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MxU: Towards Predictable, Flexible, and Efficient Memory

Access Control for the Secure IoT

RUNYU PAN and GABRIEL PARMER, The George Washington University

The advanced functionality requirements of modern embedded and Internet of Things (IoT) devices – from

autonomous vehicles, to city and power-grid management – are driving an ever-increasing software com-

plexity. At the same time, the pervasive internet connections of these systems necessitate the fundamental

design of security into these devices. The isolation of complex features from those that are critical through

protection domains is an effective means to constrain the scope of faults and security breaches. Common

hardware-provided memory facilities to enforce protection domains through memory access control – in-

cluding Memory Management Units (MMUs) usually found in microprocessors, and Memory Protection Units

(MPUs) usually found in microcontrollers – must meet the goals of enabling flexible, efficient and dynamic

management of memory, and must enable tight bounds on the worst-case execution of critical code. Unfor-

tunately, current system memory management facilities are ill-prepared to handle this challenge: MMUs

that use extensive caches to achieve strong average-case performance suffer from debilitating worst-case

and even average-case behavior under hefty interference, while MPUs struggle to provide flexible memory

management.

This paper details MxU, a memory protection and allocation abstraction that integrates temporal specifi-

cations into the memory management subsystem, to enable portable code to achieve both predictable, tightly-

bounded execution and dynamic management across both MMU- and MPU-based systems. We implement

MxU in the Composite microkernel, and evaluate its flexibility and predictability over two different architec-

tures: a MPU-based Cortex-M7 microcontroller and a MMU-based Cortex-A9 microprocessor using a suite of

modern applications including neural network-based inference, SQLite, and a javascript runtime.

For MMU-based systems, MxU reduces application TLB stall by up to 68.0%. For MPU-based systems, MxU

enables flexible dynamic memory management often with application overheads of 1%, increasing to 6.1%

under significant interference.
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1 INTRODUCTION

The common denominator of Industry 4.0, the Internet of Things (IoT), and “smart” infrastructure
is the ubiquitous connection of embedded systems to the network. This promises new levels of co-
ordination, orchestration, situational awareness, and environment analyzability. At the same time,
we’re moving increasing functionality to embedded devices, which pushes these systems beyond
the simplicity of traditional embedded systems. This is often driven by Size, Weight, (Cost), and
Power (SWaP) constraints that encourage consolidation of many functions onto a single system.
Applications requiring increased feature sets include Machine Learning (ML), embedded virtual-
ization, and blockchain, which are often scaled-down versions of their general-purpose variants.

Unfortunately, a network connection exposes devices to malicious actors. The ever-increasing
complexity of embedded-systems driven by the addition of low-assurance code, necessitate a deep
and pervasive focus on both security and reliability. Though we cannot practically ensure that all
code is free of bugs, we can ensure that different system functionalities are mutually isolated in
time and space so as to limit the impact of their failure or compromise. Hardware memory isolation
mechanisms are wide-spread, including the microprocessor Memory Management Units (MMUs)
and microcontroller Memory Protection Units (MPUs). They focus on constraining the scope of
each application’s accessible memory, thus providing memory access control.

Unfortunately, MMUs and MPUs are ill-prepared to provide both the flexibility necessary for
dynamic, feature-rich applications, and the predictability necessary for embedded systems. MMU-
based systems use the page-based memory mapping facilities to control application address spaces.
They use a memory-defined page-table representation paired with a pipeline-integrated Transla-
tion Lookaside Buffer (the TLB) cache to define the subset of memory accessible by the application.
MMUs exhibit significant variance in memory access latency as access control decisions access
memory-based page tables. A load or store to a application data in L1 cache (often <10 cycles) can
exhibit multiple 100s of cycles if the corresponding page-table is not in cache. On the other hand,
MPU-based systems provide protection of only a small, limited number of memory ranges. This
can easily prevent their use with feature-rich applications that use heap-based, dynamic memory
allocations, and shared memory.

To provide the security and reliability constraints required by modern embedded systems, while
ensuring both tight Worst-Case Execution Time (WCET) bounds and good average-case perfor-
mance, this paper introduces MxU. MxU integrates temporal specifications into the memory al-
location facilities, and ensures that they map down to hardware mechanisms to provide the cor-
responding behavior (see Figure 1). Additionally, MxU enables the necessary dynamic memory
management for complex applications even on constrained microcontrollers. MxU provides a uni-
fied API that controls the otherwise loose WCET bounds from MMU systems, and makes MPU
systems more dynamic and flexible. We believe this will enable the strong security that modern
embedded systems require, while providing both more practical predictability and flexibility.
Contributions. We begin with a background on MMUs and MPUs (Section 2), then focus on this
paper’s contributions:

• we introduce the design of MxU (Section 3) and its integration of temporal constraints into
the OS’s handling of MMUs (Section 3.4) and MPUs (Section 3.5);

• a prototype implementation of MxU in the Composite microkernel in as a system-wide
memory manager (Section 4);

• an evaluation of the MxU prototype to understand the fundamental predictability and effi-
ciency properties of the system’s operations (Section 5); and

• a thorough evaluation of MxU’s use with applications focusing on data-management, pro-
cessing, and machine-learning (Section 5.3).
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Fig. 1. CPU accesses to memory, and the memory access control resource monitor (RM). The left system has

no protection, center uses the RM which must access its own data-structures (RMDS) in memory (dashed

lines) which increase the latency of some accesses. The right system is MxU which integrates temporal

specifications into memory allocation to enable tight execution bounds for critical applications.

2 MEMORY PROTECTION MECHANISM BACKGROUND

To further understand the challenges in achieving predictability and flexibility with MMUs and
MPUs while providing strong memory protection, we review the hardware organization of each
in detail.

2.1 Memory Management Units

MMUs provide flexible memory access control facilities by enabling page-granularity memory pro-
tection and allocation. Different applications are given different subsets of system memory, thus
providing OS-controlled memory isolation. Application’s accessible memory is expanded and con-
tracted on a page-granularity only limited by the size of the address space, thus enabling flexibil-

ity in allocation. MMUs enable applications to execute in overlapping address spaces using the
virtualization of addresses. This is achieved by controlling the mapping of the virtual addresses
that are exposed to applications, to the backing physical memory. This enables ease of dynamic

memory allocation as non-contiguous physical memory can be used for single, contiguous virtual
allocations.

The implementation of MMUs has a significant impact on the performance and WCETs of task
execution. To provide efficient resolution of memory access permissions, MMUs must be integrated
into the processor pipeline. To achieve efficient pipeline integration and flexibility in mapping a
large number of pages, a typical MMU includes a TLB cache of virtual to physical translations,
and the hardware logic for walking a page table data structure (though software-driven page table
walkers exist, they are less common). When a memory access is issued (e.g., a load or store) to a
virtual address, the MMU finds a translation for the address in its TLB. If such a translation is not
found, the in-memory page table is walked to find a translation.

Unfortunately, MMUs impact the average-case performance of applications and their ability to
execute within tight WCET bounds. The latency of the access control decision has significant jitter
depending on if it hits in the TLB, or it walks the page-table. The latter involves multiple memory
accesses for each level in the page-table, thus significantly increasing memory access jitter. On
processors that are heavily dependent on the efficiency of their caches, this overhead is in the
thousands of cycles [18]. The memory access pattern of an application alone is not sufficient to
understand cache behavior, as the MMU’s state must also be considered. This is challenging as TLB
eviction policies are often opaque and unpredictable (often explicitly based on random replacement
or pseudo-least recently used – P-LRU). To avoid these challenges, many embedded systems choose
to forego isolation, and use a single identity mapped address space (where all virtual and physical
memory are identical) consisting of very large superpages.

To make things worse, the MMU’s TLB is shared among multiple applications. When switch-
ing between applications, TLB entries are transient and are not explicitly saved and restored as
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part of the context switch. As such, the TLB must be flushed to prevent the previous application’s
mappings from being accessed from the next. This causes TLB misses when switching back to an
application, further harming the performance and forcing pessimistic WCET estimates to main-
tain predictability. Alternatively, many modern processes maintain tagged-TLBs, in which each
application, and each TLB entry is associated with an Address Space ID (ASID). Only entries with
the current application’s ASID provide valid translations, thus providing access control within
the TLB. This enables the avoidance of flushes on context switches, but the worst-case impact
still exists if another application with a large working set evicts an application’s entries. As such,
inter-application interference in shared TLB caches forces pessimistic assumptions about full TLB
eviction on context switch, thus significantly inflating the WCET. If this interference is strong
and persistent, the average-case performance can be adversely affected as well. This interference
in a fixed-priority system is on the order of M × L × S ×∑ph ∈hiдher (i ) �pi/ph� for task τi where
hiдher (i ) is all higher-priority tasks, M is the worst-case memory access time, L is the number of
levels in the page table, and S is the minimum of the TLB residency and number of TLB entries.

2.2 Memory Protection Units

MPUs provide a limited form of memory access control, and are typically found in smaller micro-
controllers. They use a register-based design in which specific entries are directly retrieved and
programmed. Each entry contains an address range and access permissions (e.g., read, write, ex-
ecute), and enables the corresponding accesses only to those addresses. If the access is out of the
designated range, or violates the access permissions, an exception will be delivered to the kernel.

The MPU registers are directly saved and loaded by the operating system, thus the contents are
explicit, and accesses to address ranges are always deterministic and predictable (validated by, or in
violation of, the MPU entries). Memory access control checks never make extra memory accesses.
This leads to tighter WCET bounds, thus a high-degree of predictability of memory accesses as
access control decisions are made using on-chip registers. Due to the explicit programmability and

visibility of the MPU registers, they can be saved and restored with other thread registers. This
completely mitigates inter-application interference at the cost of increased context switch times.

Unfortunately, several properties of MPUs limit their flexibility, especially for systems with dy-
namic memory requirements. The number of MPU entries is bounded, and often quite small (be-
tween 4 and 32), and the size of the address range for each entry is constrained (often to be a
power-of-2, and aligned on that boundary). Additionally, common MPUs do not map virtual ad-
dresses to physical addresses, which implies that contiguous memory is required for allocations.
This leads to many MPU-based systems completely forbidding dynamic memory allocation from
global memory. Some MPU implementations do allow region-based virtual address to physical ad-
dress translation, which eases global allocation, but they are still constrained by the limited and
small number of MPU regions.

2.3 MMU and MPU Summary

Current MMU-based embedded systems either avoid the unpredictability of memory accesses by
offloading real-time computations to microcontrollers, or accept the pessimistic bounds necessary
to accommodate uncontrolled TLB misses. In contrast, MPU-based systems often offload more
complex computations with complex memory usage to MMU-based systems. This draws a false-
dichotomy between these systems, even though many MPU-based systems are just as computa-
tionally capable as their MMU counterparts (e.g., Cortex-M7 and Cortex-A9).

Table 1 summarizes some of the key dimensions differentiating MMU and MPU variants, and
clarifies the goals of MxU. MxU aims to provide a uniform abstraction for memory access con-
trol that provides tight WCET bounds, flexibility, dynamic, system-wide memory allocation, and
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Table 1. Memory Access Properties for Different Memory

Access-Control Hardware Mechanisms

Infrastructure Dyn. Alloc Flexibility Tight WCET No Interf.
MMU only � � ✗ ✗

w/ASID � � ✗ ✗
MPU only ✗ ✗ � �

w/virt � ✗ � �
MxU �∗ � � �
∗is clarified below.

controls inter-application interference. MxU extends the memory allocation interfaces to enable
dynamic, system-wide memory management. However if hardware doesn’t support address vir-
tualization, it is limited by the availability of contiguous ranges of memory.

3 MXU DESIGN FOR FLEXIBILITY AND PREDICTABILITY

3.1 MxU Abstraction

MxU is a high-level abstraction that integrates temporal specifications into flexible memory man-
agement facilities, and maps them down to the memory access control hardware. This is motivated
by the strong security and reliability requirements of modern embedded systems. MxU increases
both the tightness of worst-case bounds for and the flexibility of protection domains, thus en-
abling the liberal use of hardware-provided isolation to limit the scope of faults and compromises.
Average-case performance is also improved for cases where heavy interference persists.

MxU integrates new mechanisms into the core hardware-software co-design of memory pro-
tection facilities, and guides them by adding an abstraction layer on top that integrates temporal
specifications. The hardware mechanisms for memory access control integrate in-pipeline, effi-
cient and predictable structures (e.g., CAMs), with in-memory data-structures to track broader
state. MMUs use page tables as a medium for coordination between hardware and OS, and MPUs
use explicit region registers loaded from OS-defined data-structures. Each memory access that
must go out to the access control, in-memory data-structures incurs the significant overhead and
latency spikes from additional memory accesses (that may miss the cache in the worst-case). This
causes significant memory accesses jitter compared to solely on-chip accesses.

On-chip caches are used to increase the efficiency of memory accesses, and embedded chips of-
ten enable limited control over cache contents. MxU’s focus is to control the latency of memory ac-
cess control decisions by controlling cache contents at all levels: are necessary entries in pipeline-
integrated caches (TLB, or MPU region), in L1/L2/L3, or in memory? This increased control enables
the latency of memory access control decisions to be bounded and significantly tighter than the
existing worst-case of having to access off-chip memory. MxU uses a uniform data-structure rep-
resentation for memory access control, and through the temporal specification used for memory
allocation, ensures that the required access control decisions are bounded by cache accesses at a
specified level.

3.2 Guarantees and Aims

The MxU abstractions makes a number of guarantees upon which secure embedded systems can
be built. Unfortunately, the limitations of hardware prevent some desirable properties, thus we
include a number of aims that are satisfied on a subset of MxU’s hardware.
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Table 2. The Main Functions in the MxU API

Operation Description
rt_malloc(sz, ts) Allocate memory with a given temporal

specification (ts).
rt_malloc_at(addr, sz, ts) Similar, but allocate at a specific address.
rt_shmget(id, sz, align, ts) Allocate shared memory associated with

an id.

MxU guarantees:

G1: Integration of temporal properties into memory management. All memory alloca-
tion operations are parameterized by a temporal specification which corresponds to the
level of the storage hierarchy at which memory access control decisions are guaranteed
to be made. This enables applications to limit the access control’s increase in memory
access latencies.

G2: Admission control for memory access timeliness. An allocation is successful if and
only if the hardware is capable of allocating such memory with the appropriate access
latency guarantees. This should enable static guarantees in cases where all allocations
are known a-priori.

G3: Flexibility of allocations. The number and size of allocations is not constrained by
specific hardware implementations, and is only constrained by available memory.

G4: Portable abstraction. The MxU abstraction and programming interfaces is uniform, and
shared across MMU and MPU-based systems, thus enabling portable embedded system
implementations.

G5: Memory protection and controlled sharing. To create secure embedded systems, pro-
tection domains must enable access to disjoint sets of memory with the controlled excep-
tion of the shared memory API. Shared memory also requires agreement on the temporal
specifications for that memory.

MxU aims:

A1: Fully deterministic accesses. If the hardware provides means to control lookups in
in-pipeline structures, then specific regions are accessed with determinism.

A2: Controlled interference between protection domains. If the hardware allows effi-
cient direct programming of and visibility into memory access control state, interference
in between lookups for different protection domains is eliminated.

A3: Address virtualization. If the hardware can translate virtual addresses to physical ad-
dresses, MxU harnesses this feature, thus enabling non-contiguous physical memory to
satisfy single allocations.

3.3 API Design

MxU aims to extend conventional APIs, enabling it to slot in to existing software ecosystems eas-
ily. Table 2 shows the most notable functions in the API. They all focus on dynamically allocating
memory and associating it with some temporal specification. Note that this API is more flexible
than those exposed for most MPU-based systems that are architecture-specific and explicitly pro-
gram the protection registers. Though the API is similar to typical POSIX interfaces, rt_malloc_at
can be used by the lower-level OS components which allocate and map application’s code and data
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to control the timing properties of even applications that require only static allocation. Legacy APIs
are supported by fixing the temporal specification for all of an application’s allocations.
MxU temporal specification. This specification includes a number of flags: (1) MXU_
DETERMINISTIC to require that access control checks for this memory must be determinis-
tic, and use only pipeline-integrated (sub-cycle latency) hardware, (2) MXU_Lx requires that access
control checks never touch memory going beyond the level-x cache, and (3) MXU_INDEPENDENT
to signify that inter-application interference must be prevented, thus enabling the application
to be analyzed independently. The temporal specification focuses explicitly on cache behaviors,
rather than on latency or time values. The application’s timing behavior is a composition of its
execution and memory access properties, and the additional delays due to the memory access
control checks. This API gives guarantees for the latter, so that a timing analysis of the application
(beyond the scope of this paper) can bound interference from memory access control.

3.4 Design for MMU-based Systems

MMU-based systems use virtual memory (A3) to support dynamic, often physically non-
contiguous, allocation (G3). The MxU design for MMU-based systems exploits hardware features
such as TLB lockdown, on-chip memory, and cache layouts for coloring, to lower the worst-case
MMU access control bounds. Unlike other past work that use such features to control application
data [1, 9, 11, 12, 14, 18, 24, 25], MxU focuses on controlling placement of access control data-
structures as these are checked for every memory operation, thus can have a disproportionately
large impact on worst-case execution time. MxU leverages hardware features, where available, to
explicitly place page-table nodes at the cache-levels of the temporal specification (G1), or returns
failure if those features aren’t available, or are expended due to other previous requests (G2).

Deterministic memory accesses (with zero overhead from access control operations) are sup-
ported only in those chips where TLB lockdown or coloring [18] are possible (A1). Perhaps most
difficult to support with MMUs is the controlled interference between protection domains (A2).
As the TLB’s contents are not OS-controlled, even ASIDs do not prevent a protection domain’s
contents from being flushed (by capacity evictions). Regardless, MxU supports ASIDs to improve
average, if not worst-case, performance.

3.5 Design for MPU-based Systems

Given the explicit programmability of MPUs, MxU has complete control over the MPU’s contents
(G1 and A1), and tracks if it runs out of regions (G2). Unlike existing systems, the regions are
saved for each application along with their registers, thus providing complete inter-application in-
dependence (A2). To increase the flexibility of allocations, the MxU design for MPU-based systems
takes advantage of the software MPU exception handler to virtually extend the number of regions
(G3). When access is made outside of an allowed MPU region, the CPU triggers an OS exception
that can load in new MPU regions on-demand. Thus, much like page-tables, MxU uses a set of
in-memory data-structures from which to retrieve valid MPU regions. For these, the same opti-
mizations around placement are relevant, as is hardware support for controlling cache contents.
Only a relatively limited number of microcontrollers have MPUs that support address mapping
virtualization (A3).

4 MXU IMPLEMENTATION

4.1 MxU-enabled Composite Kernel

We implement MxU in the Composite [23] microkernel that has strong security based on
capability-based access control. All system resources including threads, communication end-
points, and protection domains, are only referenced through unforgeable tokens called capabilities,
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which are delegated in a controlled manner between user-level components (Composite’s protection
domains). Authorized protection domains boot up with full access to system resources, and they
delegate capabilities to those resources to others in accordance with their policies. These “manage-
ment” components minimally include the system scheduler (there is no in-kernel scheduler [8]),
and the memory and I/O managers.

MxU is implemented as the system’s memory manager component. Application components use
synchronous invocations (the highly-optimized, component-equivalent of IPC) to request memory
services. Semantically, these invocations take the form of function calls to the API in Section 3.3.
The MxU memory manager then uses the kernel system call operations to modify the client’s
protection domain (e.g., add or remove memory access).

In the style of seL4 [5], Composite requires user-level components to manage kernel memory
using a safe form of memory retyping. Even the construction of memory access control data-
structures (e.g., page tables) is carefully performed by components with proper access to resources,
and the ability to retype memory to be the appropriate memory type. This allows the memory
manager to define the policy to control the physical addresses of kernel data-structures such as
page tables (within the bounds of what resources it has capabilities to). A crucial guarantee that
the kernel ensures (independent of any component’s logic) is that memory that has been typed as
kernel (i.e., that backs kernel data-structures) cannot also be typed as user memory (thus accessible
to components) – this has the effect of ensuring the consistency of kernel data-structures. Pan
et al. [17] introduced the use of the space-efficient Path-Compressed Radix Trie (PCTrie) data-
structure to program MPU regions. MxU uses PCTries as the uniform data-structure to describe
both MMU and MPU systems (page tables are a specific configuration of PCTries).

MxU expands the kernel API to provide operations on PCTrie nodes that mimic the temporal
specifications in Section 3.3. Specific PCTrie nodes optionally have cache locality specifications
when created, which the kernel uses to place them appropriately using whatever hardware mech-
anisms are available. The MxU memory manager tracks how much hardware (e.g., cache ways, TLB
entries, MPU regions) has been allocated for existing resources, and performs admission control on
these limited resources for new requests. Though the kernel provides the facilities for manipulat-
ing processor resources, the memory manager is given a hardware capability allowing the caches
of various levels to be manipulated. All these features are orchestrated by the memory manager
to provide MxU services across MMU-based and MPU-based architectures, which satisfies G1, G4

and G5.
Though the Composite system has a number of benefits that eased the development of MxU

including the explicit layout control of kernel data-structures, fast IPC and user-level definition of
MxU policies, and existing support for portable access control data-structures between MPUs and
MMUs, comparable modifications could be made in other existing systems such as Linux.

4.2 MMU-based MxU

On MMU-based systems, the core idea is to lower worst-case memory access latencies (G1). To
make sure that memory access decisions are made in the worst-case at a certain cache level, page
table nodes must be stored in the corresponding cache-level. This requires the utilization of rel-
atively common hardware features and characteristics to control cache contents [15] including
coloring [18], way locking, and pinning. In our current implementation, we are using the XC7Z020-
1CLG400I, which features an ARM Cortex-A9 dual-core processor, but only one core is used.

We can see that the processor includes the following different levels of cache: level-1 TLB (L1T),
level-2 TLB (L2T), L1 data cache (L1C) and L2 cache (L2C). The processor also features on-chip
SRAM (OCM). The MMU supports 4k pages and features a hardware page table walker. This intro-
duces the following different cache levels where the memory access control decisions may be made.
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Table 3. The Detailed Hardware Configuration of XC7Z020-1CLG400I

Platform (Processor Subsystem)

Item Description
Speed 767MHz, 2.5 DMIPS/MHz
MMU 4k page support, 8-bit ASID support
L1 TLB 32 I/D, fully associative
L2 TLB 128 2-way, plus 4 lockable entries
L1 cache 32k I/D, 4-way.
L2 cache 512k, 8-way, lockable by way.
On-chip SRAM 256k at L2 speed.
Off-chip SDRAM 1GB DDR3-1066.

L1T: The L1 TLB is fully associative, which makes TLB coloring infeasible and the entries are
not lockable. Thus, MxU cannot control this cache.

L2T: The L2 TLB will be accessed if there is an L1 TLB miss. The L2 TLB is not fully associative
(only 2-way set associative), which allows for effective TLB coloring [18]. Additionally,
Cortex-A9 provides 4 extra individually lockable entries. In this paper, we make use of this
feature for guaranteed TLB access (G1) in response to MXU_DETERMINISTIC specifications.

L1C: On Cortex-A9, L2 TLB misses trigger the hardware page table walker which starts walk-
ing the page tables from L1 data cache. The L1 data cache is also not fully associative
(4-way set associative), which makes cache coloring possible. However, the L1 data cache
is too small to retain permanent data, thus we forgo such an option. In this case, applica-
tions that specify MXU_L1 will be TLB-pinned, or the allocation will return an admission
control failure (G2).

L2C: The L2 cache is not fully associative as well (8-way set associative), which makes cache
coloring possible but less effective. Additionally, this processor provides way locking
which prevents evictions of the way’s contents. We prefer way locking versus page color-
ing as it doesn’t put strong constraints on physical memory allocation. There is a trade-off:
locking a way still reduces the cache size available to the regular code and data, which
can harm application performance.

OCM: On-chip SRAM is accessed at L2 cache speed is assigned a physical memory range.
Composite enables the explicit typing of OCM memory as kernel page tables, thus OCM
can be used to access them at L2 cost. The MxU implementation on this hardware favors
the use of the OCM for MXU_L2 specifications as it doesn’t effectively shrink the cache.

This processor also supports ASIDs which are used for processes that specify the MXU_
INDEPENDENT flag. However, caches are shared between processes, thus this only partially satisfies
A2.

4.3 MPU-based MxU

On MPU-based systems, the emphasis is to enhance flexibility by providing a virtually infinite
number of protected memory regions. As representative hardware based on an MPU, we use the
STM32F767IGT6, which features an ARM Cortex-M7 processor. Its MPU does not provide virtual
address translations (thus it cannot provide A3). The detailed hardware configuration is listed as
follows:

In MPU-based MxU, the PCTrie is used to store accessible memory ranges. A per-component
representation of these ranges is stored in the top-level PCTrie node that is used to directly
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Table 4. The Detailed Hardware Configuration of the STM32F767IGT6 Platform

Item Description
Speed 216MHz, 2.14 DMIPS/MHz
MPU 8 regions, pow-of-2 size/alignment requirement
L1 cache 16k I, 2-way, 16k D, 4-way.
On-chip SRAM 512k.
On-chip Flash 1M, with ART accelerator.
Off-chip SDRAM 32M 108MHz.

program the MPU registers (efficiently, using multi-register load and store instructions). When
the component is switched to, this representation is loaded into the MPU. The PCTrie contains a
large number of accessible memory ranges, while the MPU has only 8 regions, with two used to
protect access to an on-chip timer we use as a timestamp counter (TIM2) and executable memory.
MxU partitions the remaining regions of the MPU into two sets: Static and Dynamic. Static regions
are used in response to MXU_DETERMINISTIC requests, and are always present in the MPU while
the component is executing. Dynamic regions are managed as a cache while multiplex the remain-
ing PCTrie ranges. We extend Composite such that if a PCTrie range is not present in the MPU
(a load/store causes a miss), a MPU exception triggers a software handler that finds the desired
range, performs an eviction from the Dynamic regions, and adds the range to the MPU. We im-
plement three eviction policies: round-robin, random, and Bit-based Pseudo Least Recently Used
(Bit-PLRU). While Static regions ensure deterministic requests (G1), Dynamic ensure memory
management flexibility (G3). MxU enables the number of Static MPU regions to be determined by
application allocation requests, and uses the rest for Dynamic. If a Static allocation would leave
no Dynamic regions, the allocation returns failure (G2). MxU tracks and saves MPU state per-
component, thus they all satisfy MPU_INDEPENDENT requests (thus A2).

5 EVALUATION

Hardware configurations. We use the MMU-based system described in Section 4.2, and the
MPU-based system described in Section 4.3. These two architectures have significant market share
and have many resembling features: both are 32-bit, dual-issue, the number of pipeline stages are
close to each other, and both have a dynamic branch predictor. Though many other architectures
exist, we do believe that the results obtained from these systems apply to other systems as well
due to the same underlying principles.

We’ll refer to the XC7Z020-2CLG400I system as Smmu , and the STM32F767IGT6 system as Smpu .
For all evaluations, the gcc version 5.4.1 targeting the ARM architecture is used with the -O2
optimization flag. Smmu is run at 767MHz, and Smpu is run at 216MHz. The cache of both systems
are always enabled, and for Smpu , the flash accelerator is enabled along with execute-in-place
support. In synthetic benchmarks, the prefetchers of Smmu are disabled to maximize the accuracy
of memory access latency measurements, while in application evaluation they are enabled.

All graphs in this section depict the average (the dot or the darker bottom bar) and standard
deviation (the error bar displayed on the average bar) measurements. In all line graphs, only the
upper standard deviation bar is shown for clarity. All bar graphs additionally depict the maximum
measured value (the lighter top bar).

5.1 Miss Overheads

The basic page or region filling operation on MMUs or MPUs are the deciding operations that
force pessimistic bounds on memory access latencies on both of the platforms. To understand the
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Fig. 2. MMU temporal specifications’ performance on different benchmarks. The horizontal axis is the dif-

ferent benchmarks, while the vertical axis is the memory access latency.

overhead of TLB misses and dynamic MPU region replacement, we first investigate the hardware
overheads for these operations. These measurements will provide us with the loose – but often
necessary – upper memory access latency on our hardware.

We measure the overhead of a single load instruction whose target data content is in L1 cache,
while varying if we flush the TLB and if we use Dynamic regions, and report the 99th percentile
values to rule out noise (e.g., due to timers). On Smmu , a hit in the TLB results in 6 cycles, while a
TLB miss takes 434 cycles. On Smpu , accessing a region in the MPU takes 2 cycles, while missing on
a dynamic region and executing MxU’s exception handler (assuming a simple filling of the region
without any replacement policy cost) takes 360 cycles.

Discussion. Both systems show orders of magnitude slowdowns for misses. Conservative WCET
analysis must consider the upper bounds of missing, thus deriving likely quite loose memory ac-
cesses bounds. This motivates MxU to better control the overhead of cache misses, thus avoid such
increases in the execution bound of tasks.

5.2 Synthetic Benchmarks

To investigate the overhead of memory accesses for different MxU temporal specifications, and
in the presence of interfering tasks, we evaluate a number of synthetic workloads. Four synthetic
benchmarks are used: sequential access (seq), random access (ran), stride access with a stride of
4kB & accessing 16 integers at a time (str), and a simple 128*128 integer matrix self multiplication
(mat). A total of 262144 accesses are made for the first 3 benchmarks. The matrix multiplication
benchmark only computes first 17 lines of results, which performs 557056 accesses. On Smmu they
do not wrap around, while on Smpu , they wrap around in 64kB SRAM.
Memory access latencies. To evaluate the effect of different MxU mechanisms on the bench-
marks, we run the four benchmarks with different temporal specifications on both platforms, and
with different eviction policies on Smpu . We compare against the costs of uniformly missing in
access control caches. Here we wish to evaluate the effectiveness of MxU at controlling the pes-
simism of memory access control check latencies.

On Smmu , we evaluate three temporal specifications:
MXU_DETERMINISTIC which locks the accessed pages into the TLB (tlb), MXU_L2 using way

locking which locks seven ways of the L2 cache for page table storage (l2c) and OCM for page
table placement (ocm). We also plot the case where a TLB and a L2 miss always occur for each
memory access (mis). Figure 2 shows the results.

On Smpu , we evaluate three Dynamic MPU region replacement policies: random eviction (rand),
round-robin eviction (RR), and Bit-PLRU eviction (plru). These policies are also compared with
Static mappings (sta) for MXU_DETERMINISTIC, and misses (miss). All policies are evaluated with
three Dynamic MPU regions. The page size used is 4kB, and a region holds two pages. Figure 3
plots the results.
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Fig. 3. MPU region replacement policies’ performance on different benchmarks. The horizontal axis is the

different benchmarks, while the vertical axis is the memory access latency.

Discussion. In Smmu , we see the using MXU_L2 has a significant ability to lower the worst-case ac-
cess latency when compared with full misses. Though the average-case access latency also shrinks,
this is largely due to the data caches not being flushed in cases other than full misses. As the ran
case shows, using way locking demonstrates increases in both average and worst-case latencies as
we are using most of the cache for page tables, thus causing increased miss rates for benchmark
data. We study the trade-off in way usage in the application evaluation later.

In Smpu , the three replacement policies all perform similarly, which is in accordance with the
fact that all three are widely used today. For this reason, we only run the plru policy for all the
following evaluations on Smpu . MXU_DETERMINISTIC specifications indeed control average and
worst-case latency, while misses are quite pronounced, especially in matrix multiplication. For
many of the workloads, the average performance of the Dynamic memory ranges is close to that
of Static, thus showing the practical effectiveness of extending the MPU to a virtually unlimited
number of regions.
Interference between different workloads. A significant component in the worst-case behav-
ior of applications is how much co-running tasks and interrupt handlers can interfere with the
cached MxU state. In cases where interference is strong, average-case performance may be ham-
pered as well. To investigate the interference between different workloads, we run an adversarial
workload alongside the four synthetic benchmarks. This interference represents the execution of
interrupts or other applications.

Figure 4 shows interference measurements in Smmu . We run the benchmarks in one thread,
and an adversarial workload which flushes all the data cache and TLB in another component. We
test the page table caching policies (for MXU_DETERMINISTIC and MXU_L2), and compare against
memory-backed page tables in the mem. In the l2c case, seven L2 ways are locked down for page
table storage.
Smmu Discussion. All cases follow a decreasing curve with increasing interference periods. The

TLB-pinned cases consistently show the lowest interference, followed by the OCM and L2 options.
Importantly, these techniques – driven by the temporal specifications of MxU – all show signifi-
cantly lower interference values than traditional, in-memory page table placements. This result is
somewhat surprising: though TLBs are shared among applications, MxU’s ability to place nodes
at different levels in the cache hierarchy significantly decreases the impact of interference.

On Smpu , the workload runs in a thread, and adversarial workload flushes all MPU regions in a
different thread. The two threads will use different memory temporal specification and component
combinations, and we report the memory access latencies under different interference periodici-
ties. We run the system with
MXU_DETERMINISTIC (for Static mappings) and MXU_L2 which uses Dynamic mappings. In Figure 5
we compare the four test cases listed in Table 5.
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Fig. 4. Smmu ’s memory access latency under different interference inter-arrival time. The four subfigures

show the four benchmarks respectively. The horizontal axis is the interference inter-arrival time (in number

of consecutive memory accesses), while the vertical axis is the memory access latency.

Fig. 5. Smpu ’s memory access latency under different interference inter-arrival time. The four subfigures

show the four benchmarks respectively. The horizontal axis is the interference inter-arrival time (in number

of consecutive memory accesses), while the vertical axis is the memory access latency.

Table 5. The Four Test Cases for Smpu

Case Adversarial Benchmark Component
dyn-dyn Dynamic Dynamic Same
dyn-sep Dynamic Dynamic Different
sta-dyn Dynamic Static Same
sta-sta Static Static Same
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Fig. 6. Smmu ’s L2 locked down ways and application running time. 0way-8way means 0-8 L2 ways locked

down respectively. The horizontal axis is the different applications, while the vertical axis is the applications’

running time.

Smpu Discussion. For Smpu , the dynamic regions are generally significantly more susceptible to
interference than the static regions. Further, dynamic regions can show even more interference
when shared within the same component (the difference between dyn-dyn and sta-sta) as they
share the same “cache” of dynamic entries. All of the Static workloads exhibit predictable execution
without significant extra MPU misses. The Static lines have a decreasing trend along the x-axis
mainly as the interference flushes normal application cache-lines which need to be reestablished,
and not because of MPU misses. It is noteworthy that in the str’s dyn-dyn case, an inter-arrival
time of 4 outperforms 5, due to the fact that 4 is a divisor of 16 which is the stride length. We don’t
show the case of interference across components with Static mappings as there is none.

5.3 Application Evaluation

In this section we present real-world application evaluations using the ARM’s ARMNN, a neural
network package, SQLite3, a database engine, and Duktape, a javascript engine commonly used
in IoT systems. We use ARM CMSIS-NN V1.0.0 (armnn) to do image recognition using a CIFAR-10
configuration which has three convolution layers, then ReLU activation and max pooling layers,
finally followed by a fully-connected layer. The input to the network is a 32 × 32 pixel color im-
age which classifies to number 0-9. Sqlite V3.25.2 (sqlite) is run with a in-memory database that
has one table, which has three columns containing integer primary key ID, string and integer re-
spectively. The SQL workload inserts 16k lines into the table, deletes the lines with ID=3n, then
updates the lines with ID=3n+1, then queries the lines with ID=3n+2, and at last deletes all lines in
the table. Duktape V2.2.0 is run with two scripts: one is CPU-bound and picked from the Duktape
testbench computing the Mandel pattern (duk-mdl), the other is from the jStat library that cal-
culates covariance of two arrays containing 75000 numbers each (duk-cov). The total application
running time is measured in all evaluations unless otherwise noted.
Application performance vs. locked down L2 ways. For Smmu , L2 ways are locked down for
page table preservation in MXU_L2 with the l2c policy, and this reduces the L2 cache available
to applications and may cause performance degradation. To investigate the impact, we lock down
different numbers of L2 ways and run the four applications, and the results can be found in Figure 6.

Discussion. It is noteworthy that all the applications are long-running, thus their average-case
and worst-case execution time are very close, making it hard to distinguish them from the each
other; the standard deviation bar is also negligible. For this reason, we do not discuss worst-case
and average-case performance separately in this section.

For Smmu , locking fewer than five L2 ways for page tables has minimal impact on application
performance, less than 4.9%. For applications that have a small working set such as armnn and
duk-mdl, locking down even more ways does not take a heavy toll thanks to the L1 cache. However,
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Fig. 7. Smpu ’s Dynamic region number and application running time. sta means fully Static regions, 1dyn-

3dyn means 1-3 Dynamic regions respectively, and 2d1s means running one half of the application workload

in Static regions and the other half in Dynamic regions. 2d1s is only shown for sqlite and duk-cov. The

horizontal axis is the different applications, while the vertical axis is the applications’ running time.

the overhead impacts sqlite performance if the ways locked down exceed five, leading to 124.6%
slowdown if all are locked. This is due to the fact that sqlite has a large working set. On contrast,
duk-cov accesses three arrays linearly and locking ways does not significantly impact performance
thanks to L1 prefetcher.

Locking page-tables into L2 ways is an effective means of decreasing memory access latencies,
but comes at the cost of effectively decreasing cache size for application data. Here we see that it
varies per application how much this impacts performance. MxU relies on OCM and TLB pinning
primarily, thus minimizing the need to use L2 ways. The admission control policies can reject
allocation requests to result in too many pinned ways.
Application performance vs. dynamic region number. For Smpu , the relationship between
the available Dynamic region number and real-world application performance is investigated in
this section, with results shown in Figure 7. armnn is run using internal SRAM; sqlite, duk-mdl
and duk-cov are run with a 4MB heap in external SDRAM which uses 64kB pages, and each region
holds two pages.

Discussion. For Smpu , the number of Dynamic regions available does have an impact on perfor-
mance, depending on the application type. For CPU-bound applications that have a small working
set such as armnn and duk-mdl, the performance gap between three dynamic regions, and only
static (3dyn versus sta) is negligible, at less than 1%. For memory-bound applications that have
a larger working set such as sqlite and duk-cov, 3dyn is less performant than sta, with 36.9%
and 49.7% overhead respectively, and performance degrades sharply as the number of available
regions shrink. In the case of duk-cov, livelocks occur if only one region is available to it due to
double-word memory access instructions such as ldrd and strd that do accesses across region
boundaries. The 1dyn data shown for duk-cov is obtained by supplying additional compiler op-
tions to suppress the emission of these instructions, decreasing performance further. Thus, when
ldrd and strd are used in an application, at least two Dynamic regions are required. As the 2d1s
case shows, even partially using Static regions can lower application execution time.

These results are somewhat surprising. Though dynamic regions do impose some overhead,
using a small number of dynamic regions, especially if paired with some static allocations, can
remove much of the dynamic overhead of MPU miss processing. Though we do not investigate
it here, changing the memory range represented by each region is another means to control
overhead.
Application performance vs. interference. To investigate the effectiveness of MxU under in-
terference for real-world applications, we run an adversarial workload alongside the four appli-
cations. To make measurements accurate for armnn, we accumulate its results for 50 consecutive
runs.
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Fig. 8. Smmu ’s application data side TLB stall time under different interference inter-arrival time. The four

subfigures show the four applications respectively. The horizontal axis is the interference inter-arrival time,

while the vertical axis is the data main TLB stall time.

For Smmu , we run the application and the adversarial workload which flushes L1 cache, L2 cache,
and TLB in two different components. On average, many applications may not have significant
performance degradation due to mutual TLB evictions. However, in the worst case, they effectively
flush the TLB entries of a hard real-time application, and can do so at the rate of the minimum
interrupt inter-arrival. Thus, to assess this impact, we flush all the caches and TLB to measure
the worst case. To avoid impacting application performance only four L2 cache ways are locked
down in the l2c case. We switch to the application first for the interference inter-arrival time, then
switch to the adversarial workload to complete a cache flush, and then repeat the process until the
application finishes running. To understand the MMU overhead, we use a Cortex-A9 integrated
performance counter that directly measures the data-side TLB stall overhead, which we leverage to
directly show MMU overheads. By using this performance counter, the overhead of TLB misses are
isolated from other system overheads including instruction cache and non-page-table data cache
misses. Figure 8 shows the application interference measurements in Smmu .
Smmu Discussion. For Smmu , tlb has lower TLB stall cycles than l2c and ocm in all cases, which

both control overhead more than mem, especially for cases where the interference is frequent, e.g.,
10-1000 μs. Note that the maximum TLB interference is related to the minimum interrupt inter-
arrival which can be quite small for some devices. Such high interrupt frequencies may originate
from, for example, high-speed off-chip analog-to-digital converters (ADCs). For the sqlite appli-
cation, a TLB stall improvement of 68.0% is reached with interference at a 10μs periodicity. For
all cases, the TLB stall cycles have a decreasing trend along the x-axis, showing the expected de-
creased interference with longer inter-arrival time. The performance difference between l2c and
ocm is due to their memory organization, which is not further discussed here.

For Smpu , we run the application and the adversarial workload in the same component with three
Dynamic regions available for them. Note that MxU completely prevents inter-component interfer-

ence on MPU-based systems, so here we focus on studying contention for dynamic regions within
a component (a much more predictable activity). We compare the case where the adversarial work-
load evicts all MPU regions (interf) with the case where it does not evict regions (normal). We
use the same reciprocal running pattern described in Smmu , and we run the adversarial workload
for a fixed amount of time in every interference to cancel out its running time, then the difference

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 103. Publication date: October 2019.



MXU: Predictable, Flexible, and Efficient Memory Access Control 103:17

Fig. 9. Smpu ’s application running time under different interference inter-arrival time. The four subfigures

show the four applications respectively. The horizontal axis is the interference inter-arrival time, while the

vertical axis is the application running time.

between the two cases’ application running time shows the impact of interference on execution,
as shown in Figure 9.
Smpu Discussion. For Smpu , the applications running on Dynamic memory are susceptible to

interference, especially when the application have a large working set (sqlite and duk-cov).
However, in the common case where the inter-arrival time is more than 100 μs, the Dynamic

overhead due to interference is only up to 6.1% for all cases. This means that Dynamic regions is
practical for many best-effort applications, increasing their flexibility without much performance
loss. For all cases, the application running time has a decreasing trend along the x-axis, showing
decreased interference with longer inter-arrival time. We don’t show the case for Static memory,
nor inter-component interference as there is no MPU-induced interference.

6 RELATED WORK

MPU as cache. Though we know of no open-source, scientifically evaluated systems that treat
the MPU as a per-process cache with dynamic regions, some systems have attempted this support.
PXROS-HR [3], for the TriCore architecture, allegedly keeps caches of MPU contents for different
processes. It allegedly allows user-level handling of MPU faults, and changing the mappings on the
fly to emulate a larger number of regions. However, no in-kernel support of the dynamic swapping
features are supplied, and no generic interface is provided across different architectures; it also does
not provide any pointers to algorithms or data structures for region replacements. As this system
is not open source, we cannot evaluate against it, nor attest to its capability.

Another implementation which employs per-process MPU cache and allows swapping of MPU
entries is Emcraft’s Cortex-M ucLinux port [6], which runs orders of magnitude slower than MxU

in Composite as it must execute entirely from external DRAM. It has hard-coded kernel policy to
only lock the stack segment for each process. Dynamic regions are tracked in a linear table, leading
to O (n) cost misses.
Memory access emulation. Memory access emulation was also proposed to circumvent the MPU
region number or alignment constraints. In [2], automatic application compartments are deployed
on an ARM Cortex-M4 platform with code generated by a modified LLVM backend. When a com-
partment makes an access to the stack segment that is not directly accessible by its MPU settings,
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the access is permission checked then performed within a fault handler routine. Though it allows
accessing memory regions that are not covered by the current MPU region settings, it triggers a
fault on every such memory access. This can cause significant overheads on program execution,
while our MxU technique can largely avoid such overheads.
TLB lockdown and TLB coloring. TLB coloring was proposed by [18] to provide more pre-
dictable management of the TLB. In the work, they designed and implemented an intelligent al-
locator that takes physical page address to TLB entry mappings into account. Their allocator can
guarantee that no two pages in different processes are mapped to the same TLB entry.

Some work also explored the benefits of TLB lockdown [10]. They conducted the work on an
ARM-based processor and conclude that the static lockdown provides little TLB miss overhead.

In contrast to these previous works, MxU provides a unifying abstraction for predictable mem-
ory access control, that uses whatever hardware mechanisms are available, including TLB coloring
and pinning. We compare not just the ability to decrease memory access execution times via TLB
pinning, but also the utility of using data caches for page table nodes.
Cache partitioning. Cache partitioning is a standard approach to isolating the working sets of
different processes [15, 19, 21]. If the cache lines of different processes are disjoint, the different
working sets will not interfere with each other, thus reducing inter-application thrashing. This
research focuses on application data, and not on the access control mechanism data-structures
which are accessed on each application load/store. In [16], compiler infrastructure is leveraged to
arrange application code and data to distinct cache partitions so that the real-time portions’ WCET
is improved. In [9], intra-application code partitioning is also considered to map different functions
to different cache lines, which reduces the instruction cache misses across function call boundaries.
Such approaches are complementary to MxU.
Multi-core. Cache partitioning and TLB coloring can also be applied when there are multiple
processors. In [11] and [14], last-level cache (LLC) partitioning is considered in multi-core systems
to increase the schedulability of applications. In [25] this is also considered but only with regards to
hot pages, which reduces online analysis overheads and is less constrained than full page coloring.
In [1] and [24], the allocation techniques are extended to mixed-criticality (MC) systems which are
also multi-core. In [12], cache allocation is dynamically performed, and virtualization extensions
are leveraged to achieve this. Their techniques focus on application data and is orthogonal to our
MxU approaches. Applying both may help avoid data cache pollution across processors or different
criticality levels when page table walks are triggered. MxU does not currently address multi-cores,
however this provides interesting future work for both MMU and MPU.
Scratchpad management. Some existing works allow the applications to allocate scratchpad
memory for performance boost. In [4], frequently used code and data pages are dynamically
mapped to the scratchpad, resulting in a 32% energy saving and a 47% acceleration. In [20], the
latencies of moving code and data to scratchpad is hidden by a synergy of dedicated hardware and
a modified LLVM, which improves WCET. In [22], integer linear programming and heuristics is
applied to make static scratchpad allocations that can minimize the task’s WCET. Other research
also integrates scratchpad management into the compiler infrastructure [13], using graph color-
ing to allocate application arrays to the scratchpad. Unlike MxU, these works still put emphasis
on application data placements and not on access control mechanism data structures.
Temporal specifications. Some recent existing work also explore the possibility of assigning
temporal specifications to memory allocations. In [7], a deterministic memory abstraction similar
to MxU is described. However, their abstraction are dedicated to MMU-based systems, and re-
quires both OS and hardware extensions. Also, multiple levels of predictability are lacking in their
temporal specification. On the contrary, our MxU abstraction remains uniform across MMU and
MPU, and accommodates more than two levels of predictability.
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7 CONCLUSIONS AND FUTURE WORK

This paper introduces MxU, a memory access control abstraction that generalizes MMUs and
MPUs, integrates temporal specifications into the memory allocation API, and ensures flexible
memory management, good average-case performance, and the ability to tightly bound the im-
pact of memory access control on the WCET on tasks. For MMU-based systems, MxU tighten
bounds on the TLB stall cycles by enabling the control of the cache placement of page tables, re-
ducing application TLB stall by up to 68.0% under 100kHz interference. For MPU-based systems,
MxU demonstrates the use of Dynamic regions to provide a virtually unlimited number of regions,
enabling flexible dynamic memory management with an application overhead of down to 1% and
up to 6.1% with 10kHz interference. Given the modern security requirements that are pressuring
embedded and IoT systems, we believe that MxU enables more feature rich microcontrollers, and
more realistically predictable microprocessors.

This paper addresses neither multi-core nor program data related cache or scratchpad man-
agement. Combining these facets with MxU certainly leads to even more variants of temporal
specifications, which we reserve as a direction for interesting future work.
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