struggle most with: high update workload (Figure 9(a)), and
large working sets (Figure 9(b)). In these setups, DPS delivers
performance improvements for all data-structures, except
for pq in Figure 9(b), by enabling better memory locality and
avoiding cache-line contention bottlenecks. For instance, un-
der high contention, DPS improves lock-based bst and sl
up to 6 and 20 times, respectively (Figure 9(a)). With large
working set, DPS improves lock-free algorithms of bst and
sl by 1.4 and 3 times, respectively (Figure 9(b)). With a low
update ratio (Figure 9(b)), the most visited node in pq is its
head, thus, leading to few cache misses. While, DPS fails to
improve pq in this case due to message passing overhead.

Two important observations: First, DPS enables some of
the simpler and less scalable algorithms to approach the per-
formance of their sophisticated counterparts. For example,
with DPS the naive gl-m list is on par with the complicated
Michael list. Second, DPS provides more predictable perfor-
mance. For instance, 1f-n and 1£f-f different across work-
loads (a) and (b). However, DPS confines remote memory ac-
cesses using message passing, and localizes cache contention
to a single LLC, which provide more consistent performance
across workloads.

To understand the details behind the bars in Figure 9, we
separately evaluate the data-structures. We omit the details
behind the priority queue in the interest of brevity. In ad-
dition to the data-structures listed above, we compare with
the ffwd delegation system, OPTIK [18], a design pattern for
optimistic concurrency and RLU [33].

Linked List. In this benchmark, DPS is integrated with the
ParSec linked list, which uses ParSec quiescence for mem-
ory reclamation [51] and an MCS lock to serialize writers.
Ffwd uses a single server (as in [42]) and is built on top of a
lazy linked list. In ffwd, clients traverse the list locally, and
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Figure 12: Throughput of skip lists for different workloads.

delegate node modifications to the server. Thus, ffwd relies
on the underlying concurrent lazy algorithm to synchronize
clients and server. OPTIK-based linked list uses fine-grained
OPTIK locks with the node caching optimization.

Figure 10 shows the throughput of linked list on various
workloads. Figure 10(a) and (b) show its scalability under
high contention, and large working set cases, respectively.
As the core count grows, the increased inter-socket cache
contention limits the scalability of all locality-unaware tech-
niques. Only DPS avoids most non-local memory access and
cache-coherency traffic, and with 80 cores DPS has 4.3 times
improvements over the next best implementation (OPTIK).

To better understand the impact of memory locality issues,
Figures 10(c) and (d) show the performance as we vary the
update ratio and the list length with 80 cores (note the log
scales). The throughput of all methods drop with an increas-
ing update ratio. DPS and RLU degrade quicker than others,
because of the single writer lock used in ParSec linked list
and the blocked quiescence detection in rlu_synchronize.
The performance of the linked list decreases quickly (Fig-
ure 10(d)), due to its O(n) complexity. An interesting obser-
vation is that ffwd drops from the second best to the worst
due to increased operation latency. It is worth noting that
the partitioning of the link-list’s namespace across localities

in DPS has another side-effect: each partition manages a
shorter list. This is an additional factor in DPS performance.
Binary search tree. bst is an interesting case as efficient,
specialized implementations exist. We use 1b-b and 1f-n
as representatives of lock-based and lock-free algorithms, re-
spectively, Ffwd uses four servers, and each server manages
a sharding of the tree. In that case, all read and update opera-
tions are delegated to servers, that each use a barebones bst
implementation. OPTIK reuses the BST-TK implementation
from ASCY [14], which is also the internal data-structure
used by DPS.

Figure 11 depicts the throughput of the various approaches.
Under high contention (Figure 11(a)), there are three trends:
(1) OPTIK and 1£f-n impose little overhead for few cores,
and flatline when saturating physical cores, (2) DPS and
ffwd scale well as they avoid remote memory accesses, and
(3) 1b-b and RLU require more complex updates (rotations
for 1b-b and quiescence for RLU), thus scale poorly. Of note,
DPS does take advantage of local computation for 10 cores.
The scalability of OPTIK and 1f-n indicate that the localities
for DPS might benefit from being larger in this case.

Figure 11(b) focuses on a large working set, with a read-
heavy workload. 1b-b has the highest throughput, due to an
optimistic read-path (no stores), but also since it maintains a



balanced tree (max depth 25, versus 48, 60 for DPS, OPTIK).
ffwd has difficulty scaling, as larger the tree causes longer
operations that saturate delegation servers, whereas DPS
scales as it leverages more parallelism. Figure 11(c) and (d)
vary the degree of cache coherency traffic and working set,
and they reinforce the conclusions above. In Figure 11(d),
the vertical line represents the size of aggregate LLC cache.
DPS and ffwd maintain performance invariant on update
ratios, though for read-only workloads their delegation in-
frastructure adds significant overhead relative to the other
approaches. For large working sets, when the data-structure
size exceeds the LLC capacity, DPS makes use of distributed
caches and local memory accesses while all shared memory
implementations suffer remote memory accesses, and ffwd
suffers from longer operation lengths due to cache thrashing.
In summary: 1f-n and OPTIK perform especially well for
update-intensive workloads. 1b-b maintains a balanced tree,
and has very good performance with few updates. While
RLU’s performance compared to many of the customized
implementations is lacking, it offers a much simpler interface
and broader applicability. ffwd generally does well when
delegated operations are short, but is quickly overloaded
with longer operations. DPS is particularly effective with a
large core count as it both harnesses parallelism, well-utilizes
LLCs, and avoids remote memory traffic. However, at a small
scale, interposition of the runtime on local operations can
cause significant overhead for small update ratios.
Skip list. Figure 12 depicts all s1 results. We omit RLU as
we could not find a public s1 implementation. Overall, s1
behaves very similar to bst but for a few trends. First, ffwd
performs consistently worse as its provided implementation
only supports one server. Concurrent sl implementations
are less efficient than their bst counterpart in general. Thus,
the relative performance of DPS tends to be more favor-
able. Unlike 1b-b bst, the sl read-heavy, large working set
workloads aren’t as scalable. Thus, even for a read-heavy
workload with a large working set, DPS achieves at least a
3.2 times higher throughput than the others.

5.3 Application study: memcached

To evaluate DPS in real-world applications, we use memcached
(https://memcached.org/), a popular in-memory key-value
cache infrastructure in data centers [39]. At first glance,
memcached is a rather counter-intuitive use case for DPS.
The underlying data-structure of memcached is a hash table
protected by per-bucket locks. It isn’t clear that DPS could im-
prove memcached. First, fine-grained locking enables large
hash tables to effectively use parallelism, marginalizing lock
contention. Second, memcached is designed for a read-most
workload. Regardless, we find that memcached still suffers
from significant remote memory access overhead due to its

large memory footprint. Third, memcached contains compli-
cated connections between its hash table, LRU list, and the
backend memory allocator. Only optimizing its hash table is
not sufficient to scale the whole system. As reported in §4.5,
this did not prohibit the porting effort.

We compare five memcached implementations. (1) stock
memcached (version 1.5.4). (2) ffwd memcached (using ver-
sion 1.4.6), where all get and set operations are delegated
to a single server without any synchronization (as in [42]).
(3) ParSec memcached (using version 1.4.22), a highly cus-
tomized implementation, which replaces slab allocator, LRU
list and hash table in memcached with its own implemen-
tation [51]. (4) DPS memcached, which partitions not only
the hash table, but also all associated data-structures. It also
asynchronously delegates set requests to remote partitions,
while get requests remain synchronous delegations. and
(5) DPS ParSec, where DPS is applied on top of ParSec
memcached. To leverage the optimized read operation in Par-
Sec, DPS ParSec always locally execute get requests (§4.4),
while still asynchronously delegates set requests. Similar
to [51], we use YCSB [13] to generate testing traces, follow-
ing a Zipfian distribution. Each trace has 10 million requests
(16 Byte key), and are partitioned across all testing threads.
memcached is pre-populated with 1 million items. To focus
on data-structure scalability, we invoke memcached directly,
instead of generating requests in remote (networked) clients.
Throughput Discussion. Figure 13 varies core count, set ra-
tio, and value size. Figure 13(a) shows the performance under
a typical memcached workload - low set ratio with small
value size. The performance of stock memcached is good, ben-
efiting from the inherent parallelism in the hash table, and
the read-most workload. Regardless, the stock memcached
does cause significant remote memory accesses. In contrast,
DPS memcached largely avoids such remote memory ac-
cesses, resulting in a throughput improvement of over 200%
over the stock memcached. Thanks to the highly customized
implementation which avoids stores on the get path, Par-
Sec memcached greatly outperforms the others. However,
DPS ParSec still improves on it by increasing the locality
of modifications. DPS ParSec combines the advantages of
both DPS and ParSec, namely locally executed gets, and
asynchronously delegated sets.

In contrast, Figure 13(b) investigates large value sizes com-
bined with a high update ratio workload. Though this is not
a common workload, it presents a chance to understand each
technique more comprehensively. Under such severe work-
load, even ParSec memcached fails to scale beyond 40 cores.
Of significant note is that DPS produces the same throughput
as ParSec on 80 cores, without significantly reimplementing
memcached. This is surprising as a relatively straightforward
data-structure, when accessed using DPS is competitive with
a highly specialized and complicated one. Figure 13(c) and
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Figure 13: Memcached throughput with different workload

(d) further investigate memory locality effects. With increas-
ing update ratio, throughput consistently and predictably
decreases. Interestingly, as the data-structure size increases
(in (d)), the local modifications of DPS have better through-
put than ParSec memcached. As the value size grows in (d),
locality-unaware methods drop in throughput rapidly. DPS
ParSec behaves similarly, as its local get execution also ac-
cess remote memory. DPS memcached is less sensitive to
value size, and eventually achieves better throughput than
ParSec memcached.

In all system setups, ffwd memcached doesn’t provide high
throughput. It does have a higher throughput with a high set
ratio (> 50%) than stock memcached (e.g. 63% higher through-
put with 99% set). As reported in [42], when compared to
an old version of memcached that uses a global lock, it con-
sistently achieves higher throughput (3x higher). However,
the throughput of ffwd memcached is limited by the single
ffwd server. In contrast, DPS approaches have much higher
throughput as they utilize full system parallelism, but require
application modifications (detailed in § 4.5). Though we use
an older version of memcached (from [42]), the global lock
it employs is not prohibitive with the serialized server.
Latency Discussion. memcached tail latency is another im-
portant metric. Due to space limitation, we omit its result

graph. With fewer than 30 cores, both ffwd and DPS memcached

have larger latency due to their delegation overhead. How-
ever, with more cores, the latency of stock memcached in-
creases quickly because of its lock acquisition overhead and
poor cache locality. DPS has significantly smaller latency
than ffwd due to request’s serialization in ffwd. ParSec and
DPS ParSec always have the lowest latency, thanks to the
optimized read operation in ParSec. On 80 cores, DPS based
implementations have lower latency by a factor of 23 and
1.6 than the stock and ParSec memcached, respectively.

6 RELATED WORK

Concurrent data-structures. There is a large body of re-
search designing efficient concurrent data-structures [1, 2, 8,
20, 23, 25, 3638, 45, 48]. ASCY [14] and Synchrobench [17]
provide surveys of concurrent data-structures. Due to stores
to shared synchronization variables, those implementations
usually hit their scalability limit when inter-socket cache
coherency are involved. DPS uses those concurrent data-
structures within its localities to avoid their scalability limits.
CPHash [35] is a partitioned hash table, that uses message

passing to transfer operations among partitions. [19, 22, 41]
use multiple data-structure instances to distribute concur-
rent access. Though DPS exploits similar ideas, DPS is more
general as is not confined to a specific data-structure.
Delegation and combining. Delegation systems [9, 27, 40,
42] are designed for improving memory locality and eliminat-
ing synchronization cost. Combining is a specific delegation
implementation [16, 21, 31, 47]. Most of them only allow one
server to run each time and do not utilize efficient concurrent
data-structure implementations inside their server, whereas
DPS employs multiple partitions to run in parallel. Further-
more, DPS focuses on optimizing memory locality, providing
no means of synchronization. The separation between mem-
ory locality optimization and data-structure synchronization
gives significant performance advantages over previous del-
egation approaches.

NUMA-aware techniques. Cohort locks [15] presents a hi-
erarchical approach to construct NUMA-aware locks. Calciu
et al. designs a NUMA-friendly stack [10] by eliminating
reciprocal operations (push and pop). Shoal [26] automati-
cally replicates, distributes or partitions arrays across NUMA
domains. NR [11] provides a black-box approach to trans-
fer sequential data-structures into NUMA-aware concurrent
implementations, which replicates data-structures on each
NUMA node and uses a shared log to synchronize between
replicas. Lepers at el. [29] present a thread and memory place-
ment on asymmetry NUMA system, and FlexSC [46] uses
asynchronous message passing to enhance system call local-
ity. DPS shares the broad ideas of NUMA-awareness with
those techniques, but focuses on a hierarchical combination
of message-passing and shared memory structures.

7 CONCLUSIONS

We introduce the Distributed, Delegated Parallel Sections (DPS)
runtime that uses a peer-computation system to distribute
data-structure operations to specific localities. It partitions
the data-structure namespace to maintain NUMA memory
locality, and limits parallelism within a locality, enabling
scalable use of concurrent data-structures. DPS uses mes-
sage passing to move operations to their data’s locality, and
efficient shared memory structures within. We’ve demon-
strated the utility and scalability of the system across mi-
crobenchmarks, data-structures, and via large gains over
stock memcached with more than a factor of 3.1 improve-
ments in throughput, and 23x decreases in tail latency.
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