
Ch’i: Scaling Microkernel Capabilities in

Cache-Incoherent Systems

Yuxin Ren

The George Washington University

Washington, DC, USA

ryx@gwmail.gwu.edu

Gabriel Parmer

The George Washington University

Washington, DC, USA

gparmer@gwu.edu

Dejan Milojicic

Hewlett Packard Labs

Palo Alto, CA, USA

dejan.milojicic@hpe.com

Abstract—Hardware cache coherence limits the scalability
of shared-memory multicore and multi-processors. Recently,
there has been an increasing shift towards cache-incoherent
architectures in many computing environments. Supercomputers
can benefit from shared memory, yet must avoid the price of
coherency across the system. To support co-locating multiple
applications on cores, processors, and the overall system, an Op-
erating System must manage the distributed memory resources.
In this context, incoherence poses a significant challenge for OS
that must manage memory access permissions across the system
without compromising the performance of software.

In this paper, we introduce the Ch’i microkernel that leverages
incoherent shared memory using quiescence-based techniques to
bound the extent of non-coherency. Ch’i maintains type and
context consistency of its core data structures: capabilities. This
enables a uniform, capability-based security model to manage
system-wide memory. Using this approach, we demonstrate data-
structure consistency in software in support of high-throughput,
low-latency applications.

I. INTRODUCTION

Compute capacity improvements are achieved through in-

tegrating more cores and accelerators into the system, and

the explosion of data volumes requires a massive amount

of fast, accessible memory. The increasing compute and

memory capacity lead to more heterogeneous and distributed

architectures, which require greater scalability and energy

efficiency. This trend drives the emergence of cache-incoherent

architectures in many computing environments; from many-

core chips [1], [2], [3], accelerators [4], [5], [6], rack-scale ma-

chines [7], [8], [9], RDMA systems [10], [11], [12] and data-

center memory disaggregation [13], [14], [15]. These systems

provide a global pool of memory which is accessible from

any core in the system. Cores have private caches, but lack

hardware support for system-wide cache coherency. While

on-chip cache coherence may not be fully eliminated, future

hardware architectures are more likely to be composed of

multiple incoherent nodes, where cache coherence is provided

only within a node.

Getting rid of global coherent cache greatly simplifies archi-

tecture design, provides higher energy efficiency, and enables

more parallelism. However, this complicates the inter-core

collaboration, due to the need for explicit software support

for synchronization over shared memory. This synchroniza-

tion often involves the intentional write-back or invalidation

of cache-lines to synchronize cache contents with memory.

Cache-incoherence is particularly challenging for operating

systems as data-structures for tracking globally accessible

resources can be complex. Despite the complexity of cache-

incoherent memory, operating systems are necessary to pro-

vide system-wide, uniform access control. This is essential

to isolate clients, contain errors within fault domains, and

manage resources such as the overall memory pool. To fully

utilize the global pool of shared memory for low-latency,

high-throughput processing, new systems and techniques are

required to orchestrate the data sharing and movement be-

tween cores. We propose that new systems should satisfy the

following requirements.

• Low latency. CPU caches must be leveraged to enable

cache-speed access to global memory, thus avoiding

memory latency.

• High scalability. All global memory should be directly

accessed, thus enabling systems and applications to scale

with the amount of global memory.

• Compatibility. The convenience of shared memory pro-

gramming should be preserved to the maximum ex-

tent possible, thus allowing conventional techniques and

mechanisms to be adapted easily.

However, existing shared memory frameworks and dis-

tributed operating systems fail to achieve above requirements.

A simple approach is to explicitly insert cache write-back

and invalidation operations abound shared memory accesses.

Unfortunately, as studied in [16], frequent cache manipulation

operations trigger non-trivial overhead. Even worse, cache

invalidation results in memory-level latencies. On the other

hand, several alternative kernel designs treat the hardware as

a distributed system and eschew memory sharing among inco-

herent nodes. For instance, some systems [17], [18], [19] use

message passing to coordinate between nodes. Popcorn [20],

K2 [21] and Kerrighed [22] use replicated kernels and migrate

threads between incoherent nodes. Barrelfish [23] employs

a form of two-phase commit distributed consensus to syn-

chronize capability management. However, these distributed

approaches sacrifice performance and limit the scalability

due to expensive message passing. Other systems aimed at

hardware resource disaggregation restrict functionality and

usability (e.g. LegoOS [15] does not support writable shared

memory across nodes).

To achieve an efficient shared memory kernel, we introduce

the Ch’i microkernel that applies quiescence-based techniques

– commonly used to support scalable memory revocation (e.g.

RCU) [24] – to manage cache coherency. This approach was

introduced in the context shared memory data-structures [16],

and this paper leverages and extends it in a co-design with an

OS. Ch’i is designed to enable common-case kernel paths to

run at full speed using cached memory without cache flushing,

and to fully utilize shared memory without message passing.

Ch’i does this by leveraging a key observation: that the access

to stale cache contents can be controlled in a manner similar to

stale references to data-structures in parallel systems. It draws

on work in deferred reclamation and quiescence techniques

in kernels [25], [24] to accelerate the read-only fast-paths

and synchronize modifications in the kernel. In a nutshell,

quiescence-based synchronization tracks possible references

to resources within parallel reader cores, and defers resource

reuse to a safe point when no references can exist. Ch’i lever-

ages quiescence techniques to track cache staleness instead,

and flushes accessed cache-lines to drop references in the stale

cache. Caches are flushed periodically, which amortizes the

cost of cache flush instructions and bounds the extent of stale

cache-lines appearing in any cache due to incoherency.

All Ch’i data-structures use the shared memory pool, thus

access to ranges of memory is determined uniformly across all

nodes in the system. Ch’i is based on the Composite OS [25]

and is centered around a capability-based [26] access control

model of system resources. Ensuring that capability tables

and page-tables leverage shared memory and efficient soft-

ware coherence, a resource manager applies a set of system-

wide, uniform access-control mechanisms. This capability-

based isolation can be used to strongly partition the system

– nodes and memory – among clients. Isolated managers can

mediate and manage resources, with a global view on system

resource demand despite non-coherent caches. Furthermore,

resource managers execute on all nodes as they also maintain

our software coherency, thus they can be directly invoked on

each node. This avoids distributed coordination (RPC between

nodes, consensus, etc...), and leverages efficient, low-latency

inter-process communication (IPC).

The contributions of this paper include:

• the design and implementation of the Ch’i microkernel

that uses quiescence to effectively coordinate the safe and

efficient sharing of kernel capabilities across incoherent

nodes,

• the evaluation of this system with a simple key-value

(memcached) service.

This paper is organized as follows. §II introduces the

background of incoherent cache architecture, quiescence-based

technique and capability-based systems. §III and §IV present

the design and implementation of Ch’i. §V evaluates Ch’i

using microbenchmarks and memcached service. §VI, §VII

and §VIII discusses related and future work and concludes.

N
o

d
e

 N

N
o

d
e

 0

SoC

L
o

c
a

l
M

e
m

G
lo

b
a

l
M

e
m

L
o

c
a

l
M

e
m

G
lo

b
a

l
M

e
m

L
o

c
a

l
M

e
m

G
lo

b
a

l
M

e
m

L
o

c
a

l
M

e
m

G
lo

b
a

l
M

e
m

SoC SoC SoC

 Network

Fig. 1. Cache-incoherent system with many nodes connected to global
non-coherent memory and local non-shared memory. Each node is a
cache coherency domain.

II. BACKGROUND

A. Incoherent Cache Architecture

Figure 1 presents a typical incoherent cache architecture.

Every core has a private memory, which is not accessible

from other cores. A global memory is attached to and shared

by all the cores. A small number of cores are grouped into

a node. Hardware cache coherency is provided only within

a node. Without inter-node cache coherence, software has to

orchestrate the data sharing among nodes.

To explicitly force coherency, Ch’i assumes instructions to

invalidate and write-back specific cache-lines are available.

Additionally, we assume the integration of atomic instructions

into the memory fabric. These assumptions are, for instance,

validated by GRU [27] and the industry-standard libfabric [9],

[28].

B. Quiescence-based Technique

Quiescence-based techniques [29], [30], [31], especially

RCU [24] have been widely used inside Linux kernel. These

techniques enable read-only operations to execute in parallel

with update operations, and require no explicit synchronization

on the read path. On the other hand, update operations make

a private copy of the data structure portion being modified.

Once the private copy has the intended changes, the writer

atomically replaces the old data structure portion with the

private copy. To prevent interference on parallel readers, the

old data structure portion cannot be reclaimed until all ongo-

ing readers finish their operations. The deferred reclamation

complicates the semantics of read operations, since readers

are possible to get old data structure objects while new ones

are already present in the data structure. Such stale access

inspires the key observation of Ch’i: staleness introduced by

incoherent-cache can be controlled and managed by leveraging

quiescence-based techniques.

C. Capability-based Management

Capability-based access control [26], [32] is widely used

in modern microkernels [25], [33], [34], [35]. Harnessing

and modifying hardware and kernel resources are required

to provide a capability that designates access rights to the

resource. Table I summarizes the common resources managed

by capabilities. While we use Composite [25] as a reference,

the usage of capabilities is similar to other microkernels.

TABLE I
COMMON RESOURCE TYPES IN MICROKERNELS

Execution Resourcesa

Threads Execution context and invocation stack
that tracks a sequential flow of control

Sync Invocation EPb Call an associated component with an IPC

Receive EP Block a thread waiting for an event
(for example, an interrupt or send)

Async Send EP Send an event to activate a receiver

Temporal capability Capabilities that provide access control
of the execution time

Memory Resources

Frame Untyped physical memory

Virtual Memory User-level accessible memory

Access Control Resources

Capability Table A chunk at a specific level in a
Chunk (lvl) capability table radix trie

Page Table Chunk (lvl) A chunk at a specific level in a page table

Component An aggregate of capability and page tables
aExamples are taken from Composite [25]
bEP stands for endpoint

Capabilities are tracked in capability tables, which are often

organized in tree-based data-structures [34], [36]. The ability

to modify capability tables is protected in a manner consistent

with the rest of the kernel resources: only a capability to a

capability table enables operations to modify its contents.

Capability management. Every system call will result in at

least a capability table lookup to validate a proper capability

resides in the capability table. Some system calls require

modification to a capability table, such as capability table

construction with assembling different levels into the tree

(cons and decons), capability creation (activate), revocation

(deactivate) and delegation (copy). Thus, providing a shared

kernel capability management infrastructure is challenging but

critical to efficiently leverage microkernels in incoherent cache

architectures.

Memory management. Another important type of capability

table is the page table, which tracks memory resources and

mappings in the system. While kernel memory management

is moved to user-level pioneered by seL4 [34], the kernel has

to guarantee type safety, which is that a single memory frame

cannot be accessed concurrently as two different types. For

example, a frame cannot be both used as a kernel thread

structure, and as a virtual memory mapping in a user-level

application at the same time. Hence, memory retyping, map,

and unmap operations provided by the kernel are core opera-

tions to provide a mapping of a frame of memory to any set

of nodes, thus must be scalable and fast.

D. Challenges with Incoherent Cache

O p e r a t i o n s Node 0 Node 1

a c t i v a t e ∗A = C

d e a c t i v a t e ∗A = NULL

l o ok up ∗A → C

a c t i v a t e ∗B = C

l o ok up ∗A → C

This figure shows

a sequence of

capability operations

performed on

different nodes,

demonstrating the possible issues caused by incoherent cache,

even if a resource’s memory is never modified. First, node

0 activates a resource – which converts a frame of memory

into a kernel resource such as a capability table, C. At this

point, node 1 might access that capability table, bringing its

memory into cache. When node 0 then deactivates A (setting

it to NULL), this deactivation is not guaranteed to be visible

on node 1 which can still lookup C in its cache. At this

point, the incoherent caches can break the access control

policies guaranteed by traditional capability mechanism. For

instance, if the previously deactivated resource (e.g. a memory

frame) is reallocated (activated again), but as a different type

of resource (e.g. a thread), this will lead to the erroneous

situation where Node 0 is using the memory as a thread, and

Node 1 is treating it as a capability table. The core problem

is that resources that can be accessed in other node’s caches

should not be reallocated.

To summarise, modifications to kernel data-structures, es-

pecially on capability tables can lead to stale cache-lines,

resource access failures, and capability inconsistencies. Thus

it is non-trivial to adapt microkernels to cache-incoherent

architectures. This paper introduces Ch’i microkernel, the first

OS we know of to execute on non-coherent, shared memory. It

utilizes quiescence-base techniques to avoid expensive cache

manipulation operations on the read-path. It utilizes deferred

reclamation which is reimagined in the incoherent memory

and OS context to avoid the problem outlined above. Kernel

data-structures are immutable except via synchronized atomic

instructions paired with the quiescence mechanism.

III. DESIGN

The design of Ch’i allows the conventional single-image

system abstractions and enables its most common kernel

operations to be performed with no explicit cache operations,

despite kernel data-structures residency in non-coherent mem-

ory.

A. Design Goals

Cache incoherency complicates the consistency guarantees

for capability and kernel resource modifications. However,

the kernel must hide such complexity efficiently, thus an

application or system service will not be limited by any kernel

compatibility, security and performance issues. Specifically,

Ch’i focuses on following goals:

G1 Minimize extra complexities brought into the kernel.

Minimality is the key principle of a microkernel. Thus

any mechanisms dealing with incoherent cache should not

bloat kernel complexity and its trusted computing base.

G2 Provide a uniform, global view of system resource to user-

level services and applications. To efficiently manage and

use all available system resources, it is essential for user-

level services and applications to get consistent and global

information from the kernel.

G3 Predictable kernel performance. All kernel cost, such

as operation latency, memory consumption and cache

staleness, introduced by reasoning about incoherent cache

must be controlled in a predictable way, and should not

blow up with the number of incoherent nodes or the

amount of global memory.

G4 Aggressive optimization of common kernel operations.

The kernel itself should not become the bottleneck to

limit application performance. Thus all its common op-

erations need to be heavily optimized, such as avoiding

memory access latencies, cache flush instructions, and

message passing cost.

B. Delayed Cache Coherency via Quiescence

Ch’i makes the observation that stale cache-lines in inco-

herent cache can be treated similarly to the parallel references

that are implicitly tracked by quiescence techniques. Both are

references to stale objects that have since been made unreach-

able within the data-structure. Ch’i eliminates capability and

resource inconsistency by guaranteeing that they are not reused

while any stale cache contents exist in any node (G2). Thus,

cache incoherency is tolerated, but Ch’i guarantees cache-

coherency only when quiescence is achieved, which leads to

a notion of delayed cache coherency.

Delayed cache coherency complicates the semantics of

capability and resource access in Ch’i. Specifically, accesses

to kernel resource are allowed windows of inconsistency until

stale cache-lines are updated by software. Thus, it introduces

accesses to stale resources. For example, a node with a stale

cache-line referencing a capability table, can harness a capa-

bility to access a resource even after that capability has been

revoked on another node. The same problem already exists

in current operating systems [25], [24], but it results from

parallel reference. Similar to existing systems, the correctness

is guaranteed as long as (1) a revoked resource is not reused

while it is still possible for other nodes to access it, and (2) the

time window of stale access is bounded (G3).

Achieving cache quiescence. Ch’i achieves cache quiescence

when all nodes have removed all stale cache-lines from their

caches since the kernel data-structures were updated, and

the kernel determines when every node has done so. Any

capabilities or resources deactivated before that time may

then be reused. To determine this ordering, Ch’i tracks the

time when each node has finished flushing stale entries from

their cache, and the time a capability is updated. Ch’i ensures

that capabilities, and the kernel resources they reference are

not reused until quiescence has been achieved when no stale

cache-lines containing them exist. Please note, while outside

the scope of this work, parallel references are also considered

when trying to reuse capability tables or resource. This can be

solved by employing existing mechanisms based on RCU [24]

or bounded worst case kernel execution time [25].

User-level management of kernel cache coherence. To

maintain kernel minimality, Ch’i does not actively execute

complete cache flushes inside the kernel (G1). The kernel

is non-preemptive, therefore doing so would be prohibitive.

Instead, it delegates orchestrating the kernel cache flushes to

user-level managers, who use kernel APIs to periodically flush

kernel cache-lines to achieve kernel cache quiescence, thus

coherency. At first glance, orchestrating the cache coherency

of the kernel in user-level is a little scary – an inversion of

control. However, Ch’i guarantees kernel safety as it always

validates that quiescence has been achieved before allowing

modifications to any kernel objects. Thus the integrity of

kernel data-structures is independent of user-level orchestra-

tion of cache quiescence. In fact, the user-level management

of kernel resources is widely accepted design philosophy of

microkernels. Previous research use the user-level manage-

ment of different kernel resources, such as schedulers [37],

kernel memory [38], [34], interrupt management [39], context

switches [40], and distributed capability delegation [23].

Kernel interface for cache quiescence. Ch’i exposes an inter-

face to user-level managers so that they can trigger the periodic

kernel cache flush. However, the kernel cannot export a simple

system call to remove all stale kernel cache-lines, the non-

preemptible kernel would suffer an unpredictable execution

overhead. Instead, Ch’i adds a new cache flush system call,

which flushes a constant number of stale kernel cache-lines

(G3). Once this operation has been performed enough times to

flush the region of incoherent memory, quiescence is achieved,

and the kernel records that previously deactivated resources

can be re-used. Similar to other resource management, the

functionality of flushing kernel cache lines is accessed only

through a privileged per-node hardware capability. §IV-A

details how Ch’i identifies and flushes stale cache-lines ef-

ficiently.

C. Common Kernel Capability Operations

Read-only operations. Most common kernel capability op-

erations are read-only, as they just perform capability table

lookups to harness kernel resources. Synchronizing read access

to kernel structures uses quiescence, avoiding heavyweight

cache invalidation and synchronization operations, such as

reference counts or locks (G4). The performance implications

of this are significant: objects are loaded exclusively from

CPU cache, which is usually an order of magnitude faster

than memory. On the other hand, stale versions of objects

may be retrieved. Thus, modifications are required to respect

concurrent readers by delaying resource reclamation until

quiescence is achieved.

Mutating operations. Instead of explicitly coordinating be-

tween nodes to perform mutating operations (e.g. using two-

phase commit), capability table modifications are made di-

rectly, and quiescence is used to bound the scope of inter-

node inconsistency. This complicates the efficient coordination

between modifications. To cope with such difficulty, Ch’i

designs capability modifications in the following ways. First,

synchronization between multiple nodes (and cores on that

node) is performed by architecture-provided atomic instruc-

tions (fetch and add, and compare and swap). Second, all

updated objects are written back to memory immediately using

cache write-back instructions. Last, any given kernel operation

attempts to limit modifications to a single cache-line. In Ch’i,

it reduces the number of explicit cache write-back operations

and the atomic transactions they generated.

Capability activation. A capability is added to a capability

table slot when activated. All capabilities fit into a single

cache-line. When capabilities are activated, those larger than

a word require multiple stores that are ideally written back to

memory in a single transaction. Ch’i reserves a slot using an

atomic instruction, populates the rest of the slot, and makes

the capability accessible by setting the type.

Capability deactivation. When deactivating a capability, its

type is reset to a quiescing value, and a representation of the

time of deactivation is stored into the slot’s header. Subsequent

activations must assess if quiescence has been achieved based

on the recorded time before the kernel allows the operation.

Memory retyping. A retype table (a special capability table)

tracks the type and number of references to a physical page.

When memory is retyped into a raw frame, it is ensured that

no stale references exist in cache. References are modified

using atomic instructions, thus are consistent between nodes.

Kernel memory is added into a capability table and typed as a

kernel data-structure by activating the memory. This operation

must also await quiescence both of the memory, and of the

capability table slot it is being activated in to ensure that stale

references are dropped. The same reasoning is applied to add

user memory into its page table.

D. Generality and extensibility of Ch’i

Ch’i benefits from the scalable quiescence-based techniques.

The integration of quiescence into the system harnesses the

read-only fast-paths, the simple capability table data-structures

(multi-level trie), and the carefully designed atomic modifica-

tions. While Ch’i is implemented as a microkernel, many other

kernels such as Linux heavily rely on RCU, thus are possible

to adapt to Ch’i’s mechanisms to address incoherent cache.

Further, the inter-node capability system of Ch’i paired with

its single-image enable user-level components to define their

own consistency models and management policies, using any

necessary cache operations and global system view (G2).

IV. IMPLEMENTATION

The Ch’i prototype is implemented based on Compos-

ite [25], a scalable, real-time microkernel. The lock-free nature

and the real-time execution time of the non-preemptive Com-

posite kernel ease the synchronization and parallel reference

tracking in Ch’i. Thus, we are able to focus on adding the

requisite cache operations and support for cache quiescence.

A. Cache Quiescence

User-level managers are responsible for periodic kernel

cache flush and quiescence. Analogous to different granu-

larities of timer ticks in conventional systems, choosing the

frequency of cache quiescence represents a system trade-off

between performance and staleness. As no one frequency is

best for all systems, Ch’i implements the policy in user-level,

allowing its redefinition on a per-system basis.

Flushing accessed kernel cache-lines. Cache flushes are

aggregated across many kernel operations by batching and

pipelining cache flush instructions. To reduce cache flush cost,

Ch’i limits the scope of the flushes from all cache-lines holding

kernel data-structures (potentially 100s of GiB) to those cache-

lines that are actually accessed, thus are possibly stale.

The kernel must identify and track which cache-lines have

been accessed, thus need to be flushed. Toward this, Ch’i

uses the accessed bits in the page-table entries for the kernel

virtual memory to determine which virtual pages have been

accessed and may have stale cache-lines. Thus, the corre-

sponding flushes are accurate to a page. Each node tracks

accesses separately as a set of page-table entries for the cache-

incoherent memory by maintaining a separate set of kernel

page-tables per-node.

This approach has a number of complications. First, page-

table walks (on TLB miss) have the impact of causing accesses

(loads) on page-table nodes. However, on x86, these accesses

do not set the accessed bit corresponding to that page-table

node (as the access is not through the kernel’s virtual memory

mappings). Thus, the accesses to the page-table nodes by the

hardware page-table walker are not tracked, by default. Ch’i

handles this case by maintaining which pages are used as

page-tables in the retype table, and we make the pessimistic

assumption that they all need flushing. Second, we find that as

long as a page’s translation is in the TLB, an unset accessed

bit will never be set (presumably delaying setting the bit to

a TLB eviction or flush). This is particularly relevant for

kernel pages as they are not flushed from the TLB upon a

context switch (they are marked as global). Ch’i handles this

by explicitly flushing global bits (by deactivating them in cr4,

flushing, then reactivating them) at the beginning of each flush

period. This issue is not documented in Intel’s architecture

manuals, so behavior may change in the future. Regardless,

Ch’i’s techniques are conservative and won’t cause incorrect

behavior if the architecture changes, however there may be

opportunities for performance improvement.

The Ch’i kernel never accesses user-level virtual memory,

so only kernel cache-lines are flushed by the kernel. User-

level applications need to define their own logic for coherency

(see [16]), use unshared memory, or depend on other com-

ponents that abstract those details. Additionally, core-local

resources (e.g. threads) will only ever be accessed on their

node, also decreasing the number of cache-lines that could

possibly require flushing.

Using kernel cache flush interface. Ch’i adds a new system

call (via capability) to flush the cache of a constant number

of kernel memory pages. The system call returns a value to

indicate if the entire kernel region has been flushed or not.

Once this operation has been performed enough times to flush

the region of incoherent kernel memory, quiescence is signaled

by publishing the time of the last finished operation. As the

all cache flush are local to the calling core, no synchronization

is needed during its execution.

B. Capability-table Bootstrapping

The boot sequence of a node starts with the creation of capa-

bility structures in local memory that reference only resources

in that memory. Next, a super-block-like structure in the global

cache-incoherent memory is referenced that contains the root

capability tables and page-tables for each node. All resources

in the cache-incoherent memory are rooted in these capability

tables (i.e. guaranteed to be managed/accessible through at

least one node’s capability tables).

When the system is first booted, a single node has capa-

bilities not only to all of the cache-incoherent memory, but

also nested references to the other node’s capability tables.

Most nodes, then, don’t have access to global memory until

they are explicitly delegated that access by the boot node.

This enables the access control policies to be rooted in the

early boot process, and to be controlled by the small trusted

computing base of the kernel and initial component.

As kernel memory page tables are in local memory, every

node has a separate page table and the associated kernel’s

address spaces. However, Ch’i assumes that global memory is

mapped at the same virtual addresses in each kernel’s address

spaces. This is easy to implement in Ch’i due to its uniform,

single-image design. The current prototype uses KVM/Qemu

virtualization support to expose a PCI device that is backed by

a shared, memory-mapped region on the host. Multiple nodes

are brought up in Ch’i by booting multiple VMs, each sharing

the same virtual device.

C. Kernel Capability Operations

Read-path lazy coherency. Each capability table and page

table in Ch’i is implemented as a radix trie. Looking up a

slot can find stale cache-lines in trie-internal pages and in the

slots. This introduces extra complexity due to the hardware

page walker. Stale page table entries result in a page-fault.

Ch’i updates the page-fault handler to perform the cache-line

flushes, and retry the faulting instruction. Cache quiescence

ensures that capability table slots cannot be reused until stale

mappings no longer exist.

Resource retyping. To maintain type safety, each frame is

treated globally as exactly one of the three types (user-level

memory, physical frame, or kernel memory). A retype table

contains entries for each physical frame within the incoherent

memory. The entries include the type of the frame, and a

count of the number of mappings if it is virtual memory.

For simplicity, Ch’i currently only keeps a single table shared

across all nodes. When memory is retyped from or back to

physical frame, its type in the entry is atomically modified

using atomic instructions (cas). The reference count (due to

map/unmap) is also updated by atomic operations.

Reference and TLB quiescence. Kernel capability slots and

resources must not be reused while referenced by another

node. The most difficult resource to reasoning about is virtual

memory mappings, which must also consider references in

TLB. To retype memory that was previously user-accessible

to a frame, Ch’i must ensure no references to it exist in page

tables, stale cache and TLB. TLB achieves quiescence after

every core flushes its TLB during a context switch.

V. EVALUATION

All experiments are run on Intel x86 i5-6400 processor

running at 2.70GHz with a 6 MB last-level cache and 4

cores. All Linux experiments use Ubuntu 14.04, kernel 4.2.0-

27. We execute Ch’i using QEMU with KVM and hardware

virtualization extensions enabled.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

4K 4M 8M

N
o
rm

a
li
z
e
d
 L

o
a
d
 T

h
ro

u
g
h
p
u
t

Working Set

100ms Flush Period

 0.6

 0.7

 0.8

 0.9

 1

 1.1

4K 4M 8M

Working Set

10ms Flush Period

1 core
2 cores
4 cores

Fig. 2. The normalized load throughput with cache flush

A. Accuracy of Experimental Setup

QEMU can expose a memory mapped file as a PCI device

to the VM which can directly access the memory through an

aperture in physical memory. A system with shared memory

between nodes is emulated by using the same file to back the

global memory of multiple VMs. This section assesses the

fidelity of such emulation.

Cache operations on modification. To effectively emulate

non-coherent memory, all modifications to shared structures

are prefixed with cache-line invalidations, and postfixed with

a write-back and invalidation. This forces those modifications

to cause accurate cache operation overheads and memory

latencies.

Impact of invalidations with coherency. Different VMs will

share the global memory, thus will express both the benefits

and overheads of cache-coherency. Invalidating cache-lines on

one core will invalidate those in another core. On the other

hand, a load instruction on a core might “pre-fetch” a cache-

line into the shared cache for another core, possibly increasing

performance.

To understand the impact of these competing behaviors, Fig-

ure 2 depicts the load throughput normalized to a single core’s

performance, under an increasing working set in the presence

of quiescence-based invalidations. We see that on two cores,

there is a slight performance benefit (around 3%). On four

cores, we find that for large working sets the cross-core impact

of invalidations is the dominant factor (10% overhead). Also,

an increasing number of cores leads to increasing inaccuracy

due to the cache-coherency of our system. Motivated by these

factors, we perform our Ch’i experiments with 4 cores so as

to pessimistically (on our infrastructure) assess the system’s

performance.

Impact of shared cache. An additional impact of our test

environment is that the last-level shared cache is contested by

the multiple VMs. We ensure that all comparison cases use

the same workload, thus are equally impacted by the reduced,

and contested shared cache. Though this doesn’t emulate a

system without shared caches, our intent is to equally impact

all compared systems.

Testbed scale. Our testing machine has only 4 cores. While

small core count does not depict popular modern systems,

higher core count will amplify the inaccuracy mentioned

above, making it harder to justify the experiment results. On

the other hand, all read operations in Ch’i do not involve

TABLE II
KERNEL OPERATION BENCHMARK

Operation Local Memory Global Memory Linux

Round-trip IPC 1392 1405 a 1393 1404 8955 9026

725 732 b

Thread dispatch 260 266 265 269 2148 2217

async snd + recv 586 591 599 605

Memory Map 341 393 820 1540 831 883

Memory Unmap 450 456 1454 2437 2692 2783

Cap Activation 400 410 916 1530

Cap Deactivation 373 381 1054 1705
aAll numbers are cycles and
are presented as Average Cost 99th Percentile Cost
bThis result is measured on bare-metal.

cache operations, and the cache operations involved in other

kernel operations are local to the cache-coherent domain.

Thus their overhead are independent of core count and do

not prevent Ch’i from scaling to much larger machines. The

only metric increasing with the core count is the amount of

time to achieve cache quiescence. This is because our current

prototype requires all the cores to flush stale kernel cache

lines (§III-B). Optimization of cache quiescence detection and

evaluating on larger machines are left as future work (§VII). In

short, we believe our experiments focusing on a small number

of cores fairly evaluate the current prototype.

B. Microbenchmarks

Delayed cache coherency enables efficient kernel capability

operations without cache invalidations. This section evaluates

the costs of various kernel operations especially with respect

to the overheads introduced by explicit cache operations. All

operations are executed 10 million times, and we report both

the average cost and 99th percentile cost.

Discussion. Table II shows the results on both local and

global memory. We compare to similar operations in Linux.

QEMU/KVM adds significant overhead on some operations,

most notably round-trip IPC. To show this, we include the

IPC cost run on bare-metal. For other operations, there is little

difference between QEMU and bare-metal.

Because of delayed cache coherency, the incoherent global

memory has negligible impact on read-only kernel operations.

Their costs are similar to local memory. However for mutating

kernel operations, such as capability table modifications, cache

operations dominate the overhead. Even so, their performance

is competitive with Linux.

C. Key-Value Server

To evaluate the use of Ch’i with real world applications,

we use memcached [41]. In its simplest form, memcached

provides get and put requests for a cache of key-value pairs

stored in a concurrent hash table. As Ch’i does not directly

provide a user-level mechanism to handle incoherent cache,

we apply BI [16] to memcached. BI is a library which extends

RCU to support cache-incoherent systems.

To compare against distributed approaches, we apply three

techniques to memcached. (1) 2PC – all data is replicated

across servers. Any server can handle any get request locally.

 0

 1

 2

 3

 4

 5

 6

2PC Partitioned Ch’i Ch’i-libR
e
q
u
e
s
t

L
a
te

n
c
y
 (

1
K

 C
y
c
le

s
) Get Request Latency

 0

 2

 4

 6

 8

 10

 12

 14

 16

2PC Partitioned Ch’i Ch’i-lib

Put Request Latency

hash table
message passing

system call
IPC

2pc protocol
cache flush

Fig. 3. memcached request latency (smaller is better).

put requests update all replicas using the Two Phase Commit

(2PC) protocol. Barrelfish [23] uses this mechanism for kernel

capability management. (2) Partitioned – data is partitioned

across servers. Clients randomly choose a server and send both

get and put requests to that server using global-memory-

based RPC. A similar message passing approach is used in

LegoOS [15] to coordinate incoherent nodes. (3) Ch’i – BI-

based memcached on Ch’i. A client uses local IPC to invoke

the memcached service, which processes get requests locally

and sends put requests to the corresponding server node based

on consistent hashing. A protection boundary between the

client and memcached is not necessary if they trust each other.

(4) Ch’i-lib – the client uses memcached as a library and

it calls its functions without IPC. This shows the trade-off

between performance and protection.

While these variants are not apple-to-apple comparison of

memcached implementation, they represent typical approaches

to handle incoherent-cache, which is the focus of this pa-

per. Furthermore, due to different system models, BI-based

memcached cannot be ported to other systems. For example,

thanks to its uniform, single-image model, only Ch’i supports

local invocation to global service, which enables get requests

to be processed locally in BI-based memcached. Additionally,

BI has its own performance trade-offs. As shown later, put

requests in BI-based memcached are slow as BI requires more

kernel operations. Thus performance improvements on Ch’i

are not solely from BI.

Experiment set-up. We use two clients and two memcached

servers, each of them is running on a dedicated core. Ch’i

achieves periodic cache quiescence 30 times per second. To

avoid QEMU negatively impacting other systems, we only

run Ch’i within QEMU, while other experiments are executed

directly on bare-metal with Linux. We use YCSB [42] to

generate the trace, which contains 10 million requests with

16B keys and 32B values.

Latency Analysis. The different approaches make different

trade-offs between read and write performance. To show this,

we break down request latency for each. Figure 3’s left graph

shows the get request latency. 2PC and partitioned have

similar get latency, which are dominated by message passing

costs. Ch’i has lower overheads as a result of local IPC.

Ch’i-lib reduces the latency further as it avoids IPC costs.

However, put latency behaves differently as shown in the

graph on the right in Figure 3. 2PC has the most overhead

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

T
h
ro

u
g
h
p
u
t

(1
0
K

 R
e
q
u
e
s
ts

/s
)

Update Percentage

Ch’i-lib

Ch’i

Partitioned

2PC

Fig. 4. memcached throughput.

because its consensus protocol requires exchanging multiple

messages among all servers. Ch’i has more overhead than the

partitioned approach, while it has less than 2PC. This is

because there are two extra overheads on the update path. The

first one comes from memory allocation which involves kernel

capability table modification. The second one is the cost of

invoking kernel cache quiescence.

Throughput Discussion. Figure 4 reports the memcached

throughput with different update ratios. With low update

percentages (that are common [41], [43], [44]), Ch’i has a high

throughput due to cached read-path accesses. And removing

IPC overhead in Ch’i-lib significantly improves throughput.

When the update ratio increases, as expected, both Ch’i and

2PC degrade due to their high put overheads. partitioned

memcached treats get and put equally, thus its throughput

does not change with different put ratios.

VI. RELATED WORK

Quiescence are commonly used in RCU and SMR tech-

niques [29], [30], [31] Ch’i extends these techniques to de-

termine if stale cache references can exist on any node. Qui-

escence based techniques are also utilized in shared-memory

cache-coherent operating systems. There are over 6500 API

calls in the Linux kernel using RCU [24]; The Composite

kernel [25] uses a simple version of time-based quiescence

to implement a kernel that has no lock-based synchronization,

and minimizes and controls cache-line modification. However,

none of these systems support cache-incoherent architectures.

§I discusses research about implementing operating systems

on top of incoherent cache. Other recent research focus on

handling incoherent cache within user-level services. Hare [45]

is a file-system for cache-incoherent systems, and it relies

on message passing to coordinate multiple nodes. libMPN-

ode [46], an OpenMP runtime, uses distributed shared memory

and thread migration to deal with incoherent cache. Atlas [47]

delays cache flushes to the exit of a critical section to ad-

dress incoherency for lock-based applications. BI [16] extends

RCU to support cache-incoherent systems. LazyPIM [48] is a

hardware mechanism exploring lazy coherence for processing-

in-memory. Tavarageri et al. [49] present compiler extensions

to support software cache coherence.

VII. DISCUSSION AND FUTURE WORK

There is much room for future research with cache-

incoherent architectures and Ch’i. Current Ch’i prototype has

a couple of limitations, and we aim to improve and evaluate

it on larger scale testing environments.

Fine-grained kernel cache tracking. Currently Ch’i requires

all accessed kernel memory to be flushed. This is pessimistic,

as not all accessed memory has been modified, and not all

of it will be accessed again in the future. There are lots of

opportunities to track and identify stale kernel cache lines

more accurately, thus reducing the amount of cache to be

flushed. For example, Ch’i can employ some form of write

logs to track modified kernel objects, and only flush them.

Additionally, Ch’i can exploit structural properties of kernel

capabilities, such as flushing only reachable capabilities by

walking through capability tables.

System resource partitioning. In order to achieve cache

quiescence, the current prototype awaits for all the nodes

to flush kernel memory from cache. This implementation

has two deficiencies. First, it limits the scalability of cache

quiescence. The amount of time to achieve quiescence, in the

worst case, will increase linearly with more nodes. Second, it

weakens the isolation among nodes. If one node fails to flush

its kernel’s cache, it will delay or prevent other nodes from

reclaiming kernel objects. To alleviate these problems, we can

leverage Ch’i capability to partition the system resource across

different nodes. For instance, we can delegate a subset of cores

and global memory only to high-criticality tasks, and make

sure no other tasks can access these resource via capability

confinement. In this way, the kernel only needs to wait for the

delegated cores to flush cache, instead of all the nodes, thus

ensuring isolation and timely memory reuse for each client.

Security concerns. User-level management of kernel cache

flush can introduce a potential denial-of-service attack. For

example, if the manager is compromised, it can never flush

kernel cache, which prevents reclaiming unused kernel object.

If unreclaimed kernel objects get accumulated, they will even-

tually exhaust global memory. We see two solutions to this.

First, the kernel could instead use the privileged instruction

wbinvd to flush the entire CPU cache. The kernel could

enforce cache quiescence by invoking wbinvd when available

resource are running low. However, wbinvd is not a desirable

general solution due to its huge overhead, and it flushes all

cache-lines including those that are from local memory and

applications. Second, the user-level manager for this is a very

small amount of code (< 200 LoC), and when combined with

separation kernel support (via the temporal access control of

TCaps [50]), we believe it is reasonable to integrate the user-

level quiescence manger into the system’s TCB.

VIII. CONCLUSIONS

This paper has introduced the Ch’i system that enables

cache-speed microkernel fast-paths on cache incoherent ar-

chitectures, while using quiescence-based techniques to con-

trol the impact of incoherent cache to avoid data-structure

inconsistencies in kernel. A single capability-based access-

control mechanism is used to manage shared incoherent mem-

ory. Results show significant performance improvements over

conventional distributed techniques. We believe this marks a

significant step toward enabling OS management and control

over future scalable cache-incoherent architectures.

REFERENCES

[1] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom et al., “A 48-core ia-
32 message-passing processor with dvfs in 45nm cmos,” in 2010 IEEE

International Solid-State Circuits Conference-(ISSCC). IEEE, 2010,
pp. 108–109.

[2] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and
T. Yamazaki, “Synergistic processing in cell’s multicore architecture,”
IEEE micro, vol. 26, no. 2, pp. 10–24, 2006.

[3] N. P. Carter, A. Agrawal, S. Borkar, R. Cledat, H. David, D. Dunning,
J. Fryman, I. Ganev, R. A. Golliver, R. Knauerhase et al., “Runnemede:
An architecture for ubiquitous high-performance computing,” in 2013

IEEE 19th International Symposium on High Performance Computer

Architecture (HPCA). IEEE, 2013, pp. 198–209.

[4] J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, and S. J. Patel,
“Cohesion: a hybrid memory model for accelerators,” in Proceedings

of the 37th annual international symposium on Computer architecture

(ISCA’10), 2010, pp. 429–440.

[5] D. Johnson, M. Johnson, J. Kelm, W. Tuohy, S. Lumetta, and S. Patel,
“Rigel: A 1,024-core single-chip accelerator architecture,” IEEE Micro,
vol. 31, no. 4, pp. 30–41, Jul. 2011.

[6] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy,
A. Mahesri, S. S. Lumetta, M. I. Frank, and S. J. Patel, “Rigel:
an architecture and scalable programming interface for a 1000-core
accelerator,” ACM SIGARCH Computer Architecture News, vol. 37,
no. 3, pp. 140–151, 2009.

[7] K. Asanovic, “FireBox: A Hardware Building Block for 2020
Warehouse-Scale Computers,” in Proceedings of the 12th USENIX

Conference on File and Storage Technologies (FAST’14), Santa Clara,
CA, USA, February 2014.

[8] Intel Corporation, “Intel Rack Scale Design,” Online, 2016,
http://www.intel.com/content/www/us/en/architecture-and-technology/
rack-scale-architecture/intel-rack-scale-architecture-resources.html.

[9] P. Faraboschi, K. Keeton, T. Marsland, and D. Milojicic, “Beyond
Processor-centric Operating Systems,” in 15th Workshop on Hot Topics

in Operating Systems, HotOS XV, Kartause, Ittingen, Switzerland, May

18-20, 2015.

[10] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro, “FaRM: Fast
remote memory,” in Proceedings of the 11th USENIX Symposium on

Networked Systems Design and Implementation (NSDI’14), Seattle, WA,

USA, April 2-4, 2014.

[11] A. Dragojević, D. Narayanan, E. B. Nightingale, M. Renzelmann,
A. Shamis, A. Badam, and M. Castro, “No compromises: Distributed
transactions with consistency, availability, and performance,” in Proceed-

ings of the 25th Symposium on Operating Systems Principles (SOSP’15),

Monterey, CA, USA, October 4-7, 2015.

[12] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot, “The case
for rackout: Scalable data serving using rack-scale systems,” in Proceed-

ings of the 7th ACM Symposium on Cloud Computing (SoCC’16), Santa

Clara, CA, USA, October 5-7, 2016.

[13] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, “Efficient
memory disaggregation with infiniswap,” in 14th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 17). Boston,
MA: USENIX Association, 2017, pp. 649–667.

[14] V. Nitu, B. Teabe, A. Tchana, C. Isci, and D. Hagimont, “Welcome
to zombieland: Practical and energy-efficient memory disaggregation
in a datacenter,” in Proceedings of the Thirteenth EuroSys Conference

(EuroSys’16), 2018, pp. 1–12.

[15] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “Legoos: A disseminated,
distributed OS for hardware resource disaggregation,” in 13th USENIX

Symposium on Operating Systems Design and Implementation (OSDI

18), 2018.

[16] Y. Ren, G. Parmer, and D. Milojicic, “Bounded incoherence: A pro-
gramming model for non-cache-coherent shared memory architectures,”
in Proceedings of the Eleventh International Workshop on Programming

Models and Applications for Multicores and Manycores, ser. PMAM’20,
2020.

[17] S. Peter, A. Schüpbach, D. Menzi, and T. Roscoe, “Early experience with
the barrelfish os and the single-chip cloud computer.” in Proceedings

of the 3rd Many-core Applications Research Community Symposium

(MARC), Ettlingen, Germany, July 5-6, 2011.

[18] S. Peter, J. Giceva, P. Shinde, G. Alonso, and T. Roscoe, “POSTER:
OS design for non-cache-coherent systems,” in Proceedings of the 23rd

ACM Symposium on Operating Systems Principles (SOSP’11), Cascais,

Portugal, October 23-26, 2011.

[19] M. Hille, N. Asmussen, P. Bhatotia, and H. Härtig, “Semperos: A
distributed capability system,” in 2019 USENIX Annual Technical

Conference (USENIX ATC 19). Renton, WA: USENIX Association,
Jul. 2019, pp. 709–722. [Online]. Available: https://www.usenix.org/
conference/atc19/presentation/hille

[20] A. Barbalace, B. Ravindran, and D. Katz, “Popcorn: a replicated-kernel
os based on linux,” in Proceedings of the Linux Symposium, Ottawa,

Canada, 2014.

[21] F. X. Lin, Z. Wang, and L. Zhong, “K2: A mobile operating system
for heterogeneous coherence domains,” in Proceedings of the 19th

International Conference on Architectural Support for Programming

Languages and Operating Systems, ser. ASPLOS 14, 2014.

[22] C. Morin, R. Lottiaux, G. Vallée, P. Gallard, D. Margery, J.-Y. Berthou,
and I. D. Scherson, “Kerrighed and data parallelism: Cluster computing
on single system image operating systems,” in 2004 IEEE International

Conference on Cluster Computing (IEEE Cat. No. 04EX935). IEEE,
2004, pp. 277–286.

[23] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schpbach, and A. Singhania, “The Multikernel: A new OS
architecture for scalable multicore systems,” in Symposium on Operating

System Principles (SOSP), 2009.

[24] P. E. McKenney, S. Boyd-Wickizer, and J. Walpole, “Rcu usage in the
linux kernel: One decade later,” Technical report, 2013.

[25] Q. Wang, Y. Ren, M. Scaperoth, and G. Parmer, “Speck: A kernel for
scalable predictability,” in Proceedings of the 21st IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS), 2015.

[26] H. Levy, “Capability-based computer systems,” 1984.

[27] M. Dreseler, T. Kissinger, T. Djürken, E. Lübke, M. Uflacker, D. Habich,
H. Plattner, and W. Lehner, “Hardware-accelerated memory operations
on large-scale numa systems.” in ADMS@ VLDB, 2017, pp. 34–41.

[28] “Fabric Attached Memory Atomics libary:
https://github.com/fabricattachedmemory/libfam-atomic.”

[29] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole, “Performance
of memory reclamation for lockless synchronization,” J. Parallel Distrib.

Comput., vol. 67, no. 12, 2007.

[30] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais, and
J. Walpole, “User-level implementations of read-copy update,” IEEE

Transactions on Parallel and Distributed Systems, vol. 23, no. 2, 2012.

[31] Q. Wang, T. Stamler, and G. Parmer, “Parallel sections: Scaling system-
level data-structures,” in Proceedings of the ACM EuroSys Conference,
2016.

[32] J. S. Shapiro, J. M. Smith, and D. J. Farber, “EROS: a fast capability
system,” in Symposium on Operating Systems Principles, 1999, pp.
170–185. [Online]. Available: citeseer.ist.psu.edu/shapiro99eros.html

[33] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “seL4: Formal verification of an OS kernel,”
in Proceedings of the 22nd ACM Symposium on Operating Systems

Principles. Big Sky, MT, USA: ACM, Oct 2009.

[34] K. Elphinstone and G. Heiser, “From L3 to seL4 what have we learnt
in 20 years of L4 microkernels?” in Proceedings of the 24th ACM

Symposium on Operating Systems Principles (SOSP), 2013, pp. 133–
150.

[35] F. Mehnert, M. Hohmuth, and H. Härtig, “Cost and benefit of separate
address spaces in real-time operating systems,” in In Proc. of the 23rd

IEEE Real-Time Systems Symposium (RTSS), December 2002.

[36] J. Liedtke, “On micro-kernel construction,” in Proceedings of the 15th

ACM Symposium on Operating System Principles. ACM, December
1995.

[37] J. Stoess, “Towards effective user-controlled scheduling for microkernel-
based systems,” SIGOPS Oper. Syst. Rev., vol. 41, no. 4, pp. 59–68,
2007.

[38] A. Haeberlen and K. Elphinstone, “User-level management of kernel
memory,” in Proceedings of the 8th Asia-Pacific Computer Systems

Architecture Conference, Aizu-Wakamatsu City, Japan, sep 2003.

[39] G. Parmer and R. West, “Predictable interrupt management and schedul-
ing in the Composite component-based system,” in Proceedings of the

IEEE International Real-Time Systems Symposium (RTSS), 2008.

[40] P. K. Gadepalli, R. Pan, and G. Parmer, “Slite: Os support for near zero-
cost, configurable scheduling,” in 2020 IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS). IEEE, 2020, pp. 160–
173.

[41] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung,
and V. Venkataramani, “Scaling memcache at facebook,” in Presented

as part of the 10th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 13). Lombard, IL: USENIX, 2013,
pp. 385–398. [Online]. Available: https://www.usenix.org/conference/
nsdi13/technical-sessions/presentation/nishtala

[42] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings

of the 1st ACM Symposium on Cloud Computing, ser. SoCC ’10.
New York, NY, USA: ACM, 2010, pp. 143–154. [Online]. Available:
http://doi.acm.org/10.1145/1807128.1807152

[43] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Work-
load analysis of a large-scale key-value store,” in Proceedings of the 12th

ACM SIGMETRICS/PERFORMANCE Joint International Conference on

Measurement and Modeling of Computer Systems (SIGMETRICS’12),

London, United Kingdom, June 11-15, 2012.
[44] Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Characterizing

facebook’s memcached workload,” IEEE Internet Computing, vol. 18,
no. 2, 2014.

[45] C. Gruenwald, III, F. Sironi, M. F. Kaashoek, and N. Zeldovich, “Hare:
A file system for non-cache-coherent multicores,” in Proceedings of the

Tenth European Conference on Computer Systems (Eurosys ’15), 2015.
[46] R. Lyerly, S.-H. Kim, and B. Ravindran, “libmpnode: An openmp

runtime for parallel processing across incoherent domains,” in Proceed-

ings of the 10th International Workshop on Programming Models and

Applications for Multicores and Manycores, ser. PMAM’19, 2019.
[47] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging

locks for non-volatile memory consistency,” in Proceedings of the

2014 ACM International Conference on Object Oriented Programming

Systems Languages & Applications (OOPSLA ’14), 2014.
[48] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, K. Hsieh,

K. T. Malladi, H. Zheng, and O. Mutlu, “Lazypim: An efficient cache
coherence mechanism for processing-in-memory,” IEEE Computer Ar-

chitecture Letters, vol. 16, no. 1, 2017.
[49] S. Tavarageri, W. Kim, J. Torrellas, and P. Sadayappan, “Compiler

support for software cache coherence,” in 2016 IEEE 23rd International

Conference on High Performance Computing (HiPC), 2016.
[50] P. K. Gadepalli, R. Gifford, L. Baier, M. Kelly, and G. Parmer,

“Temporal capabilities: Access control for time,” in Proceedings of the

38th IEEE Real-Time Systems Symposium, 2017.

	Introduction
	Background
	Incoherent Cache Architecture
	Quiescence-based Technique
	Capability-based Management
	Challenges with Incoherent Cache

	Design
	Design Goals
	Delayed Cache Coherency via Quiescence
	Common Kernel Capability Operations
	Generality and extensibility of Ch'i

	Implementation
	Cache Quiescence
	Capability-table Bootstrapping
	Kernel Capability Operations

	Evaluation
	Accuracy of Experimental Setup
	Microbenchmarks
	Key-Value Server

	Related Work
	Discussion and Future Work
	Conclusions
	References

