
Received: 11 May 2020 Revised: 10 April 2021 Accepted: 18 April 2021

DOI: 10.1002/cpe.6414

S P E C I A L I S S U E P A P E R

Sharing non-cache-coherent memory with
bounded incoherence

Yuxin Ren1 Gabriel Parmer1 Dejan Milojicic2

1The George Washington University,

Washington, District of Columbia, USA

2Hewlett Packard Enterprise, Palo Alto,

California, USA

Correspondence

Gabriel Parmer, The George Washington

University, Washington, DC, USA.

Email: gparmer@gwu.edu

Summary

Cache coherence in modern computer architectures enables easier programming by

sharing data across multiple processors. Unfortunately, it can also limit scalability due

to cache coherency traffic initiated by competing memory accesses. Rack-scale sys-

tems introduce shared memory across a whole rack, but without inter-node cache

coherence. This poses memory management and concurrency control challenges for

applications that must explicitly manage cache-lines. To fully utilize rack-scale systems

for low-latency and scalable computation, applications need to maintain cached mem-

ory accesses in spite of non-coherency. This paper introduces Bounded Incoherence,

a memory consistency model that enables cached access to shared data-structures in

non-cache-coherency memory. It ensures that updates to memory on one node are

visible within at most a bounded amount of time on all other nodes. We evaluate this

memory model on modified PowerGraph graph processing framework, and boost its

performance by 30% with eight sockets by enabling cached-access to data-structures.

K E Y W O R D S

non-cache-coherent shared memory, rack-scale architectures, scalability

1 INTRODUCTION

Recently, rack-scale systems have been gaining momentum. These include FireBox1 from Berkeley, Rack-scale Architecture2 from Intel, and

The Machine from Hewlett Packard Enterprise.3 These instantiations are comprised of tens of thousands of cores and petabytes of persistent

byte-addressable memory. This pool of memory is accessible from any node in the system over fast photonic interconnects that enable load-store

accesses at close to DRAM speeds. These systems promise to enable memory-centric computing in which many nodes that would traditionally be

implemented as a distributed system can communicate and coordinate directly through memory. However, due to the scale of the system, there is

no cache coherency support between the nodes, instead only among the cores on a single node. This complicates the use of the shared memory pool

for inter-node collaboration via shared data-structures, as explicit software support is required to achieve synchronization and coherency among

different nodes accessing memory. To meet the promise of the massive pool of shared memory for low-latency, high-throughput processing, new

techniques to handle non-Cache Coherent (non-CC) memory are required in rack-scale systems.

To coordinate incoherent memory across nodes, we introduce a consistency model based around Bounded Incoherence (BI) for rack-scale archi-

tectures. This system enables multiple nodes that share only non-CC memory to have many of the benefits of typical multi-core shared memory

processors. In non-CC architectures, BI enables controlled access to cache-lines that are incoherent with changes made by other nodes for at

most a bounded window of time. Thus, lookups and loads in shared data-structures use efficient, cached access. BI trades time-to-consistency

for this efficient, cache-based local access to data-structures. BI makes the observation that access to stale cache-lines can be tracked similarly to

the parallel references that are implicitly tracked by Scalable Memory Reclamation (SMR) techniques.4-8 The SMR in the BI runtime is based on logical

clocks and efficient cache-line invalidation that together provide bounds on the staleness of cache contents. In a nutshell, BI tracks references to

data-structures, invalidates possibly stale cache-lines and delays memory reuse.

Concurrency Computat Pract Exper. 2021;e6414. wileyonlinelibrary.com/journal/cpe © 2021 John Wiley & Sons, Ltd. 1 of 19
https://doi.org/10.1002/cpe.6414

https://orcid.org/0000-0003-2678-9225
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpe.6414&domain=pdf&date_stamp=2021-06-01

2 of 19 REN ET AL.

F I G U R E 1 Varying hardware support for consistency

In many ways, the goal is to maintain the convenience of shared memory processing even across non-CC nodes. The lack of a cache-coherent

memory fabric in rack-scale systems complicates the implementation of traditional shared-memory data-structures that span multiple nodes.

Instead of using shared-memory, the hardware can be treated as a share-nothing distributed system, using message-passing-based distributed con-

sensus to coordinate between nodes, often at the significant cost of network overheads compared to cache overheads. Figure 1 depicts a taxonomy

of trade-offs between the hardware support for consistency via cache coherency and the scalability of distributed systems. Most prior research

focuses on the right end of the spectrum,9-11 leaving alternatives in the design space unexplored. As pointed out by Harris,12 solely relying on mes-

sage passing does not suit some workloads, and what programming models are appropriate for combining message passing with shared memory is

still an open research question. BI makes an effort to answer this question, as it enables cached access to shared memory on the read-path, while it

exploits message passing to ease synchronization on update-path.

We first have a general discussion about the challenge and overhead when sharing data-structures on top of incoherence caches in §2. We then

introduce BI memory model and its impact on the semantics of data-structures in §3. After discussing the design and implementation of BI in §4

and §5, we apply BI to a modified PowerGraph (§6) and compare against distributed implementations. The evaluation in §7 validates BI’s ability to

maintain common case performance comparable to cache-coherent multi-processors for contemporary hardware, and to enable an infrastructure

for managing the non-coherent memory. The contributions of this paper include:

1. the design and implementation of BI as a means for reasoning about shared memory in non-CC architectures,

2. the application of BI to the PowerGraph system, and to a RCU-driven balanced tree data-structure, and

3. the evaluation of BI versus distributed approaches to cache coherency management.

2 MOTIVATION AND BACKGROUND

This section first discusses the general challenge imposed by incoherent cache when sharing data-structures (§2.1), and then investigates the

overhead of typical cache operations (§2.2). §2.3 briefly introduces Read-Copy-Update7(RCU) and Scalable Memory Reclamation5,6,8(SMR), which

inspires the implementation of BI.

2.1 Challenges with cache-incoherence

To investigate the impact of incoherent memory accesses on the consistency properties of a data-structure, Figure 2 depicts a simple linked list

data-structure undergoing modification with non-CC memory. We use the word “node” to refer to the computational elements in a coherency

domain, and “objects” to reference the constituent allocations within a data-structure. A number of different data-structure inconsistencies arise

due to the non-CC memory.

1. Stale access: in (b), the reference from the first to the second object can still remain in node’s caches, despite the new object being linked after

the first.

2. Resolution failure: in (b), the new object is not visible on nodes with stale cache-lines, thus attempting to resolve that object (i.e., do a lookup on

it) fails.

3. Dangling references: in (c), stale cache-lines still reference a removed and freed object.

4. Type inconsistency: additionally, in (d), the previously removed node is reallocated as a different type of memory and used in another

data-structure. The type and size of the resource can be different if accessed from a stale cache-line, and, even if the type is the same, the context

is different.

Dangling references and type inconsistencies have a direct analogy in non-blocking data-structures concerning the ABA problem.13 In the

absence of a mutually exclusive abstraction (e.g., locks) over all data-structure modifications and access, the ABA problem stems from races between

object access, and memory management operations on that object. An object can be both accessed by one node, and concurrently freed then

malloced as an object of a different type on another node. Thus, non-blocking algorithms are often paired with SMR techniques4,6,7,14 to avoid

re-allocating objects until there are no parallel threads possibly accessing them.

REN ET AL. 3 of 19

F I G U R E 2 A singly-linked list going through a sequence of modifications with non-CC
memory. Each list is a configuration after a modification. Dashed lines and boxes represent
stale cache contents for that object, while dark continuous lines denote the state in
memory. (A) is the initial configuration; (B) adds an object, leaving a stale link in some node’s

caches; (C) removes and frees the second to last object, but it remains in stale cache-lines
on other nodes; and (D) the freed object is allocated as a different type (shape)

(A) (B) (C) (D)

(A) (B)

F I G U R E 3 Cache operation per-cache-line overheads

Just as lock-free algorithms often use SMR to handle stale parallel access to read-mostly data-structures, comparable techniques can be used

to handle stale cache references to shared data-structures between non-coherent nodes. While SMR prevents the re-use of memory while a par-

allel thread can be accessing the object, BI is designed to prevent the re-use of memory while any node can have the object in its cache. This is a key

observation of this paper, and is (to the best of our knowledge) the first instance of SMR applied to non-coherence systems.

2.2 Cache operation overheads

There are three typical cache operations for cache coherence management: (1) invalidate, which marks a cache line as invalid. (2) write-back, which

only writes a dirty cache line back to memory, leaving the cache still valid, and (3) flush, which combines invalidate and write-back. To better under-

stand the interactions between data-structure accesses, and cache operations in non-CC memory, Figure 3 reports the per-cache-line overhead for

a number of different memory and cache operations. Results are from the HPE Superdome Flex server (more hardware details can be found in §7).

Overhead on memory access. When programming for non-CC memory, one option is to add cache instructions to flush and write-back

cache-lines either explicitly, or through compiler extensions. However, the performance impact of these instructions and subsequent accesses to

the cache-lines are significant, as they operate at memory-speed. The data-structure read and flush+read lines in Figure 3A represent

random-accesses to cache-lines of a given working set. The working set is the total size of accessed memory, and should be evaluated relative to

cache sizes on this platform – a 32KB L1cache, 1MB L2 cache, and 38.5MB L3 cache. A clflush will writeback and/or invalidate the cache-line in

all levels of cache (even in non-shared caches such as the L2 of another core), and each cache-line is 64 bytes. This represents the cost of accessing

a simple data-structure using only reads – mainly a function of the level of cache in which the load resolves, versus pre-pending each of those reads

with a cache-line invalidation to ensure that the read accesses the most up-to-date value.

Conclusion #1: frequently executed data-structure operations should avoid cache operations. Requiring explicit flush operations on each access of

shared memory data-structures has significant overhead. This motivates BI to enable cache-speed access to shared data-structures.

Cost of different cache-line states and instructions. In Figure 3B, the lines for clflush demonstrate the cost of flushing a random sequence

of cache-lines after either reading the cache-line into cache (r), modifying it (m), or invalidating it (i). This shows the cost of flushing cache-lines in

different states in the cache. clflush is a serializing instruction which effectively awaits previous clfush’s completion before completing the

next.. Alternatively, the clflushopt instruction, available on modern x86 processors, enables micro-architectural pipelining and reordering of

the flush instructions (to different cache-lines). To await the completion of all clflushoptinstructions, a single memory barrier (via mfence) is

executed. For a small numbers of flushes, the cost of this barrier dominates, but for larger numbers of flushes, its impact is marginalized. Manipulating

invalidated cache-lines has the largest cost. Because the current core is not able to ascertain other cores’ cache-line status, it has to broadcast the

invalidation request to its cache coherency domain and waits for the responses from all the other cores. Due to cache write-backs, there is more

4 of 19 REN ET AL.

(A) RCU update operation. Writers perform modifications on a separate private copy,

and then atomically unlink the old object while linking in the new one.

(B) Time advances to the right for two readers, and the bars represent read operations.

At time A, data is freed and made unreachable, but remains referenced till B by the

second reader. At that point, it can be reclaimed.

F I G U R E 4 Read copy update and scalable memory reclamation

overhead for cache-lines that are modified, than if they are only read. The decreased pipeline serialization seen in clflushopt decreases the cost

of flushing cache-lines for large buffers. These results show that, for this processor, it is beneficial to both leverage architectural support for pipelined

flushes, and to batch those flushes to the largest extent possible.

Conclusion #2: systems should batch cache-line flush operations and use non-serializing instructions. The integration of clflushopt, and its use on

large ranges of non-modified memory, minimizes cache operation overheads.

2.3 Read copy update and scalable memory reclamation

RCU maximizes the performance of data-structure readers as it requires no explicit synchronization on the read path. However, data-structure

writers have to perform more complex and slower update operations to avoid interference on concurrent readers. Figure 4A illustrates an RCU-style

update operation in a shared linked list. A writer finds the object to be updated (b), and copies it into a newly allocated structure (b’). After modifying

that object with the intended changes, the writer atomically unlinks the old object while linking in the new one. The unlinked object introduces a

challenge of SMR, which reclaims freed memory at a safe point when no reader can potentially hold a reference to the old data.

SMR implementations fundamentally exist to ascertain if a freed object that has been disconnected from a data-structure is still possibly

accessed by a parallel thread. Instead of tracking individual references to specific objects within a data-structure, SMR techniques track when

data-structure references could exist inside each reader. Quiescence of a particular reader is achieved when it no longer holds references to freed

objects. A grace-period7 is a period of time during which every reader goes through at least one quiescent state. The core principle of SMR is that a

freed object can be safely reclaimed after a grace period. Figure 4B gives an example of grace-period calculation for two parallel readers. All exist-

ing SMR solutions rely on a fundamental assumption: a reader will no longer access freed objects after exiting an RCU-protected read operation.

However, incoherent cache breaks such assumption, and this paper presents how BI fills this gap.

3 BI MEMORY MODEL

This paper introduces the Bounded Incoherence (BI) memory consistency model that enables efficient, cache-based access for shared

data-structures on non-cache-coherent architectures.

3.1 BI consistency model

To provide the benefits of cached read-path access, and to avoid many of the consistency problems from §2.1, BI is designed to have a number of

properties:

P1 Cached object access is used for all read-paths, thus eliding expensive cache-line invalidations and subsequent memory accesses.

P2 Cache-lines are stale only for at most a bounded amount of time.

P3 Similar to RCU quiescence that tracks when no possible references to freed data-structure objects can exist and memory can be reclaimed,

BI tracks when there are no possible references in caches to freed data-structure objects. BI prevents those objects from being reused while

their possibly stale cache-lines exist in any cache. This avoids dangling references and type inconsistencies, but also delays the reuse of memory

thus increasing memory requirements.

P4 As accesses to stale data-structure cache-lines are allowed, modifications to that data-structure must be atomic with respect to reads.

REN ET AL. 5 of 19

Given these properties, BI is a memory consistency model with specific visibility constraints between loads and stores on different nodes. For

example, sequential consistency15 ensures that loads and stores on a specific node are visible in the same order, and not reordered with respect to

loads and stores on another node. In contrast, BI is a relaxed consistency model in that it admits looser orderings between loads and stores across

nodes:

1. Stores of one node are visible to other node’s loads in at most a bounded amount of time. Due to cached-access to potentially stale object cache

lines, loads don’t immediately observe another node’s store.

2. Stores are made directly to memory and those made to a single address are seen in a sequential order.

3. Stores to different addresses can be reordered on another node. Stores to addresses a0, then a1 might be seen by another socket as modifying

memory at a1 first, then a0. This happens if a load from a0 hits in the cache (finding cached, stale data), then a1 is loaded, missing in cache, thus

seeing the store’s updated value. After a0’s cache-line is evicted from the cache (from capacity, contention, or explicit eviction), a further load

will miss in cache and find the updated value. As such, a socket can see a1’s store before a0’s, reordering stores.

3.2 Data-structure semantics for BI

To understand which data-structures can benefit from BI, we discuss the interplay between the semantics of data-structures and BI properties. Here

we’ll separately consider data-structure lookups (read-paths) and modifications (update-paths).

Data-structure lookups with BI. Lookups exclusively use loads on objects. Modifications to these objects on other nodes do not have guaranteed

immediate visibility (P1). Thus it is necessary that even stale versions of objects result in fault-free lookups. Different data-structure semantics

admit trade-offs here.

Tolerable delayed freshness on lookups. The most lenient data-structure consistency requirements allow lookups to access stale objects. This has

the potential to violate causality. For example, a hash-table shared between nodes can have a put operation add a key/value to the data-structure,

while a getserviced by another node will only be guaranteed to return that key/value after a bounded latency. This might be acceptable if the

hash-table is simply a cache for web objects, and failure to find a key after it’s addition is compensated by logic to retrieve data from a backing

data-base.

Lazy invalidation on lookup resolution failure. As part of BI, we investigate another option that has stronger consistency properties between addi-

tions and subsequent accesses. If a lookup fails to find the object it is looking for, then the lookup is retried while invalidating all cache-lines along the

lookup path before loading them. This enables additions to the data-structure to be immediately visible to parallel lookups. We call this lazily invali-

dating cache-lines. Using the same hash-table example, additions of keys on one node are immediately visible on another. However, modification and

removal of existing keys will be visible after at most a bounded amount of time (P2).

Data-structure modifications with BI. When multiple nodes can modify the same objects in a data-structure, they require consistency with con-

current lookups. In linked data-structures, (e.g., a simple linked list), an object might be added after an existing object while a parallel modification

has already removed the existing object from the list. This has the effect of adding a node without actually making it visible within the structure. Syn-

chronizing between concurrent modifications is generally a difficult problem, even for parallel systems using SMR.16-18 To cope with such difficulty,

BI supports two mechanisms (P4):

1. Mutually exclusive writers. Mutual exclusion alone is not sufficient, and must be paired with explicit cache-line write-back and invalidation

operations.

2. Partitioned writers.

To avoid the overhead of flushing possibly stale cache-lines in objects to be modified, data-structures can be partitioned across nodes, thus

avoiding synchronization of cache-lines between writers. Given the partitioning of the data-structure modifications to specific nodes, message

passing is required to steer the modification request.

Summary. BI trades time-to-coherency for increased locality of data access and the ability to avoid explicit cache operations on read-paths.

It complicates update-paths as they must be atomic with respect to parallel lookups and other modifications (P4). This way we are opti-

mizing the common case and moving complexity to less frequent case. These limitations are similar, but more restrictive than those around

non-blocking data-structures that use SMR techniques. BI is similar to RCU in that it uses quiescence as a fundamental mechanism. How-

ever, BI is the first system to associate quiescence with data-structure coherency on a non-coherent system. This requires new mecha-

nisms to provide quiescence on non-coherent systems (P3). The wide-spread use of RCU in the Linux kernel7,16 demonstrates that there

are data-structures with relaxed consistency requirements. An important question is if the additional constraints of BI including delayed

visibility for modifications, and modification synchronization using either expensive mutual exclusion, or partitioning, prohibit interesting

applications.

6 of 19 REN ET AL.

4 BI DESIGN

This paper focuses on creating abstractions to handle shared data-structures on non-CC memory. The primary goals of BI are (1) allow common-case

read-only operations to proceed without any synchronization nor cache operations; and (2) guarantee consistency between concurrent readers and

writers.

BI focuses on relatively general applicability and adheres to the classic RCU API (§4.1), which is used broadly across the Linux kernel, and in

applications via a user-level library. BI extends RCU with a set of enhancements to both RCU readers and writers. On the reader side, BI provides

cache invalidation focusing on batching cache-line invalidation operations (motivated by Figure 3B), and integrates this cache invalidation into the

quiescence mechanism (§4.2). On the other hand, a BI writer is responsible for (1) stale cache tracking, which coordinates with BI readers for cache

invalidation; and (2) memory management which provides safe memory reclamation (§4.3).

4.1 BI API

The BI API mainly inherits from RCU, but extends it to explicitly manage cache coherence. On the reader side, BI use the same API as RCU to access

shared data-structures.

1. bi_enter() declares the start of a code section in which references to objects can exist. Its usage is the same as rcu_read_lock() in RCU.

2. bi_exit() declares the end of that section, same as the RCU counterpart, rcu_read_unlock(). No thread-local references to objects can

remain after this.

3. bi_dereference(void **) fetches a shared pointer, referenced by a shared pointer, which can be safely dereferenced.

BI introduces two additional APIs for readers to achieve cache coherence.

1. bi_stale_object_quiescent(callback_fn) invalidates stale cache lines to get their updated value. For instance, in Figure 4A, readers

use this to invalidate the cache containing object a. callback_fn is discussed in §4.3.

2. bi_free_object_quiescent() flushes the local cache to drop any references to freed objects. As an example, in Figure 4A, readers call this

to flush object b’s cache lines.

§5 details how BI invokes the above APIs to achieve cache quiescence inside each reader.

On the writer side, BI needs more APIs to manage cache and coordinate concurrent readers.

1. bi_assign_pointer(void **, value) assigns a new value to a shared pointer. It also writes back the new value to memory, and records

the modified object if BI modification tracking is enabled.

2. synchronize_bi() detects an elapsed grace period. It differs from synchronize_rcu() in two ways. First, it does not block waiting for

quiescence in the future. Instead it calculates the most recent time in the past when quiescence was achieved. Second, in addition to checking if

readers exit the read-side section, it also checks if necessary cache flushes are performed.

To integrate memory and cache coherency management, BI provides an extra set of memory operations.

1. bi_alloc(size, flag) allocates memory for data-structure objects. §4.3 discusses flag.

2. bi_free(void *) deallocates the object without actually yet freeing up its memory.

3. bi_reclaim() reclaims and frees previously deallocated objects. It usessynchronize_bi()to make sure all reclaimed objects can be safely

reused.

Figure 5 depicts example pseudocode illustrating the use of BI to operate a shared data-structure. A reader (writer) finds the object of interest

and processes (modifies) it.

All such read operations are delimited bybi_enterandbi_exit. To perform a modification, the writer first allocates a new object (line 2), then

performs the update by copying (a part of) the old object (line 5), updating the copy (line 6), and replacing the old version with the new one (line 7). The

old object is marked to be freed later (line 8). The reclamation of freed objects (line 12) happens after quiescence detection (line 11), which contains

the logic to ensure a grace period has elapsed. On the reader side, extra care needs to be taken to deal with incoherent caches. After bi_exit (line

19), while readers do not logically hold any references to freed object, references can still be contained in stale cache lines. Thus the reader has to

flush the stale lines of freed objects (line 22). Furthermore, as the reference itself is modified by a writer, the reader needs to invalidate that cache

REN ET AL. 7 of 19

F I G U R E 5 Typical usage of BI API with a shared data-structure D, in this case a lookup-based structure

F I G U R E 6 Time advances to the right for two readers. AC is RCU
grace period. BD is cache quiescence, and AD is BI global grace period.

Hence, an object freed at A can be reclaimed after C in RCU, but can
only be reclaimed after Dwith BI

line (line 24) as well in order to see the updated reference. Those cache invalidation can be delayed to a later point to batch more cache flushes, but

doing so introduces staleness. Therefore, it is essential for BI to guarantee the staleness is sustained for at most a bounded amount of time.

4.2 Cache quiescence

Non-coherent caches break existing RCU implementations as references to freed objects can still exist in a stale cache. As shown in Figure 6, with a

coherent cache,R1 is unable to access a freed object after it completes a read operation (at time pointC). However, without coherency,R1 can access

freed objects via stale references. Thus we cannot achieve quiescence at C to reclaim freed memory. To drop these stale references, BI invalidates

stale cache-lines on each reader node, and determines a time period at which every reader has done so. This time period is defined as the time at which

BI achieves cache quiescence, thus ensuring that no stale cache lines persist after quiescence. Global quiescence is achieved by combining cache

quiescence and existing time-based quiescence. Figure 6 compares RCU quiescence against BI quiescence. Any resources or objects deactivated

before the last quiescence point may then be reused.

Achieving quiescence. As §2.2 suggests, cache invalidation overhead is minimized when batching cache-line flush operations and using

non-serializing instructions. Therefore, BI delays cache invalidation to batch more stale cache lines, instead of executing it immediately after every

read operation.

Invalidating stale cache-lines is performed in one of three ways: (1) invalidate all data-structure cache-lines, (2) invalidate all accessed cache-lines

since last quiescing, or (3) invalidate all modified objects on all nodes. Each option entails trade-offs depending on the dimensions of data-structure

size, working set, and fraction of data-structure objects modified, respectively. Invalidating the whole data-structure saves extra tracking overhead,

but only works with small data-structures. When the working set is not large, invalidating only accessed cache lines efficiently avoids unnecessary

flushs of unaccessed memory. Invalidating modified objects works best in the case of read-heavy workloads.

Quiescence policy. Currently BI provides built-in support for logging stale cache lines and invalidating them. The log is stored in a shared ring

buffer, which is populated by writers when modifying objects (§4.3). Inside the cache quiescence routine, a reader first invalidates the shared log to

get its latest contents. Then the reader iterates the log and flushes every logged object’s cache lines. In the default setting, BI periodically invokes

the cache quiescence routine for each reader in the background. This period forms the upper bound of cache quiescence as well as cache staleness.

The frequency of cache quiescence on each reader represents a system trade-off between time-to-consistency and cache operation overheads.

High frequencies will incur more overhead due to the activation of the thread to perform quiescence, and due to more frequent cache misses

for data-structures, but will achieve quiescence at a finer granularity, thus enabling the reuse of data-structure objects sooner. Conversely, low

8 of 19 REN ET AL.

frequencies decrease the cache quiescence thread’s activation overheads, and more effectively batch cache flush operations, but provide a coarser

granularity of quiescence. Determining the best frequency is beyond the scope for this work.

Despite this periodic cache quiescence, BI also provides on-demand cache quiescence to allow applications to employ their own spe-

cific object tracking and cache quiescence policy. Applications explicitly call cache quiescence APIs (e.g., bi_free_object_quiescent,

bi_stale_object_quiescent) to invalidate their stale cache. BI tracks their invocation history to aid in the calculation of quiescence.

To guarantee bounded incoherence, applications are in charge of invoking cache quiescence in a timely manner. §4.3 covers more details

about on-demand cache quiescence. §6presents how to utilize both periodic and on-demand BI cache quiescence in a graph processing

framework.

4.3 BI writers

BI writers are more complicated due to several requirements: (1) Atomic update which prevents readers accessing incomplete data. (2) Exclusive

modification requires coordination between updating nodes. Currently BI does not support parallel writers to the same cache line. Hardware atomic

instructions are insufficient for mutual exclusion as their atomicity guarantees don’t extend to memory, and our current hardware does not support

in-memory atomic operations (e.g.,cas), thus data-structures are partitioned across nodes. Each partition is exclusively accessed by one writer, and

message passing is used to coordinate updates across nodes. (3) Cache line write-back must be done explicitly to modified data. Thus, modified cache

lines are written back to memory immediately. This avoids readers reading stale data even after cache invalidation. BI writers also require both (4)

stale cache line tracking to invalidate only the required cache lines, and (5) memory reclamation.

Stale cache line tracking. BI tracks two types of stale objects to be invalidated by readers. First, BI logs objects modified through

bi_assign_pointer (e.g., object a in Figure 4A). This guarantees that a BI reader can retrieve the memory for updated objects with a bounded

delay. Second, BI logs memory freed via bi_free (e.g., object b in Figure 4A). This enables the system to safely reuse this memory after achieving

quiescence. These two kinds of objects are logged into two separate ring buffers, and object headers are annotated with the time that they were

logged. The timestamp used for the memory reclamation is discussed next. On the other hand, readers invalidate modified and freed objects by

invoking bi_stale_object_quiescent and bi_free_object_quiescent, respectively.

However, as discussed in §4.2, invalidating all modified objects is not the only way to deal with stale cache-lines. Thus BI allows users to flush

any necessary cache lines in application-specific ways. When callingbi_alloc, applications set theflag to indicate whether BI should track mod-

ifications to the allocated object or not. When performing cache invalidation via bi_stale_object_quiescent, applications pass in a callback

function (call_back_fn), which iterates through and flushes their managed objects.

Memory reclamation. Writers regularly callbi_reclaim to reclaim freed memory to avoid unbounded memory consumption. Before reclaim-

ing an object, synchronize_bi is invoked to check if a grace period has elapsed since its deallocation. Formally, synchronize_bi returns a

time point such that objects freed before that point can be safely reclaimed. synchronize_bicalculates a grace period by combining time-based

and cache quiescence. Similar to existing work,4 every reader records the times when they begin and end accessing the shared structure inside

bi_enter andbi_exit. Writers retrieve this timing information to determine the time-based quiescence point (Q). However, with stale cache val-

ues, an object freed before Q is still visible and accessible by other sockets , unless its stale reference has been invalidated before Q. As an example,

consider the object freed at A in Figure 6. Without cache invalidation at B, reader R2can still access that object at D. Therefore, from Q, synchro-

nize_biminus the length of cache quiescence, and returns that as the global quiescence point.bi_reclaim finally iterates the freed memory log,

and reclaims any objects deallocated before the quiescence point.

4.4 BI correctness

The key for BI correctness is to ensure following invariants on consistency, freshness, and memory utilization. (1) No objects should be modified while

concurrent readers can potentially hold any type of references to them. This guarantees that readers always see consistent data. (2) All modifications

should be visible to readers within at most a bounded amount of time, which is the BI grace period. This ensures that readers will access fresh data

after a grace period. (3) All memory of freed objects should be eventually reclaimed. This prevents memory exhaustion due to delayed memory

reclamation.

Consistent read. The reasoning about consistent reads and visibility of objects is similar to existing RCU techniques. Writers never modify

objects in-place, but on a private copy instead and atomically modify a single pointer to replace the old object with the new. Memory reuse and its

subsequent modification is delayed by the quiescence mechanism (§4.2). BI quiescence ensures that memory is reallocated and reused only after

every reader both completes its read operation and flushes its stale cache.

Bounded staleness. This is guaranteed by coordination of readers and writers. Writers always commit changes back to memory immediately,

and all modified objects are logged (§4.3). On the other hand, readers invalidate these logged objects periodically and are able to see the updated

REN ET AL. 9 of 19

data after cache invalidation (§4.2). In case of on-demand cache quiescence, it is the application’s responsibility to provide this guarantee at their

chosen granularity.

No memory leakage. As proved by Ren et al.,8 an SMR implementation has bounded memory utilization as long as it has the following property:

during every memory reclamation cycle, it collects all freed objects which have past the quiescence point. BI identifies and collects all such objects

using two mechanisms (§4.3): (1) the quiescence calculations return the latest global quiescence point, and (2) BI always invalidates its internal

logging structures to retrieve the up-to-date logged objects.

5 BI IMPLEMENTATION

5.1 BI runtime

We implement BI prototype as a run-time library addition to ParSec4 which provides a slab memory allocator, SMR, to track possible parallel accesses

to a non-blocking data-structure, and delays the re-use offreed memory until no such accesses can exist. BI extends ParSec to implement RCU-style

APIs in §4.1.

Maintaining and using logical time. BI needs to compare different node’s potential object accesses with when memory was freed, to determine

if it can be reused. ParSec uses invariant TSC19 support to determine this ordering. Unfortunately, in rack-scale systems, such architectural support

cannot be assumed as nodes are more loosely coupled than cores on sockets. A simple implementation atomically increments a single logical clock

each time an object is deallocated. The logical time is the value of that counter at any point in time, and tracks deallocations. BI records the logical

time when each node invalidates its data-structure cache-lines. Unfortunately, this requires frequent modifications to the shared logical clock which

not only involves memory-scale latency, but also contends the in-fabric atomic operation units.

Instead, the BI runtime uses a time-based implementation in which the logical counter is incremented periodically at some granularity related to

the timer tick of each node. The current prototype uses the cycle counter (viardtsc) on each node to calculate the logical time. While the absolute

value of cycle counter may vary on different nodes, they are all incremented at the same fixed frequency. Thus, different nodes, though not tightly

coupled, can maintain logical times within an error margin of a single logical tick. Any comparisons between clocks on different sockets must take

into account the maximum difference between each node’s logical time, D = max∀i(Qi) − min∀i(Qi). An example: a data-structure, freed at time t has

its logged_time=t. When a node attempts to reclaim the data-structure, the enter and exitaccess times to the data-structure are referenced

on each node, compared against t+D to compensate for time offsets on each node. Though it adds some pessimism in when objects can be reclaimed,

this design enables the efficient, cached access to all node’s logical clocks. Updating a node’s own logical clock requires only writing the cache-line

back to memory, and does not require atomic memory operations (e.g., a write-back via clwb is sufficient).

5.2 BI pseudo-code

BI Metadata. Figure 7 presents the BI metadata. BI augments each object with a header (line 1-7), including the time it was logged, a flag and a mark

to indicate if BI tracks its modifications and if it was freed, respectively (§4.3). BI tracks the time each reader enters and exits a read operation in a

per-reader structure (line 11-14). This timing information is retrieved by writers when calculating quiescence (§4.3). Readers only update timing

records, while writers only read them. Every writer maintains two ring buffers, as logs to track freed and modified objects (line 16-28). Readers

F I G U R E 7 BI metadata

10 of 19 REN ET AL.

F I G U R E 8 BI reader–related APIs. thdid returns the current thread id, cur_time returns the current logical time. clflushopt and
writeback uses the clflushopt and clwb instructions, respectively

iterate over these logs and invalidate the cache of all logged objects to achieve cache quiescence (§4.2). Thus, these logs are manipulated by writers,

and are read-only to readers.

Figure 8 presents the pseudo-code for the reader-related APIs.

Reader section. The start and end of a read operation is marked by bi_enter and bi_exit. They simply record the current logical time into

that per-reader timing record (line 1-9). We use the typical memory barrier here to ensure that the store of the current time intoenter is visible in

cache (the store-buffer is flushed) before accessing the data-structure. If theenter time is larger thanexit, it means a reader is currently executing

a read operation. Otherwise, the reader has been finished.

In our first unoptimized implementation, these records are written back to memory immediately, which assures accurate quiescence detec-

tion. However the write-back is expensive, and significantly slows down read operations in the fast-path. Fortunately, immediate write-back is not

necessary, and could be performed periodically in a later point. This may cause a problem only if the quiescence detection has wrongly ascertained

that a reader has completed computation on the shared data-structure. By case analysis, such a mistake only occurs whenexit is up-to-date, while

enter has stale value. Hence, the quiescence detection always retrieves the value of exit first. In this way, the value of exitcan never be newer

than enter. §7.2 demonstrates the performance improvement of this optimization.

Read shared data. bi_dereference fetches a BI-protected pointer (line 10-16). In case of a resolution failure, it implements lazy invalida-

tion (§3.2), which accesses the memory again after invalidating the pointer. Line 13-15 prevents a bug introduced by the hardware prefetcher. The

hardware prefetcher can possibly prefetch a freed object into the cache, even after a reader achieves quiescence, thus the memory is no longer in

the process of being freed. This breaks the BI invariant that a reader should no longer have reference to freed objects once achieving quiescence.

To detect such a prefetch-after-invalidate race condition, the object is marked bybi_free. When a marked object is found, we invalidate the cache

to get its latest value. Note that a stale pointer and/or header is allowed in cache as it might have been freed on another node, and this is a normal,

(bounded) incoherent access. Instead, this logic protects against caches holding freed memory after it has quiesced, been reused, and relinked back

into the structure.

Cache quiescence. Cache quiescence is achieved by invalidating both stale and freed objects stored in log buffers (line 34-40). For each type of

objects, BI first iterates through each writer’s log buffer and invalidates the buffer itself. We batch the invalidation of all logs (line 25-27), an optimiza-

tion informed by Figure 3B. This guarantees access of the latest log contents. Then BI iterates the buffer again to invalidate each object’s cache-lines

(line 18-22). Explicit prefetch instructions are used to pre-load the recently flushed logged objects (line 20), largely avoiding memory latencies.

Read/writer synchronization. Interleavings between the quiescence code and freeing or modifying nodes can result in log items being added

while the reader node is flushing. This can result in freed or modified memory being added to the log, but not being visible to the quiescence. All such

recent additions to the log are for memory that has not yet quiesced (as it was just freed/modified), thus allowed to be inconsistent in caches as it

must have been added after lines 25-27. In short, these cases are identical to the case where thefrees or modifications are made directly following

the quiescence operations. Log modifications are trivially synchronized as each log is only modified by a single node, and written back immediately

when logged.

REN ET AL. 11 of 19

F I G U R E 9 BI writer–related APIs

Reader engine. Putting it together, readers need to regularly perform some BI tasks, which are encapsulated in reader_engine (line 41-45).

They write back timing information and perform cache quiescence. As discussed in §4.2, it can be periodically invoked by BI or explicitly called from

applications.

The pseudo-code for the writer–related APIs appears in Figure 9.

Modify shared data. Writers use bi_assign_pointer to assign a new value to a BI-protected pointer (line 1-10), which effectively replaces

an old object with a new one. If logging is enabled, the address of the changed pointer is saved, and the modification is written back to memory.

Quiescence calculation. Quiescence detection in synchronize_bi includes checking the reader’s states based on their timing information,

and validating cache quiescence (line 25-28). time_quiescence returns a time point q at which point every reader has exited the read section

at least once. This function first invalidates the cache of timing records to fetch their latest value (line 12-14). Next, line 15-19 iterates through all

reader’s timing records to determine the time furthest in the past that all readers could not hold data-structure references (either now, if a reader

has exited the data-structure, or the time it entered the data-structure). The minimal value of all of these times for all readers is returned as q,

identical to the logic in Ren et al.8. Withq,cache_quiescence further calculates the global grace period, when every reader has completed cache

invalidation. For instance, with the periodic cache quiescence policy, the most recent cache quiescence point is simplyqminus the cache invalidation

period (line 22-24).

Memory management. Object allocation and release are done thoughbi_alloc andbi_free (line 29-43).bi_alloc allocates memory and

prepares the object header. bi_free does not actually free the memory, but marks the object as freed and puts it into the log. The actual memory

reclamation happens in bi_reclaim, which frees the memory of all objects that were deallocated before a grace period (line 44-55).

6 BI USE CASE: POWERGRAPH

6.1 PowerGraph background

PowerGraph20 is a high performance graph computation framework. It supports both shared memory multi-processors and distributed clusters,

and we investigate extending this support to non-CC memory. PowerGraph introduces a vertex cut to partition power-law graphs and a program-

ming abstraction that supports parallel execution within a vertex computation. As a result,PowerGraph can scale to graphs with billions of vertices

and edges.

12 of 19 REN ET AL.

(A) (B)

F I G U R E 10 The communication pattern in the original (A) and BI enabled (B) PowerGraph

Vertex Cut. PowerGraph evenly assigns edges to computation nodes and allows vertices to span multiple nodes. For each vertex that spans

multiple nodes, it has a replica on each spanning node. One of the replicas is randomly assigned the master role, and the rest are read-only replicas.

While vertex data can be retrieved locally from the local read-only replica, changes to vertex must be broadcast to all its replicas by the master. Such

communication is implemented by MPI-based message passing. Since each edge is stored exactly once on the node it is assigned to, changes to edge

data do not need any communication or synchronization across nodes.

GAS Vertex-Programs. Computation in PowerGraph is encoded as a state-less vertex-program, which implements the GAS model and explic-

itly factors into three conceptual phases: gather, apply, and scatter. The gather phase is applied to all replicas of vertices in parallel. During the gather

phase, a vertex (maybe a replica) collects information about adjacent vertices and edges locally through a user-definedsum function. Thesum func-

tion is required to be commutative and associative. Every replica sends its local result to its master replica, which combines all results using the same

sum function. The final combined result is passed to the apply phase. After the gather phase has completed, the apply phase is invoked only on the

master replica. Each master replica uses the gather result to update the vertex data via a user-defined apply function. The updated vertex data is

then copied to all replicas by message passing. The scatter phase runs in parallel on all adjacent edges of updated vertices. It updates the edge data

according to the new vertex data. Figure 10A shows the communication among replicas and masters within each phase.

6.2 Challenges with non-CC memory

With non-CC memory, there are a number of complications to the PowerGraph design. The communication across replicas makes no use of

shared-memory and it exposes message passing overhead. At scale, this message passing prohibits the effective use of an increasing number of

cores. Message passing’s overheads on non-CC systems are due to (1) the sporadic, short bursts of cache operations for message passing (write-

back on the sender, and invalidation on the receiver) which don’t leverage the pipelining of many cache operations required for acceptable overhead

(Figure 3B), and (2) the polling at memory speed on a number of message queues equal to the number of communicating cores/replicas. The poten-

tial large amount of memory used byPowerGraphalso complicates cache quiescence, which might require a huge number of cache-line invalidation

operations. Worse still, the apply phase can be update-intensive, where traditional SMR and RCU techniques offer very little benefit. Care is taken

to minimize modifications to remote cache lines in other nodes. Fortunately, some parts ofPowerGraph abstractions do have some appealing char-

acteristics for non-CC memory systems. Primarily, the whole graph is well partitioned, requiring no concurrent or atomic modifications. The edge

data is totally local, therefore we only need to focus on the maintenance of the vertex data.

6.3 BI PowerGraph implementation

We port PowerGraph to BI based on the open source GraphLab C++ implementation*. It provides different options to configure the Power-

Graph engine, and we use the synchronous option. With the synchronous engine, PowerGraph employs the bulk synchronous parallel (BSP)

model, and executes the gather, apply, and scatter phases in order with a barrier at the end of each phase. The porting process involves replacing the

memory management facilities with the BI memory allocator with non-CC memory as backend. All message passing of vertex replica maintenance

is replaced by using global shared memory. Access to the shared memory in gather and apply phase is managed by the BI runtime, which manages

* https://github.com/jegonzal/PowerGraph

https://github.com/jegonzal/PowerGraph

REN ET AL. 13 of 19

the non-coherent cache and limits stale data to at most a bounded amount of time. The rest of the system, such as the partition strategy, vertex

scheduling and scatter phase is left unchanged.

BI API usage in PowerGraph. PowerGraph uses statically allocated sets of vertices and edges. As there is no dynamic allocation for the

graph, we use only the subset of the BI API focused around tracking modifications, accessing the shared memory, and providing cache qui-

escence. This means that the focus on the PowerGraph adaptation to BI is on the functions bi_assign_pointer, bi_dereference, and

reader_engine. Together, these enable the tracking of modified vertices, properly accessing updated vertices, and performing quiescence based

on those modifications.

Gather Phase. During the gather phase, all replicas send their local gather result to their masters. For BI, we augment the vertex data-structure

with a new field to save the gather result locally. At the end of the gather phase, instead of each replica sending its own result to the

master, the master replica directly accesses all its replica’s data-structures to read their results and combines them to get the final result.

Consequently, all modifications in this phase are purely local. Only masters need to read remote cache lines, which are made visible by the

BI runtime.

Apply Phase. The apply phase updates all replicas with the updated vertex data. To avoid remote modifications, BI changes the replica structure

by saving a reference to its corresponding master replica, instead of saving the actual data. Hence, after the master updates the vertex data, it no

longer needs to send a message to notify its replicas. On the contrary, whenever a replica requires its vertex data (e.g., in the gather or scatter phase),

it reads the data from its master via the reference. The BI runtime guarantees that the master’s up-to-date data will become visible to replicas

within at most a bounded amount of time. This totally eliminates message passing and remote modifications. Figure 10B shows the details of the

communication among replicas and masters in BI enabled PowerGraph. Note that if quiescence is not aligned to per-pass BSP synchronizations,

replicas can see stale data here. The impact of this staleness is discussed below in the “Staleness Analysis”.

Cache Quiescence. Cache quiescence is necessary to provide cache coherence in two cases. First, in the gather phase, local gather results are

required to be visible to the master. Second, in the apply phase, vertex replicas need to see the updated vertex data. In both cases, we choose to

invalidate only modified cache lines as PowerGraph potentially accesses a huge amount of unmodified memory.

Cache quiescence is implemented in two ways. First, we mark the gather results and the replica structure as BI-managed. This enables BI built-in

support to track modified objects and flush them periodically in the background. The cache flush is carried out by one core per socket, as we observe

that invalidation on one core will flush all other cores within the same socket, even in non-shared caches (L1 and L2). In this way, the application is

totally freed from reasoning about cache coherence. In the second implementation, we utilize the fact that PowerGraph already has information

about active and modified vertices. Therefore, we extend the BSP barrier to invoke the BI cache quiescence on-demand. This iterates Power-

Graph internal vertex set structure to identify all modified objects and invalidates their cache lines. This prevents stale cache lines across phases,

as discussed below.

Staleness Analysis. Staleness is introduced by the BI’s periodic cache flushes. If a core reads a modified remote cache line before BI invalidates

that cache line, it will see the stale value instead of the updated one. This happens in both gather and apply phase, where a master may use an old

gather result or a replica can see vertex data from a previous iteration. However, such staleness is bounded by the BI grace period. As studied in

previous research,21,22 a large class of iterative graph and machine learning algorithms are proved to converge even in the face of staleness between

iterations, as long as such staleness is restricted within a limited amount of time. It is the ability of many graph algorithms to converge in the face of

stale information that motivated our investigation of them with BI.

On the other hand, on-demand cache quiescence gives applications full control of data consistency. When PowerGraph invokes BI cache qui-

escence inside the BSP barrier, it guarantees that all changes made in the current phase will be seen by the next phase. As a consequence, no stale

data is generated in such implementation, thus enabling us to study the impact of staleness on application performance. While not implemented in

this work, we can also trigger cache quiescence only within specific iterations to achieve the A-BSP or SSP model;21

7 EVALUATION

Experiment Platform. All experiments are run on HPE Superdome Flex servers†. We deploy two enclosures, with four 28-core sockets per enclo-

sure. The Intel(R) Xeon(R) Platinum 8180 CPU is used, which is clocked at 2.5GHz. Each core has a 32KB L1 cache and 1MB L2 cache, and

each socket has 38.5MB L3 cache. Each enclosure has 1.568TB local memory. There are 3.008TB global memory shared between two enclo-

sures via the NUMALink fabric. Custom firmware is installed to configure cache coherency on top of global shared memory. The cache coherency

domain is at the socket level. That is to say, when cache coherency is disabled, only cores inside the same socket are coherent, and caches

between different sockets (even within the same enclosure) are non-coherent. A clflush on a core will write-back and invalidate that cache-line

in all caches (including non-shared L1 & L2) on the socket. Each enclosure runs an independent copy of the SLES-15 operating system, with a

Linux 4.12.14 kernel.

†https://www.hpe.com/us/en/servers/superdome.html

https://www.hpe.com/us/en/servers/superdome.html

14 of 19 REN ET AL.

F I G U R E 11 clwb and clflushopt overhead

7.1 Micro-benchmarks

Cache operation overheads. BI uses clwb and clflushopt instructions to achieve bounded cache coherency. clwb is used by writers to commit

modifications to memory, and clflushopt is used by readers to invalidate stale cache lines. To investigate the overhead of those instructions,

Figure 11 depicts their cost of operating on an increasing amount of continuous non-coherent memory. This experiment runs on a single core and

measures the cost with cache lines in different states (read, written to, or not in cache).

Those overheads are linear with the working set size. With a large working set, the memory latency dominates the cache overhead, effectively

requiring memory latency for all operations since the targeted cache line is never in cache. In this case, these cache operations make a negligible

difference over the memory latency, thus we only show results from working sets smaller than 256KB. With a small working set, the cost of both

instructions are observable but not prohibitive. More importantly, on the non-coherent architecture, such overhead does not increase with the

scale of the machine, as their impact is limited only to their own socket. In general, clwb has a little less overhead than clflushopt, as it does not

invalidate operated cache lines. Furthermore, this avoids cache misses on the following memory accesses. The cache line status has a bigger impact

on the cache operation as expected. Operations on read-only cache lines have the least overhead, as no memory access is triggered. On the other

hand, operations on modified cache lines are the most expensive, since modifications are written back to memory. When cache lines are invalidated,

the operating core is not aware if other cores contain the same cache line; thus, it needs to wait for invalidation confirmations from other cores in

the coherency domain (one socket in this case), causing some overheads.

Periodic Cache Invalidation Overheads When BI is configured to use periodic cache quiescence, two factors determine the total overhead of its

cache invalidation: invalidation frequency and working set size. Furthermore, the cache invalidation impacts application performance in two ways.

First it reduces the available CPU time to applications running on the same core with cache invalidation. Second, it causes cache misses of operations

accessing the invalidated memory on other cores inside the same coherency domain. To understand the impact of these factors, we measure memory

load throughput over different working sets in the presence of cache invalidation at various frequencies.

Figure 12A depicts the load throughput while cache invalidation is executed on the same core as the test. Figure 12B reports results of tests

running on a different core. All throughputs are normalized to the performance without periodic cache invalidation (noflush). aggressive rep-

resents the case that cache is invalidated immediately once it is assessed, instead of being delayed to periodic invalidation. Those results show

aggressive cache invalidation performs the worst in all cases. With a larger working set, cache invalidation has more impact as expected, due to the

increased cache miss overhead. For example, when the working set fits into L2 cache, periodic cache invalidation at most introduces 2% perfor-

mance degradation. When the working set becomes 64MB, load throughout decreases 20% and 10%, on the same and separate core, respectively.

Similarly, more frequent cache invalidation has more overhead as well. For example, in Figure 12B, a 100ms invalidation period has 2% throughput

degradation, while 10ms period has 10% degradation.

7.2 BI Applied to a balanced-tree data-structure

To evaluate BI on complex and efficient data structures, we implement a BI-based concurrent red-black tree. Red-black trees are commonly used

in operating system kernels and language runtimes. A red-black tree represents a set of unique key and value pairs. It has three main opera-

tions, lookup which is read only, insert and delete which are mutating operations. Recent research improve the scalability of a concurrent

red-black tree by utilizing RCU techniques.17,23 Hence, the red-black tree is a representative use case for BI, and we port BI to the BONSAI tree

implementation.23 BONSAI tree’slookupoperation is guarded by RCU sections, and its write operation is protected by a lock‡. We use the U-RCU7

‡https://github.com/tpapagian/pk/blob/rcuvm-pure/lib/cbtree.c

https://github.com/tpapagian/pk/blob/rcuvm-pure/lib/cbtree.c

REN ET AL. 15 of 19

(A) (B)

F I G U R E 12 Load throughput with cache invalidation

TA B L E 1 Red-black tree performance results. Working set is the number of tree nodes

A. Per-core throughput improvements of reader section optimization (higher is better)

Working set 1K

Update percentage 10% 30%

non-opt BI 40K ops/s 14.3K ops/s

BI 147.5K ops/s 40K ops/s

B. Comparison of write operation latency (lower is better)

Update percentage 10%

Working set 64K 64M

U-RCU 1700K cycles 811K cycles

BI 544K cycles 467K cycles

C. Comparison of read operation latency (lower is better)

Working set 64K 64M

Update percentage 0% 10% 0% 10%

U-RCU 207 cycles 400 cycles 2600 cycles 2700 cycles

BI 200 cycles 550 cycles 1500 cycles 2500 cycles

library liburcu§for RCU APIs. Porting BI to BONSAI tree is straightforward. BI APIs are used as a drop in replacement of RCU APIs in the lookup

operation. All write operations are delegated to a single core by message passing, thus avoiding concurrent write operations and cache invalidation

inside writers.

Methodology There are two main dimensions we parameterize the experiments around. (1) Update percentage. BI works best with a

read-mostly data-structure. Thus studying the impact of update operations can shed light on BI limitations. (2) Working set size. Different working

sets introduce different cache and memory footprints, and thus stress the cache coherency and memory management in BI. We use the num-

ber of tree nodes inside a tree as a measurement of the working set size. All experiments use all available cores in system, with one benchmark

thread per core. Each benchmark populates a tree with the given working set size, and a key range doubling the initial size. In each thread’s

iteration, it picks a key from the key range randomly, then determines if the operation is an update operation according to the update percent-

age. Update operations roughly include half inserts, and half deletes. The entire tree is saved in the global shared memory. Hardware cache

coherency is enabled when running U-RCU experiments, and is disabled for BI. BI uses the default periodical cache quiescence policy with one mil-

lisecond period, and flushes all modified objects. We measure throughput and latency, and present all performance results in Table 1. These results

allow us to study how close to hardware-managed coherence performance we can achieve while using software-managed non-coherent memory

with BI.

§ https://github.com/urcu/userspace-rcu

https://github.com/urcu/userspace-rcu

16 of 19 REN ET AL.

Optimization improvements. Table 1A studies the performance improvement of the optimization introduced in §5.2, which defers the

write-back of timing records insidebi_enter andbi_exit. With this optimization, read operations avoid the cost of cache operation and memory

access. As a result, the average per-core throughput is over three times higher than the non-optimized implementation.

Write operations. The latency of write operations is shown in Table 1B. BI shows significantly better performance than U-RCU in all cases.

The blocking quiescence detection in U-RCU cannot scale to such a large machine, and the writer lock triggers too much cache coherency

traffic. In contrast, BI serializes updates into a single core, thus using a delegation-based synchronization rather than locks or atomic instruc-

tions. If a single core becomes the bottleneck, BI can utilize more advanced delegation techniques24 to use more cores. In both U-RCU and

BI, writer operations run faster with larger working set sizes. This is an indirect result of slower read operations in a larger working set.

Slower read operations decrease the frequency of updates, thus introduce less contention on locks and the delegation core, in U-RCU and BI,

respectively.

Read operations. The read operation latency in Table 1C shows a number of interesting effects. With the read-only case (0% update percentage),

BI tends to be faster than U-RCU. We believe this is the outcome of increased hardware efficiency when cache coherency is disabled. However,

with 10% update percentage and smaller trees, BI performs worse than U-RCU. This is the effect of lazy invalidation and the defensive checking for

the hardware prefetcher’s actions (§5.2). We expect future rack-scale machines will have more facilities to better handle the interleaved prefecher

and cache invalidation, thus eliminating this overhead. When tree size becomes larger, as expected, both approaches get higher latency due to the

algorithmic time complexity of red-black tree. However, the slowdown of BI is smaller than U-RCU. With larger tree, more cache-lines are touched,

resulting in U-RCU demonstrating more cache coherency costs, which are avoided in BI.

We find these results to be compelling for BI. They demonstrate that a relatively complex data-structure written for the RCU can be adapted

to BI in a relatively straightforward manner. This is aided by the fact that the BI API was designed as a derivative of the RCU API. That BI achieves

roughly comparable performance as RCU, and better in some cases demonstrates that even if future systems scale to the point that they require

non-coherency, BI will still enable shared data-structure processing.

7.3 Graph processing framework

This section evaluates how PowerGraph can harness the benefit of BI. To study the different trade-offs of different approaches, we compare the

original distributed PowerGraphwith the two BI variants discussed in §6.3.

Methodology We run one PowerGraph instance per socket, which uses all available cores in that socket. All graph vertex data is loaded into

the global shared memory, and is coordinated amongPowerGraph instances differently according to different implementations. Edge data is saved

in local memory, and needs no synchronization. To compare alternative design decisions studied in the literature, we consider three implementa-

tions. (1)stock– all data synchronisation is achieved by MPI message passing using the system with coherency enabled. (2) BI-on-demand– cache

quiescence is invoked by PowerGraph inside the BSP barrier after each phase thus ensuring no cross-phase stale data exactly matching

the semantics of stock. (3) BI-periodic – data coherency is handled by BI periodic cache quiescence which adds potential inter-phase

staleness.

Experiment Set-up. To characterize the performance, we measure the total running time of PageRank algorithm provided by PowerGraph.

PageRank runs on a Twitter follower graph,25 which has 4.1 million vertices and 1.4 billion edges. Message passing is based on MPICH2 library. The

cache quiescence period in BI-periodic is set to one millisecond.

Result Discussion. Figure 13 reports the running time with different number of sockets. All sockets are evenly assigned to two enclosures.

With a small number of sockets, BI variants run slightly slower than the original PowerGraph. For example, on two sockets, BI-on-demand

and BI-periodic is 11% and 6% slower respectively. This is because PowerGraph incurs less message passing overhead on fewer sockets,

while BI pays the cost of its cache quiescence. When the socket count grows, as expected, PowerGraph degrades due to the high communi-

cation overhead among instances. On the other hand, both BI implementations become faster than the original version, thanks to their shared

memory access. With eight sockets, BI-on-demandand BI-periodic runs 32% and 21% faster respectively. This confirms that the batched

cache invalidation made by BI has much less cost than message passing, while providing local cache access and data coherency within bounded

time. On average, BI-on-demand runs 5% faster than BI-periodic resulting from two factors. First, BI-on-demand tracks modified cache

lines more accurately because it utilizes more application specific information. Second, BI-on-demand avoids stale data by flushing cache

lines immediately after each phase, and BI-periodic’s stale accesses might impact the graph algorithm’s convergence which can increase the

runtime.

The PowerGraph BI results demonstrate that even an application not written for the RCU API can benefit from the modification track-

ing and quiescence that BI provides. The ability for the BI variants to perform better than the stock version demonstrates the potential

for maintaining shared memory in spite of potential non-coherency. The relatively comparative performance of the BI variants demonstrates

that for applications that can accept some stale data, automatic, periodic quiescence and modification tracking doesn’t have to come at a

prohibitive cost.

REN ET AL. 17 of 19

F I G U R E 13 Pagerank on twitter graph

8 RELATED WORK

Scalable memory reclamation. BI borrows heavily from SMR techniques such as epoch-based reclamation,6 RCU,7 ParSec,4 and IBR.26 Such

approaches seek to determine if references exist into a data-structure from any parallel execution before re-using a freed allocation. However, these

techniques only check if parallel executions are completed, ignoring the fact that references can possibly remain in stale cache lines. BI extends these

techniques to determine if stale cache references can exist on any node, and by optimizing batched flushes.

Data-consistency and non-CC memory. Atlas27 integrates the cache flushes into an acquire/release concurrency model based on locks, mainly

targeting NVM. Atlas takes advantage of the acquire-release consistency guarantees provided by locks, and batches cache operations until a lock

is released, at that point making all memory changes globally visible. In this way, cache operations on objects accessed in a critical section are

delayed until its exit. BI instead focuses on cache-latency data-structure lookups, and batched, delayed cache-line invalidation, and trades being

less general across data-structures. Similarly, Treadmarks28 integrates consistency with lock semantics, and distributed shared memory implemen-

tations manually overlays consistency over a network.29-31 Some research21,22,32 explicitly relax data consistency and introduce data staleness in

distributed systems. Bounded staleness21 is exploited to accelerate big data analytics, where the algorithm can see old data from previous iterations.

Lazygraph22 proposes lazy data coherency among vertex replicas, causing replicas to have different views of each other.

Non-CC nodes as a distributed system. Scale-out systems distribute data across a cluster,33 in some cases by relaxing consistency.34 Some

systems treat a single system as one that is distributed,35-37 and use message-passing-based coordination.9 Message passing is traditionally used

to implement distributed shared memory28,29,31,38-40 and provide partitioned global address space (PGAS) abstraction.41,42 Grappa39 distributes

computation across a cluster with an optimized PGAS implementation. Argo,40 a software distributed shared memory system, distributes coher-

ence decisions using self-invalidation and self-downgrade combined with hierarchical queue delegation locks. Hare10 uses message passing to

implement a distributed file-system across nodes in a non-CC system. libMPNode43 implements an OpenMP runtime for incoherent domains. It

leverages thread migration and distributed shared memory to provide consistency between incoherent nodes. Instead, BI enables global shared

data-structures to be accessed locally at cache-latency, while avoiding message passing as much as possible.

CREW data-structures and RDMA. The concurrent-read, exclusive writer model simplifies modifications as it prevents writer concurrency.

Many RCU structures require this model, and rely on single atomic modification to update the data-structure. These structures often require locks

to serialize concurrent modifications,4,7 though some techniques use fine-grained locking.16-18

GAM44 provides a directory-based cache coherence protocol over RDMA. Systems such as FaRM and RackOut45-47 treat a cluster as a non-CC

NUMA machine with RDMA-accessible remote memory. They use similar techniques (e.g., epoch-based memory reclamation6), but don’t support

cached-access to remote memory. In contrast, BI enables the cache-based access to global structures on rack-scale systems.

9 FUTURE WORK

Though we believe that this research demonstrates the ability of BI to provide a programming model for specific types of applications on

non-coherent, shared memory systems, there are potential directions to take the research further. These include: (1) increasing the scope of the

technique by generalizing the programming model to enable applications to more tightly control the batching of modifications and quiescence

to more tightly control staleness, (2) to evaluate BI on various other RCU-based data-structures, and (3) to port the ideas behind BI to other

non-coherent, remote memory systems such as RDMA. Though a simpler version of BI has been applied to a single-system image for a simple

microkernel,48 an interesting direction is to apply tighter controls on staleness to more conventional OS data-structures like those in Linux (beyond

those that are RCU-based).

The substantial memory scaling of rack-scale systems is enabled by Non Volatile Memory (NVM). In this paper we assume that local DRAM and

global NVM are accessed independently. We focus on creating abstractions to handle non-CC memory, instead of on its non-volatility. Our design is

applicable to other models, such as DRAM serving as a cache to NVM. In the future work, we will explore non-volatility in more detail.

18 of 19 REN ET AL.

10 CONCLUSIONS

This paper has introduced the bounded incoherence memory consistency model for non-CC systems that enables cache-speed reads, and effective

use of delayed, batched coherence. We apply BI toPowerGraph, and demonstrate that efficient, local access to cached data-structures can provide

30% performance improvements over distributed approaches.

We believe that BI mark significant steps toward enabling efficient management and sharing of non-coherent memory in future rack-scale

systems.

ACKNOWLEDGMENTS

We’d like to thank Brad Tanner, Rocky Craig, Bill Hayes, Michael Woodacre, Keith Packard, Paolo Faraboschi and Robert Peter Haddad for their

enormous help.

DATA AVAILABILITY STATEMENT

Data is not available.

ORCID

Yuxin Ren https://orcid.org/0000-0003-2678-9225

REFERENCES

1. Asanovic K. FireBox: a hardware building block for 2020 warehouse-scale computers. Paper presented at: Proceedings of the 12th USENIX Conference

on File and Storage Technologies (FAST’14) USENIX; 2014; Santa Clara, CA.

2. Intel Corporation Intel Rack Scale Design. 2016. http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-architecture/intel-

rack-scale-architecture-resources.html.

3. Faraboschi P, Keeton K, Marsland T, Milojicic D. Beyond processor-centric operating systems. Paper presented at: Proceedings of the 15th Workshop

on Hot Topics in Operating Systems, HotOS XV; May 18-20 USENIX; 2015; Kartause, Ittingen, Switzerland.

4. Wang Q, Stamler T, Parmer G. Parallel sections: scaling system-level data-structures. Paper presented at: Proceedings of the ACM EuroSys Conference;

2016; ACM, New York, NY.

5. Prasad A, Gopinath K. Prudent memory reclamation in procrastination-based synchronization. Paper presented at: Proceedings of the 21st International

Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’16); April 2-6, 2016; ACM, Atlanta, GA.

6. Hart TE, McKenney PE, Brown AD, Walpole J. Performance of memory reclamation for lockless synchronization. J Parallel Distrib Comput.

2007;67(12):1270-1285.

7. Desnoyers M, McKenney PE, Stern AS, Dagenais MR, Walpole J. User-level implementations of read-copy update. IEEE Trans Parall Distrib Syst.

2012;23(2):375-382.

8. Ren Y, Guyue L, Parmer G, Brandenburg B. Scalable memory reclamation for multi-core, real-time systems. Paper presented at: Proceedings of the 24th

IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). Held at Porto, Portugal; 2018:25-27; IEEE.

9. Baumann A, Barham P, Dagand PE, et al. The multikernel: a new OS architecture for scalable multicore systems. Paper presented at: Proceedings of the

Symposium on Operating System Principles (SOSP); 2009:29-44; ACM, New York, NY.

10. Gruenwald C, Sironi F, Kaashoek MF, Zeldovich N. Hare: a file system for non-cache-coherent Multicores. Paper presented at: Proceedings of the 10th

European Conference on Computer Systems (Eurosys ’15); 2015:1-14; ACM, New York, NY.

11. Van der Wijngaart RF, Mattson TG, Haas W. Light-weight communications on Intel’s single-chip cloud computer processor. ACM SIGOPS Operat Syst Rev.

2011;45(1):73-83.

12. Harris T. Hardware trends: challenges and opportunities in distributed computing. ACM SIGACT News. 2015;46(2):89-95.

13. Prakash S, Lee YH, Johnson T. A nonblocking algorithm for shared queues using compare-and-swap. IEEE Trans Comput. 1994;43(5):549-559.

14. Michael MM. Hazard pointers: safe memory reclamation for lock-free objects. IEEE Trans Parall Distrib Syst. 2004;15(6):491-504.

15. Lamport L. How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE Trans Comput. 1979;28(9):690-691.

16. Matveev A, Shavit N, Felber P, Marlier P. Read-log-update: a lightweight synchronization mechanism for concurrent programming. Paper presented at:

Proceedings of the 25th Symposium on Operating Systems Principles SOSP ’15; 2015:168-183; ACM, New York, NY.

17. Arbel M, Attiya H. Concurrent updates with RCU: search tree as an example. Paper presented at: Proceedings of the 2014ACM Symposium on Principles

of Distributed Computing PODC ’14; 2014; ACM, New York, NY

18. Clements AT, Kaashoek MF, Zeldovich N. RadixVM: scalable address spaces for multithreaded applications. Paper presented at: Proceedings of the ACM

EuroSys Conference (EuroSys 2013); 2013; ACM, Prague, Czech Republic

19. Intel Corporation Intel-64 and IA-32 architectures software developer’s manual, Volume 3A: system programming guide, Part 1. https://software.intel.

com/content/www/us/en/develop/articles/intel-sdm.html.

20. Gonzalez JE, Low Y, Gu H, Bickson D, Guestrin C. PowerGraph: distributed graph-parallel computation on natural graphs. Paper presented at: Pro-

ceedings of the Presented as part of the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12) USENIX; 2012;

Hollywood, CA

21. Cui H, Cipar J, Ho Q, et al. Exploiting bounded staleness to speed up big data analytics. Paper presented at: Proceedings of the 2014 USENIX Annual

Technical Conference (USENIX ATC 14) USENIX; 2014:37-48; Philadelphia, PA.

22. Wang L, Zhuang L, Chen J, et al. Lazygraph: lazy data coherency for replicas in distributed graph-parallel computation. Paper presented at: Proceedings

of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming PPoPP ’18; 2018; ACM, New York, NY.

https://orcid.org/0000-0003-2678-9225
https://orcid.org/0000-0003-2678-9225
http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-architecture/intel-rack-scale-architecture-resources.html
http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-architecture/intel-rack-scale-architecture-resources.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html

REN ET AL. 19 of 19

23. Clements AT, Kaashoek MF, Zeldovich N. Scalable address spaces using RCU balanced trees. Paper presented at: Proceedings of the 17th International

Conference on Architectural Support for Programming Languages and Operating Systems; 2012; ACM, New York, NY.

24. Ren Y, Parmer G. Scalable data-structures with hierarchical, distributed delegation. Paper presented at: Proceedings of the 20th International Middle-

ware Conference Middleware ’19; 2019; ACM, New York, NY.

25. Kwak H, Lee C, Park H, Moon S. What is twitter, a social network or a news media?. Paper presented at: Proceedings of the 19th International Conference

on World Wide Web WWW ’10; 2010; ACM, New York, NY.

26. Wen H, Izraelevitz J, Cai W, Beadle HA, Scott ML. Interval-based memory reclamation. Paper presented at: Proceedings of the 23rd ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming PPoPP ’18. Held at Vienna, Austria: ACM, New York, NY; 2018.

27. Chakrabarti DR, Boehm HJ, Bhandari K. Atlas: leveraging locks for non-volatile memory consistency. Paper presented at: Proceedings of the 2014 ACM

International Conference on Object Oriented Programming Systems Languages & Applications (OOPSLA ’14); 2014; ACM, New York, NY

28. Keleher P, Cox AL, Dwarkadas S, Zwaenepoel W. TreadMarks: distributed shared memory on standard workstations and operating systems. Paper

presented at: Proceedings of the USENIX Winter Technical Conference; January 17-21 USENIX, 1994; San Francisco, CA.

29. Scales DJ, Gharachorloo K. Towards transparent and efficient software distributed shared memory. Paper presented at: Proceedings of the 16th ACM

Symposium on Operating System Principles (SOSP’97); October 5-8, 1997; ACM, St. Malo, France.

30. Stets R, Dwarkadas S, Hardavellas N, et al. Cashmere-2L: software coherent shared memory on a clustered remote-write network. Paper presented at:

Proceedings of the 16th ACM Symposium on Operating System Principles (SOSP’97); October 5-8, 1997; ACM, St. Malo, France.

31. Johnson KL, Kaashoek MF, Wallach DA. CRL: high-performance all-software distributed shared memory. Paper presented at: Proceedings of the 15th

ACM Symposium on Operating System Principles (SOSP’95), Copper Mountain Resort; December 3-6, 1995; ACM, Colorado.

32. Ren Y, Parmer G, Milojicic D. Bounded incoherence: a programming model for non-cache-coherent shared memory architectures. Paper presented at:

Proceedings of the 11th International Workshop on Programming Models and Applications for Multicores and Manycores PMAM’20; 2020; ACM, New

York, NY.

33. Glendenning L, Beschastnikh I, Krishnamurthy A, Anderson T. Scalable consistency in scatter. Paper presented at: Proceedings of the 23rd ACM

Symposium on Operating Systems Principles (SOSP’11); October 23-26, 2011; ACM, Cascais, Portugal.

34. DeCandia G, Hastorun D, Jampani M, et al. Dynamo: Amazon’s highly available key-value store. Paper presented at: Proceedings of the 21st ACM

Symposium on Operating Systems Principles (SOSP’07); October 14-17, 2007; ACM, New York, NY.

35. Govil K, Teodosiu D, Huang Y, Rosenblum M. Cellular disco: resource management using virtual clusters on shared-memory multiprocessors. Paper pre-

sented at: Proceedings of the 17th ACM Symposium on Operating System Principles (SOSP’99); December 12-15, 1999; ACM, Kiawah Island Resort,

South Carolina.

36. Bugnion E, Devine S, Rosenblum M. Disco: running commodity operating systems on scalable multiprocessors. Paper presented at: Proceedings of the

16th ACM symposium on Operating Systems Principles SOSP ’97; 1997:143-156; New York, NY.

37. Chapin J, Rosenblum M, Devine S, Lahiri T, Teodosiu D, Gupta A. Hive: fault containment for shared-memory multiprocessors. SIGOPS Operat Syst Rev.

1995;29(5):12-25.

38. Carter JB, Zwaenepoel W. Munin: distributed shared memory based on type-specific memory coherence. Paper presented at: Proceedings of the 2nd

ACM Symposium on Principles and Practice of Parallel Programming; 1990; ACM, New York, NY.

39. Nelson J, Holt B, Myers B, et al. Latency-tolerant software distributed shared memory. Paper presented at: Proceedings of the 2015 USENIX Annual

Technical Conference (USENIX ATC 15); 2015; USENIX, Santa Clara, CA

40. Kaxiras S, Klaftenegger D, Norgren M, Ros A, Sagonas K. Turning centralized coherence and distributed critical-section execution on their head: a new

approach for scalable distributed shared memory. Paper presented at: Proceedings of the 24th International Symposium on High-Performance Parallel

and Distributed Computing HPDC ’15; 2015; ACM, New York, NY.

41. Charles P, Grothoff C, Saraswat V, et al. X10: an object-oriented approach to non-uniform cluster computing. Paper presented at: Proceedings of

the 20th Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications OOPSLA ’05; 2005; ACM,

New York, NY.

42. Coarfa C, Dotsenko Y, Mellor-Crummey J, et al. An evaluation of global address space languages: co-array Fortran and unified parallel C. Paper presented

at: Proceedings of the 10th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming PPoPP ’05; 2005; ACM, New York, NY.

43. Lyerly R, Kim SH, Ravindran B. libMPNode: an OpenMP runtime for parallel processing across incoherent domains. Paper presented at: Proceedings of

the 10th International Workshop on Programming Models and Applications for Multicores and Manycores PMAM’19; 2019; ACM, New York, NY.

44. Cai Q, Guo W, Zhang H, et al. Efficient distributed memory management with RDMA and caching. Proc VLDB Endow. 2018;11(11):1604-1617.

45. Dragojević A, Narayanan D, Hodson O, Castro M. FaRM: fast remote memory. Paper presented at: Proceedings of the 11th USENIX Symposium on

Networked Systems Design and Implementation (NSDI’14); April 2-4, 2014:401-414; USENIX, Seattle, WA.

46. Dragojević A, Narayanan D, Nightingale EB, et al. No compromises: distributed transactions with consistency, availability, and performance. Paper

presented at: Proceedings of the 25th Symposium on Operating Systems Principles (SOSP’15); October 4-7, 2015:54-70; ACM, Monterey, CA.

47. Novakovic S, Daglis A, Bugnion E, Falsafi B, Grot B. The case for RackOut: scalable data serving using rack-scale systems. Paper presented at: Proceedings

of the 7th ACM Symposium on Cloud Computing (SoCC’16); October 5-7, 2016:182-195; ACM, Santa Clara, CA.

48. Ren Y, Parmer G, Milojicic D. Ch’i: scaling microkernel capabilities in cache-incoherent systems. Paper presented at: Proceedings of the IEEE/ACM

International Workshop on Runtime and Operating Systems for Supercomputers (ROSS); 2020; IEEE/ACM, New York, NY.

How to cite this article: Ren Y, Parmer G, Milojicic D. Sharing non-cache-coherent memory with bounded incoherence. Concurrency

Computat Pract Exper. 2021;e6414. https://doi.org/10.1002/cpe.6414

https://doi.org/10.1002/cpe.6414
https://doi.org/10.1002/cpe.6414
https://doi.org/10.1002/cpe.6414
https://doi.org/10.1002/cpe.6414
https://doi.org/10.1002/cpe.6414

