
Proceedings of

OSPERT 2011

7th annual workshop on
Operating Systems Platforms for
Embedded Real-Time Applications

July 5th, 2011 in Porto, Portugal

in conjunction with the
23rd Euromicro Conference on Real-Time Systems

Portugal, July 6-8, 2011

Editors:
Gabriel Parmer

Thomas Gleixner

Copyright 2011 The George Washington University.
All rights reserved. The copyright of this collection is with The George
Washington University. The copyright of the individual articles remains
with their authors.

Contents

Message from the Chairs 3

Program Committee 3

Keynote Talk 4

Program 5

Parallelism in Real-Time Systems 6
An efficient and scalable implementation of global EDF in Linux

Juri Lelli, Giuseppe Lipari, Dario Faggioli, Tommaso Cucinotta 6
A Comparison of Pragmatic Multi-Core Adaptations of the AU-

TOSAR System
Niko Bohm, Daniel Lohmann, Wolfgang Schroder-Preikschat 16

Operating Systems Challenges for GPU Resource Management
Shinpei Kato, Scott Brandt, Yutaka Ishikawa, Ragunathan
(Raj) Rajkumar . 23

Abstraction in Real-Time Systems 33
Virtual Real-Time Scheduling

Malcolm Mollison and James Anderson 33
Temporal isolation in an HSF-enabled real-time kernel in the pres-

ence of shared resources
Martijn M. H. P. van den Heuvel, Reinder J. Bril, Johan J.
Lukkien . 41

Hard Real-time Support for Hierarchical Scheduling in FreeRTOS
Rafia Inam, Jukka Maki-Turja, Mikael Sjodin, Moris Behnam 51

RTOS-Based Embedded Software Development using Domain-Specific
Language
Mohamed-El-Mehdi Aichouch, Jean-Christophe Prevotet, Fa-
bienne Nouvel . 61

2

Message from the Chairs

We aim to continue the interactive emphasis for this 7th workshop on Op-
erating Systems Platforms for Embedded Real-Time Applications. Toward
this, we will have two discussion-based sessions. One is a discussion led by
a panel of four experts to discuss the present and future of parallelism and
real-time. Additionally, the conference will commence with a keynote by
Gernot Heiser who will lend his success and experience in both academia
and industry. OSPERT this year accepted 6 of 8 peer reviewed papers,
and we have included an invited paper on resource management for GPUs.
Given the quality and controversial nature of the papers, we expect a lively
OSPERT.

We’d like to thank all of the people behind the scenes that were involved
in making OSPERT what it is. Gerhard Fohler has made this workshop
possible, and we appreciate the support and venue for the operating systems
side of real-time systems. The advice and support from Stefan Petters and
James Anderson has been invaluable; they have increased the quality of the
workshop. The program committee has done wonderful work in fastidiously
reviewing submissions, and providing useful feedback.

Most of all, this workshop will be a success based on the community
of operating systems and real-time researchers that provide the excitement
and discussion that defines OSPERT.

The Workshop Chairs,
Gabriel Parmer

Thomas Gleixner

Program Committee

Carsten Emde, Open Source Automation Development Lab, Germany
Peter Zijlstra, Red Hat Linux, Netherlands
Jim Anderson, University of North Carolina, USA
Rodolfo Pellizzoni, University of Waterloo, Cananda
Scott Brandt, University of California, Santa Cruz, USA
Kevin Elphinstone, University of New South Wales/NICTA, Australia
Neil Audsley, University of York, UK
Hermann Hartig, TU Dresden, Germany
Stefan Petters, Instituto Superior de Engenharia do Porto, Portugal

3

Keynote Talk

Toward an OS Platform for
Truly Dependable Real-Time Systems

Gernot Heiser
University of New South Wales, NICTA

Many embedded systems are used in mission or even life-critical scenar-
ios, and their dependability is paramount. The growing functionality, and
resulting complexity, means that the traditional bare-metal approach is no
longer feasible for such systems. This necessitates the use of spatial and
temporal isolation, enforced by an operating system or hypervisor.

The dependability of the system then hinges on the dependability of that
OS platform: it must ensure at least the integrity and timely execution of
critical subsystems in the presence of malfunctions in non-critical parts. The
talk presents our roadmap to such a platform, and discusses progress to date.

Biography:
Gernot Heiser is Scientia Professor and John Lions Chair of Operat-

ing Systems at the University of New South Wales (UNSW), and leads the
Software Systems research group at NICTA, Australia’s National Centre of
Excellence for ICT Research. He joined NICTA at its creation in 2002, and
before that was a full-time member of academic staff at UNSW from 1991.
His past work included the Mungi single-address-space operating system
(OS), several un-broken records in IPC performance, and the best-ever re-
ported performance for user-level device drivers, and the world’s first formal
verification of a complete general-purpose OS kernel.

In 2006, Gernot with a number of his students founded Open Kernel
Labs, now the market leader in secure operating-systems and virtualization
technology for mobile wireless devices. The company’s OKL4 operating
system, a descendent of L4 kernels developed by his group at UNSW and
NICTA, is deployed in more than 1.2 billion mobile phones. This includes
the Motorola Evoke, the first (and to date only) mobile phone running a
high-level OS (Linux) and a modem stack on the same processor core.

In a former life, Gernot developed semiconductor device simulators and
models of device physics for such simulators, and pioneered the use of three-
dimensional device simulation for the characterisation and optimisation of
high-performance silicon solar cells.

4

Program

Tuesday, July 5th 2011
8:30-9:00 Registration
9:00-10:30 Keynote Talk: Gernot Heiser
10:30-11:00 Coffee Break
11:00-12:30 Session 1: Parallelism in Real-Time Systems

An efficient and scalable implementation of global EDF in
Linux

Juri Lelli, Giuseppe Lipari, Dario Faggioli, Tommaso Cucinotta

A Comparison of Pragmatic Multi-Core Adaptations of the
AUTOSAR System

Niko Bohm, Daniel Lohmann, Wolfgang Schroder-Preikschat

Operating Systems Challenges for GPU Resource Management
Shinpei Kato, Scott Brandt, Yutaka Ishikawa, Ragunathan (Raj)

Rajkumar

12:30-13:30 Lunch
13:45-15:30 Panel Discussion: The Present and Future of Parallelism in

Real-Time
Panel members: Gernot Heiser, Thomas Gleixner, Shinpei Kato,

and Andrea Bastoni

15:30-16:00 Coffee Break
16:00-18:00 Session 2: Abstraction in Real-Time Systems

Virtual Real-Time Scheduling
Malcolm Mollison and James Anderson

Temporal isolation in an HSF-enabled real-time kernel in the
presence of shared resources

Martijn M. H. P. van den Heuvel, Reinder J. Bril,

Johan J. Lukkien

Hard Real-time Support for Hierarchical Scheduling in FreeR-
TOS

Rafia Inam, Jukka Maki-Turja, Mikael Sjodin, Moris Behnam

RTOS-Based Embedded Software Development using Domain-
Specific Language

Mohamed-El-Mehdi Aichouch, Jean-Christophe Prevotet,

Fabienne Nouvel

18:00-18:30 Discussion and Closing Thoughts

Wednesday, 6th - Friday, 8th 2011
ECRTS main proceedings.

5

An efficient and scalable implementation of global EDF in Linux ∗

Juri Lelli, Giuseppe Lipari, Dario Faggioli, Tommaso Cucinotta
{name.surname}@sssup.it

Scuola Superiore Sant’Anna - ITALY

Abstract

The increasing popularity of multi-core architectures
is pushing researchers and developers to consider
multi-cores for executing soft and hard real-time ap-
plications. Real-Time schedulers for multi proces-
sor systems can be roughly categorized into parti-
tioned and global schedulers. The first ones are more
adequate for hard real-time embedded systems, in
which applications are statically loaded at start-up
and rarely change at run-time. Thanks to automatic
load balancing, global schedulers may be useful in
open systems, where applications can join and leave
the system at any time, and for applications with
highly varying workloads.

Linux supports global and partitioned scheduling
through its real-time scheduling class, which provides
SCHED FIFO and SCHED RR fixed priority policies. Re-
cently, the SCHED DEADLINE policy was proposed that
provides Earliest Deadline First scheduling with bud-
get control. In this paper we propose a new imple-
mentation for global EDF scheduling which uses a
heap global data structure to speed-up scheduling de-
cisions. We also compare the execution time of the
main scheduling functions in the kernel for four dif-
ferent implementations of global scheduling, showing
that our implementation is as scalable and efficient
as SCHED FIFO.

∗The research leading to these results has received fund-
ing from the European Community’s Seventh Framework Pro-
gramme n.248465 “S(o)OS – Service-oriented Operating Sys-
tems.”

1 Introduction

Multi-processor and multi-core computing platforms
are nowadays largely used in the vast majority of ap-
plication domains, ranging from embedded systems,
to personal computing, to server-side computing in-
cluding GRIDs and Cloud Computing, and finally
high-performance computing.

In embedded systems, small multi-core platforms
are considered as a viable and cost-effective solu-
tion, especially for their lower power requirements
as compared to a traditional single processor sys-
tem with equivalent computing capabilities. The in-
creased level of parallelism in these systems may be
conveniently exploited to run multiple real-time ap-
plications, like found in industrial control, aerospace
or military systems; or to support soft real-time Qual-
ity of Service (QoS) oriented applications, like found
in multimedia, gaming or virtual reality systems.

Servers and data centres are shifting towards (mas-
sively) parallel architectures with enhanced maintain-
ability, often accompanied by a decrease in the clock
frequency driven by the increasing need for “green
computing” [13]. Cloud Computing promises to move
most of the increasing personal computing needs of
users into the “cloud”. This is leading to an un-
precedented need for supporting a large number of
interactive and soft real-time applications, often in-
volving on-the-fly media streaming, processing and
transformations with demanding performance and la-
tency requirements. These applications usually ex-
hibit nearly periodic workload patterns which often
do not saturate the available computing power of a
single (powerful) CPU. Therefore, there is a strong
industrial interest in executing an increasing number

6

of applications of this type onto the same system,
node, CPU and even core, whenever possible, in order
to minimize the number of needed nodes (and reduce
both power consumption and costs). In this context,
a key role is played by real-time CPU scheduling al-
gorithms for multi-processor systems. These can be
roughly categorised into global schedulers and parti-
tioned schedulers.

In partitioning, tasks are allocated to cores and will
rarely (or never) move from one core to another one.
Every core has its own private scheduling queue, and
its private scheduler. In closed systems, the alloca-
tion algorithm is executed off-line and tasks are stat-
ically allocated to cores. In open systems tasks can
dynamically join and leave the system: however task
join/leave are rare event compared to the time gran-
ularity of the run-time events (i.e. the tasks’ periods,
or the scheduling tick). When a task joins the sys-
tem, the allocation algorithm is executed, which may
cause a re-allocation of existing tasks and hence a
migration from one core to another (load balancing).

In global scheduling, ready tasks are enqueued in a
logical global queue, and the M highest priority tasks
are selected to run on the M cores. Therefore, a task
can be suspended on one core and resume execution
on another core. The number of migrations is much
higher than in the previous case. Clustered schedulers
reside in the middle, where the available processors
are partitioned into clusters to which tasks are stat-
ically assigned, but in each cluster tasks are globally
scheduled.

Global scheduling has the advantage of automati-
cally performing load balancing, however it also raises
many concerns about its practicality. Indeed, migra-
tions may invalidate the cache, increasing the task
execution time. For this reason, partitioned schedul-
ing is mostly used in hard real-time embedded appli-
cations, where tasks are known at configuration time,
and optimal allocation and load balancing can be per-
formed off-line. On the other end, global scheduling
seems more appropriate for dynamic open systems
with highly varying workloads.

One concern of researchers and practitioners is the
overhead of scheduling. In particular, the problem
is to maintain data structures in the kernel to rep-
resent the global queue; such global structures are

concurrently accessed by all cores and must therefore
be appropriately protected with concurrency control
mechanisms (lock-based or lock-free).

1.1 Contributions of this work

In this work, we present an implementation of a
global EDF scheduler in Linux using a heap data
structure to optimize access to the earliest deadline
tasks. The implementation is an improvement over
SCHED DEADLINE [8]. After describing the base real-
time scheduler of Linux (Section 3), and our imple-
mentation (Section 4), we compare its performance
against the global POSIX-compliant fixed priority
scheduler shipped with stock Linux and with the pre-
vious version of SCHED DEADLINE (Section 6). The re-
sults show that using appropriate data structures it is
indeed possible to build efficient and scalable global
real-time schedulers. In Section 7, we also identify
space for possible improvements.

All the code that has been developed during the
experimental evaluation phase of this study can
be downloaded by following the instructions at the
very top of this page: https://www.gitorious.org/
sched_deadline/pages/Download.

2 State of the art

When deciding which kind of scheduler to adopt in
a multiple processor system, there are two main op-
tions: partitioned scheduling and global scheduling.

In partitioned scheduling, the placement of tasks
among the available processors is a critical step. The
problem of optimally dividing the workload among
the various queues, so that the computing resources
be well utilised, is analogous to the bin-packing prob-
lem, which is known to be NP-hard in the strong
sense [10].This complexity is typically avoided us-
ing sub-optimal solutions provided by polynomial
and pseudo-polynomial time heuristics, like First Fit,
Best Fit, etc. [12, 11].

In global scheduling, tasks are ordered into a
single logical queue and scheduled onto the available
processors. Using a single logical queue, the load is
thus intrinsically balanced, since no processor is idled

7

as long as there is a ready task in the global queue.
A class of algorithms, called Pfair schedulers [2], is
able to ensure that the full processing capacity can
be used, but unfortunately at the cost of a poten-
tially large run-time overhead. Migrative and non-
migrative algorithms have been proposed modifying
well-known solutions adopted for the single proces-
sor case and extending them to deal with the various
anomalies [1] that arise on a parallel computing plat-
form.

Complications in using a global scheduler mainly
relate to the cost of inter-processor migration, and to
the kernel overhead due to the necessary synchroni-
sation among the processors for the purpose of en-
forcing a global scheduling strategy. As we will see
in Section 3, in order to reduce the contention, the
logical single queue can actually be implemented as a
set of distributed queues plus some helper data struc-
tures to maintain consistency.

In addition to the above classes, there are also in-
termediate solutions, like clustered- and restricted-
migration schedulers. A clustered scheduler [6] limits
the number of processors among which a task can
migrate. This method is more flexible than a rigid
partitioning algorithm without migration.

Linux supports real-time scheduling with two
scheduling policies, SCHED RR and SCHED FIFO. They
are based on fixed priority and are compliant with
the POSIX standard. The base scheduler is global,
i.e. tasks can freely migrate across processors. By
specifying task’s processor affinity, it is possible to
pin a task on one processor (partitioning) or to a set
of processors (clustered scheduling). The implemen-
tation of such scheduler will be described in Section
3.

Recently, the SCHED DEADLINE scheduling class has
been proposed for Linux [8]. It mimics the fixed pri-
ority scheduling class, but provides Earliest Deadline
First scheduling. Again, using affinity it is possible to
implement global, partitioned and clustered schedul-
ing. An overview of SCHED DEADLINE can be found
in Section 4.

The line of research closer to the approach of
this paper is the one carried out by the Real-
Time Systems Group at University of North Car-
olina at Chapel Hill, conducted by means of their

LITMUSRT testbed [5] and investigating how real
overheads affect analysis results. There are several
works by such group going in this direction: in [5]
Calandrino et al. studied the behaviour of some vari-
ants of global EDF and Pfair, but did not consider
fixed-priority; in [4], Brandenburg et al. explored
the scalability of a similar set of algorithms, while
in [3] the impact of the implementation details on the
performance of global EDF is analysed. In all these
works, samples of the various forms of overhead that
show up during execution on real hardware are gath-
ered and are then plugged in schedulability analysis,
trying to make it realistic, which is an important dif-
ference between their works and the present paper
(that does not consider schedulability as a metric).

Furthermore, in this work we propose an efficient
implementation of a global EDF scheduler that, al-
thought shares basic principles with [3], perfectly fits
into the stock Linux scheduler, providing experimen-
tal evidence of its usability on a large multi-core ma-
chine.

3 SCHED FIFO scheduler

In the Linux kernel, schedulers are implemented in-
side scheduling classes. Stock Linux comes with two
classes, one for fair scheduling of non-real-time ac-
tivities (SCHED OTHER policy) and one implementing
fixed priority real-time scheduling (SCHED FIFO or
SCHED RR policies), following the POSIX 1001.3b [9]
specification. In this paper we will focus on the real-
time scheduling policies.

The fixed priority scheduling class already supports
global scheduling. However, to reduce memory con-
tention and improve locality, the logical global queue
is implemented using a set of distributed run-queues,
one for each CPU. Tasks are migrated across CPUs
using push and pull operations.

3.1 Run-queues, masks and locks

To keep track of active tasks, the kernel uses a data
structure called runqueue. There is one runqueue for
each CPU and they are managed separately in a dis-
tributed manner. Every runqueue is protected by

8

a spin-lock to guarantee correctness on concurrent
updates. Runqueues are modular, in the sense that
there is a separate sub-runqueue for each schedul-
ing class. Key components of the fixed priority sub-
runqueue are:

• a priority array on which tasks are actually
queued;

• fields used for load balancing;

• fields to speed up decisions on a multiprocessor
environment.

Tasks are enqueued on some runqueue when they
wake up and are dequeued when they are suspended.

An additional data structure, called cpupri, is
used to reduce the amount of work needed for a push
operation. This structure tracks the priority of the
highest priority task in each runqueue. The system
maintains the state of each CPU with a 2 dimensional
bitmap: the first dimension is for priority class and
the second for CPUs in that class. Therefore a push
operation can find a suitable CPU where to send a
task in O(1) time, since it has to perform a two bits
search only (if we don’t consider affinity restriction).
Concurrent access to bitmap fields is protected by
means of spinlocks in a fine-grained way. In particu-
lar, there is a different spinlock for each CPU of each
class; concurrent tasks have to spin waiting only if
they need to update data regarding the same CPU.

3.2 Push and pull operations

When a task is activated on CPU k, first the sched-
uler checks the local runqueue to see if the task has
higher priority than the executing one. In this case,
a preemption happens, and the preempted task is in-
serted at the head of the queue; otherwise the waken-
up task is inserted in the proper runqueue, depending
on the state of the system. In case the head of the
queue is modified, a push operation is executed to see
if some task can be moved to another queue. When
a task suspends itself (due to blocking or sleeping) or
lowers its priority on CPU k, the scheduler performs
a pull operation: it looks at the other run-queues to
see if some other higher priority tasks need to be mi-
grated to the current CPU. Pushing or pulling a task

struct dl_rq {

struct rb_root rb_root;

struct rb_node *rb_leftmost;

unsigned long dl_nr_running;

#ifdef CONFIG_SMP

struct {

/* two earliest tasks in queue */

u64 curr;

u64 next; /* next earliest */

} earliest_dl;

int overloaded;

unsigned long dl_nr_migratory;

unsigned long dl_nr_total;

struct rb_root pushable_tasks_root;

struct rb_node *pushable_tasks_leftmost;

#endif /* CONFIG_SMP */

};

Figure 2: struct dl rq extended

entails modifying the state of the source and desti-
nation runqueues: the scheduler has to dequeue the
task from the source and then enqueue it on the des-
tination runqueues.

4 SCHED DEADLINE

Recently, a new scheduling class has been made avail-
able for the Linux kernel, called SCHED DEADLINE [8].
It implements partitioned, clustered and global EDF
scheduling with hard and soft reservations 1. The
approach used for the implementation is the same
used in the Linux kernel for the fixed-priority sched-
uler. This is usually called distributed run-queue,
meaning that each CPU maintains a private data
structure implementing its own ready queue and, if
global scheduling is to be achieved, tasks are migrated
among processors when needed.

In more details:

• the tasks of each CPU are kept into a CPU-
specific run-queue, implemented as a red-black
tree ordered by absolute deadlines;

• tasks are migrated among run-queues of different

1Full source code available at: http://gitorious.com/

sched_deadline.

9

L3

Core 1

L1

L2

Core 2

L1

L2

Core 6

L1

L2

......

Chip # 1

L3

Core 1

L1

L2

Core 2

L1

L2

Core 6

L1

L2

......

Chip # 2

Figure 1: Architecture of a single processor (Multi Chip Module) of the Dell PowerEdge R815.

CPUs for the purpose of fulfilling the following
constraints:

– on m CPUs, the m earliest deadline ready
tasks run;

– the CPU affinity settings of all the tasks is
respected.

Migration points are the same as in the fixed pri-
ority scheduling class. Decisions related to push and
pull logic are taken considering deadlines (instead of
priorities) and according to tasks affinity and system
topology. The data structure used to represent the
EDF ready queue of each processor has been mod-
ified, as shown in Figure 2 (new fields are the one
inside the #ifdef CONFIG SMP block).

• earliest dl is a per-runqueue data structure
used for “caching” the deadlines of the first two
ready tasks, so to facilitate migration-related de-
cisions;

• dl nr migratory and dl nr total represent the
number of queued tasks that can migrate and the
total number of queued tasks, respectively;

• overloaded serves as a flag, and it is set when
the queue contains more than one task;

• pushable tasks root is the root of the red-
black tree of tasks that can be migrated, since
they are queued but not running, and it is or-
dered by increasing deadline;

• pushable tasks leftmost is a pointer to the
node of pushable tasks root containing the
task with the earliest deadline.

A push operation tries to move the first ready and
not running task of an overloaded queue to a CPU
where it can execute. The best CPU where to push
a task is the one which is running the task with the
latest deadline among the m executing tasks, con-
sidering also the constraints due to the CPU affinity
settings. A pull operation tries to move the most ur-
gent ready and not running tasks among all tasks on
all overloaded queues in the current CPU.

4.1 Idle processor improvement

The push mechanism core is realized in a small func-
tion that finds a suitable CPU for a to-be-pushed
task. The operation can be easily accomplished on a
small multi-core machine (for example a quad-core)
just by looking at all queues in sequence. The origi-
nal SCHED DEADLINE implementation realizes a com-
plete loop through all cores for every push decision
(pseudo-code on Figure 3). The execution time of
such function increases linearly with the number of
cores, therefore it does not scale well to systems with
large number of cores.

A simple observation is that on systems with large
number of processors and relatively light load, many
CPUs are idle most of the time. Therefore, when a
task wakes up, there is a high probability of finding an

10

cpu_mask push_find_cpu(task) {

for_each_cpu(cpu , avail_cores) {

mask = 0;

if (can_execute_on(task , cpu) &&

dline_before(task , get_curr(cpu)))

mask |= cpu;

}

return mask;

}

Figure 3: Find CPU eligible for push.

cpu_mask push_find_cpu(task) {

if (dlf_mask & affinity)

return (dlf_mask & affinity);

mask = 0;

for_each_cpu(cpu , avail_cores) {

if (can_execute_on(task , cpu) &&

dline_before(task , get_curr(cpu)))

mask |= cpu;

}

return mask;

}

Figure 4: Using idle CPU mask.

idle CPU. To improve the execution time of the push
function, we can use a bitmask that stores the idle
CPUs with a bit equal to 1. On a 64-bit architecture,
we can represent the status of up to 64 processors by
using a single word. Therefore, the code of Figure 3
can be rewritten as in Figure 4, where dlf mask is
the mask that represents idle CPUs, and the loop is
skipped (returning all suitable CPUs to the caller) if
is it possible to push the task on a free CPU.

This simple data structure introduces little or no
overhead for the scheduler and significantly improves
performance figures in large multi-core systems (more
on this later). Updates on dlf mask are performed
in a thread-safe way: we use a low level set bit()

provided in Linux which performs an atomic update
of a single bit of the mask.

5 Heap Data structure

When the system load is relatively high, idle CPUs
tend to be scarce. Therefore, we introduce a new

data structure to speed-up the search for a desti-
nation CPU inside a push operation. The require-
ments for the data structure are: O(1) complexity
for searching the best CPU; and less-than-linear com-
plexity for updating the structure. The classical heap
data structure fulfils such requirements as it presents
O(1) complexity for accessing to the first element,
and O(log n) complexity for updating (if contention
is not considered). Also, it can be implemented us-
ing a simple array. We developed a max heap to keep
track of deadlines of the earliest deadline tasks cur-
rently executing on each runqueue. Deadlines are
used as keys and the heap-property is: if B is a child
node of A, then deadline(A) ≥ deadline(B). There-
fore, the node in the root directly represent the CPU
where the task need to be pushed.

1 2 3 4 5 6 7 N - 1 N0

Figure 5: Heap implementation with a simple array.

A node of the heap is a simple structure that
contains two fields: a deadline as key and an int

field representing the associated CPU (we will call
it item). The whole heap is then self-contained in
another structure as described in Figure 6:

• elements contains the heap; elements[0] con-
tains the root and the node in elements[i]

has its left child in elements[2*i], its right
child in elements[2*i+1] and its parent in
elements[i/2] (see Figure 5);

struct dl_heap {

spinlock lock;

int size;

int cpu_to_idx[NR_CPUS];

item elements[NR_CPUS];

bitmask free_cpus;

};

Figure 6: Heap structure.

11

• size is the current heap size (number of non idle
CPUs);

• cpu to idx is used to efficiently update the heap
when runqueues state changes, since with this
array we keep track of where a CPU resides in
the heap;

• free cpus accounts for idle CPUs in the system.

Special attention must be given to the lock field.
Consistency of the heap must be ensured on concur-
rent updates: every time an update operation is per-
formed, we force the updating task to spin, waiting
for other tasks to complete their work on the heap.
This kind of coarse-grained lock mechanism simpli-
fies the implementation but it increases contention
and overhead. In the future, we will look for alterna-
tive lock-free implementation strategies.

Potential points of update for the heap are enqueue
and dequeue functions. If something changes at the
top of a runqueue, a new task starts executing be-
coming the so-called curr, or the CPU becomes idle,
the heap must be updated accordingly. We argued,
and then experimented, an increase in overhead for
the aforementioned operations, but we will show in
Section 6 data that suggest this price is worth pay-
ing in comparison with push mechanism performance
improvements.

With the introduction of the heap, code in Figure 4
can be changed as in Figure 7, where maximum(...)

cpu_mask push_find_cpu(task) {

if (dl_heap ->free_cpus & affinity)

return (dl_heap ->free_cpus & affinity);

if (maximum(dl_heap) & affinity)

return maximum(dl_heap);

mask = 0;

for_each_cpu(cpu , avail_cores) {

if (can_execute_on(task , cpu) &&

dline_before(task , get_curr(cpu)))

mask |= cpu;

}

return mask;

}

Figure 7: Find eligile CPU using a heap.

returns the heap root. As we can see from the pseudo-
code we first try to push a task to idle CPUs, then
we try to push it on the latest deadline CPU; if both
operations fail, the task is not pushed away.

This kind of functioning is compliant with classical
global scheduling, as it performs continuous load bal-
ancing across cores: rather than compacting all tasks
on few cores we prefer every core share an (as much
as possible) equal amount of real-time activities.

6 Evaluation

6.1 Experimental setup

The aim of the evaluation is to measure the perfor-
mance of the new data structures compared with the
reference Linux implementation (SCHED FIFO) and
the original SCHED DEADLINE implementation. Since
all mechanisms described so far share the same struc-
ture (i.e. distributed runqueues, and push and pull
operations for migrating tasks), we measures the av-
erage number of cycles of the main operations of the
scheduler: to enqueue and dequeue a task from one
of the runqueues; the push and pull operations.

We conducted our experiments on a Dell Pow-
erEdge R815 server equipped with 64GB of RAM,
and 4 AMDR OpteronTM 6168 12-core processors
(running at 1.9 GHz), for a total of 48 cores. The
memory is globally shared among all the cores, and
the cache hierarchy is on 3 levels (see Figure 1), pri-
vate per-core 64 KB L1D and 512 KB L2 caches, and
a global 10240 KB L3 cache. The R815 server was
configured with a Debian Sid distribution running a
patched 2.6.36 Linux kernel.

In the following we will refer the three patches we
developed as:

• original, the original SCHED DEADLINE imple-
mentation;

• fmask, SCHED DEADLINE plus changes described
in Section 4.1;

• heap, SCHED DEADLINE plus the heap described
in Section 5.

The reference Linux scheduler is denoted with
SCHED FIFO.

12

6.2 Task set generation

The algorithm for generating task sets used in the ex-
periments works as follows. We generate a number of
tasks N = x ·m, where m is the number of processors
(see below), and x is set equal to 3. Similar overhead
figures have been obtained with a higher number of
tasks (results omitted for the sake of brevity).

The overall utilisation U of the task set is set
equal to U = R · m where R is 0.6, 0.7 and 0.8.
To generate the individual utilisation of each task,
the randfixedsum algorithm [7] has been used, by
means of the implementation publicly made available
by Paul Emberson2. The algorithm generates N ran-
domly distributed numbers in (0, 1), whose sum is
equal to the chosen U . Then, the periods are ran-
domly generated according to a log-uniform distribu-
tion in [10ms, 100ms]. The (worst-case) execution
times are set equal to the task utilisation multiplied
by the task period.

We generated 20 random task sets considering 2,
4, 8, 16, 24, 32, 40 and 48 processors. Than we ran
each task set for 10 seconds using a synthetic bench-
mark (that lets each task execute for its WCET every
period). We varied the number of active CPUs using
Linux CPU hotplug feature. We collected scheduler
statistics through sched debug as to maintain mea-
suring overhead at a minimum value.

6.3 Results

In Figures 8 and 9 we show the number of clock cycles
required by a push operation in average, depending
on the number of active cores. In Figure 8, we consid-
ered an average load per processor equal to U = 0.6,
while in Figure 9 the load was increased to U = 0.8.
We measured the 95% confidence interval of each av-
erage point, and it is always very low (in the order of
a few tens of cycles), so we did not report it in the
graphs for clarity.

From the graphs it is clear that the overhead of the
original implementation of SCHED DEADLINE increases
linearly with the number of processors, as expected,
both for light load and for heavier load.

2More information is available at: http://retis.sssup.

it/waters2010/tools.php.

●

●

●

●

●

●

●

●

number of CPUs

cy
cl

es

● original
heap
fmask
SCHED_FIFO

2 4 8 16 24 32 40 48

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0

push cycles mean with
3 tasks per CPU, U = 0.6

Figure 8: Number of push cycles for average loads of
0.6.

In fmask, we added the check for idle processors.
Surprisingly, this simple modification substantially
decreases the overhead for both types of loads, and it
becomes almost constant in the number of processors.
For light load, fmask is actually the one with lowest
average number of cycles; this confirms our observa-
tion that for light loads the probability of finding an
idle processor is high. For heavier loads, the prob-
ability of finding an idle processor decreases, so the
SCHED FIFO and the heap implementations are now
the ones with lowest average overhead. Notice also
that the latter two show very similar performance.
This means that the overhead of implementing global
EDF is comparable (and sometimes even lower) than
implementing global Fixed Priority.

To gain a better understanding of these perfor-
mance figures, it is also useful to analyse the overhead
of two basic operations, enqueue and dequeue. Please
remind that push and pull operations must perform
at least one dequeue and one enqueue to migrate a
task.

The number of cycles for enqueue operations for
the four implementations is shown in Figure 10 for
light load, and in Figure 11 for higher loads. The
implementation with the lower enqueue overhead is

13

●

●

●

●

●

●

●

●

number of CPUs

cy
cl

es

● original
heap
fmask
SCHED_FIFO

2 4 8 16 24 32 40 48

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0

push cycles mean with
3 tasks per CPU, U = 0.8

Figure 9: Number of push cycles for average loads of
0.8.

original, because it is the one that requires the
least locking and contention on shared data struc-
tures: it only requires to lock the runqueue of the
CPU where the task is being moved to. fmask has
a slightly higher overhead, as it also require to up-
date the idle CPU mask with an atomic operation.
Heap and SCHED FIFO require the higher overhead as
they must lock and update also global data struc-
tures (heap in the first case and priority mask in
the second case). Updating the heap takes less time
probably because it is a small data structure guarded
by one single coarse-grain lock, whereas the prioriy
mask is a complex and larger data structure with fine-
grained locks. Dequeue operations have very similar
performance figures and are not shown here for lack
of space.

Pull operations do not take advantage of any ded-
icated data structure. In all four schedulers, the pull
operation always looks at all runqueues in sequence to
find the tasks that are eligible for migration. There-
fore, the execution cycles are very similar to each
other. As a future work, we plan to optimize pull
operations using dedicated data structures.

● ●
● ●

● ● ● ●

number of CPUs

cy
cl

es

2 4 8 16 24 32 40 48

10
00

20
00

30
00

40
00

50
00 ● original

heap
fmask
SCHED_FIFO

enqueue cycles mean with
3 tasks per CPU, U = 0.6

Figure 10: Number of enqueue cycles for average
loads of 0.6.

7 Conclusions and future work

In this paper we presented an efficient implemen-
tation of global EDF seamless integrated with the
Linux scheduler. We also compared our implementa-
tion with the SCHED FIFO Linux scheduler and with
our previous implementation of SCHED DEADLINE.
Our implementation is scalable, and its performance
is very close to the one of SCHED FIFO.

Is there space for improvements? We believe that
it is possible to work along two different directions.
First, our work was directed toward improving push
operations only. However, migrations may happen
also through pull operations. By using appropriate
data structures for pulling out tasks from queues, we
could speed up also this phase.

Second, locking is a costly operation in modern
multi-core processors, as it is evident from Figures
10 and 11. We will acquire data on time wasted
in spinlocks and then investigate the use of lock-free
techniques for protecting access to the heap, hoping
for reducing the number of cycles required by an en-
queue/dequeue.

14

●
● ● ●

● ● ● ●

number of CPUs

cy
cl

es

2 4 8 16 24 32 40 48

10
00

20
00

30
00

40
00

50
00 ● original

heap
fmask
SCHED_FIFO

enqueue cycles mean with
3 tasks per CPU, U = 0.8

Figure 11: Number of enqueue cycles for average
loads of 0.8.

References

[1] B. Andersson and J. Jonsson. Preemptive multi-
processor scheduling anomalies. In Proceedings of
the 16th International Symposium on Parallel and
Distributed Processing, pages 12–, Washington, DC,
USA, 2002. IEEE Computer Society.

[2] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A.
Varvel. Proportionate progress: a notion of fairness
in resource allocation. In Proceedings of the twenty-
fifth annual ACM symposium on Theory of comput-
ing, STOC ’93, pages 345–354, New York, NY, USA,
1993. ACM.

[3] B. B. Brandenburg and J. Anderson. On the imple-
mentation of global real-time schedulers. In Proc.
of the 30th IEEE Real-Time Systems Symposium
(RTSS 2009), Washington D.C., USA, December
2009.

[4] B. B. Brandenburg, J. Calandrino, and J. Anderson.
On the scalability of real-time scheduling algorithms
on multicore platforms: A case study. In Proc. of the
29th IEEE Real-Time Systems Symposium (RTSS
2008), Barcelona, Spain, December 2008.

[5] J. Calandrino, H. Leontyev, A. Block, U. Devi, , and
J. Anderson. LITMUSRT : A testbed for empirically
comparing real-time multiprocessor schedulers. In

Proc. of the 27th IEEE Real-Time Systems Sympo-
sium (RTSS 2006), Rio de Janeiro, Brazil, December
2006.

[6] John M. Calandrino, James H. Anderson, and Dan P.
Baumberger. A hybrid real-time scheduling ap-
proach for large-scale multicore platforms. In Pro-
ceedings of the 19th Euromicro Conference on Real-
Time Systems, pages 247–258, Washington, DC,
USA, 2007. IEEE Computer Society.

[7] Paul Emberson, Roger Stafford, and Robert I.
Davis. Techniques for the synthesis of multiproces-
sor tasksets. In Proceedings of the 1st International
Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS 2010),
Brussels, Belgium, July 2010.

[8] Dario Faggioli, Fabio Checconi, Michael Trimarchi,
and Claudio Scordino. An EDF scheduling class for
the Linux kernel. In Proceedings of the Eleventh Real-
Time Linux Workshop, Dresden, Germany, Septem-
ber 2009.

[9] IEEE. Information Technology - Portable Operat-
ing System Interface - Part 1: System Application
Program Interface Amendment: Additional Realtime
Extensions. 2004.

[10] Pramote Kuacharoen, Mohamed A. Shalan, and Vin-
cent J. Mooney III. A configurable hardware sched-
uler for real-time systems. In in Proceedings of
the International Conference on Engineering of Re-
configurable Systems and Algorithms, pages 96–101.
CSREA Press, 2003.

[11] Sylvain Lauzac, Rami Melhem, and Daniel Mossé.
An improved rate-monotonic admission control and
its applications. IEEE Trans. Comput., 52:337–350,
March 2003.

[12] Jörg Liebeherr, Almut Burchard, Yingfeng Oh, and
Sang H. Son. New strategies for assigning real-time
tasks to multiprocessor systems. IEEE Trans. Com-
put., 44:1429–1442, December 1995.

[13] Ernst von Weizsaecker, Karlson Hargroves, Michael
Smith, Cheryl Desha, and Peter Stasinopoulos. Fac-
tor Five – Transforming the Global Economy through
80% Improvements in Resource Productivity. Earth-
scan, November 2009.

15

A Comparison of Pragmatic Multi-Core Adaptations of the AUTOSAR System

Niko Böhm, Daniel Lohmann, Wolfgang Schröder-Preikschat
Department of Computer Science 4

FAU Erlangen-Nuremberg
Erlangen, Germany

{boehm,lohmann,wosch}@cs.fau.de

Abstract—AUTOSAR is the dominating system standard
in the automotive domain. Founded in 2003, the AUTOSAR
partnership, however, only specifies a single processor system.
Multi-core support has recently been added as an extension to
“legacy” AUTOSAR by forcing most of the code base to run on
a single core. The performance of this approach is disillusioning
at best, with the single-core system outperforming the multi-
core system in a full-load scenario.

We propose a classic alternative: protect the legacy code
base with a single lock. Our measurements show that even
this coarse approach performs significantly better than the
AUTOSAR approach. Additionally, the future prospects of get-
ting more sophisticated multi-core support for the AUTOSAR
system are presented.

I. INTRODUCTION

Today, multi-core processors are common in the desktop
area and are moving on to other areas such as embed-
ded computing. Automotive OEMs have recently become
interested in multi-core processors for use in automotive
Electronic Control Units (or ECUs for short). The main
motivations in the automotive domain are Functional Safety
and Performance.

Functional safety, as specified by industry standards such
as ISO 26262, requires (or at least strongly recommends)
redundancy of critical system components. An easy way to
achieve this is the application of a multi-core processor in
the so-called lock-step mode: In this mode, the system is a
single processor from the outside view, so it can be operated
with existing software.

Performance is desired for a couple of reasons. The first
one is to run more applications on an ECU. There are
also applications – especially in the power train and engine
control areas – that get more and more complex in order
to improve gas mileage and to comply with increasingly
restrictive emission standards. Another trend is to reduce
the total number of ECUs built into a single car. Without
reduction of features, this is only possible with ECUs that
provide enough processing power to run the additional
applications. In a simple example this would mean that two
previously separated single-core ECUs may be combined to
a single ECU powered by a dual-core processor.

Another recent development in the automotive industry is
AUTOSAR (short for Automotive Open System Architecture

[3]). AUTOSAR is an international partnership of automo-
tive OEMs and suppliers. The main purpose of AUTOSAR is
the specification of a modern system software for automotive
ECUs. The term AUTOSAR is commonly used to refer to
the organization as well as the standard they produce. It
is important to notice that AUTOSAR added support for
multi-core ECUs only in December 2009 with release 4.0
of the AUTOSAR system specification. Consequently, all
AUTOSAR systems prior to this date and – due to the length
of the development cycles in the automotive industry – every
AUTOSAR system on the streets is a single-core system.
The challenge the automotive software developers are now
facing is the adaption of their legacy AUTOSAR systems
(prior to 4.0) to multi-core processors.

The remainder of this paper is structured as follows:
Section II gives an overview of the AUTOSAR system, the
central object of our studies. We evaluate the AUTOSAR
multi-core system in Section III and propose our alternative
in Section IV. In Section V we compare our approach to
AUTOSAR. The results are discussed in Section VI. Our
plans for future work are presented in Section VII. Finally,
we conclude this paper with a summary in Section VIII.

II. THE AUTOSAR SYSTEM

The main concept and – considering the automotive
domain – also main novelty of AUTOSAR is a middleware-
like communication concept. The application is split up into
so-called Software Components (SW-Cs). Each of those SW-
Cs specifies its input and output ports and is only allowed to
communicate through these ports, thus conceptually making
the SW-C independent of the ECU. All services used by the
SW-Cs are provided by the AUTOSAR Run-Time Environ-
ment or RTE for short. The RTE is specifically generated
for every ECU depending on the SW-Cs present. The RTE
itself uses the AUTOSAR Operating System (OS) and Basic
Software (BSW). Figure 1(a) depicts this architecture [1].

The BSW provides a standardized, highly-configurable set
of services, such as communication over various physical
interfaces, NVRAM1 access, management of run-time er-
rors, amongst others. The BSW forms the biggest part of
the standardized AUTOSAR environment. It is organized

1Non-Volatile RAM

16

Figure 1. The AUTOSAR System Architecture

in more than forty individual modules – which may be
combined from different vendors – and its size is some ten
thousand lines of code.

The AUTOSAR OS is an event-triggered real-time oper-
ating system, that schedules the tasks and interrupt service
routines (ISRs) of the system. Tasks are strictly priority
scheduled, though there is a mechanism called Schedule
Tables that can activate tasks at pre-defined time offsets. The
OS furthermore provides a deadlock-free synchronization
mechanism called Resources, based on the Stack-Based
Priority Ceiling Protocol [4].

The AUTOSAR system targets relatively small 16- and
32-bit microcontrollers. In this domain, systems with 128
KiB RAM and less are quite common. There is no dynamic
memory allocation used: the whole system is statically
configured. Since the memory usage is derived directly
from the configuration during compilation, the system is
guaranteed not to require more memory than available at
run time. The system and all the user applications are
compiled and linked into a single binary and the static
configuration is fixed in the binary2. As an example, the
number of tasks, along with their priorities and – in the
multi-core system – core-bindings cannot be changed at run
time. Other fixed parameters include NVRAM use, as well
as all communication partners of the ECU.

As mentioned above, AUTOSAR was devised as a single-
core system. Multi-core support has been added recently and
to our knowledge there is currently no software vendor that
already has a multi-core implementation which is considered
stable for production use. The reasons for this are quite
simple: Due to its single-core roots, the less-than-five-years-
old system already has to be considered legacy software
and its integration into a multi-core system is a nontrivial
task. AUTOSAR has foreseen this problems and devised a
pragmatic solution in the standardization document of its
multi-core approach.

2There is the possibility to have multiple configuration sets linked into
the binary and select one of them during start-up.

A. The AUTOSAR Approach to Multi-Cores

In AUTOSAR 4.0, multi-core support for the system is
still optional. As a consequence the multi-core architecture
is described in a document of its own [2]. This document
mainly describes the multi-core extensions to the operating
system and gives a few hints to the overall architecture
(depicted in Figure 1(b)). The key point of this architecture
is to have a minimal changes to the single-core system. This
is achieved by declaring the BSW safe for single-core use
only, and force the system to schedule all3 activations of
the BSW always on the same core, called the BSW core.
The sheer size of the BSW is a significant factor in this
decision. A consequent re-factoring of the BSW would be
an enormous effort that is hardly acceptable for an optional
development feature. Since SW-Cs are independent of the
ECU, they are also independent of the core in a multi-
core system. Hence the application does not require special
adaption.

B. The Problem

This architecture has a problem: Every access to the BSW
from a non-BSW core requires a cross-core communication
within the RTE. Such a cross-core communication is expen-
sive: the current task of the BSW-core is interrupted by an
inter-processor-interrupt which activates a task on the BSW
core to perform the cross-core operation. This consumes
execution time on the BSW core. At the same time the
issuing non-BSW core may be idle, if the desired call is
synchronous. This is in fact the common case since most
BSW-calls in AUTOSAR return at least a status value. By
comparison with similar system designs used in the past,
we strongly assume that the BSW core will turn out to be
a bottleneck.

3with exception of the ECU State Manager, which has to perform system
start-up on all cores

17

III. EVALUATING THE AUTOSAR
MULTI-CORE SYSTEM

In order to prove this hypothesis, we performed measure-
ments running a real multi-core AUTOSAR system on an
automotive dual-core microcontroller.

A. Evaluation Setup

For evaluation purposes, we had access to an industrial
AUTOSAR-solution containing RTE, OS and most of the
BSW. Evaluation took place on an SPC56EL microcon-
troller, which contains two PowerPC e200z4 cores, 128
KiB shared RAM and 1 MiB flash memory. Our target
was clocked at 80MHz. Timing measurements were always
started and stopped on the same core, so the time base of the
CPU core was used. The time base is a free-running timer
which is incremented every clock cycle. It is 64 bits wide
and set to zero on system start-up, so it is guaranteed not to
overflow during our measurements.

B. Evaluation Scenario

Our evaluation scenario used an AUTOSAR-system with
two identical SW-Cs, named SWC1 and SWC2. SWC1 is
always bound to the first core, whereas SWC2 is bound
to the second core when the multiple cores are used. Each
SW-C is triggered by an external message. It then reads the
received signal from the BSW, and uses the value as input
for a simple busy loop simulating a workload. Afterwards
it sends the result back to an external receiver; this is the
second BSW invocation.

The external messages are simulated CAN-messages. In-
stead of using a real CAN-bus, we replaced the CAN-
driver with a small stub of our own. This stub can simulate
the reception of a message to the BSW and it is called
by the BSW when a CAN message shall be transmitted.
Besides those two SW-Cs, the system contains a high-
priority periodic task, which is required by a BSW module.
This task is activated every ten milliseconds.

C. Measurements Performed

Using this scenario, we performed two types of measure-
ments. First a timing measurement, where we measured the
round-trip time from the simulation of the incoming CAN-
message to the moment our CAN-driver stub is called to
send the reply. We deliberately schedule the tasks with an
adequate amount of idle-time surrounding them. This en-
sures that they neither interfere with each other, nor with any
other system activity that could disturb the measurements.
The times presented in the graphs and tables are mean times
of ca. 1450 runs each. This number was determined by the
amount of RAM available to hold the results. The relative
standard error for all runs has been less than 1 percent.

The second kind of measurement was to measure the
maximal activation rate of each SW-C, that is, how often
can every SW-C be triggered per second when the system

Figure 2. The evaluation scenario

is under full load. To perform this measurement, our CAN
driver stub initially simulates the reception of both CAN
messages. At the moment it is called to send a reply, it con-
firms the reply and immediately triggers the next incoming
message again. This full-load situation is bound to lead to
heavy contention on shared resources, which – depending on
the synchronization method used – causes more or less delay.
This delay is main motivation for this kind of measurement,
because it causes the rates to (sometime severely) deviate
from the optimal (timing measurement)−1. The generated
figures are intended to tell us how good a synchronization
approach works under worst-case conditions. The numbers
presented in the graphs and tables are the mean activation
rates in Hz, calculated from 10 runs of 15 seconds length
each. The measurement was split into multiple runs to give
more weight to the startup-phase, the 150 seconds total were
chosen to get relative standard error below 1 percent in most
of the cases4

Both kinds of measurement were repeated for different
values for the number of loop cycles in the simulated
workload.

D. Performance Comparison of Single- and Multi-Core AU-
TOSAR

Table I shows the timing measurement results without
simulated workload, so nearly all the time measured is spent
in the OS, RTE and BSW. The single-core times are nearly
identical. There is a slight difference because though they
are identical in implementation, they use different resources
(such as OS tasks, RTE signals, etc.) at runtime. Access to
those resources cannot always be performed in O(1), hence
the difference in run time.

Looking at the multi-core figures, we notice that already
SWC1 shows some overhead, despite having the same con-

4It is less than 5% for all test runs

18

SWC1 SWC2
single-core 79.59 80.28
multi-core 87.26 191.62

overhead 10% 139%

Table I
AVERAGE ROUND TRIP TIME IN µS WITHOUT SIMULATED WORKLOAD

(AUTOSAR MULTI-CORE)

SWC1 SWC2 sum
single-core 3840 3840 7680
multi-core 0 5367 5367

multi-core gain −30%

Table II
AVERAGE NUMBER OF ACTIVATIONS PER SECOND WITHOUT

SIMULATED WORKLOAD (AUTOSAR MULTI-CORE)

trol flow as the single-core variant. This overhead is really
an optimization of the OS, when used in single-core mode:
Most of the OS’s internal state – most notably the ready
queue – is replicated per core. So whenever the OS needs
to access such a variable, it has to determine on which core
it has been invoked to identify the correct set of variables to
operate on. If the OS is compiled for single-core use, then
these core-lookups are optimized away.

Accesses to SWC2 – located on the second core – show
a really huge overhead. Since the code of the SW-C itself
is identical to SWC1 this overhead of an additional 104
µs shows the cross-core penalty of the AUTOSAR system
approach. This penalty is a constant sum of the two cross-
core BSW accesses of the SW-C (read signal and write
signal) and the overhead in the OS for cross-core task
activation and task unblocking.

The results of the activation rate measurements are shown
in Table II. On the single-core OS, the number of activations
for both SWCs is identical. This has been expected, since
we configured the related tasks to equal priorities and as a
consequence they are scheduled in FIFO order. We were,
however, surprised when we saw the results for the multi-
core system. Despite having twice the computation power
at hand, there were actually fewer activations processed
in the overall system. Even more interesting: all of those
activations were counted on the second core. This is caused
by the method used for cross-core BSW accesses. There
is a proxy task on the first core to carry out the BSW
accesses for the SW-Cs from the second core. This task
had a higher priority than the task running SWC1. In our
scenario without simulated workload, both SW-Cs nearly
only do BSW-accesses. It turns out that in this scenario the
first core never gets to execute the task running SWC1. We
did some experiments with the relevant tasks set to equal
priority. These are described in more detail in Section VI.

IV. AN ALTERNATIVE SOLUTION

As our analysis has shown, the biggest and crucial part
of the overhead is caused by dispatching BSW requests to
the BSW core. The question is now: why can the BSW
not be executed on every core? The answer lies in the fact
that the BSW was specified and developed for single-core
systems. So all synchronization measures it contains were
designed only to protect against preemption. Critical sections
(called exclusive areas in AUTOSAR) are synchronized in
a non-preemptive semantic using the services of a dedicated
module, the BSW Scheduler (abbreviated SchM). The config-
uration of this module can assign different synchronization
methods to each exclusive area. These are most notably:
AUTOSAR Resources, Interrupt Locking, and no protection
at all. The latter one makes sense if an analysis of the system
configuration concludes that there will be no contention
on this specific exclusive area. The other synchronization
methods are only applicable if the software runs on a single
core.

We propose another pragmatic solution: Instead of execut-
ing the BSW on a single core, we allow it to run on any core,
but assure that it executes only on a single core at a time, so
all single-core synchronization mechanisms are still valid.
This can be achieved with a simple locking mechanism.
Every time when some thread of execution wants to access
the BSW it acquires a lock first and releases it afterwards.
This technique is not new. It has effectively been used
for decades when adapting legacy operating systems to
multiprocessing environments. A well-known example for
this is the “Big Kernel Lock” in Linux (prior to Linux 2.4)
[5]. Though the BSW is not part of the operating system
in AUTOSAR, this comparison is still applicable, because
in AUTOSAR the RTE is the interface to the application,
not the OS. So everything below the RTE resembles what a
“kernel” is in traditional monolithic systems. Consequently,
we call our synchronization mechanism the Big BSW Lock
(BBL), following the Linux naming.

A. Implementing the Big BSW Lock

We implemented the BBL as a simple spin-lock which
needs to be taken whenever the BSW is entered. Most entries
to the BSW are in the generated RTE methods. So the RTE
generator needs to generate the additional code to acquire
and release the lock surrounding the BSW calls. The next
entry point we identified were cyclic BSW tasks, generated
by the SchM. Since those tasks are also generated, again
only an adaption of the according generator is necessary.
The last entry point are interrupt service routines from
the hardware drivers. These need to be adapted manually
when they access shared data or functions from the BSW.
An alternative method would be the introduction of ISR
wrappers which acquire the lock and then call the original
ISR. This would, however, create additional overhead.

19

SWC 1 SWC2
single-core 79.59 80.28
multi-core (BBL) 106.25 107.66

overhead 33% 34%

Table III
AVERAGE ROUND TRIP TIME IN µS WITHOUT SIMULATED WORKLOAD

(BIG BSW LOCK)

SWC1 SWC2 sum
single-core 3840 3840 7680
multi-core (BBL) 3928 4003 7931

multi-core gain 3.3%

Table IV
AVERAGE NUMBER OF ACTIVATIONS PER SECOND WITHOUT

SIMULATED WORKLOAD (BIG BSW LOCK)

B. Performance of the Big BSW Lock

We implemented the BSW Lock in the same measurement
environment as described in Section III. Since we had
no access to the generator sources, we manually adapted
the code after generation. Table III shows the results of
the timing measurements in comparison to the single-core
OS. The time for SWC1 is in fact even higher than it is
with AUTOSAR Multicore. The additional overhead can be
explained with the lock handling. On the other hand, we
see that the run time of SWC2 is nearly identical to that
of SWC1. This is caused by it running completely on the
second core, with no cross-core overhead occurring. This is
a big improvement over the AUTOSAR approach.

We performed the activation rate measurements next and
were finally able to see an improvement over the single-
core case (see Table IV). The gain is not really significant,
but this comes not as a surprise, since these measurements
were also performed without simulated workload. Most of
the time is spent in the BSW, so that the lock is nearly
permanently owned by one of the processors. The first core
can perform a little less activations, because the cyclic BSW
task is scheduled to run on this core.

V. COMPARISON OF SINGLE-CORE,
MULTI-CORE AND BIG-BSW-LOCK

AUTOSAR

Following the overhead measurements we slowly in-
creased the simulated work load. Figure 3 shows the absolute
time in dependence of the number of loop cycles. The times
shown are mean times of SWC1 and SWC2. The time
measurements showed a linear increase with the number of
loop cycles, which meets our expectations.

The activation rate measurements are more interesting.
Figure 4 shows the activation rates of the three system
designs. Each line in the graph represents the sum of the
activations of both SWC1 and SWC2. We see that in general
the rates drop as the workload increases. The exception is at

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 0 50 100 150 200

Ti
m

e
[u

s]

Loop Cycles

Round-trip time measurements (All)

BBL (mean)
MC (mean)
SC (mean)

Figure 3. Timing measurements with simulated workload

the beginning of the BBL-line. Here we see that the rates are
even raising a bit and then stay nearly constant for a certain
amount of workload. This means that the system shows
higher performance as contention on the lock decreases.
The AUTOSAR multi-core system lies significantly below
the single-core system, but the downward slope is less
pronounced, so we can expect that the lines cross eventually.

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 0 50 100 150 200

Ac
tiv

at
io

n
ra

te
 [H

z]

Loop Cycles

Activation rate measurements (All)

BBL (sum)
MC (sum)
SC (sum)

Figure 4. Activation rate measurements with simulated workload

From the activation rates measured, we derived what we
call the multicore gain, defined as the surplus of activations
that is gained by using a second core. The resulting graph
is shown in Figure 5. From this graph it is easier to point
out that the multicore-gain is increasing when the workload
is higher, because contention on the BSW decreases.

VI. DISCUSSION

Our figures back up our assumption that the AUTOSAR
multi-core system performs badly in a full-load scenario. De-
spite having twice the CPU resources, our system performed
even worse than the single-core system with the same work-
load. Our timing measurements have also shown significant
cross-core overhead in a concurrency-free scenario, which
applies to every application running on a non-BSW core.

20

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 50 100 150 200

M
ul

tic
or

e
ga

in
 [%

]

Loop Cycles

Activation rate multi-core gain (All)

BBL
MC

Figure 5. Multi-Core performance gain with simulated workload

A full-load scenario as used for our activation rate mea-
surements is admittedly not likely to occur in real-world
applications where periodic processing dominates. Since we
had no access to real-world automotive applications, we
were not able to perform an evaluation on a more realistic
scenario. We consider our scenario being the worst-case for
this kind of system. We can therefore conclude that multi-
core AUTOSAR primarily makes sense for long-running,
calculation-intensive applications that have limited cross-
core communication.

We have furthermore shown, that a global BSW lock pro-
vides a simple and relatively inexpensive modification to the
system, which drastically improves the system performance.
The key behind this is reducing the number of cross-core
accesses.

So the question is, why did AUTOSAR itself not consider
some kind of BSW lock? We need to point out here, that
AUTOSAR does not forbid this. Implementers are free to
adapt the BSW to multi-core environments by any means
they find appropriate. On the other hand, the big BSW lock
we have implemented does not come without disadvantages.
The locking of the BSW on one core creates possibly big
latencies on another core that wants to use the BSW. Such
latencies should be avoided in real-time systems, because
they are hard to estimate, yet they need to be taken into
account during the static timing analysis of the system. If
those latencies are considered, they can significantly reduce
the possible utilization of the system. This is reflected in
our figures, where we see that the performance of the
BBL on the dual-core system – though significantly better
than the AUTOSAR approach – is far from being twice
the performance of the single-core system. Additionally,
we have to consider that the potential of the AUTOSAR
approach may not yet be fully exploited in the available
implementation.

Proxy Task Priority

In reaction to the somewhat strange results of the activa-
tion rate measurements with the AUTOSAR approach, we
also analyzed the effect of the proxy task priority on the
system performance. Since SWC1 and SWC2 are identically
configured, the tasks which execute them have the same
priority. This leads to the observed FIFO-scheduling when
both tasks execute on the same core. When using the
AUTOSAR-approach SWC2 (running on the second core)
is supported by a proxy task running on the BSW core.
The priority of the proxy task may be chosen either equal
or higher than the priority of the tasks running the SW-Cs.
Depending on this choice, different blocking occurs when
SWC2 issues a BSW call while SWC1 is running:

• Equal priority The SWC2 proxy task and the SWC1
task are scheduled in FIFO order. The proxy task needs
to wait until the SWC1 task finishes executing. This
waiting time adds to the blocking time of SWC2. The
duration of the waiting time is variable depending on
the remaining time SWC1 is running.

• Higher priority When the proxy task gets activated,
SWC1 gets preemption-blocked. The blocking time
spans the runtime of the proxy task, that is the exe-
cution of the BSW call issued by SWC2. The blocking
duration can assumed to be nearly constant for identical
BSW calls.

Figure 6 shows the results of the activation rate mea-
surements for both options. For higher values of simu-
lated workload the higher priority proxy task shows better
performance, due to the advantage of the near-constant
blocking time. Since our overall measurements show that the
AUTOSAR approach is best suited for long running SW-Cs,
we chose this approach for the presented measurements.
Please note that the absolute numbers of these measurements
differ from those presented in Section III-D, because they
were performed using a slightly different system software
revision5.

VII. ONGOING RESEARCH

We plan to evaluate more alternative approaches to design
an AUTOSAR multi-core system. In contrary to AUTOSAR,
we do not restrict ourselves to solutions that leave the BSW
unchanged. We know that every adaption in the BSW is a
significant cost-factor for automotive software-vendors, but
our goal is to provide a cost-benefit analysis of different
system designs that may be an improvement to

Our next step is to introduce Fine-Grained Locks as a
synchronization mechanism in the BSW to allow (mostly)
concurrent execution. Since it is very time-consuming to
apply this to the whole AUTOSAR BSW, we chose to
apply this to a single BSW-module only. The other modules

5most notably a different cache configuration

21

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 0 500 1000 1500 2000

Ac
tiv

at
io

n
ra

te
 [H

z]

Loop Cycles

Activation rate measurements (MC variants)

equal priority
higher priority

Figure 6. AUTOSAR Multi-Core performance for different priorities of
the BSW proxy task

will not be adapted, but replaced by a minimalistic re-
implementation that provides only the features required for
our evaluation scenario. We have already implemented these
mini-modules and a first step of the fine-grained locks. The
results look promising, but some need additional analysis
before they can be published.

A. Future work

After finishing the evaluation of the fine-grained lock
synchronization, we will move on to evaluate the following
alternatives:

1) Non-Blocking Synchronization. This approach syn-
chronizes shared memory structures using non-
blocking mechanisms. Especially wait-free algorithms
as defined by Herlihy [6] would ease the real-time
analysis of the resulting system. All non-blocking
algorithms are not trivial in their application and most
of them depend on special atomic instructions such
as compare-and-swap in the underlying hardware’s
instruction set. This dependence on certain assem-
bler instructions make non-blocking synchronization
mechanisms difficult to port across different platforms

2) Partitioning. A completely different approach is to
run a single-core AUTOSAR system on every core
and partition the MCU’s resources like RAM, ROM,
peripherals, etc. so that those systems are independent
of each other. This promises some advantages: nothing
of the AUTOSAR-system needs to be specifically
adapted to multi-core environments, and all real-time
analysis that can be performed on single-core systems
still apply. A foreseeable drawback is of course the
multiplication of the system footprint (this is why AU-
TOSAR dropped this approach) and more expensive
cross-core communication (because it needs to use an
external bus).

In addition we will analyze the real-time properties of
all approaches and perform more measurements with still

increased simulated workload to determine the point at
which the AUTOSAR multi-core system will be profitable in
a way that it provides significantly more performance than
the single-core system.

VIII. SUMMARY

In this paper we presented the AUTOSAR multi-core sys-
tem and set up a simple evaluation scenario on a dual-core
processor to measure its performance against the single-core
system. Plain run-time measurements showed a significant
overhead for software components running on the second
core. To our surprise, a full-load scenario showed that the
dual-core system provides even less throughput in total than
the single-core system. We analyzed this and found that
most of the overhead occurs on the first core, whereas the
second core idles most of the time. We proposed a pragmatic
alternative of a “Big Kernel Lock” to distribute the load
better between the two processors. Our measurements prove
that this is significantly more efficient than the AUTOSAR
approach. Our next step is to implement and evaluate more
sophisticated alternatives that promise even more efficiency.
Since the work effort to implement such an alternative is
an important factor for the automotive software industry, we
will combine these performance evaluations with an effort
evaluation to create a cost-benefit analysis.

IX. AVAILABILITY

The source code of the applications
used for the measurements is available at
http://www4.cs.fau.de/˜boehm/Research/
OSPERT11_Eval_Application.tar.bz2

The AUTOSAR system used is a commercial product and
is not freely available.

REFERENCES

[1] AUTOSAR. Layered Software Architecture (Version 2.2.2).
Technical report, Automotive Open System Architecture GbR,
August 2008.

[2] AUTOSAR. Specification of Multi-Core OS Architecture
(Version 1.0.0). Technical report, Automotive Open System
Architecture GbR, November 2009.

[3] AUTOSAR homepage. http://www.autosar.org/, visited 2009-
03-26.

[4] Theodore P. Baker. A Stack-Based Resource Allocation Policy
for Realtime Processes. In Proceedings of the 12th Interna-
tional Conference on Real-Time Systems (RTSS ’91), pages
191–200. IEEE Computer Society Press, 1991.

[5] Daniel P. Bovet and Marco Cesati. Understanding the Linux
Kernel. O’Reilly, 2001.

[6] Maurice Herlihy. Wait-Free Synchronization. ACM Transac-
tions on Programming Languages and Systems, 11:124–149,
1991.

22

Operating Systems Challenges for GPU Resource Management∗

Shinpei Kato and Scott Brandt
University of California, Santa Cruz

Yutaka Ishikawa
University of Tokyo

Ragunathan (Raj) Rajkumar
Carnegie Mellon University

Abstract

The graphics processing unit (GPU) is becoming a very
powerful platform to accelerate graphics and data-parallel
compute-intensive applications. It significantly outperforms
traditional multi-core processors in performance and energy
efficiency. Its application domains also range widely from
embedded systems to high-performance computing systems.
However, operating systems support is not adequate, lacking
models, designs, and implementation efforts of GPU resource
management for multi-tasking environments.

This paper identifies a GPU resource management model
to provide a basis for operating systems research using GPU
technology. In particular, we present design concepts for GPU
resource management. A list of operating systems challenges
is also provided to highlight future directions of this research
domain, including specific ideas of GPU scheduling for real-
time systems. Our preliminary evaluation demonstrates that
the performance of open-source software is competitive with
that of proprietary software, and hence operating systems re-
search can start investigating GPU resource management.

1 Introduction

Performance and energy are major concerns for today’s
computer systems. In the early 2000s, chip manufacturers
had competed on processor clock rate to continue performance
improvements in their product lines. For instance, the Intel
Pentium 4 processor was the first commercial product that ex-
ceeded a clock rate of 3 GHz in 2002. This performance race
on clock rate, however, came to end due to power and heat
problems that prevent the chip design from increasing clock
rate in classical single-core technology. Since the late 2000s,
performance improvements have continued to come through
innovations in multi-core technology, rather than clock-rate in-
creases. This paradigm shift was a breakthrough to achieve
high-performance with low-energy. Today, we are getting
into the “many-core” era, in order to meet the further perfor-
mance requirements of emerging data-parallel and compute-
intensive applications. Not only high-performance computing
(HPC) applications but also embedded applications, such as
autonomous vehicles [39, 41] and robots [26], benefit from
the power of many-core processors to process a large amount
of data obtained from their operating environments.

∗This work is supported by the fund of Research Fellowships ofthe Japan
Society for the Promotion of Science for Young Scientists.

7900 GTX

8800 GTX

9800 GTX

GTX 280

GTX 285

GTX 480

GTX 580

E4300 E6850
Q9650

X7460
980 XE

0

200

400

600

800

1000

1200

1400

1600

2006/3/4 2007/12/14 2009/9/24 2011/7/6

G
F

L
O

P
S

NVIDIA GPU

Intel CPU

7900 GTX

8800 GTX

9800 GT

GTX 280

GTX 285
GTX 480

GTX 580

E4300 E6850

Q9650

X7460
980XE

0

1

2

3

4

5

6

7

2006/3/4 2007/12/14 2009/9/24 2011/7/6

G
F

L
O

P
S

 /
 W

a
�

NVIDIA GPU

Intel CPU

Figure 1. Performance trends on the well-known
GPU and CPU architectures.

The graphics processing unit (GPU) has become one of the
most powerful platforms embracing the concept of many-core
processors. Figure 1 illustrates recent performance trends on
the well-known GPU and CPU architectures from NVIDIA
and Intel. The single-chip peak performance of the state-
of-the-art GPU architecture exceeds 1500 GFLOPS, whereas
that of a traditional microprocessor is around 100 GFLOPS
at best. This non-trivial performance advantage of the GPU
comes from hundreds of processing cores integrated on a chip.
The GPU is also more preferable than the CPU in performance
per watt. Specifically, the GPU is about 7 times more energy-
efficient than the CPU today.

A recent announcement from the TOP500 supercomputing
sites disclosed [40] that three of the top five supercomputers
comprise GPU clusters, and significant performance improve-
ments are provided by such GPU clusters for scientific appli-
cations [38]. Large-scale storage systems also benefit fromthe
GPU [1, 9, 19]. In fact, the Amazon EC2 cloud computing ser-

23

vice leverages GPU clusters to build their data centers. In the
embedded systems domain, a new version of Carnegie Mel-
lon’s autonomous vehicle [41] equips four NVIDIA’s GPUs to
enhance its computing power required for autonomous driving
tasks, including vision-based perception and motion planning.
A case study from Stanford [39] revealed that the GPU can
speed up computer vision applications for autonomous driv-
ing by 40 times compared to CPU execution. Such a rapid
growth of general-purpose computing on GPUs, also known
asGPGPU, is supported by recent advances in programming
technology enabling the GPU to be used easily for general
“compute” problems.

Despite the success of GPU technology, operating systems
support in commodity software [6, 28, 33] is very limited for
GPU resource management. Multi-tasking concepts, such as
fairness, prioritization, and isolation, are not supported at all.
The research community has developed several approaches to
GPU resource management recently. In particular, notable
contributions include TimeGraph [17] providing capabilities
of prioritization and isolation, and GERM [2] with fairness
support, for multi-tasking GPU applications. Despite the very
limited information of GPU hardware details available to the
public, these studies made efforts to develop GPU resource
management primitives at the device-driver level. However,
their functionality is limited to specific workloads. Thereare
also other research projects on GPU resource management
provided on the layers above the device driver, including CPU
schedulers [8], virtual machine monitors [7, 11, 12, 20], and
user-space programs [3, 10, 36], but their basic performance
and capabilities are limited to underlying commodity software.
We believe that operating systems research must explore and
address GPU resource management problems to enable GPU
technology in multiple application domains.

This paper identifies several directions towards operating
systems challenges for GPU resource management. Currently,
we lack even a fundamental GPU resource management model
that could underlie prospective research efforts. The miss-
ing information of open-source software is particularly a crit-
ical issue to explore systems design and implementation of
GPU resource management. In this paper, we present initial
ideas and potential solutions to these open problems. We also
demonstrate that open-source software is now ready to be used
reliably for research.

The rest of this paper is organized as follows. Assumptions
behind this paper are described in Section 2. Section 3 presents
the state-of-the-art GPU programming model, and Section 4
introduces a basic GPU resource management model for the
operating system. Section 5 provides operating systems chal-
lenges for GPU resource management, including a preliminary
evaluation of existing open-source software. The concluding
remarks of this paper is presented in Section 6.

2 Our System Assumptions

This paper considers heterogeneous systems composed of
multi-core CPUs and GPUs. Several GPU architectures ex-

ist today. While many traditional microprocessors designed
based on the X86 CPU architecture compatible across many
generations over decades, GPU architectures tend to changein
years. NVIDIA has released the Fermi architecture [30] as of
2011, supporting both compute and graphics programs. This
paper focuses on the Fermi architecture, but the concept is also
applicable to other architectures. We also assume anon-board
GPU. Although Intel provides a new X86-based architecture,
called Sandy Bridge [13], which integrates the GPU on a chip,
GPUs on a board are still more popular today. In future work,
however, we will study implications of on-board and on-chip
GPUs from the operating systems point of view.

Given an on-board GPU model, we assume that the CPU
and the GPU operate asynchronously. In other words, CPU
contexts and GPU contexts are separately processed. Once
user programs launch a piece of code onto the GPU to get ac-
celerated, it is offloaded from the CPU. The user programs may
continue to execute on the CPU while this piece of code is pro-
cessed on the GPU, and may even launch another piece of code
onto the GPU before the completion of preceding GPU code.
The GPU queues this launch request, and executes the code
later when it is available.

3 Programming Model

The GPU is a device to accelerate particular program code
rather than a control unit like the CPU. User programs hence
start execution on the CPU, and launch pieces of code, often
referred to asGPU kernels1, onto the GPU to get accelerated.
There areat leastthree major steps for user programs to take
to accelerate on the GPU.

1. Memory Allocation : First of all, user programs must be
allocated memory spaces on the host and device memory
that are required for computation. There are several types
of memory for the GPU:shared, local, global, constant,
andheap.

2. Data Copy: Input data must be copied from the host to
the device memory before the GPU kernel starts on the
GPU. Usually output data is also copied back from the
device to the host memory to return the computed result
to user programs.

3. Kernel Launch: GPU-accelerated program code must be
launched from the CPU to the GPU at runtime, as the
GPU itself is not a control unit.

The memory-allocation phases do not likely access the
GPU, and must manage the device memory address regions
available for each request. The data-copy and kernel-launch
phases, on the other hand, need to access the GPU to move
data between the host and the device memory, and launch GPU
program code. Figure 2 illustrates an example showing a brief
execution flow of GPU-accelerated matrix multiplication, i.e.,
A[] ×B[] = C[]. The GPU kernel image must be loaded on the

1To avoid misunderstandings, a term “kernel” always indicates GPU pro-
gram code and never points to the operating system kernel in this paper.

24

A[]

C[]

B[]

kernel

host memory

device memory

A[]

C[]

B[]

kernel

host memory

device memory

kernel

A[]

C[]

B[]

kernel

host memory

device memory

kernel

A[]

C[]

B[]

A[]

C[]

B[]

kernel

host memory

device memory

kernel

C[]

A[]
B[]

A[]

C[]

B[]

kernel

host memory

device memory

kernel

A[]
B[]

C[]

A[]

C[]

B[]

kernel

host memory

device memory

kernel

A[]
B[]

C[]

CPU

PCI

GPU
data & kernel
prepalation

kernel upload
device memory
allocation

data upload kernel execution data download

Figure 2. Example of an execution flow of matrix multiplicati on A[] × B[] = C[] .

host memory. Two input buffers,A[] and B[], must also hold
valid values for computation, while an output buffer C[] may
be empty. The kernel image is usually uploaded at the begin-
ning. Since the GPU uses the device memory for data access,
the data spaces must be allocated on the device memory. The
input buffers are then copied onto these allocated data spaces
on the device memory via the PCI bus. After the input data are
ready on the device memory, the GPU kernel starts execution.
The output data are usually copied back onto the host memory.
This is a generic flow to accelerate the program on the GPU.

GPU programming requires the device and the host parts.
The device part contains kernels coded by GPU instructions,
while the host part is more like a main thread running on the
CPU to control data copies and kernel launches. The host part
can be written in an existing programming language, such as
C and C++, but must be aligned with an application program-
ming interface (API) defined by the programming framework
to communicate with the device part. The following are well-
known GPU programming frameworks:

• Open Graphics Language (OpenGL)provides a set
of library functions that allow user-space applications to
program GPU shaders and upload it to the GPU to accel-
erate 2-D/3-D graphics processing.

• Open Computing Language (OpenCL)is a C-like pro-
gramming language with library functions support. It can
parallelize programs conceptually on any device, such as
GPUs, Cell BE, and multi-core CPUs.

• Compute Unified Device Architecture (CUDA) is also
a C-like programming language with library functions
support. It can parallelize programs like OpenCL, but is
dedicated to the GPU.

• Hybrid Multicore Parallel Programming (HMPP) is a
compiler pragma extension to parallelize programs con-
ceptually on any device. OpenMP also employs this pro-
gramming style but is dedicated to multi-core CPUs.

Graphics processing is typically more complicated than
general computing. A graphics pipeline comprises dozens of
stages, where vertex data come in from one end of the pipeline,
got processed in each stage, and the rendered frame comes
out the other end. Some stages are programmable and oth-
ers are not. For example, vertex and pixel shaders are pro-
grammable, but rasterization and format conversion are fixed
functions. General computing, meanwhile, uses only shader
units, also known as compute (or CUDA) cores. It depends on
user-space programs to upload GPU code. The GPU code can
be compiled at runtime or offline. Compute programs are often
compiled offline as just parallelized on compute cores, while
graphics programs would need runtime compilation, since they
use many shaders for graphics operations. Once compiled as
GPU code binaries, however, they are loaded onto the GPU at
runtime in the same manner. Hence, the software stack needs
no modification in the operating system.

4 Resource Management Model

In this section, we present a basic model of GPU resource
management, particularly along with the Linux system stack,
accommodating NVIDIA’s proprietary driver [28], PathScale’s
open-source driver [33], and Linux’s open-source driver [6].
Windows Display Driver Model (WDDM) [35] may also be
applicable to our model, since NVIDIA could share about 90%
of code between Linux and Windows [34]. As mentioned
in Section 2, the following discussion assumes the NVIDIA’s
Fermi architecture [30], but is also conceptually applicable to
most of today’s GPU architectures.

4.1 System Stack

The GPU architecture defines a set ofGPU commandsto
enable the device driver and the user-space runtime engine to
control data copies and kernel launches. The device driver pro-
vides primitives for user-space programs to send GPU com-

25

User-Space
Runtime

OpenGL OpenCL CUDA HMPP

User-Space Runtime Driver

GPU Device Driver

GPU

GPU Applications

OS

Device

User-Space
Program

Transform API to
GPU commands

API

ioctl

PCI

Figure 3. System stack for GPU processing.

mands to the GPU, and the user-space runtime engine provides
a specific API to write user programs, abstracting the low-level
primitives at the device driver. Anioctl system call is of-
ten used to interface between the device driver and the runtime
engine. GPU commands are different GPU instructions that
code GPU kernels, and there are many types of GPU com-
mands. The device driver sends GPU commands to manage
GPU resources including GPU contexts and device memory
management units, while the runtime engine generates GPU
commands to control the execution flows of user programs,
e.g., data copies and kernel launches.

Figure 3 illustrates the system stack in our GPU resource
management model. Applications call API library functions
provided by the runtime engine. The front-end of the runtime
engine is dependent on the programming framework, which
transforms the API calls to GPU commands that are executed
by the GPU. The runtime driver is the back-end of the run-
time engine that abstracts theioctl interface at the device
driver, simplifying the development of programming frame-
works. Performance optimization of the runtime engine can
be unified in this layer. The device driver is responsible for
submitting the GPU commands, received through theioctl
system call, to the GPU via the PCI bus.

4.2 GPU Channel Management

The device driver must manage GPU channels. The GPU
channel is an interface that bridges across the CPU and the
GPU contexts, especially when sending GPU commands from
the CPU to the GPU. It is directly attached to the dispatch unit
inside the GPU, which passes incoming GPU commands to the
compute (or rendering) unit where GPU code is executed. The
GPU channel is the only way to send GPU commands to the
GPU. Hence, user programs must be allocated GPU channels.
Multiple channels are supported in most GPU architectures.
For instance, the NVIDIA’s Fermi architecture supports 128
channels. Since each context requires at least one channel to
use the GPU, at most 128 contexts are allowed to exist at the
same time. GPU channels are independent of each other, and
represent separate address spaces.

Figure 4 illustrates how to submit GPU commands to the
GPU within a channel. The GPU channel uses two types of
buffers in the operating-system address space to store GPU
commands. One is memory-mapped onto the user-space

GET

PUT

size offset

64 bits

24 bits 40 bits

offset

size

memory-mapped
user buffer

driver buffer

header

data

header

header

.
.
.

header

data

data

dataIndirect Buffer

command group

command group

command group

command group

command group

.
.
.

.
.
.

ring buffer

GPU command
dispatch unit

read buffer

Figure 4. GPU command submissions.

buffer, into which the user-space runtime engine pushes GPU
commands. The other buffer is directly used by the de-
vice driver to send specific GPU commands that control the
GPU, such as status initialization, channel synchronization,
and mode setting. GPU commands are usually grouped into
multiple units, often referred to as GPU command groups.
There are no constraints on how to compose GPU command
groups. A single GPU command group may contain only one
GPU command or numbers in the thousands, as far as the
memory space allows. Regardless of how many GPU com-
mand groups are submitted, the GPU treats them as just a se-
quence of GPU commands. However, the number of GPU
command groups could affect throughput, since GPU com-
mands in each group are dispatched by the GPU in a burst
manner. The more GPU commands are included in a group,
the less communication is required between the CPU and the
GPU. Instead, it could cause long blocking durations, sincethe
device driver cannotdirectly preempt the executions of GPU
contexts launched by preceding sets of GPU commands.

While the runtime engine pushes GPU commands into the
memory-mapped buffer, it also writespackets, each of which
is a (sizeandaddress) tuple to locate the corresponding GPU
command group, into a specific ring buffer provided in the
operating-system buffer, often referred to as the indirect buffer.
The device driver configures the GPU command dispatch unit
to read this ring buffer to pull GPU commands. This ring buffer
is controlled byGET andPUT pointers. The pointers start from
the same place. Every time packets are written to the buffer,
the device driver moves thePUT pointer to the tail of the pack-
ets, and sends a signal to the GPU command dispatch unit to
pull the GPU command groups located by the packets between
theGET andPUT pointers. Afterward, theGET pointer is auto-
matically updated to the same place as thePUT pointer. Once
these GPU command groups are submitted to the GPU, the
device driver does not manage them any longer, and just con-
tinues to submit the next set of GPU command groups, if any.
As a consequence, this ring buffer plays a role of a command
queue for the device driver.

26

Device Memory

Processing Cores

GPU

M
ic

ro
c
o

n
tr

o
lle

rs

Execution Unit

GPU Context

Host Memory

I/O Read
& Write

DMA Transfer

Other Units

Figure 5. GPU context management model.

Each GPU command group may include multiple GPU
commands. Each GPU command is composed of the header
and data. The header containsmethodsand the data size, while
the data contain the values being passed to the methods. Some
methods are shared between compute and graphics, and oth-
ers are specific to each. GPU command execution is out-of-
order within the same GPU channel, and GPU channels could
be switched implicitly by the GPU itself. It should be noted
that the GPU channel is a path to send GPU commands and
some other structures to control the GPU. GPU kernel images
and their data buffers are uploaded onto the device memory
through direct memory access (DMA), while DMA operation
itself is controlled by GPU commands.

4.3 GPU Context Management

GPU contexts consist of memory-mapped I/O registers and
hardware registers, which must be initialized by the device
driver at the beginning. While memory-mapped I/O registers
can be directly read and written by the device driver through
the PCI bus, hardware registers need GPU sub-units to be read
and written. There are multiple ways provided to access the
context values. Reading from and writing to memory-mapped
I/O registers on the CPU is the most straightforward way, but
PCI bus communications are generated for all such opera-
tions. The GPU alternatively provides several hardware units
to transfer data among the host memory, the device memory,
and GPU registers in a burst manner.

Figure 5 illustrates a conceptual model of how to manage
the GPU context. Generally, the GPU context is stored on the
device memory. It could also be stored on the host memory, as
the GPU can access both the host and device memory, but the
device memory is strongly recommended due to performance
issues, i.e., the GPU accesses the device memory much faster
than the host memory. The host memory is often used to store
one-time accessed data, such as the firmware program image

User-Space

Virtual Memory

OS-Space

Virtual Memory

GPU-Kernel

Virtual Memory

user

buffer

Host Memory Device Memory

memory-

mapped

buffer

accesible

to/from

the GPU

allocated

by

user task

Mapping

Memory

Copies

DMA

Transfer

Figure 6. Host-device data copy model.

of microcontrollers. Some parts of the GPU context are not
directly accessible to the host memory. DMA transfers are
needed to manage such parts of the GPU context through the
microcontroller. It should be noted that the microcontroller
also contains memory spaces where some data accessed by
the GPU context are stored. Hence, DMA transfers are also
needed to manage such data. The GPU has many hardware
units other than the execution unit, some of which are used by
the GPU context, but we do not describe details.

4.4 Memory Management

Memory management for GPU applications is associated
with at least three address spaces. Given that a user program
starts on the CPU first, the user buffer is created within the
user-space virtual memory on the host memory. This buffer
must be copied to the operating-system virtual memory, since
the device driver must access it to transfer data onto the de-
vice memory. The destination of the data transfer on the de-
vice memory must match the address space allocated by the
user program beforehand for the corresponding GPU kernel
program. As a consequence, there are three address spaces as-
sociated with memory management: (i) the user-space virtual
memory, (ii) the operating-system virtual memory, and (iii)
GPU-kernel virtual memory.

Figure 6 depicts how to copy data from the user buffer on
the host memory to the allocated buffer on the device mem-
ory. The user buffer must be first copied to the operating-
system virtual memory space accessible to the device driver.
A memory-mapped buffer may be used for this purpose, which
is supported by the POSIX standard as themmap system call.
Once the buffer is memory-mapped, the user program can
use it quite flexibly. Another approach to this data copy is
that the user program communicates with the device driver,
using I/O system calls, given that most operating systems
provide a function to copy data from the user buffer to the
operating-system virtual memory. Figure 6, however, assumes
the first approach, which is adopted by Nouveau and PSCNV
(and perhaps NVIDIA’s proprietary driver). Once the buffer

27

high-priority task low-priority task

CPU

GPU

response time

GPU command submission

response time

Figure 7. GPU processing without scheduling.

high-priority task low-priority task

CPU

GPU

response
time

GPU command submission

response
time

command scheduler interrupt queue at device driver

Figure 8. GPU processing with scheduling.

is copied to the operating-system virtual memory, the device
driver transfers it to the device memory space allocated by the
user program. Usually, the GPU provides virtual memory for
each GPU channel to support multi-tasking, and the address of
this device virtual memory is visible to user-space so that they
can handle where to send data for computation.

5 Operating Systems Challenges

In this section, we consider operating systems challenges
for GPU resource management. The following discussion is
based on our experience and favorite research perspective,and
does not cover the complete area of GPU resource manage-
ment. The list of challenges provided herein must extend to
advance further operating systems research for GPU technol-
ogy. We however believe that the following discussion will
lead to ideas of where we are at and where to go.

5.1 GPU Scheduling

GPU scheduling is perhaps the most important challenge
to leverage the GPU in multi-tasking environments. Without
GPU scheduling, GPU kernel programs are launched in first-
in-first-out (FIFO) fashion, since the GPU command dispatch
unit pulls GPU command groups in their arrival order. Hence,
GPU processing becomes non-preemptive in a strong sense.
Figure 7 illustrates a response-time problem caused due to the
absence of GPU scheduling support, where two tasks with dif-
ferent priorities launch GPU code three times each as depicted
on the CPU time line. The first launch of the high-priority
task is serviced immediately, since the GPU has been idle.
However, this is not always the case in multi-tasking environ-
ments. For instance, the second and the third launches of the
high-priority task are blocked by the preceding executionsof
GPU contexts launched by the low-priority task. This blocking
problem appears due to the nature of FIFO dispatching. Thus,

tasks accessing the GPU need to be scheduled appropriately to
avoid interference on the GPU.

Design Concept:The design of GPU schedulers falls into
two categories. One approach implements a scheduler at the
device-driver level to reorder GPU command groups submis-
sions, given that the executions of GPU contexts are launched
by GPU commands. GPU schedulers in the state of the
art [2, 17] are designed based on this approach. For instance,
TimeGraph [17] queues GPU command groups in the device
driver space, and configures the GPU to generate interrupts
to the CPU from the GPU upon completions of GPU code
launched by prior GPU command groups so that the scheduler
can be invoked to dispatch the next GPU command groups.
Scheduling points are hence created at GPU command group
boundaries. TimeGraph particularly dispatches GPU com-
mand groups according to task priorities, as depicted in Fig-
ure 8. The high-priority task can thereby respond quickly
on the GPU whereas introducing additional overhead for the
scheduling process. This is a trade-off, and it was demon-
strated that this overhead is inevitable to protect important
GPU applications from performance interference [16, 17].

Unfortunately, this device-driver approach still suffers from
the non-preemptive nature of GPU processing. Specifically,
the device driver can reorder GPU command groups submis-
sions, but cannot directly preempt GPU contexts. For instance,
the example in Figure 8 shows that the third launch of the high-
priority task needs to wait for the completion of the second
launch of the low-priority task. To make the GPU fully pre-
emptive, GPU context switching needs to be supported at the
microcontroller level, as mentioned in [17]. The design and
implementation of such microcontrollers firmware, however,
are very challenging issues. Some ideas could be extended
from satellite kernels [27].

There are several other approaches to GPU scheduling. As
studied in [8], the CPU scheduler is still effective in controlling
GPU execution, since GPU code is launched from the CPU,
and interrupts from the GPU are received on the CPU. How-
ever, GPU resource management is inevitably coarse-grained
with this approach, due to the fact that the CPU scheduler is
not aware of GPU command submissions and GPU contexts.
We may also use compile-time and application-programming
approaches [3, 10, 36], if modifications and recompilationsof
programs, using specific compilers, APIs, and algorithms, are
acceptable. GPU resource management at the device-driver
level, on the other hand, is finer-grained, and there is no need
to compromise the generality of programming frameworks.

Scheduling Algorithm: Assuming that GPU schedulers
are provided, the next question is: what scheduling algorithms
are desired? We believe that at least two scheduling algorithms
are required due to the hierarchy of the CPU and the GPU.

First, we insist that the CPU scheduling algorithm should
consider the presence of the GPU. Particularly for real-time
systems, classical deadline-driven algorithms, such as Earli-
est Deadline First (EDF) [23], are not effective as they are.
Figure 9 shows an example where two tasks, one accesses the

28

CPU

GPU

time

time

CPU task GPU-accelerated task

deadline miss

deadline of
CPU task

deadline of GPU-
accelerated task

Figure 9. Deadline-driven CPU scheduling in the
presence of the GPU.

CPU

GPU

time

time

CPU task GPU-accelerated task

deadline of
CPU task

deadline of GPU-
accelerated task

Figure 10. GPU-aware CPU scheduling in the
presence of the GPU.

GPU (“GPU-accelerated task”) and the other does not (“CPU
task”), are scheduled on the CPU using the EDF algorithm.
Consider that the CPU task is assigned a higher priority at
some time, while the GPU-accelerated task has a large com-
putation time on the GPU. Since GPU code is never launched
until the CPU task is completed, the GPU remains idle while
the CPU task is executing, and the CPU remains idle while the
GPU-accelerated task is executing on the GPU. A more effi-
cient algorithm should be developed to generate such a sched-
ule that is depicted in Figure 10, where CPU and GPU times
are effectively overlapped. Laxity-driven algorithms, such as
Earliest Deadline Zero Laxity (EDZL) [4] and Earliest Dead-
line Critical Laxity (EDCL) [18], could alternate EDF, but an
in-depth investigation is desirable.

Scheduling parallel tasks on the GPU is another issue of
concern. Gang scheduling and co-scheduling [31] are well-
known concepts for such a parallel multi-tasking model. The
real-time systems community has also explored these schedul-
ing methods recently [14, 21]. We believe that the concepts
of gang scheduling and co-scheduling are useful to design the
GPU scheduling algorithm. However, we must consider the
constraints of the GPU. In general, the GPU is designed to
execute threads in some group, also known as a warp in the
Fermi architecture, simultaneously. Hence, the minimum unit
of scheduling is a block of threads instead of a single thread.
We still believe that existing concepts of parallel job schedul-
ing are applicable, while algorithms implementation is a very
challenging issue.

Data-copy Scheduling:As shown in Figure 2, data must
be copied on to the device memory before GPU code is exe-
cuted, and it is often required to copy the computation result

N
e

tw
o

rk
 I

n
te

rc
o

n
n

e
ct

Host

Memory

FSB

PCI

Node

CPU

NIC

Device

Memory
GPU

copy

copy

GDDR5

data

(in)

data

(out)

copy

copy

copy

copy

Figure 11. Data communication with the GPU.

back on to the host memory. The amount of time taken to
perform the data copy depends on the data size. Furthermore,
data-copy operations generate non-preemptive regions, which
affect the performance and responsiveness of involved applica-
tions. Specifically, since data copies between host and device
memory spaces are performed by DMA, as shown in Figure 6,
and the device driver provides no way to preempt these DMA
transfers once they are launched. Therefore, GPU scheduling
must also be involved in data copies as well as the executions
of GPU contexts.

5.2 GPU Clustering

Further research challenges include support for clustered
multiple GPUs. GPU clustering is a key technology to use
GPUs for HPC applications. Currently, we are developing this
technology based on our GPU resource management model
and GPU scheduling schemes to provide first-class support
for GPU-based interactive data centers, supercomputers, and
cyber-physical systems. These applications are data-intensive
as well as compute-intensive. Hence, performance is affected
by data communications across multiple GPUs.

GPU clusters are generally hierarchical. Each node is com-
posed of a small number of GPUs clustered on a board. Many
such nodes are further clustered as a system. Since these two
types of clustering use different technologies [37], operating
systems support must be provisioned differently.

On-board GPU clusters: The management of multiple
GPUs on a board may be either in the user-space runtime or
the operating system. It is usually an application task thatde-
termines which GPU to use for computation. Data copies be-
tween GPUs can also be handled in user-space by copying data
via the host memory. However, the operating system is respon-
sible to configure the GPUs, if fast direct data copies between
two different device memory spaces via the PCI bus or the SLI
interface are required. For instance, the CUDA 4.0 specifi-
cation requires such a data communication interface, oftenre-
ferred to asGPU Direct. In GPU clustering, hence, scheduling
must be involved in device-to-device data copies in addition to
the executions of GPU contexts and data copies between the
host and the device memory.

Networked GPU clusters: The management of multiple
GPUs connected over the network is more challenging, as it in-

29

volves networking. GPU-based HPC applications could scale
to use thousands of nodes [38]. We believe that data commu-
nications over the network will be a bottleneck to scale the
performance of GPU clusters in the number of nodes. Fig-
ure 11 illustrates how to send and receive data between the
network interface card (NIC) and the GPU in a basic model.
Generally, when the NIC receives data, the NIC device driver
transfers this data to the host (main) memory via DMA. The
GPU device driver next needs to copy this data to the device
memory, but the address spaces visible to the NIC and the GPU
are different, as these device drivers are usually developed in-
dividually. Therefore, the GPU device driver needs to copy
the data to another space on the host memory accessible to the
GPU. The same data-copy path is used from the opposite side,
when the GPU sends data to the NIC. The NVIDIA’s GPU Di-
rect technology enabled this data communication stack to skip
host-to-host data copy [24], but non-trivial overheads caused
by data copies among the NIC, the host memory, and the de-
vice memory are still imposed on networked GPU clusters.
Coordination of the NIC and the GPU device drivers is needed
to reduce such communication overhead.

The same performance issue would appear in distributed
systems exploiting GPUs. For example, autonomous vehi-
cles using GPUs and camera sensors need to get data from
the camera sensors to the GPUs. In storage systems, data may
also come through the network to the GPUs. Coordination of
heterogeneous devices and resources is therefore an important
problem for future work.

5.3 GPU Virtualization

Virtualization is a useful technique widely adopted in many
application domains to isolate clients in the system, and make
the system compositional and dependable. Virtualizing GPUs
hence provides the same benefits for GPU-accelerated sys-
tems. GPU virtualization support has been provided by run-
time engines [20], VMMs [11, 12], and I/O managers [7] in
the literature. We however believe that there is a problem space
for operating systems to support GPU virtualization. In fact,
VMs eventually access the GPU via the device driver in the
host operating system. Hence, GPU resource management at
the device-driver level plays a vital role for GPU virtualization
as well. For instance, prioritization and isolation capabilities
provided at the device driver level [17] could be very powerful
to run GPU VMs.

Our major concern for GPU virtualization appears when
different guest operating systems are installed in VMs. The
GPU is typically controlled by microcontrollers as depicted
in Figure 5. These microcontrollers require firmware to oper-
ate correctly, which must be uploaded by the device driver.
The firmware image must match the assumption of the de-
vice driver. However, GPU device drivers in different guest
operating systems may use different firmware images and as-
sumptions. For instance, one guest operating system may pro-
vide firmware with context switching support while another
may provide that with power management support. In such

a case, the device driver in the host operating system needs to
switch firmware accordingly among these different guest oper-
ating systems, or provide “all-in-one” firmware that provides
all necessary functions.

5.4 GPU Device Memory Management

Device memory spaces allocated by user programs are typ-
ically pinned. They never become available for different pro-
grams unless freed explicitly, resulting in the allocatable mem-
ory size limited to the device memory size. This is not an ef-
ficient memory management model. The GPU often supports
virtual memory to isolate address spaces among GPU chan-
nels (contexts). Operating systems should utilize this virtual
memory functionality to expand the allocatable device mem-
ory spaces, just as they support it for the host memory through
memory management units (MMUs). We could establish a
hierarchical model of device memory, host memory, and stor-
age to virtualize the device memory as a nearly infinite size of
memory, which significantly improve the flexibility and avail-
ability of GPU programming.

GPU applications are often very data-intensive. Hence,
virtual memory management should cope with frequent data
swapping among the device memory, host memory, and stor-
age to maintain performance and interactivity. We believe
that prior memory management models [15, 42] are applica-
ble to GPU device memory management to hide the penalty
of data swapping. In the presence of multiple GPUs, espe-
cially, distributed shared memory (DSM) [22] systems could
also be beneficial to transparently increase the available mem-
ory space for GPU programming.

5.5 Coordination with Runtime Engines

GPU operations are controlled by GPU command groups
issued from user-space programs. For instance, GPU ker-
nel launches and data copies between the host and the device
memory are triggered by a specific sets of GPU commands.
However, the operating system does not recognize what types
of GPU commands are issued from user-space programs. It
just controls the ring buffer pointing to the memory location
where GPU command groups are stored by the user-space run-
time engine so that the GPU can dispatch them, as illustrated
in Figure 4. Prior work [2, 16, 17] hence queue and dispatch
all GPU command groups. However, there are many trivial
GPU command groups that do not generate GPU workload.
Since the overhead for queuing and dispatching GPU com-
mand groups is sometimes significant [17], the operating sys-
tem should select an appropriate set of GPU command groups
to queue and dispatch, including those related to GPU kernel
executions and data copies. To do so, the operating system
must support an interface for the user-space runtime engineto
specify what types of GPU command groups are submitted.

In fact, there are many pieces of useful information to share
between the operating system and the user-space runtime en-
gine. To support real-time systems, for instance, it is prefer-
able to know execution times consumed on the GPU before

30

0.01

0.1

1

10

100
N

V
ID

IA

P
S

C
N

V

N
V

ID
IA

P
S

C
N

V

N
V

ID
IA

P
S

C
N

V

N
V

ID
IA

P
S

C
N

V

N
V

ID
IA

P
S

C
N

V

N
V

ID
IA

P
S

C
N

V

N
V

ID
IA

P
S

C
N

V

16 x 16 32 x 32 64 x 64 128 x 128 256 x 256 512 x 512 1024 x 1024

E
x

e
cu

�
o

n
 T

im
e

 (
m

s)

Launch HtoD DtoH

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
V

ID
IA

P
S

C
N

V

N
V

ID
IA

P
S

C
N

V

N
V

ID
IA

P
S

C
N

V

N
V

ID
IA

P
S

C
N

V

N
V

ID
IA

P
S

C
N

V

N
V

ID
IA

P
S

C
N

V

N
V

ID
IA

P
S

C
N

V

16 x 16 32 x 32 64 x 64 128 x 128 256 x 256 512 x 512 1024 x 1024

N
o

rm
a

li
ze

d
 E

x
e

cu
�

o
n

 T
im

e

Launch HtoD DtoH

Figure 12. Performance comparison of NVIDIA’s
proprietary driver and PSCNV.

launching GPU kernels to account and enforce the executions
of GPU contexts. It is possible to predict execution times
based on a sequence of GPU command groups, but the pre-
dicted execution times could be imprecise depending on GPU
workload [17]. The operating system should therefore prefer-
ably provide an interface to obtain such information from user-
space programs.

5.6 Open-Source Implementation

Developing open-source tools is an essential duty to
share ideas about systems implementation and facilitate re-
search. Linux, for instance, is a well-known open-source soft-
ware used in operating systems research. Nouveau [6] and
PSCNV [33] are open-source GPU device drivers, available
with Linux, for NVIDIA’s GPUs. Our previous studies on
TimeGraph [16, 17] particularly used Nouveau to implement
and evaluate a new real-time GPU command scheduler.

Nouveau is often used in conjunction with an open-source
OpenGL runtime engine, Gallium3D [25], for 3-D graphics
applications. It should be noted that the performance of this
open-source software stack is even competitive with NVIDIA’s
proprietary software [5], though its usage is limited to graphics
applications for now.

PSCNV forked from Nouveau to support general compute
programs, which is managed by PathScale Inc., as part of its
GPGPU software solution [32]. We are currently involved in
its development. Their corresponding runtime engine supports
HMPP and CUDA for now, and OpenCL support is also in
consideration. In fact, this PathScale’s runtime engine can be
used in conjunction with NVIDIA’s proprietary driver as well.
Therefore, fair performance comparisons of these proprietary

and open-source device drivers can perform under the same
runtime engine. The source code of this runtime engine is not
yet open to the public, but it may be available upon request for
the research community.

Figure 12 shows a performance comparison of NVIDIA’s
closed-source proprietary driver and the PSCNV open-source
driver in integer matrix multiplication operation of variable
sizes, using an NVIDIA GeForce GTX 480 graphics card,
where “Launch” represents the execution time of the launched
GPU kernel, and “HtoD” and “DtoH” represent data copy du-
rations of host-to-device and device-to-host directions respec-
tively. The GPU clock rate is set at maximum. The GPU ker-
nel of matrix multiplication is compiled using NVIDIA CUDA
Toolkit 3.2 [29]. Both drivers run under PathScale’s runtime
engine. According to our evaluation, the performance differ-
ence is very small for a small matrix, while NVIDIA’s driver
provides better performance for a large matrix. This is mainly
attributed to the fact that this open-source device driver has
not yet figured out how to activate “performance mode” that
boosts the performance of the GPU aside from the clock rate.
The performance difference, however, is limited to about 20%
at most. Once we learn how to fully configure the GPU, such
a performance difference would disappear. We hence believe
that open-source software is now reliable enough to conduct
operating systems research on GPU resource management.

6 Concluding Remarks

In this paper, we have presented the state of the art in GPU
resource management. GPU technology is promising in many
application domains due to its high performance and energy
efficiency. Most current solutions, however, are focused on
how to accelerate a single application task, and multi-tasking
problems are not widely discussed. This paper identified core
challenges for operating systems research to efficiently use the
GPU in multi-tasking environments, and also provided some
insights into their solutions. The identified list of challenges
needs to expand as our understanding progresses. In particular,
real-time systems need to address additional timing issues. We
are fortunate to have open-source software that could underlie
to explore such new domains of operating systems research.
We believe that this paper will encourage research communi-
ties to further advance GPU resource management schemes for
a grander vision of GPU technology.

Acknowledgment

We thank PathScale for sharing their technology and source
code with us in this work.

References

[1] S. Al-Kiswany, A. Gharaibeh, E. Santos-Neto, G. Yuan, and M. Ri-
peanu. StoreGPU: Exploiting Graphics Processing Units to Accelerate
Distributed Storage Systems. InProceedings of the ACM International
Symposium on High Performance Distributed Computing, pages 165–
174, 2008.

31

[2] M. Bautin, A. Dwarakinath, and T. Chiueh. Graphics Engine Resource
Management. InProceedings of the Annual Multimedia Computing and
Networking Conference, 2008.

[3] L. Chen, O. Villa, S. Krishnamoorthy, and G. Gao. DynamicLoad Bal-
ancing on Single- and Multi-GPU Systems. InProceedings of the IEEE
International Parallel and Distributed Processing Symposium, 2010.

[4] H. Cho, B. Ravindran, and E.D. Jensen. Efficient Real-Time Scheduling
Algorithms for Multiprocessor Systems.IEICE Transactions on Com-
munications, 85:807–813, 2002.

[5] Linux Open-Source Community. Nouveau Companion 44.http://
nouveau.freedesktop.org/.

[6] Linux Open-Source Community. Nouveau Open-Source GPU Device
Driver. http://nouveau.freedesktop.org/.

[7] M. Dowty and J. Sugeman. GPU Virtualization on VMware’s Hosted
I/O Architecture. ACM SIGOPS Operating Systems Review, 43(3):73–
82, 2009.

[8] G. Elliott and J. Anderson. Real-Time Multiprocessor Systems with
GPUs. InProceedings of the International Confrence on Real-Time and
Network Systems, 2010.

[9] A. Gharaibeh, S. Al-Kiswany, S. Gopalakrishnan, and M. Ripeanu. A
GPU Accelerated Storage System. InProceedings of the ACM Interna-
tional Symposium on High Performance Distributed Computing, pages
167–178, 2010.

[10] M. Guevara, C. Gregg, K. Hazelwood, and K. Skadron. Enabling Task
Parallelism in the CUDA Scheduler. InProceedings of the Workshop on
Programming Models for Emerging Architectures, pages 69–76, 2009.

[11] V. Gupta, A. Gavrilovska, N. Tolia, and V. Talwar. GViM:GPU-
accelerated Virtual Machines. InProceedings of the ACM Workshop
on System-level Virtualization for High Performance Computing, pages
17–24, 2009.

[12] V. Gupta, K. Schwan, N. Tolia, V. Talwar, and P. Ranganathan. Pegasus:
Coordinated Scheduling for Virtualized Accelerator-based Systems. In
Proceedings of the USENIX Annual Technical Conference, 2011.

[13] Intel. Intel Microarchitecture Codename Sandy Bridge. http://www.
intel.com/.

[14] S. Kato and Y. Ishikawa. Gang EDF Scheduling of ParallelTask Sys-
tems. InProceedings of the IEEE Real-Time Systems Symposium, pages
459–468, 2009.

[15] S. Kato, Y. Ishikawa, and R. Rajkumar. CPU Scheduling and Memory
Management for Interactive Real-Time Applications.Real-Time Sys-
tems, 2011.

[16] S. Kato, K. Lakshmanan, Y. Ishikawa, and R. Rajkumar. Resource
Sharing in GPU-accelerated Windowing Systems. InProceedings of
the IEEE Real-Time and Embedded Technology and AplicationsSympo-
sium, pages 191–200, 2011.

[17] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa. TimeGraph:
GPU Scheduling for Real-Time Multi-Tasking Environments.In Pro-
ceedings of the USENIX Annual Technical Conference, 2011.

[18] S. Kato and N. Yamasaki. Global EDF-based Scheduling with Efficient
Priority Promotion. InProceedings of the IEEE Embedded and Real-
Time Computing Systems and Applications, pages 197–206, 2008.

[19] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A.D. Nguyen, T. Kaldewey,
V.W. Lee, S.A. Brandt, and P. Dubey. FAST: Fast ArchitectureSensitive
Tree Search on Modern CPUs and GPUs. InProceedings of the 2010
ACM SIGMOD/PODS Conference, 2010.

[20] H.A. Lagar-Cavilla, N. Tolia, M. Satyanarayanan, and E. de Lara.
VMM-Independent Graphics Acceleration. InProceedings of the
ACM/Usenix International Conference on Virtual Execution Environ-
ments, pages 33–43, 2007.

[21] K. Lakshmanan, S. Kato, and R. Rajkumar. Scheduling Parallel Real-
Time Tasks on Multi-core Processors. InProceedings of the IEEE Real-
Time Systems Symposium, pages 259–268, 2010.

[22] K. Li and P. Hudak. Memory coherence in shared virtual memory sys-
tems.ACM Transactions on Computer Systems, 7(4):321–359, 1989.

[23] L. Liu and J.W. Layland. Scheduling Algorithms for Multiprogramming
in a Hard Real-Time Environment.Journal of the ACM, 20:46–61, 1973.

[24] Mellanox. NVIDIA GPUDirect Technology– AcceleratingGPU-
based Systems (Whitepaper).http://www.mellanox.com/pdf/
whitepapers/TB GPU Direct.pdf.

[25] Mesa3D.http://www.mesa3d.org/.

[26] P. Michel, J. Chestnutt, S. Kagami, K. Nishiwaki, J. Kuffner, and
T. Kanade. GPU-accelerated Real-Time 3D Tracking for Humanoid Lo-
comotion and Stair Climbing. InProceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 463–469,
2007.

[27] E.B. Nightingale, O. Hodson, R. Mcllory, C. Hawblitzel, and G. Hunt.
Helios: Heterogeneous Multiprocessing with Satellite Kernels. InPro-
ceedings of the ACM Symposium on Operating Systems Principles,
2009.

[28] NVIDIA. Linux X64 (AMD64 /EM64T) Display Driver. http://
www.nvidia.com/.

[29] NVIDIA. NVIDIA CUDA Toolkit Version. http://developer.
nvidia.com/cuda-toolkit-32-downloads.

[30] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi (Whitepaper). http://www.nvidia.com/content/
PDF/fermi white papers/NVIDIA Fermi Compute
Architecture Whitepaper.pdf.

[31] J.K. Ousterhout. Scheduling Techniques for Concurrent Systems. In
Proceedings of the IEEE International Conference on Distributed Com-
puting Systems, pages 22–30, 1982.

[32] PathScale. ENZO.http://www.pathscale.com/.

[33] PathScale. PSCNV GPU Device Driver.https://github.com/
pathscale/pscnv/.

[34] Phoronix. NVIDIA Developer Talks Openly About Linux Sup-
port. http://www.phoronix.com/scan.php?page=
article&item=nvidia qa linux&num=2.

[35] S. Pronovost, H. Moreton, and T. Kelley. Windows Display Driver
Model (WDDM v2) And Beyond. InWindows Hardware Engineering
Conference, 2006.

[36] A. Saba and R. Mangharam. Anytime Algorithms for GPU Archi-
tectures. InProceedings of the Analytic Virtual Integration of Cyber-
Physical Systems Workshop, 2010.

[37] D. Schaa and D. Kaeli. Exploring the Multiple-GPU Design Space. In
Proceedings of the IEEE International Parallel and Distributed Process-
ing Symposium, 2009.

[38] T. Shimokawabe, T. Aoki, C. Muroi, J. Ishida, K. Kawano,T¿ Endo,
A. Nukada, N. Maruyama, and S. Matsuoka. An 80-Fold Speedup,
15.0 TFlops, Full GPU Acceleration of Non-Hydrostatic Weather Model
ASUCA Production Code. InProceedings of the ACM/IEEE Interna-
tional Conference on High Performance Computing, Networking, Stor-
age and Analysis, 2010.

[39] S. Thrun. GTC Closing Keynote. http://livesmooth.
istreamplanet.com/nvidia100923/, 2010.

[40] Top500 Supercomputing Sites.http://www.top500.org/.

[41] C. Urmson, J. Anhalt, H. Bae, D. Bagnell, C. Baker, R. Bittner,
T. Brown, M. Clark, M. Darms, D. Demitrish, J. Dolan, D. Dug-
gins, D. Ferguson, T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh,
M. Hebert, T. Howard, S. Kolski, M. Likhachev, B. Litkouhi, A. Kelly,
M. McNaughton, N. Miller, J. Nickolaou, K. Peterson, B. Pilnick,
R. Rajkumar, P. Rybski, V. Sadekar, B. Salesky, Y-W. Seo, S. Singh,
J. Snider, J. Struble, A. Stentz, M. Taylor, W. Whittaker, Z.Wolkowicki,
W. Zhang, and J. Ziglar. Autonomous Driving in Urban Environments:
Boss and the Urban Challenge.Journal of Field Robotics, 25(8):425–
466, 2008.

[42] T. Yang, T. Liu, E.D. Berger, S.F. Kaplan, and J.E-B. Moss. Redline:
First Class Support for Interactivity in Commodity Operating Systems.
In Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation, pages 73–86, 2008.

32

Virtual Real-Time Scheduling

Malcolm S. Mollison and James H. Anderson
Department of Computer Science

University of North Carolina at Chapel Hill

Abstract

We propose a new approach for the runtime scheduling
of real-time workloads. This approach, which we call
virtual scheduling, decouples real-time scheduling from the
underlying real-time operating system (RTOS) kernel. Such
a decoupling provides for the use of scheduling algorithms
on an RTOS platform that does not support them natively.
This allows new scheduling functionality to be offered
to industry practitioners without sacrificing the ideal of
the stable, predictable, time-tested, and (mostly) bug-free
RTOS kernel.

1. Introduction

In recent years, significant research effort has been
expended in the development of novel scheduling algo-
rithms and synchronization protocols for multiprocessor
real-time systems. Much attention has also been given
to determining whether these techniques perform well on
real hardware platforms, despite potential obstacles such
as scheduling overheads. Overall, the results are promis-
ing: a number of interesting multiprocessor scheduling
and synchronization techniques have proven viable. For
example, recent work has shown that the clustered earliest-
deadline-first algorithm (C-EDF) performs well on large
multicore machines [3], and an asymptotically optimal
locking protocol that can be used with this algorithm has
been given [5].

Unfortunately, real-time operating systems (RTOSs)
have not kept pace with such developments. Support for
any real-time scheduling algorithm or locking protocol
developed within the last twenty years1 is practically non-
existent in both commercial and open-source RTOSs, at
least without modification by the end user (which, in
general, is impractical). This leaves industry practitioners

Work supported by the NC Space Grant College and Fellowship Pro-
gram; NC Space Grant Consortium; NSF grants CNS 0834270, CNS
0834132, and CNS 1016954; ARO grant W911NF-09-1-0535; AFOSR
grant FA9550-09-1-0549; and AFRL grant FA8750-11-1-0033.

1. The stack resource protocol, commonly available in real-time oper-
ating systems (albeit under other names), was developed around 1990 [2].

without a means to make use of recent advances in the
state-of-the-art, and thus unable to deploy the more so-
phisticated embedded and real-time applications that have
otherwise been made possible.

Thus, in terms of real-time scheduling and synchroniza-
tion, there is a large gap between technology (including
theory) that exists in academia, and technology that is
“consumable” by industry practitioners. This gap is likely
only to widen in future years. Even as some advances are
incorporated into consumable technology (if they are), new
advances will be made by researchers.

We believe that RTOS vendors are strongly disincen-
tivized from incorporating these kinds of advances into
existing kernels, which would explain the gap described
above. Any changes will alter the timing characteristics
of the kernel, and could introduce new sources of timing
indeterminism and new bugs. From the perspective of
RTOS consumers whose immediate needs are met by
existing kernels—that is, most likely, the vast majority
of them—making changes to the kernel is a bad thing.
Over time, RTOS customers may begin to call for new
features. However, it is likely that only the most generic
features—that is, those that can be used by customers
spread across many different sectors of industry—will be
incorporated. This runs counter to increasing interest in
real-time scheduling for more niche domains, such as
adaptive systems and cyber-physical systems.

RTOS consumers are also disincentivized from mod-
ifying existing RTOS kernels to achieve more advanced
functionality. The complexity of any non-trivial operating
system is such that any kernel modifications are hazardous,
unless done by someone with specialized expertise in that
particular kernel, and with very extensive testing.

Thus, we believe that it is likely that the gap described
above will only continue to widen, unless a way around
these problems can be found. Specifically, a technique to
avoid these problems would allow real-time scheduling
and synchronization to be modified or customized totally
independently of the RTOS kernel.

Fundamentally, solving these problems means decou-
pling real-time scheduling and synchronization from the
kernel. This implies the creation of a layer of middle-

33

ware software running “atop” the kernel that provides for
real-time workloads to be scheduled according to new
scheduling paradigms, while making use of existing kernel
services, including the existing scheduler provided with a
given RTOS kernel. Such a software layer would provide
the effective illusion of the presence of a more capable
kernel scheduler than actually exists in the system.

This classic pattern—in which a new layer of indirec-
tion allows for both better management of complexity and
the addition of new features—is well known in software
engineering and computer science. One ubiquitous exam-
ple of this pattern is virtual memory, which provides the
illusion to processes of access to a full memory address
space and allows for new memory management features.
Another example of this pattern is the use of process
virtual machines (such as the Java Virtual Machine, or
JVM), which gives the illusion of a standard hardware
platform when none exists, and also provides features
(such as garbage collection) not available natively. Because
we draw inspiration from this pattern, and in light of
existing terminology for describing it, we call our approach
virtual real-time scheduling.2

The goal of this paper is to explore the viability of the
virtual real-time scheduling approach. First, in Section 2,
we explore the support for real-time workloads provided
by generic, existing RTOS kernels, and cover necessary
background material and related work. In Section 3, we
show (by constructing an example) that a virtual sched-
uler supporting a wide variety of real-time scheduling
algorithms and synchronization protocols can itself be
supported atop a generic POSIX-compliant RTOS. In Sec-
tion 4, we explain how to modify the virtual scheduler
from the previous section to support memory protection
(i.e., space partitioning) between tasks. In Section 5, we
describe future work. In Section 6, we conclude.

2. Foundations for Virtual Scheduling

In the following subsections, we describe the under-
lying RTOS functionality that will serve as a foundation
for virtual scheduling. Interspersed with this discussion
is necessary background material and information about
related work.

2.1. OS Support for Multiprocessor Real-
Time Scheduling and Synchronization

In this paper, we adopt a widely-used formalism for
representing real-time task systems known as the sporadic

2. More pragmatically, our terminology serves to distinguish our
approach from existing middleware software which supports real-time
tasks without providing new functionality beyond that provided by the
“real” (kernel) scheduler. This practice is detailed in Section 2 under
“Related Work.”

task model. Under this model, each task T has an associ-
ated worst-case execution time (WCET), T.e, and minimum
separation time, T.p. Each successive job of T is released
at least T.p time units after its predecessor, and a job
released at time t must complete by its deadline, t+ T.p.
The first job of each task is released at an arbitrary time
after the release of the task system. The utilization, or
long-run processor share required by a task, is given by
T.u = T.e/T.p.

A task system of n tasks is schedulable if, given a
scheduling algorithm and m processors, the algorithm can
schedule tasks in such a way that all its timing constraints
are met. For hard real-time task systems, jobs must never
miss their deadlines, while for soft real-time task systems,
some deadline misses are tolerable. Specifically, we require
here that the tardiness of jobs of soft real-time tasks be
bounded by a (reasonably small) constant.

Scheduling algorithms. Approaches to scheduling real-
time tasks on multicore systems can be categorized ac-
cording to two fundamental (but related) dimensions: first,
the choice of how tasks are mapped onto processing cores;
and second, the choice of how tasks are prioritized. In each
case, there are two common choices. Tasks are typically
mapped onto cores either by partitioning, in which each
task is assigned to a core at system design time and
never migrates to another core; or by using a migrating
approach, in which tasks are assigned to cores at runtime
(and can be dynamically re-assigned). Tasks are typically
prioritized using either static priorities, in which case
priorities are chosen at design time and never change; or
dynamic priorities, in which case tasks’ priorities relative
to one another change at runtime according to some criteria
specified by the scheduling algorithm.

In this paper, migrating, dynamic-priority algorithms are
of particular interest. An example is the clustered earliest-
deadline-first (C-EDF) algorithm, which was mentioned in
the Section 1. Under C-EDF, before system runtime, each
core is assigned to one of c clusters, where 1 ≤ c ≤ m; and
each of the n tasks is assigned to one of the clusters.3 Let d
denote the cluster size, i.e., m/c. At system runtime, within
each cluster, the d eligible tasks with highest priority are
scheduled on the d available cores. (The word “eligible”
is used to exclude tasks that are waiting for some shared
resource to become available.)

In contrast, almost all RTOSs support only static-
priority scheduling. These include VxWorks [12], which
is widely considered to be one of the industry leaders in
terms of RTOS market share, and Linux, which can be used
to run certain real-time workloads. Some existing RTOSs
do support dynamic-priority scheduling, such as ERIKA

3. C-EDF partitions tasks, rather than migrating them, if and only if
c = m.

34

Enterprise [7]. However, all existing RTOSs essentially
limit their users to the particular scheduling algorithm(s)
chosen by the RTOS implementers.

In this paper, our concern is to enable migrating,
dynamic-priority scheduling algorithms to be run atop ker-
nels that natively only support static-priority scheduling.

Synchronization protocols. A real-time synchronization
protocol is used to arbitrate among tasks that share re-
sources that cannot be simultaneously accessed by any
number of tasks, such as a critical section of code or a
shared hardware device. These protocols typically attempt
to prevent priority inversions, in which lower-priority tasks
are allowed to execute in favor of higher-priority tasks
due to resource-sharing dependencies. The possibility of
priority inversions in a system must be accounted for in
schedulability analysis. To the best of our knowledge, no
existing commercial RTOS supports any synchronization
protocol more recent than the stack resource protocol,
which was developed for uniprocessor systems around
1990 [2]. Since then, a number of other multiprocessor
locking protocols have been developed. These include
the multiprocessor priority-ceiling protocol (MPCP) [9],
the distributed priority-ceiling protocol (DPCP) [10], the
flexible multiprocessor locking protocol (FMLP) [4], and
the O(m) locking protocol (OMLP) [5]. These protocols are
designed for use with migrating, dynamic-priority schedul-
ing algorithms such as those discussed in the previous
subsection. The example virtual scheduler described in this
paper can support these protocols.

2.2. OS Support for Real-Time Tasks

In this paper, we use the term “task mechanism” to
denote a mechanism by which tasks—that is, separate
segments of code, runnable independently of one another—
can be supported. The range of task mechanisms available
on a given system depends upon the underlying CPU
architecture, and upon the abstractions made available for
programmers by the operating system. These mechanisms
are, at least for our purposes, similar across all modern
systems. Not all of these mechanisms are accessible to
the kernel scheduler, but all of them are accessible to the
virtual scheduler. Any virtual scheduler implementation
must take careful account of how these abstractions are
leveraged, because this will have an impact upon both the
performance characteristics of the virtual scheduler and the
features it may offer.

Task mechanisms commonly available in modern com-
puter systems are given in the list below. Note that ter-
minology used to describe these mechanisms is far from
unified; we attempt to use terminology that is specific
enough to avoid and potentially confusing overlap with
existing usage.

• A function. Tasks implemented using functions share
the same stack. This prohibits arbitrarily preempting
and switching between tasks. In particular, tasks must
run in a nested order in order to preserve the stack.
This seriously limits the scheduling algorithms and
synchronization protocols that can be supported under
this task mechanism.

• A processor context.4 Each context has its own stack,
allowing tasks to be preempted and switched among
in an arbitrary order. A single context can persist over
multiple function calls. In C, contexts can be stored
and recalled in userspace using the setjmp() and
longjmp() functions.

• A kernel-level thread. A kernel-level thread is defined
to be an entity that is known to the operating system
and schedulable by the kernel scheduler. The rela-
tionship between a kernel-level thread and a context
is typically one-to-one, but could be one-to-many, or
many-to-many; in other words, contexts can be shared
between kernel-level threads. A kernel thread may or
may not have memory protection from other kernel
threads in the system.

• A process. A process is defined to be a group of
one or more kernel-level threads that have memory
protection from all kernel-level threads that are not
in the group. The relationship between a process and
a kernel-level thread is typically one-to-one, but could
be one-to-many. In many older operating systems, the
distinction between kernel-level threads and processes
did not exist; all kernel-schedulable entities had inde-
pendent memory protection. In such cases, the term
“process” was generally preferred over other terms.

Making Use of Task Mechanisms. A user threading li-
brary implements tasks using user-level threads, i.e.,
threads which the kernel is not directly aware of or able
to schedule (in contrast to kernel-level threads). User
threading libraries typically implement user-level threads
by means of contexts. There exist many such libraries;
GNU Portable Threads (“Pth”) [8] is one example. User-
level threading libraries support concurrency (i.e., multiple
tasks whose execution is interleaved); however, they do not
support parallelism, because they are assumed to execute
from within only a single kernel thread.

POSIX Threads (“Pthreads”) is a POSIX standard that
defines an API for creating and managing threads; a
POSIX-compliant threading implementation can make use
of either user-level threads or kernel-level threads. Most
generic RTOSs support Pthreads, possibly alongside a

4. This term is equivalent, for our purposes, to the term continuation,
which arises in the study of programming languages and denotes an
abstract representation of the processor context that can be stored and
recalled by the programmer.

35

vendor-defined API; these implementations, in turn, rely on
kernel-level threads (with or without memory protection),
which are then scheduled to run according to a static-
priority scheduling algorithm, as discussed previously.

The virtual scheduler implementation proposed in this
paper uses both user-level threads and kernel-level threads.
This approach, known as hybrid threading (as opposed
to “user threading” or “kernel threading”), has been used
before in the parallel processing community. The highly
concurrent, non-real-time Erlang programming language
uses this approach [6]; however, Erlang does not offer
enough fine-grained control of tasks to support our needs.
On the other hand, a hybrid scheduling approach known as
scheduler activations [1]—like Erlang, originally devised
for large-scale parallel processing—does support many
features that are desirable for virtual scheduling. However,
making use of scheduler activations requires specialized
kernel support. To the best of our knowledge, no RTOS
offers support for scheduler activations.5

2.3. Related Work

Virtual scheduling is not the only approach that pro-
poses to enhance practical real-time scheduling capabilities
through software that runs in userspace. Other approaches
include the following.

• In industry, operating system abstraction layers (OS-
ALs) are occasionally used to provide portability for
applications between different RTOSs.

• The Real-Time Ada programming language provides
for a userspace runtime library that is intended to
simplify and standardize the development of real-time
applications, and particularly, to improve their porta-
bility across different operating system platforms.

• The Real-Time Java programming language is similar
(for our purposes), though it is implemented using a
process virtual machine (a specialized JVM) instead
of a runtime library.

Real-Time Ada and Real-Time Java do support certain
kinds of processor synchronization. However, to the best
of our knowledge, they currently only support the same
scheduling services offered by the underlying kernel
scheduler—i.e., fixed-priority scheduling.6 Because these
two languages rely on userspace implementations, enhanc-
ing the facilities they currently offer with the addition of
a virtual scheduler (i.e., a scheduler that supports services
not present in the underlying scheduler) would be a natural
fit.

5. Support for scheduler activations is present in certain versions of
the Solaris operating system, and (surprisingly) in Windows 7.

6. There has been some discussion of extending Ada to support
earliest-deadline-first scheduling [11]. This is comparable to the overall
topic of this paper, but has a different goal.

3. Constructing a Virtual Scheduler

In this section, we first determine the functionality that
should be supported by our virtual scheduler. We then
describe our proposed implementation. In describing this
implementation, our intention is, first, two show that a
generic, POSIX-compliant RTOS offers sufficient features
to virtualize a broad variety of scheduling algorithms;
and, second, to provide a starting point for investigating
more refined virtual scheduler implementations. Thus, we
attempt to avoid trivial optimizations in favor of a more
generic and easily-understood model.

3.1. Functional Requirements

Earlier, we classified scheduling algorithms according
to whether the priorities of tasks can change, and whether
tasks can migrate. In effect, this creates four classes of
algorithms, which (for convenience) we label as follows.

(P-SP) partitioned, static-priority algorithms
(P-DP) partitioned, dynamic-priority algorithms
(M-SP) migrating, static-priority algorithms
(M-DP) migrating, dynamic-priority algorithms

Any scheduler (either virtual or kernel-based) that sup-
ports arbitrary P-DP algorithms supports arbitrary P-SP
algorithms. Any scheduler that supports arbitrary M-DP
algorithms supports arbitrary M-SP algorithms. Finally,
any scheduler that supports arbitrary M-DP algorithms
supports arbitrary P-DP algorithms. Thus, any scheduler
that can support arbitrary M-DP algorithms can support
all four classes. Furthermore, in each of the classes, it is
possible to define algorithms that support either preemp-
tive or non-preemptive scheduling; preemptive scheduling
is more general. To the best of our knowledge, these
classifications cover all of the multiprocessor scheduling
algorithms for sporadic real-time task systems that are
currently of interest in the research community.

The virtual scheduler proposed in this paper supports
one scheduling algorithm from the preemptive M-DP class.
To aid in understanding of the proposed implementation,
we did not attempt to support arbitrary algorithms from
the preemptive M-DP class, which would (in turn) allow
any scheduling algorithm from any of the given classes
to be supported. However, we conjecture that extending
our specific implementation to support arbitrary M-DP
algorithms is possible. Thus, we hope to convince the
reader that our proposed virtual scheduler can easily be
extended to support all scheduling algorithms of interest.

In contrast to the algorithmic flexibility suggested by the
virtual scheduler implementation proposed in this section,
our proposed implementation supports only partial memory
protection between tasks. Memory protection is a relatively
new feature for some widely-used RTOSs; for example, the

36

BACKUPTHREAD mWORKERTHREAD mBACKUPTHREAD m-1WORKERTHREAD m-1BACKUPTHREAD 2WORKERTHREAD 2BACKUPTHREAD 1WORKERTHREAD 1CPU 1 CPU 2 CPU m-1 CPU m
Figure 1: Assignment of kernel-level threads to CPUs.

first edition of VxWorks to support memory protection was
the 6.0 series, which was released in 2004. Nonetheless,
memory protection can be expected to play a larger role in
real-time systems over time, as these systems grow more
complex. These issues are explored in depth in Section 4,
where we describe how our proposed implementation
could be altered to support full memory protection between
tasks, at the expense of increased runtime overhead.

3.2. Proposed Implementation

Our approach uses hybrid scheduling—that is, a mixture
of user-level threads and kernel-level threads. For ease of
explanation, the implementation provided here only sup-
ports the global earliest-deadline-first (G-EDF) algorithm.
G-EDF is equivalent to C-EDF with cluster size m. As
mentioned previously, we conjecture that our implemen-
tation can be extended to support arbitrary scheduling
algorithms in the M-DP class.

Task mechanism. Our implementation supports real-time
tasks as contexts. This choice is preferable over more
heavy-weight task mechanisms because user-level context
switching is generally considered to have at least an order-
of-magnitude speed advantage over switching between
kernel threads [1]. On the other hand, a more light-
weight mechanism—supporting tasks in a manner that
maps multiple tasks to one context—would not allow for
switching between tasks in arbitrary order, as explained
in Section 2. This rules out using mapping the n tasks to
fewer than n separate contexts. Nonetheless, each task is
encapsulated inside a function call; when this function call
is executed, a job of the task begins executing, and when
a job completes, the function returns. Our implementation
mechanisms will ensure that each task receives its own
context. These mechanisms are implemented as a runtime
library that merely needs to be included with the tasks’
code as a header file.

Task initialization. A special initialization thread is re-

sponsible for setting up all state needed by the virtual
scheduler for the real-time workload to begin executing.
This includes initializing the real-time tasks. To initialize
a task, the initialization thread calls the setjmp() function
immediately before a conditional call to the task’s func-
tion, storing the result—the newly-initialized context—in a
variable. The conditional call, starting the execution of the
task, only executes when setjmp() returns after a context
switch—hence, not during the initialization phase.

Data structure initialization. After initializing the tasks,
the initialization thread creates the following key data
structures.

• The release queue, a priority queue that holds the
contexts for tasks that have no currently eligible job,
but will experience a job release at a known time in
the future.

• The ready queue, a priority queue that holds the
contexts for tasks that are currently eligible, but not
running.

• The lowest-priority indicator. During runtime, this
variable indicates the CPU of the lowest-priority
currently-running task. This will allow for the proper
task to be interrupted when a new task that has
sufficient priority to run becomes eligible. Ties are
broken arbitrarily.

Additional data structures created by the initialization
thread are described later in the paper, when they can be
understood more easily.

Kernel-level thread initialization. Finally, the initializa-
tion thread creates a number of kernel-level threads. This
includes n worker threads and m backup threads. Each of
the m cores has exactly one of the worker threads statically
assigned to it; these are called active worker threads. The
non-active worker threads and the backup threads are only
relevant in a specialized case, which is explained later.
Until then, they can be safely ignored. See Figure 1 for a

37

diagram showing the described kernel threads.

Overview of runtime scheduling. The active worker
threads perform the role of switching between tasks and
executing them. Under our G-EDF example, at any time,
the m highest-priority eligible tasks are executed by the
m active worker threads; if there are less than m eligible
tasks, then one or more of the active worker threads is idle.

Task switching. An active worker thread can switch tasks
by saving the current task context using setjmp() and
appending it to a queue (or other shared data structure)
where it can be retrieved later, and executing longjmp() on
a task context that it has obtained from a queue (or other
shared data structure) and is to begin executing. Whenever
task switching occurs, the lowest-priority indicator variable
is updated.

In summary, the basic technique used by the virtual
scheduler is to execute the n tasks on m active worker
threads, switching execution between tasks as appropriate
using setjmp() and longjmp(). Now, we can move on to
an explanation of how job completions, job releases, and
task synchronization are handled.

Job completions. When a job completes, the active worker
thread executing the task switches to a new task drawn
from the ready queue (if any is available). If the completed
task is released periodically—i.e., at a known offset from
its previous release— it is added to either the release queue
or ready queue, depending on whether the release time of
the next job has already been reached. Note that adding
a task to the release queue implies updating the release
timer under certain circumstances, as explained below. On
the other hand, if the task is released in response to some
stimulus, it is instead saved in a data structure reserved for
tasks of this kind.

Responding to asynchronous stimuli. Tasks that are re-
leased in response to external stimuli can be accommo-
dated easily. The virtual scheduler implementation merely
needs to define a signal handler for signals indicating that
a task of this kind needs to be added to the ready queue.
Such a signal could originate from a task that receives
network packets, for example, or directly from a device
driver.

Aside: POSIX timers and signals. The rest of our expla-
nation requires a basic understanding of POSIX timers and
signals. A POSIX timer is armed with an associated expiry
time and notification thread. (The notification thread must
be one created using the POSIX API). When the expiry
time is reached, the timer fires, sending a POSIX timer-
expired signal to the notification thread.

Maintaining the release queue timer. Throughout task

system execution, a POSIX timer is used to mark the
time of the next job release in the system. In our virtual
scheduler, this timer is set (or reset) whenever a task is
added to the release queue, if no task with an earlier release
time exists in the queue. The low-priority indicator variable
is used as a basis for selecting the proper notification thread
(i.e., one of the worker threads).

Responding to a timer expiry signal. When a worker
thread receives the timer expiry signal, its execution jumps
to an associated signal handler (provided in our virtual
scheduler’s runtime library). In this signal handler, the
worker thread moves the next-to-be-released task to the
ready queue, and updates the release queue timer. If the
moved task is of sufficiently high priority, some worker
thread will begin executing it. This could be the same
worker thread that just released it; otherwise, a signal is
sent to the appropriate worker thread by the thread that
released it. The appropriate thread is determined by the
current status of the lowest-priority indicator variable.

Synchronization protocols. The virtual scheduler runtime
library must provide an API that can be used by a task to
request access to a shared resource. If the task is to be
allowed to acquire the resource without waiting, the API
returns immediately. Otherwise, the task’s context is saved
and stored in a data structure used specifically to hold tasks
blocked in such a case. When a task is finished with the
resource, it must perform another API call to release it. At
this point, any task held in the data structure referenced
above that is now eligible (i.e., can obtain the resource)
is moved onto the ready queue. If the newly-unblocked
task has sufficient priority, a signal is then sent to the
appropriate worker thread (as indicated via the lowest-
priority indicator variable) so that the task will be removed
from the ready queue and executed.

Blocking in the kernel. We have laid most of the es-
sential groundwork for our virtual scheduler. Only one
key issue remains: What if a worker thread blocks while
running in kernelspace? Such a scenario could arise due to
a system call or a page fault. We solve this problem using
the backup threads that were mentioned earlier. Recall that
there are exactly m backup threads, each affixed to one of
the m processors. The backup threads are assigned a lower
priority than the active worker threads; thus, a backup
thread only runs on a core if the worker thread on that
core blocks in the kernel. In such a case, the backup thread
causes one of the non-active workers to become the new
active worker thread on that core. (The non-active workers
are kept at a priority below the backup threads, so that none
of them will execute until it has been selected to become
an active worker, has been migrated to the proper core,
and has had its priority adjusted.) Just before adjusting the

38

priority of the new active worker and giving up its control
of the processor, the backup thread boosts the priority of
the blocked worker thread to be above that of all worker
threads, and sends it a signal to indicate that it has blocked
in the kernel. As soon as the blocked worker finishes
blocking in the kernel, it will receive the signal indicating
that it has blocked. This worker adds its task to the release
queue, sends a signal to the worker thread indicated by
the lowest-priority indicator variable (to potentially trigger
a context switch to the task that blocked in the kernel),
and becomes a non-active worker. Note that this process
happens immediately when the task finishes blocking in
the kernel, since the priority of the blocking thread has
been boosted above that of the active worker threads.

4. Supporting Memory Protection

One hazard of any multitasking computer system is
the possibility of one task corrupting the memory of
another task. As real-time systems have become more
complex, this problem has become a growing concern. In
this section, we discuss the degree of memory protection
provided by the virtual scheduler implementation described
in Section 3, and also explain how full memory protection
between tasks can be provided, at the expense of additional
runtime overhead.

Note that, in this paper, we are not concerned with the
difficult problem of preventing code created with malicious
intent from damaging the system, which is typically only
a concern in a narrow segment of highly-critical real-time
systems (such as military weapon systems and nuclear
power plants). Rather, we are interested in preventing
widespread failures caused by programmer error and in
the absence of attacks by adversaries.

4.1. Existing Properties

The implementation given in Section 3 can be made
relatively robust to these kinds of errors with just a little
bit of effort. Memory protection for kernel-level threads is
now a common feature, even in RTOS kernels. If each
kernel-level worker thread has memory protection from
all other threads (i.e., is treated as a process), the only
possibility for one task to corrupt another is by corrupting
the data structures shared between worker threads (such as
the release queue and the ready queue).

Furthermore, if this kind of corruption does not occur,
the implementation is already robust to process failures
(for example, segfaults). Under such a failure, the worker
thread and the real-time task being executed inside it would
be lost; the backup thread running on that core would then
run and activate a non-active worker thread in its place, in
accordance with the specification given in Section 3.

4.2. Achieving Complete Memory Protec-
tion

Nonetheless, the implementation given in Section 3
leaves critical shared scheduling data structures vulnerable
to corruption. If one of these data structures were to
become corrupted, it could cause the failure of all tasks
in the system. The only way around this problem is to
prevent any task application code from being able to write
to these shared scheduling data structures. (We assume that
the virtual scheduler runtime library code is trusted not to
cause corruption; ultimately, some code in the system must
be trusted to update scheduling data structures.) Below,
we outline how the implementation from Section 3 can be
modified to achieve this property. (There are many specific
implementation tradeoffs that may be worth investigating
in future work. Here, our concern is simply to show that
our virtual scheduler mechanism can be modified to enable
memory protection.)

Modifications for full memory protection. Rather than
using contexts as the task mechanism, kernel-level threads
are used. When the system is initialized, n such threads
are created, all with a priority lower than that of the
backup threads. In this scheme, the backup threads play a
more important role than before. The backup threads share
access to scheduling data structures. They select tasks to
run on each core, and cause them to do so by forcing
them to migrate to the appropriate core and setting their
priority to be higher than that of the backup threads. Task
completion is carried out when a task sets its priority back
to the lower setting, returning control to the backup thread
on that core. Timer-driven signals for releasing tasks are
set up in a way that causes them to be delivered to the task
running on the relevant core. When a task receives such a
signal, it returns control to the backup thread on that core
by lowering its priority.

5. Future Work

Initially, we would like to make a more elaborate
examination of the likelihood of the virtual scheduling
approach to yield useful results. Such an examination
would most likely focus on measuring the performance
of several virtual scheduler implementations and compar-
ing their performance to that achieved by native RTOS
schedulers.

Given the success of such an examination, we would
ultimately like to conduct a more comprehensive study
of virtual schedulers. Such a study would first catalog
relevant classes of real-time systems, as distinguished by
characteristics like hardware platform (including number
of cores and caching hierarchy); workload properties (such

39

as the number of tasks and the maximum per-task utiliza-
tion); performance requirements (such as types of timing
constraints or requirements for adaptivity); and robustness
requirements (such as fault isolation and security protec-
tion). Then, the study would determine, as best as possible,
the most effective virtual scheduling implementation for
each class, in terms of characteristics like runtime over-
head. Such a study would allow industry practitioners to
choose intelligently between native RTOS scheduling and
virtual scheduling for applications of interest, and would
(hopefully) open up avenues for entirely new classes of
real-time systems to be deployed.

In this study, we do not wish to rule out implementation
approaches necessitating basic RTOS kernel modifications,
in return for a significant boost in the capabilities of the
virtual scheduler. Such approaches would be of interest if
the needed modifications were generic and straightforward
enough that one could reasonably hope for commercial
RTOS vendors to eventually adopt them.

If the virtual scheduling approach proves viable, we are
eager to apply it to novel topics currently being studied by
the real-time systems research community, such as adaptive
systems, mixed-criticality systems, hierarchical scheduling
systems, and secure real-time systems. We believe virtual
scheduling may enable significant practical advances in
these areas.

6. Conclusion

In this paper, we proposed a new approach for the run-
time scheduling of real-time workloads, virtual scheduling,
which decouples real-time scheduling from the underlying
real-time operating system (RTOS) kernel. This decoupling
provides for the use of scheduling algorithms on an RTOS
platform that does not support them natively. If it proves
to be viable, this approach will allow new scheduling
functionality to be offered to industry practitioners without
sacrificing the ideal of the stable, predictable, time-tested,
and (mostly) bug-free RTOS kernel. However, the best way
to go about exploring this concept is far from obvious.
We are eager to receive feedback from real-time kernel
developers and academic researchers on how to make the
most of this approach, considering the intricacies of real-
time operating systems and the complexity of real-time
scheduling algorithms.

References

[1] T. Anderson, B. Bershad, E. Lazowska, and H. Levy.
Scheduler activations: Effective kernel support for user-
level management of parallelism. In ACM Transactions on
Computer Systems, vol. 10, no. 1, pages 53–79, 1992.

[2] T. P. Baker. Stack-based scheduling of real-time processes.
The Journal Of Real-Time Systems, 3(1):67–99, 1991.

[3] A. Bastoni, B. Brandenburg, and J. Anderson. An empirical
comparison of global, partitioned, and clustered multipro-
cessor edf schedulers. In Proceedings of the 2010 31st IEEE
Real-Time Systems Symposium, pages 14–24, 2010.

[4] A. Block, B. Leontyev, B. Brandenburg, and J. Anderson.
A flexible real-time locking protocol for multiprocessors.
In Proceedings of the 13th IEEE Conference on Embedded
and Real-Time Computing Systems and Applications, pages
47–57, 2007.

[5] B. Brandenburg and J. Anderson. Optimality results for
multiprocessor real-time locking. In Proceedings of the
2010 31st IEEE Real-Time Systems Symposium, pages 49–
60, 2010.

[6] Erlang Web site. http://www.erlang.org/.
[7] Evidence Web site. http://www.evidence.eu.com.
[8] GNU Portable Threads Web site. http://www.gnu.org/software/pth.
[9] R. Rajkumar. Real-time synchronization protocols for

shared-memory multiprocessors. In Proceedings of the 10th
International Conferece on Distributed Computing Systems,
pages 116–123, 1990.

[10] R. Rajkumar, L. Sha, and J. Lehockzy. Real-time syn-
chronization protocols for multiprocessors. In Proceedings
of the 9th Real-Time Systems Symposium, pages 259–269,
1988.

[11] A. Wellings and A. Burns. Generalizing the edf scheduling
support in ada 2005. In Ada Letters, vol. 30, pages 116–124,
2010.

[12] Wind River Web site. http://www.windriver.com.

40

Temporal isolation in an HSF-enabled real-time
kernel in the presence of shared resources

Martijn M. H. P. van den Heuvel, Reinder J. Bril and Johan J. Lukkien
Department of Mathematics and Computer Science

Technische Universiteit Eindhoven (TU/e)
Den Dolech 2, 5600 AZ Eindhoven, The Netherlands

Abstract—Hierarchical scheduling frameworks (HSFs) have
been extensively investigated as a paradigm for facilitating tempo-
ral isolation between components that need to be integrated on a
single shared processor. To support resource sharing within two-
level, fixed priority scheduled HSFs, two synchronization proto-
cols based on the stack resource policy (SRP) have recently been
presented, i.e. HSRP [1] and SIRAP [2]. In the presence of shared
resources, however, temporal isolation may break when one of
the accessing components executes longer than specified during
global resource access. As a solution we propose a SRP-based
synchronization protocol for HSFs, named Basic Hierarchical
Synchronization protocol with Temporal Protection (B-HSTP).
The schedulability of those components that are independent of
the unavailable resource is unaffected.

This paper describes an implementation to provide HSFs, ac-
companied by SRP-based synchronization protocols, with means
for temporal isolation. We base our implementations on the
commercially available real-time operating system µC/OS-II,
extended with proprietary support for two-level fixed priority
preemptive scheduling. We specifically show the implementation
of B-HSTP and we investigate the system overhead induced by
its synchronization primitives in combination with HSRP and
SIRAP. By supporting both protocols in our HSF, their primitives
can be selected based on the protocol’s relative strengths1.

I. INTRODUCTION

The increasing complexity of real-time systems demands
a decoupling of (i) development and analysis of individual
components and (ii) integration of components on a shared
platform, including analysis at the system level. Hierarchical
scheduling frameworks (HSFs) have been extensively inves-
tigated as a paradigm for facilitating this decoupling [3]. A
component that is validated to meet its timing constraints when
executing in isolation will continue meeting its timing con-
straints after integration (or admission) on a shared platform.
The HSF therefore provides a promising solution for current
industrial standards, e.g. the AUtomotive Open System AR-
chitecture (AUTOSAR) [4] which specifies that an underlying
OSEK-based operating system should prevent timing faults in
any component to propagate to different components on the
same processor. The HSF provides temporal isolation between
components by allocating a budget to each component, which
gets mediated access to the processor by means of a server.

An HSF without further resource sharing is unrealistic,
however, since components may for example use operating

1The work in this paper is supported by the Dutch HTAS-VERIFIED
project, see http://www.htas.nl/index.php?pid=154. Our µC/OS-II extensions
are available at http://www.win.tue.nl/∼mholende/relteq/.

system services, memory mapped devices and shared com-
munication devices which require mutually exclusive access.
Extending an HSF with such support makes it possible to share
logical resources between arbitrary tasks, which are located
in arbitrary components, in a mutually exclusive manner. A
resource that is used in more than one component is denoted
as a global shared resource. A resource that is only shared by
tasks within a single component is a local shared resource. If a
task that accesses a global shared resource is suspended during
its execution due to the exhaustion of its budget, excessive
blocking periods can occur which may hamper the correct
timeliness of other components [5].

Looking at existing industrial real-time systems, fixed-
priority preemptive scheduling (FPPS) is the de-facto standard
of task scheduling, hence we focus on an HSF with support for
FPPS within a component. Having such support will simplify
migration to and integration of existing legacy applications
into the HSF. Our current research efforts are directed towards
the conception and realization of a two-level HSF that is based
on (i) FPPS for both global scheduling of servers allocated to
components and local scheduling of tasks within a component
and (ii) the Stack Resource Policy (SRP) [6] for both local
and global resource sharing.

To accommodate resource sharing between components,
two synchronization protocols [1], [2] have been proposed
based on SRP for two-level FPPS-based HSFs. Each of these
protocols describes a run-time mechanism to handle the deple-
tion of a component’s budget during global resource access. In
short, two general approaches are proposed: (i) self-blocking
when the remaining budget is insufficient to complete a critical
section [2] or (ii) overrun the budget until the critical section
ends [1]. However, when a task exceeds its specified worst-
case critical-section length, i.e. it misbehaves during global
resource access, temporal isolation between components is no
longer guaranteed. The protocols in [1], [2] therefore break the
temporal encapsulation and fault-containment properties of an
HSF without the presence of complementary protection.

A. Problem description

Most off-the-shelf real-time operating systems, including
µC/OS-II [7], do not provide an implementation for SRP
nor hierarchical scheduling. We have extended µC/OS-II with
support for idling periodic servers (IPS) [8] and two-level
FPPS. However, existing implementations of the synchroniza-

41

tion protocols in our framework [9], [10], as well as in the
framework presented in [11], do not provide any temporal
isolation during global resource access.

A solution to limit the propagation of temporal faults to
those components that share global resources is considered
in [12]. Each task is assigned a dedicated budget per global
resource access and this budget is synchronous with the period
of that task. However, in [12] they allow only a single task
per component.

We consider the problem to limit the propagation of tempo-
ral faults in HSFs, where multiple concurrent tasks are allo-
cated a shared budget, to those components that share a global
resource. Moreover, we present an efficient implementation
and evaluation of our protocol in µC/OS-II. The choice of
operating system is driven by its former OSEK compatibility2.

B. Contributions

The contributions of this paper are fourfold.
• To achieve temporal isolation between components, even

when resource-sharing components misbehave, we pro-
pose a modified SRP-based synchronization protocol,
named Basic Hierarchical Synchronization protocol with
Temporal Protection (B-HSTP).

• We show its implementation in a real-time operating
system, extended with support for two-level fixed-priority
scheduling, and we efficiently achieve fault-containment
by disabling preemptions of other tasks within the same
component during global resource access.

• We show that B-HSTP complements existing synchro-
nization protocols [1], [2] for HSFs.

• We evaluate the run-time overhead of our B-HSTP imple-
mentation in µC/OS-II on the OpenRISC platform [13].
These overheads become relevant during deployment of
a resource-sharing HSF.

C. Organization

The remainder of this paper is organized as follows. Sec-
tion II describes related works. Section III presents our system
model. Section IV presents our resource-sharing protocol, B-
HSTP, which guarantees temporal isolation to independent
components. Section V presents our existing extensions for
µC/OS-II comprising two-level FPPS-based scheduling and
SRP-based resource arbitration. Section VI presents B-HSTP’s
implementation using our existing framework. Section VII
investigates the system overhead corresponding to our imple-
mentation. Section VIII discusses practical extensions to B-
HSTP. Finally, Section IX concludes this paper.

II. RELATED WORK

Our basic idea is to use two-level SRP to arbitrate access to
global resources, similar as [1], [2]. In literature several alter-
natives are presented to accommodate task communication in
reservation-based systems. De Niz et al. [12] support resource
sharing between reservations based on the immediate priority

2Unfortunately, the supplier of µC/OS-II, Micrium, has discontinued the
support for the OSEK-compatibility layer.

ceiling protocol (IPCP) [14] in their FPPS-based Linux/RK re-
source kernel and use a run-time mechanism based on resource
containers [15] for temporal protection against misbehaving
tasks. Steinberg et al. [16] showed that these resource con-
tainers are expensive and efficiently implemented a capacity-
reserve donation protocol to solve the problem of priority
inversion for tasks scheduled in a fixed-priority reservation-
based system. A similar approach is described in [17] for EDF-
based systems and termed bandwidth-inheritance (BWI). BWI
regulates resource access between tasks that each have their
dedicated budget. It works similar to the priority-inheritance
protocol [14], i.e. when a task blocks on a resource it donates
its remaining budget to the task that causes the blocking.
However, all these approaches assume a one-to-one mapping
from tasks to budgets, and inherently only have a single
scheduling level.

In HSFs a group of concurrent tasks, forming a component,
are allocated a budget [18]. A prerequisite to enable indepen-
dent analysis of interacting components and their integration is
the knowledge of which resources a task will access [2], [19].
When a task accesses a global shared resource, one needs to
consider the priority inversion between components as well as
local priority inversion between tasks within the component.
To prevent budget depletion during global resource access in
FPPS-based HSFs, two synchronization protocols have been
proposed based on SRP [6]: HSRP [1] and SIRAP [2]. Al-
though HSRP [1] originally does not integrate into HSFs due
to the lacking support for independent analysis of components,
Behnam et al. [19] lifted this limitation. However, these two
protocols, including their implementations in [9], [10], [11],
assume that components respect their timing contract with
respect to global resource sharing. In this paper we present
an implementation of HSRP and SIRAP protocols that limits
the unpredictable interferences caused by contract violations
to the components that share the global resource.

III. REAL-TIME SCHEDULING MODEL

We consider a two-level FPPS-scheduled HSF, following the
periodic resource model [3], to guarantee processor allocations
to components. We use SRP-based synchronization to arbitrate
mutually exclusive access to global shared resources.

A. Component model

A system contains a set R of M global logical resources
R1, R2, . . ., RM , a set C of N components C1, C2, . . ., CN , a
set B of N budgets for which we assume a periodic resource
model [3], and a single shared processor. Each component
Cs has a dedicated budget which specifies its periodically
guaranteed fraction of the processor. The remainder of this
paper leaves budgets implicit, i.e. the timing characteristics of
budgets are taken care of in the description of components. A
server implements a policy to distribute the available budget
to the component’s workload.

The timing characteristics of a component Cs are specified
by means of a triple < Ps, Qs,Xs >, where Ps ∈ R+

denotes its period, Qs ∈ R+ its budget, and Xs the set of

42

maximum access times to global resources. The maximum
value in Xs is denoted by Xs, where 0 < Qs+Xs ≤ Ps. The
set Rs denotes the subset of Ms global resources accessed
by component Cs. The maximum time that a component Cs

executes while accessing resource Rl ∈ Rs is denoted by Xsl,
where Xsl ∈ R+ ∪ {0} and Xsl > 0⇔ Rl ∈ Rs.

B. Task model

Each component Cs contains a set Ts of ns sporadic tasks
τs1, τs2, . . ., τsns

. Timing characteristics of a task τsi ∈ Ts
are specified by means of a triple < Tsi, Esi, Dsi >, where
Tsi ∈ R+ denotes its minimum inter-arrival time, Esi ∈ R+ its
worst-case computation time, Dsi ∈ R+ its (relative) deadline,
where 0 < Esi ≤ Dsi ≤ Tsi. The worst-case execution time of
task τsi within a critical section accessing Rl is denoted csil,
where csil ∈ R+ ∪ {0}, Esi ≥ csil and csil > 0⇔ Rl ∈ Rs.
All (critical-section) execution times are accounted in terms of
processor cycles and allocated to the calling task’s budget. For
notational convenience we assume that tasks (and components)
are given in priority order, i.e. τs1 has the highest priority and
τsns

has the lowest priority.

C. Synchronization protocol

Traditional synchronization protocols such as PCP [14] and
SRP [6] can be used for local resource sharing in HSFs [20].
This paper focuses on arbitrating global shared resources using
SRP. To be able to use SRP in an HSF for synchronizing global
resources, its associated ceiling terms need to be extended and
excessive blocking must be prevented.

1) Resource ceilings: With every global resource Rl two
types of resource ceilings are associated; a global resource
ceiling RC l for global scheduling and a local resource ceiling
rcsl for local scheduling. These ceilings are statically calcu-
lated values, which are defined as the highest priority of any
component or task that shares the resource. According to SRP,
these ceilings are defined as:

RC l = min(N,min{s | Rl ∈ Rs}), (1)
rcsl = min(ns,min{i | csil > 0}). (2)

We use the outermost min in (1) and (2) to define RC l and
rcsl in those situations where no component or task uses Rl.

2) System and component ceilings: The system and com-
ponent ceilings are dynamic parameters that change during
execution. The system ceiling is equal to the highest global
resource ceiling of a currently locked resource in the system.
Similarly, the component ceiling is equal to the highest lo-
cal resource ceiling of a currently locked resource within a
component. Under SRP a task can only preempt the currently
executing task if its priority is higher than its component ceil-
ing. A similar condition for preemption holds for components.

3) Prevent excessive blocking: HSRP [1] uses an overrun
mechanism [19] when a budget depletes during a critical
section. If a task τsi ∈ Ts has locked a global resource
when its component’s budget Qs depletes, then component Cs

can continue its execution until task τsi releases the resource.
These budget overruns cannot take place across replenishment

boundaries, i.e. the analysis guarantees Qs+Xs processor time
before the relative deadline Ps [1], [19].

SIRAP [2] uses a self-blocking approach to prevent budget
depletion inside a critical section. If a task τsi wants to enter
a critical section, it enters the critical section at the earliest
time instant so that it can complete the critical section before
the component’s budget depletes. If the remaining budget is
insufficient to lock and release a resource Rl before depletion,
then (i) the task blocks itself until budget replenishment and
(ii) the component ceiling is raised to prevent tasks τsj ∈ Ts
with a priority lower than the local ceiling rcsl to execute until
the requested critical section has been finished.

The relative strengths of HSRP and SIRAP have been
analytically investigated in [21] and heavily depend on the
chosen system parameters. To enable the selection of a
particular protocol based on its strengths, we presented an
implementation supporting both protocols with transparent
interfaces for the programmer [9]. In this paper we focus on
mechanisms to extend these protocols with temporal protection
and merely investigate their relative complexity with respect
to our temporal-protection mechanisms.

IV. SRP WITH TEMPORAL PROTECTION

Temporal faults may cause improper system alterations, e.g.
due to unexpectedly long blocking or an inconsistent state of a
resource. Without any protection a self-blocking approach [2]
may miss its purpose under erroneous circumstances, i.e. when
a task overruns its budget to complete its critical section. Even
an overrun approach [1], [19] needs to guarantee a maximum
duration of the overrun situation. Without such a guarantee,
these situations can hamper temporal isolation and resource
availability to other components due to unpredictable block-
ing effects. A straightforward implementation of the overrun
mechanism, e.g. as implemented in the ERIKA kernel [22],
where a task is allowed to indefinitely overrun its budget as
long as it locks a resource, is therefore not reliable.

A. Resource monitoring and enforcement

A common approach to ensure temporal isolation and
prevent propagation of temporal faults within the system is to
group tasks that share resources into a single component [20].
However, this might be too restrictive and lead to large,
incoherent component designs, which violates the principle
of HSFs to independently develop components. Since a com-
ponent defines a coherent piece of functionality, a task that
accesses a global shared resource is critical with respect to all
other tasks in the same component.

To guarantee temporal isolation between components, the
system must monitor and enforce the length of a global critical
section to prevent a malicious task to execute longer in a
critical section than assumed during system analysis [12].
Otherwise such a misbehaving task may increase blocking to
components with a higher priority, so that even independent
components may suffer, as shown in Figure 1.

To prevent this effect we introduce a resource-access budget
qs in addition to a component’s budget Qs, where budget qs

43

Legend: critical section normal execution budget arrival

C1

C2

C3

timetet0 t1

Fig. 1. Temporal isolation is unassured when a component, C3, exceeds
its specified critical-section length, i.e. at time instant te. The system ceiling
blocks all other components.

is used to enforce critical-section lengths. When a resource Rl

gets locked, qs replenishes to its full capacity, i.e. qs ← Xsl.
To monitor the available budget at any moment in time, we
assume the availability of a function Qrem

s (t) that returns
the remaining budget of Qs. Similarly, qrems (t) returns the
remainder of qs at time t. If a component Cs executes in
a critical section, then it consumes budget from Qs and qs in
parallel, i.e. depletion of either Qs or qs forbids component Cs

to continue its execution. We maintain the following invariant
to prevent budget depletion during resource access:

Invariant 1: Qrem
s (t) ≥ qrems (t).

The way of maintaining this invariant depends on the chosen
policy to prevent budget depletion during global resource
access, e.g. by means of SIRAP [2] or HSRP [1].

1) Fault containment of critical sections: Existing SRP-
based synchronization protocols in [2], [19] make it possible to
choose the local resource ceilings, rcsl, according to SRP [6].
In [23] techniques are presented to trade-off preemptiveness
against resource holding times. Given their common definition
for local resource ceilings, a resource holding time, Xsl, may
also include the interference of tasks with a priority higher than
the resource ceiling. Task τsi can therefore lock resource Rl

longer than specified, because an interfering task τsj (where
πsj > rcsl) exceeds its computation time, Esj .

To prevent this effect we choose to disable preemptions for
other tasks within the same component during critical sections,
i.e. similar as HSRP [1]. As a result Xsl only comprises task
execution times within a critical section, i.e.

Xsl = max
1≤i≤ns

csil. (3)

Since Xsl is enforced by budget qs, temporal faults are
contained within a subset of resource-sharing components.

2) Maintaining SRP ceilings: To enforce that a task τsi
resides no longer in a critical section than specified by Xsl,
a resource Rl ∈ R maintains a state locked or free. We
introduce an extra state busy to signify that Rl is locked by a
misbehaving task. When a task τsi tries to exceed its maximum
critical-section length Xsl, we update SRP’s system ceiling by
mimicking a resource unlock and mark the resource busy until
it is released. Since the system ceiling decreases after τsi has
executed for a duration of Xsl in a critical section to resource
Rl, we can no longer guarantee absence of deadlocks. Nested
critical sections to global resources are therefore unsupported.

One may alternatively aggregate global resource accesses
into a simultaneous lock and unlock of a single artificial
resource [24]. Many protocols, or their implementations, lack
deadlock avoidance [11], [12], [16], [17].

Although it seems attractive from a schedulability point of
view to release the component ceiling when the critical-section
length is exceeded, i.e. similar to the system ceiling, this would
break SRP compliance, because a task may block on a busy
resource instead of being prevented from starting its execution.
Our approach therefore preserves the SRP property to share a
single, consistent execution stack per component [6]. At the
global level tasks can be blocked by a depleted budget, so that
components cannot share an execution stack anyway.

B. An overview of B-HSTP properties

This section presented a basic protocol to establish hier-
archical synchronization with temporal protection (B-HSTP).
Every lock operation to resource Rl replenishes a correspond-
ing resource-access budget qs with an amount Xsl. After
this resource-access budget has been depleted, the component
blocks until its normal budget Qs replenishes. We can derive
the following convenient properties from our protocol:

1) as long as a component behaves according to its timing
contract, we strictly follow SRP;

2) because local preemptions are disabled during global re-
source access and nested critical sections are prohibited,
each component can only access a single global resource
at a time;

3) similarly, each component can at most keep a single
resource in the busy state at a time;

4) each access to resource Rl by task τsi may take at most
Xsl budget from budget Qs, where csil ≤ Xsl.

5) after depleting resource-access budget qs, a task may
continue in its component normal budget Qs with a de-
creased system ceiling. This guarantees that independent
components are no longer blocked by the system ceiling;

6) when a component blocks on a busy resource, it discards
all remaining budget until its next replenishment of
Qs. This avoids budget suspension, which can lead to
scheduling anomalies [25].

As a consequence of property 2, we can use a simple non-
preemptive locking mechanism at the local level rather than
using SRP. We therefore only need to implement SRP at the
global level and we can use a simplified infrastructure at the
local level compared to the implementations in [9], [10], [11].

V. µC/OS-II AND ITS EXTENSIONS RECAPITULATED

The µC/OS-II operating system is maintained and supported
by Micrium [7], and is applied in many application domains,
e.g. avionics, automotive, medical and consumer electronics.
Micrium provides the full µC/OS-II source code with accom-
panying documentation [26]. The µC/OS-II kernel provides
preemptive multitasking for up to 256 tasks, and the kernel size
is configurable at compile time, e.g. services like mailboxes
and semaphores can be disabled.

44

Most real-time operating systems, including µC/OS-II, do
not include a reservation-based scheduler, nor provide means
for hierarchical scheduling. In the remainder of this section
we outline our realization of such extensions for µC/OS-II,
which are required basic blocks to enable the integration of
global synchronization with temporal protection.

A. Timed Event Management

Intrinsic to our reservation-based component scheduler is
timed-event management. This comprises timers to accom-
modate (i) periodic timers at the global level for budget
replenishment of periodic servers and at the component level
to enforce minimal inter-arrivals of sporadic task activations
and (ii) virtual timers to track a component’s budget. The
corresponding timer handlers are executed in the context of
the timer interrupt service routine (ISR).

We have implemented a dedicated module to manage rela-
tive timed event queues (RELTEQs) [27]. The basic idea is to
store events relative to each other, by expressing the expiration
time of an event relative to the arrival time of the previous
event. The arrival time of the head event is relative to the
current time, see Figure 2

A system queue tracks all server events. Each server has its
own local queue to track its tasks’ events, e.g. task arrivals.
When a server is suspended its local queues are deactivated to
prevent that expiring events interfere with other servers. When
a server resumes, its local queues are synchronized with global
time. A mechanism to synchronize server queues with global
time is implemented by means of a stopwatch queue, which
keeps track of the time passed since the last server switch.

56 4 5 3 10system queue

74 21 4active server
queue

-9 2 15 7
inactive server

and virtual server
queues

37 4

Legend: N event decremented upon every tick N event not decremented

27 5 101active virtual
server queue

-7 -2nstopwatch queue

Fig. 2. RELTEQ-based timer management for two-level HSFs.

A dedicated server queue provides support for virtual timers
to trigger timed events relative to the consumed budget. Since
an inactive server does not consume any of its budget, a virtual
timer queue is not synchronized when a server is resumed.

We consider only budget depletion as a virtual event, so that
a component can inspect its virtual-timer in constant time.

B. Server Scheduling

A server is assigned to each component to distribute its
allocated budget to the component’s tasks. A global scheduler
is used to determine which server should be allocated the
processor at any given time. A local scheduler determines
which of the chosen server’s tasks should actually execute.
Although B-HSTP is also applicable to other server models,
we assume that a component is implemented by means of
an idling periodic server (IPS) [8]. Extending µC/OS-II with
basic HSF support requires a realization of the following
concepts:

1) Global Scheduling: At the system level a RELTEQ
queue is introduced to keep track of server periods. We use
a bit-mask to represent whether a server has capacity left.
When the scheduler is called, it traverses the RELTEQ and
activates the ready server with the earliest deadline in the
queue. Subsequently, the µC/OS-II fixed-priority scheduler
determines the highest priority ready task within the server.

2) Periodic Servers: Since µC/OS-II tasks are bundled
in groups of sixteen to accommodate efficient fixed-priority
scheduling, a server can naturally be represented by such
a group. The implementation of periodic servers is very
similar to implementing periodic tasks using our RELTEQ
extensions [27]. An idling server contains an idling task at
the lowest, local priority, which is always ready to execute.

3) Greedy Idle Server: In our HSF, we reserve the lowest
priority level for a idle server, which contains µC/OS-II’s idle
task at the lowest local priority. Only if no other server is
eligible to execute, then the idle server is switched in.

C. Global SRP implementation

The key idea of SRP is that when a component needs a
resource that is not available, it is blocked at the time it
attempts to preempt, rather than later. Nice properties of SRP
are its simple locking and unlocking operations. In turn, during
run-time we need to keep track of the system ceiling and
the scheduler needs to compare the highest ready component
priority with the system ceiling. Hence, a preemption test is
performed during run time by the scheduler: A component
cannot preempt until its priority is the highest among those of
all ready components and its priority is higher than the system
ceiling. In the original formulation of SRP [6], it introduces the
notion of preemption-levels. This paper considers FPPS, which
makes it possible to unify preemption-levels with priorities.

The system ceiling is a dynamic parameter that changes
during execution. Under SRP, a component can only preempt
the currently executing component if its priority is higher
than the system ceiling. When no resources are locked the
system ceiling is zero, meaning that it does not block any
tasks from preempting. When a resource is locked, the system
ceiling is adjusted dynamically using the resource ceiling, so
that the system ceiling represents the highest resource ceiling
of a currently locked resource in the system. A run-time

45

mechanism for tracking the system ceiling can be implemented
by means of a stack data structure.

1) SRP data and interface description: Each resource
accessed using an SRP-based mutex is represented by a
Resource structure. This structure is defined as follows:
typedef struct resource{

INT8U ceiling;
INT8U lockingTask;
void* previous;

} Resource;

The Resource structure stores properties which are used
to track the system ceiling, as explained in below. The corre-
sponding mutex interfaces are defined as follows:

• Create a SRP mutex:
Resource* SRPMutexCreate(INT8U ceiling,

INT8U *err);
• Lock a SRP mutex:

void SRPMutexLock(Resource* r, INT8U *err);
• Unlock a SRP mutex:

void SRPMutexUnlock(Resource* r);

The lock and unlock operations only perform bookkeeping
actions by increasing and decreasing the system ceiling.

2) SRP operations and scheduling: We extended µC/OS-II
with the following SRP rules at the server level:

a) Tracking the system ceiling: We use the Resource
data-structure to implement a system ceiling stack. ceiling
stores the resource ceiling and lockingTask stores the
identifier of the task currently holding the resource. From the
task identifier we can deduct to which server it is attached. The
previous pointer is used to maintain the stack structure, i.e.
it points to the previous Resource structure on the stack.
The ceiling field of the Resource on top of the stack
represents the current system ceiling.

b) Resource locking: When a component tries to lock a
resource with a resource ceiling higher than the current system
ceiling, the corresponding resource ceiling is pushed on top
of the system ceiling stack.

c) Resource unlocking: When unlocking a resource, the
value on top of the system ceiling stack is popped. The absence
of nested critical sections guarantees that the system ceiling
represents the resource to be unlocked. The scheduler is called
to allow for scheduling ready components that might have
arrived during the execution of the critical section.

d) Global scheduling: When the µC/OS-II scheduler is
called it calls a function which returns the highest priority
ready component. Accordingly to SRP we extend this function
with the following rule: when the highest ready component has
a priority lower than or equal to the current system ceiling, the
priority of the task on top of the resource stack is returned.
The returned priority serves as a task identifier, which makes
easily allows to deduct the corresponding component.

e) Local scheduling: The implementations of two-level
SRP protocols in [9], [10], [11] also keep track of component
ceilings. We only have a binary local ceiling to indicate
whether preemptions are enabled or disabled, because we ex-
plicitly chose local resource ceilings equal to the highest local
priority. During global resource access, the local scheduler can
only select the resource-accessing task for execution.

VI. B-HSTP IMPLEMENTATION

In this section we extend the framework presented in
Section V with our proposed protocol, B-HSTP. In many
microkernels, including µC/OS-II, the only way for tasks to
share data structures with ISRs is by means of disabling
interrupts. We therefore assume that our primitives execute
non-preemptively with interrupts disabled.

Because critical sections are non-nested and local preemp-
tions are disabled, at most one task τsi at a time in each
component may use a global resource. This convenient system
property makes it possible to multiplex both resource-access
budget qs and budget Qs on a single budget timer by using
our virtual timer mechanism. The remaining budget Qrem

s (t)
is returned by a function that depends on the virtual timers
mechanism, see Section V-A. A task therefore merely blocks
on its component’s budget, which we implement by adjusting
the single available budget timer Qrem

s (t).
1) Resource locking: The lock operation updates the local

ceiling to prevent other tasks within the component from
interfering during the execution of the critical section. Its
pseudo-code is presented in Algorithm 1.

In case we have enabled SIRAP, rather than HSRP’s over-
run, there must be sufficient remaining budget within the
server’s current period in order to successfully lock a resource.
If the currently available budget Qrem

s (t) is insufficient, the
task will spinlock until the next replenishment event expires.
To avoid a race-condition between a resource unlock and
budget depletion, we require that Qrem

s (t) is strictly larger than
Xsr before granting access to a resource Rr.

Algorithm 1 void HSF lock(Resource∗ r);
1: updateComponentCeiling(r);
2: if HSF MUTEX PROTOCOL == SIRAP then
3: while Xsr >= Qrem

s (t) do {apply SIRAP’s self-blocking}
4: enableInterrups;
5: disableInterrups;
6: end while
7: end if
8: while r.status = busy do {self-suspend on a busy resource}
9: setComponentBudget(0);

10: enableInterrups;
11: Schedule();
12: disableInterrups;
13: end while
14: QO

s ← Qrem
s (t);

15: setComponentBudget(Xsr);
16: Cs.lockedResource← r;
17: r.status← locked
18: SRPMutexLock(r);

A task may subsequently block on a busy resource, until it
becomes free. When it encounters a busy resource, it suspends
the component and discards all remaining budget. When the
resource becomes free and the task which attempted to lock
the resource continues its execution, it is guaranteed that there
is sufficient budget to complete the critical section (assuming
that it does not exceed its specified length, Xsr). The reason
for this is that a component discards its budget when it
blocks on a busy resource and can only continue with a fully
replenished budget. This resource holding time Xsr defines

46

the resource-access budget of the locking task and component.
The component’s remaining budget is saved as QO

s and reset
to Xsl before the lock is established.
setComponentBudget(0), see line 9, performs two ac-

tions: (i) the server is blocked to prevent the scheduler from
rescheduling the server before the next replenishment, and
(ii) the budget-depletion timer is canceled.

2) Resource unlocking: Unlocking a resource means that
the system and component ceilings must be decreased. More-
over, the amount of consumed budget is deducted from the
components stored budget, QO

s . We do not need to restore the
component’s budget, if the system ceiling is already decreased
at the depletion of its resource-access budget, i.e. when a
component has exceeded its specified critical-section length.
The unlock operation in pseudo-code is as follows:

Algorithm 2 void HSF unlock(Resource∗ r);
1: updateComponentCeiling(r);
2: r.status← free;
3: Cs.lockedResource← 0;
4: if System ceiling == RCr then
5: setComponentBudget(max(0, QO

s − (Xsr −Qrem
s (t))));

6: else
7: ; {we already accounted the critical section upon depletion of Xsr}
8: end if
9: SRPMutexUnlock(r);

3) Budget depletion: We extend the budget-depletion event
handler with the following rule: if any task within the com-
ponent holds a resource, then the global resource ceiling is
decreased according to SRP and the resource is marked busy.
A component Cs may continue in its restored budget with
a decreased system ceiling. The pseudo-code of the budget-
depletion event handler is as follows:

Algorithm 3 on budget depletion:
1: if Cs.lockedResource 6= 0 then
2: r ← Cs.lockedResource;
3: r.status← busy;
4: SRPMutexUnlock(r);
5: setComponentBudget(max(0, QO

s −Xsr));
6: else
7: ; {apply default budget-depletion strategy}
8: end if

4) Budget replenishment: For each periodic server an event
handler is periodically executed to recharge its budget. We ex-
tend the budget-replenishment handler with the following rule:
if any task within the component holds a resource busy, then
the global resource ceiling is increased according to SRP and
the resource-access budget is replenished with Xsr of resource
Rr. A component Cs may continue in its restored budget
with an increased system ceiling for that duration, before the
remainder of its normal budget Qs becomes available. The
pseudo-code of this event handler is shown in Algorithm 4.

VII. EXPERIMENTS AND RESULTS

This section evaluates the implementation costs of B-HSTP.
First, we present a brief overview of our test platform. Next,
we experimentally investigate the system overhead of the

Algorithm 4 on budget replenishment:

1: QO
s ← Qs;

2: if Cs.lockedResource 6= 0 then {Cs keeps a resource busy}
3: r ← Cs.lockedResource;
4: setComponentBudget(Xsr);
5: SRPMutexLock(r);
6: else
7: ; {Apply default replenishment strategy}
8: end if

synchronization primitives and compare these to our earlier
protocol implementations. Finally, we illustrate B-HSTP by
means of an example system.

A. Experimental setup

We recently created a port for µC/OS-II to the OpenRISC
platform [13] to experiment with the accompanying cycle-
accurate simulator. The OpenRISC simulator allows software-
performance evaluation via a cycle-count register. This pro-
filing method may result in either longer or shorter mea-
surements between two matching calls due to the pipelined
OpenRISC architecture. Some instructions in the profiling
method interleave better with the profiled code than others.
The measurement accuracy is approximately 5 instructions.

B. Synchronization overheads

In this section we investigate the overhead of the synchro-
nization primitives of B-HSTP. By default, current analysis
techniques do not account for overheads of the corresponding
synchronization primitives, although these overheads become
of relevance upon deployment of such a system. Using more
advanced analysis methods, for example as proposed in [28],
these measures can be included in the existing system analysis.
The overheads introduced by the implementation of our pro-
tocol are summarized in Table I and compared to our earlier
implementation of HSRP and SIRAP in [9], [10].

1) Time complexity: Since it is important to know whether a
real-time operating system behaves in a time-wise predictable
manner, we investigate the disabled interrupt regions caused
by the execution of B-HSTP primitives. Our synchronization
primitives are independent of the number of servers and tasks
in a system, but introduce overheads that interfere at the
system level due to their required timer manipulations.

Manipulation of timers makes our primitives more expen-
sive than a straightforward two-level SRP implementation.
However, this is the price for obtaining temporal isolation. The
worst-case execution time of the lock operation increases with
380 instructions in every server period in which a component
blocks, so that the total cost depends on the misbehaving
critical-section length which causes the blocking. The budget
replenishment handler only needs to change the amount to be
replenished, so that B-HSTP itself does not contribute much to
the total execution time of the handler. These execution times
of the primitives must be included in the system analysis by
adding these to the critical section execution times, Xsl. At
the local scheduling level B-HSTP is more efficient, however,
because we use a simple non-preemptive locking mechanism.

47

TABLE I
BEST-CASE (BC) AND WORST-CASE (WC) EXECUTION TIMES FOR SRP-BASED PROTOCOLS, INCLUDING B-HSTP, MEASURED ON THE OPENRISC

PLATFORM IN NUMBER OF PROCESSOR INSTRUCTIONS.

Event single-level SRP [10] HSRP (see [9], [10]) SIRAP (see [9], [10]) B-HSTP
BC WC BC WC BC WC BC WC

Resource lock 124 124 196 196 214 224 763 -
Resource unlock 106 106 196 725 192 192 688 697
Budget depletion - - 0 383 - - 59 382
Budget replenishment - - 0 15 - - 65 76

2) Memory complexity: The code sizes in bytes of B-
HSTP’s lock and unlock operations, i.e. 1228 and 612 bytes,
is higher than the size of plain SRP, i.e. 196 and 192 bytes.
This includes the transparently implemented self-blocking
and overrun mechanisms and timer management. µC/OS-II’s
priority-inheritance protocol has similar sized lock and unlock
primitives, i.e. 924 and 400 bytes.

Each SRP resource has a data structure at the global level,
i.e. we have M shared resources. Each component only needs
to keep track of a single globally shared resource, because
local preemptions are disabled during global resource access.
However, each component Cs needs to store its resource-
access durations for all its resources Rl ∈ Rs.

C. SIRAP and HSRP re-evaluated

From our first implementation of SIRAP and HSRP, we
observed that SIRAP induces overhead locally within a com-
ponent, i.e. the spin-lock, which checks for sufficient budget to
complete the critical section, adds to the budget consumption
of the particular task that locks the resource. SIRAP’s overhead
consists at least of a single test for sufficient budget in case the
test is passed. The overhead is at most two of such tests in case
the initial test fails, i.e. one additional test is done after budget
replenishment before resource access is granted. All remaining
tests during spinlocking are already included as self-blocking
terms in the local analysis [2]. The number of processor
instructions executed for a single test is approximately 10
instructions on our test platform.

HSRP introduces overhead that interferes at the global sys-
tem level, i.e. the overrun mechanism requires to manipulate
event timers to replenish an overrun budget when the normal
budget of a component depletes. This resulted in a relatively
large overhead for HSRP’s unlock operation compared to
SIRAP, see Table I. Since similar timer manipulations are
required for B-HSTP, the difference in overhead for HSRP and
SIRAP becomes negligible when these protocols are comple-
mented with means for temporal isolation. Furthermore, the
absolute overheads are in the same order of magnitude.

D. B-HSTP: an example

We have recently extended our development environment
with a visualization tool, which makes it possible to plot a
HSF’s behaviour [29] by instrumenting the code, executed
on the OpenRISC platform, of our µC/OS-II extensions. To
demonstrate the behavior of B-HSTP, consider an example
system comprised of three components (see Table II) each

with two tasks (see Table III) sharing a single global resource
R1. We use the following conventions:

1) the component or task with the lowest number has the
highest priority;

2) the computation time of a task is denoted by the
consumed time units after locking and before
unlocking a resource. For example, the scenario
– Es1,1; Lock(R1); Es1,2; Unlock(R1); Es1,3 – is
denoted as Es1,1 + Es1,2 + Es1,3 and the term Es1,2

represents the critical-section length, cs1l;
3) the resource holding time is longest critical-section

length within a component, see Equation 3.
4) the component ceilings of the shared resource, R1, are

equal to the highest local priority, as dictated by B-
HSTP.

The example presented in Figure 3 complements HSRP’s
overrun mechanism with B-HSTP.

TABLE II
EXAMPLE SYSTEM: COMPONENT PARAMETERS

Server Period (Ps) Budget (Qs) Res. holding time (Xs)
IPS 1 110 12 4.0
IPS 2 55 8 0.0
IPS 3 50 23 7.4

TABLE III
EXAMPLE SYSTEM: TASK PARAMETERS

Server Task Period Computation time
IPS 1 Task 11 220 6.5 +4.0+6.5
IPS 1 Task 12 610 0.0+0.17+0.0
IPS 2 Task 21 110 5.0
IPS 2 Task 22 300 7.0
IPS 3 Task 31 100 12+7.4+12
IPS 3 Task 32 260 0.0+0.095+0.0

At every time instant that a task locks a resource, the
budget of the attached server is manipulated according to
the rules of our B-HSTP protocol, e.g. see time 11 where
task 31 locks the global resource and the budget of IPS 3 is
changed. After task 31 has executed two resource accesses
within its specified length, in the third access it gets stuck
in an infinite loop, see time instant 211. Within IPS 3, the
lower priority task is indefinitely blocked, since B-HSTP does
not concern the local schedulability of components. IPS 1
blocks on the busy resource at time instant 227 and cannot
continue further until the resource is released. However, the
activations of the independent component, implemented by
IPS 2, are unaffected, because IPS 3 can only execute 7.4

48

0 50 100 150 200 250 300 350

Task11

Task12

Task21

Task22

Task31

Task32

0

6

12

IPS1

0

4

8

IPS2

0

12

23

IPS3

OS-Idle

IPS2-Idle

IPS3-Idle

IPS1-Idle

Legend: active holding mutex

Fig. 3. Example trace, generated from instrumented code [29], combining HSRP and B-HSTP to arbitrate access between IPS 1 and IPS 3 to a single shared
resource. IPS 2 is independent and continues its normal execution even when task 31 exceeds its specified critical-section length, i.e. starting at time 219.
IPS 1 blocks on a busy resource and looses its remaining budget at time 227.

time units with a raised system ceiling, e.g. see time interval
[220, 235] where IPS 3 gets preempted after by IPS 1 that
blocks on the busy resource and IPS 2 that continues its
execution normally. Moreover, IPS 3 may even use its overrun
budget to continue its critical section with a decreased system
ceiling, see time interval [273, 280], where IPS 3 is preempted
by IPS 2. This is possible due to the inherent pessimism in the
overrun analysis [1], [19] which allocates an overrun budget
at the global level without taking into account that in normal
situations the system ceiling is raised for that duration.

VIII. DISCUSSION

A. Component ceilings revisited

We assume locally non-preemptive critical sections, which
may reduce the component’s schedulability. Suppose we allow
preemptions of tasks that are not blocked by an SRP-based
component ceiling, see (2). The blocking times of all tasks
with a lower preemption level than the component ceiling
do not change, providing no advantage compared to the

case where critical sections are non-preemptive. Moreover,
enforcement of critical-section lengths is a prerequisite to
guarantee temporal isolation in HSFs, see Section IV.

As a solution we could introduce an intermediate reservation
level assigned and allocated to critical sections. In addition, we
need to enforce that blocking times to other components are
not exceeded due to local preemptions [12]. This requires an
extension to our two-level HSF and therefore complicates an
implementation. It also affects performance, because switching
between multiple budgets for each component (or task) is
costly [16] and breaks SRP’s stack-sharing property.

B. Reliable resource sharing

To increase the reliability of the system, one may artificially
increase the resource-access budgets, Xsl, to give more slack
to an access of length csil to resource Rl. Although this
alleviates small increases in critical-section lengths, it comes
at the cost of a global schedulability penalty. Moreover, an
increased execution time of a critical section of length csil
up to Xsl should be compensated with additional budget to

49

guarantee that the other tasks within the same component make
their deadlines. Without this additional global schedulability
penalty, we may consume the entire overrun budget Xs when
we choose HSRP to arbitrate resource access, see Figure 3,
because the analysis in [1], [19] allocate an overrun budget
to each server period at the server’s priority level. In line
with [1], [19], an overrun budget is merely used to complete
a critical section. However, we leave budget allocations while
maximizing the system reliability as a future work.

C. Watchdog timers revisited

If we reconsider Figure 1 and Figure 3 we observe that
the time-instant at which a maximum critical-section length is
exceeded can be easily detected using B-HSTP, i.e. when a
resource-access budget depletes. We could choose to execute
an error-handler to terminate the task and release the resource
at that time instant, similar to the approach proposed in AU-
TOSAR. However, instead of using expensive timers, we can
defer the execution of such an error handler until component
Cs is allowed to continue its execution. This means that the
error handler’s execution is accounted to Cs’ budget of length
Qs. A nice result is that an eventual user call-back function
can no longer hamper temporal isolation of other components
than those involved in resource sharing.

IX. CONCLUSION

This paper presented B-HSTP, an SRP-based synchroniza-
tion protocol, which achieves temporal isolation between inde-
pendent components, even when resource-sharing components
misbehave. We showed that it generalizes and extends existing
protocols in the context of HSFs [1], [2]. Prerequisites to de-
pendable resource sharing in HSFs are mechanisms to enforce
and monitor maximum critical-section lengths. We followed
the choice in [1] to make critical sections non-preemptive
for tasks within the same component, because this makes
an implementation of our protocol efficient. The memory
requirements of B-HSTP are lower than priority-inheritance-
based protocols where tasks may pend in a waiting queue. Fur-
thermore, B-HSTP primitives have bounded execution times
and jitter. Both HSRP [1] and SIRAP [2], which each provide a
run-time mechanism to prevent budget depletion during global
resource access, have a negligible difference in implementation
complexity when complemented with B-HSTP. Our protocol
therefore promises a reliable solution to future safety-critical
industrial applications that may share resources.

REFERENCES

[1] R. Davis and A. Burns, “Resource sharing in hierarchical fixed priority
pre-emptive systems,” in Real-Time Systems Symp., 2006, pp. 257–267.

[2] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “SIRAP: A synchronization
protocol for hierarchical resource sharing in real-time open systems,” in
Conf. on Embedded Software, Oct. 2007, pp. 279–288.

[3] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in Real-Time Systems Symp., Dec. 2003, pp. 2–13.

[4] AUTOSAR GbR, “Technical overview,” 2008. [Online]. Available:
http://www.autosar.org/

[5] T. M. Ghazalie and T. P. Baker, “Aperiodic servers in a deadline
scheduling environment,” Real-Time Syst., vol. 9, no. 1, pp. 31–67, 1995.

[6] T. Baker, “Stack-based scheduling of realtime processes,” Real-Time
Syst., vol. 3, no. 1, pp. 67–99, March 1991.

[7] Micrium, “RTOS and tools,” March 2010. [Online]. Available:
http://micrium.com/

[8] R. Davis and A. Burns, “Hierarchical fixed priority pre-emptive schedul-
ing,” in Real-Time Systems Symp., Dec. 2005, pp. 389–398.

[9] M. M. H. P. van den Heuvel, R. J. Bril, and J. J. Lukkien, “Protocol-
transparent resource sharing in hierarchically scheduled real-time sys-
tems,” in Conf. Emerging Technologies and Factory Automation, 2010.

[10] M. M. H. P. van den Heuvel, R. J. Bril, J. J. Lukkien, and M. Behnam,
“Extending a HSF-enabled open-source real-time operating system with
resource sharing,” in Workshop on Operating Systems Platforms for
Embedded Real-Time Applications, July 2010, pp. 71–81.

[11] M. Åsberg, M. Behnam, T. Nolte, and R. J. Bril, “Implementation of
overrun and skipping in VxWorks,” in Workshop on Operating Systems
Platforms for Embedded Real-Time Applications, July 2010.

[12] D. de Niz, L. Abeni, S. Saewong, and R. Rajkumar, “Resource sharing
in reservation-based systems,” in Real-Time Systems Symp., Dec. 2001,
pp. 171–180.

[13] OpenCores. (2009) OpenRISC overview. [Online]. Available: http:
//www.opencores.org/project,or1k

[14] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols:
an approach to real-time synchronisation,” IEEE Trans. on Computers,
vol. 39, no. 9, pp. 1175–1185, Sept. 1990.

[15] G. Banga, P. Druschel, and J. C. Mogul, “Resource Containers: A New
Facility for Resource Management in Server Systems,” in Symp. on
Operating Systems Design and Implementation, 1999, pp. 45–58.

[16] U. Steinberg, J. Wolter, and H. Härtig, “Fast component interaction for
real-time systems,” in Euromicro Conf. on Real-Time Systems, July 2005,
pp. 89–97.

[17] G. Lipari, G. Lamastra, and L. Abeni, “Task synchronization in
reservation-based real-time systems,” IEEE Trans. on Computers,
vol. 53, no. 12, pp. 1591–1601, Dec. 2004.

[18] Z. Deng and J.-S. Liu, “Scheduling real-time applications in open
environment,” in Real-Time Systems Symp., Dec. 1997, pp. 308–319.

[19] M. Behnam, T. Nolte, M. Sjodin, and I. Shin, “Overrun methods and
resource holding times for hierarchical scheduling of semi-independent
real-time systems,” IEEE Trans. on Industrial Informatics, vol. 6, no. 1,
pp. 93 –104, Feb. 2010.

[20] L. Almeida and P. Peidreiras, “Scheduling with temporal partitions:
response-time analysis and server design,” in Conf. on Embedded
Software, Sept. 2004, pp. 95–103.

[21] M. Behnam, T. Nolte, M. Åsberg, and R. J. Bril, “Overrun and skipping
in hierarchically scheduled real-time systems,” in Conf. on Embedded
and Real-Time Computing Systems and Applications, 2009, pp. 519–526.

[22] G. Buttazzo and P. Gai, “Efficient implementation of an EDF sched-
uler for small embedded systems,” in Workshop on Operating System
Platforms for Embedded Real-Time Applications, July 2006.

[23] M. Bertogna, N. Fisher, and S. Baruah, “Static-priority scheduling and
resource hold times,” in Parallel and Distrib. Processing Symp., 2007.

[24] R. Rajkumar, L. Sha, and J. Lehoczky, “Real-time synchronization
protocols for multiprocessors,” in Real-Time Systems Symp., Dec. 1988,
pp. 259–269.

[25] F. Ridouard, P. Richard, and F. Cottet, “Negative results for scheduling
independent hard real-time tasks with self-suspensions,” in Real-Time
Systems Symp., Dec. 2004, pp. 47–56.

[26] J. J. Labrosse, Microc/OS-II. R & D Books, 1998.
[27] M. M. H. P. van den Heuvel, M. Holenderski, R. J. Bril, and J. J.

Lukkien, “Constant-bandwidth supply for priority processing,” IEEE
Trans. on Consumer Electronics, vol. 57, no. 2, May 2011.

[28] J. Regehr, A. Reid, K. Webb, M. Parker, and J. Lepreau, “Evolving real-
time systems using hierarchical scheduling and concurrency analysis,”
in Real-Time Systems Symp., Dec. 2003, pp. 25–36.

[29] M. Holenderski, M. M. H. P. van den Heuvel, R. J. Bril, and J. J.
Lukkien, “Grasp: Tracing, visualizing and measuring the behavior of
real-time systems,” in Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems, July 2010, pp. 37–42.

50

Hard Real-time Support for Hierarchical Scheduling
in FreeRTOS*

Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, Moris Behnam
Mälardalen Real-Time Research Centre

Västerås, Sweden
Email: rafia.inam@mdh.se

Abstract—This paper presents extensions to the previous im-
plementation of two-level Hierarchical Scheduling Framework
(HSF) for FreeRTOS. The results presented here allow the use
of HSF for FreeRTOS in hard-real time applications, with the
possibility to include legacy applications and components not
explicitly developed for hard real-time or the HSF.

Specifically, we present the implementations of (i) global and
local resource sharing using the Hierarchical Stack Resource
Policy and Stack Resource Policy respectively, (ii) kernel support
for the periodic task model, and (iii) mapping of original FreeR-
TOS API to the extended FreeRTOS HSF API. We also present
evaluations of overheads and behavior for different alternative
implementations of HSRP with overrun from experiments on the
AVR 32-bit board EVK1100. In addition, real-time scheduling
analysis with models of the overheads of our implementation is
presented.

Index Terms—real-time systems; hierarchical scheduling
framework; resource sharing, fixed-priority scheduling

I. INTRODUCTION

In real-time embedded systems the components and compo-
nents integration must satisfy both (1) functional correctness
and (2) extra-functional correctness, such as satisfying tim-
ing properties. Hierarchical Scheduling Framework (HSF) [1]
has emerged as a promising technique in satisfying timing
properties while integrating complex real-time components on
a single node. It supplies an effective mechanism to provide
temporal partitioning among components and supports inde-
pendent development and analysis of real-time systems [2].
In HSF, the CPU is partitioned into a number of subsystems
(servers or applications); each real-time component is mapped
to a subsystem that contains a local scheduler to schedule the
internal tasks of the subsystem. Each subsystem performes its
own task scheduling, and the subsystems are scheduled by a
global (system-level) scheduler. Two different synchronization
mechanisms overrun [3] and skipping [4] have been proposed
and analyzed for inter-subsystem resource sharing, but not
much work has been performed for their practical implemen-
tations.

We have chosen FreeRTOS [5], a portable open source real-
time scheduler to implement hierarchical scheduling frame-
work. The goal is to use the HSF-enabled FreeRTOS to
implement the virtual node concept in the ProCom component-
model [6], [7]. FreeRTOS has been chosen due to its main

* This work is supported by the Swedish Foundation for Strategic Research
(SSF), via the research programme PROGRESS. Our HSF implementation
code is available at http://www.idt.mdh.se/pride/releases/hsf.

features, like it’s open source nature, small size and scalability,
and support of many different hardware architectures allowing
it to be easily extended and maintained. Our HSF implemen-
tation [8] on FreeRTOS for idling periodic and deferrable
servers uses fixed priority preemptive scheduling (FPPS) for
both global and local-level scheduling. FPPS is flexible and
simple to implement, plus is the de-facto industrial standard for
task scheduling. In this paper we extend our implementation
of HSF to support hard real-time components. We implement
time-triggered periodic tasks within the FreeRTOS operating
system. We improve the resource sharing policy of FreeRTOS,
and implement support for inter-subsystem resource sharing
for our HSF implementation. We also provide legacy support
for existing systems or components to be executed within our
HSF implementation as a subsystem.

A. Contributions

The main contributions of this paper are:
• We have supported periodic task model within the FreeR-

TOS operating system.
• We have provided a legacy support in our HSF imple-

mentation and have mapped the old FreeRTOS API to
the new API so that the user can very easily use an old
system into a server within a two-level HSF.

• We have provided an efficient implementation for re-
source sharing for our HSF implementation. This entails:
support for Stack Resource Policy for local resource shar-
ing, and Hierarchical Stack Resource Policy for global
resource sharing with three diferent methods to handle
overrun.

• We have included the runtime overhead for local and
global schedulability analysis of our implementation.

• We describe the detailed design of all the above men-
tioned improvements in our HSF implementations with
the consideration of minimal modifications in underlying
FreeRTOS kernel.

• And finally, we have tested and calculated the perfor-
mance measures for our implementations on an AVR-
based 32-bit board EVK1100 [9].

B. Resource Sharing in Hierarchical Scheduling Framework

A two-level HSF [10] can be viewed as a tree with one
parent node (global scheduler) and many leaf nodes (local
schedulers) as illustrated in Figure 1. The leaf nodes contain

51

its own internal set of tasks that are scheduled by a local
(subsystem-level) scheduler. The parent node is a global
scheduler and is responsible for dispatching the subsystems
according to their resource reservations. Using HSF, subsys-
tems can be developed and analyzed in isolation from each
other.

Resource Sharing in HSF

Global FPS
Scheduler

. . .

Global Shared Resources

SubSystem n

Local FPS
Scheduler

Task1 Taskn. . .

Local Shared Resources

S
R
P

S
R
P

SubSystem 1

Local FPS
Scheduler

Task1 Taskn. . .

Local Shared Resources

S
R
P

S
R
P

H
S
R
P

H
S
R
P

Fig. 1. Two-level Hierarchical Scheduling Framework

In a two-level HSF the resources can be shared among tasks
of the same subsystem (or intra-subsystem), normally referred
as local shared resource. The resources can also be shared
among tasks of different subsystems (or inter-subsystem)
called global shared resources as shown in Figure 1.

Different synchronization protocols are required to share re-
sources at local and global levels, for example, Stack Resource
Policy (SRP) [11] can be used at local level with FPPS, and
to implement SRP-based overrun mechanism at global level,
Hierarchical Stack Resource Policy (HSRP) [3] can be used.
Organisation: Section II presents the related work on hi-
erarchical scheduler implementations. Section III gives a
background on FreeRTOS in III-A, a review of our HSF
implementation in FreeRTOS in III-B, and resource sharing
techniques in HSF in section III-C. In section IV we provide
our system model. We explain the implementation details of
periodic task model, legacy support, and resource sharing in
section V. In section VI we provide scheduling analysis and
in section VII we present the behavior of implementation and
some performance measures. In section VIII we conclude the
paper. The API for the local and the global resource sharing
in HSF is given in Appendix.

II. RELATED WORK

HSF has attained a substantial importance since introduced
in 1990 by Deng and Liu [1]. Saewong and Rajkumar [12]
implemented and analyzed HSF in CMU’s Linux/RK with
deferrable and sporadic servers using hierarchical deadline

monotonic scheduling. Buttazzo and Gai [13] present an HSF
implementation based on Implicit Circular Timer Overflow
Handler (ICTOH) using EDF scheduling for an open source
RTOS, ERIKA Enterprise kernel. A micro kernel called
SPIRIT-µKernel is proposed by Kim et al. [10] based on two-
level hierarchical scheduling methodology and demonstrate
the concept, by porting two different application level RTOS,
VxWorks and eCos, on top of the SPIRIT-µKernel. It uses
an offline scheduler at global level and the fixed-priority
scheduling at local level to schedule the partitions and tasks
respectively. A detailed related work on HSF implementation
without resource sharing is presented in [8].

A. Local and Global Synchronization Protocols

1) Local synchronization protocols: Priority inheritance
protocol (PIP) [14] was developed to solve the priority inver-
sion problem but it does not solve the chained blocking and
deadlock problems. Sha et al. proposed the priority ceiling
protocol (PCP) [14] to solve these problems. A slightly differ-
ent alternative to PCP is the immediate inheritance protocol
(IIP). Baker presented the stack resource policy (SRP) [11]
that supports dynamic priority scheduling policies. For fixed-
priority scheduling, SRP has the same behavior as IIP. SRP
reduces the number of context-switches and the resource hold-
ing time as compared to PCP. Like most real-time operating
systems, FreeRTOS only support an FPPS scheduler with PIP
protocol for resource sharing. We provide support for SRP for
local-level resource sharing in HSF.

2) Global synchronization protocols: For global resource
sharing some additional protocols have been proposed. Fisher
et al. proposed Bounded delay Resource Open Environment
(BROE) [15] protocol for global resource sharing under EDF
scheduling. Hierarchical Stack Resource Policy (HSRP) [3]
uses the overrun mechanism to deal with the subsystem budget
expiration within the critical section and uses two mechanisms
(with pay back and without payback) to deal with the over-
run. Subsystem Integration and Resource Allocation Policy
(SIRAP) [4] uses the skipping mechanism to avoid the problem
of subsystem budget expiration within the critical section. Both
HSRP and SIRAP assume FPPS. The original HSRP [3] does
not support the independent subsystem development for its
analysis. Behnam et al. [16] not only extended the analysis
for the independent subsystem development, but also proposed
a third form of overrun mechanism called extended overrun.
In this paper we use HSRP for global resource sharing and
implement all the three forms of the overrun protocol.

B. Implementations of Resource Sharing in HSF

Behnam et al. [17] present an implementation of a two-
level HSF in the commercial operating system VxWorks with
the emphasis of not modifying the underlying kernel. The
implementation supports both FPS and EDF at both global and
local level of scheduling and a one-shot timer is used to trigger
schedulers. In [18], they implemented overrun and skipping
techniques at the top of their FPS HSF implementation and
compared the two techniques.

52

Holenderski et al. [19] implemented a two-level fixed-
priority HSF in µC/OS-II, a commercial real-time operating
system. This implementation is based on Relative Timed Event
Queues (RELTEQ) [20] and virtual timers [21] on the top of
RELTEQ to trigger timed events. They incorporated RELTEQ
queues and virtual timers within the operating system kernel
and provided interfaces for it and HSF implementation uses
these interfaces. More recently, they extended the HSF with
resource sharing support [22] by implementing SIRAP and
HSRP (with and without payback). They measured and com-
pared the system overheads of both primitives.

The work presented in this paper is different from that
of [18] in the sense that we implement resource sharing in
a two-level HSF with the aim of simplified implementation
while adopting the kernel with the consideration of being
consistent with the FreeRTOS. The user should be able to
choose the original FreeRTOS or HSF implementation to
execute, and also able to run legacy code within HSF with
doing minimal changes in it. The work of this paper is
different from that of [22] in the sense that we only extend
the functionality of the operating system by providing support
for HSF, and not changing or modifying the internal data
structures. It aims at simplified implementation while mini-
mizing the modifications of the underlying operating system.
Our implementation is simpler than both [18], [22] since we
strictly follow the rules of HSRP [3]. We do not have local
ceilings for the global shared resources (as in [18], [22])
which simplifies the implementation. We do not allow local
preemptions while holding the global resources which reduces
the resource holding times as compared to [18], [22]. Another
difference is that both [18], [22] implemented SIRAP and
HSRP (with and without payback) while we implement all
the three forms of overrun (with payback, without payback,
and enhanced overrun). We do not support SIRAP because
it is more difficult to use; the application programmer needs
to know the WCET of each critical section to use SIRAP.
Further neither implementation does provide analysis for their
implementations.

III. BACKGROUND

A. FreeRTOS

FreeRTOS is a portable, open source (licensed under a
modified GPL), mini real-time operating system developed
by Real Time Engineers Ltd. It is ported to 23 hardware
architectures ranging from 8-bit to 32-bit micro-controllers,
and supports many development tools. Its main advantages
are portability, scalability and simplicity. The core kernel is
simple and small, consisting of three or four (depends on the
usage of coroutines) C files with a few assembler functions,
with a binary image between 4 to 9KB.

Since most of the source code is in C language, it is
readable, portable, and easily expandable and maintainable.
Features like ease of use and understandability makes it very
popular. More than 77, 500 official downloads in 2009 [23],
and the survey result performed by professional engineers in
2010 puts the FreeRTOS at the top for the question ”which

kernel are you considering using this year” [24] showing its
increasing popularity.

FreeRTOS kernel supports preemptive, cooperative, and
hybrid scheduling. In the fixed-priority preemptive scheduling,
the tasks with the same priority are scheduled using the round-
robin policy. It supports both tasks and subroutines; the tasks
with maximum 256 different priorities, any number of tasks
and very efficient context switch. FreeRTOS supports both
static and dynamic (changed at run-time) priorities of the
tasks. It has semaphores and mutexes for resource sharing and
synchronization, and queues for message passing among tasks.
Its scheduler runs at the rate of one tick per milli-second by
default.
FreeRTOS Synchronization Protocol: FreeRTOS supports
basic synchronization primitives like binary, counting and re-
cursive semaphore, and mutexes. The mutexes employ priority
inheritance protocol, that means that when a higher priority
task attempts to obtain a mutex that is already blocked by a
lower priority task, then the lower priority task temporarily
inherits the priority of higher priority task. After returning
the mutex, the task’s priority is lowered back to its original
priority. Priority inheritance mechanism minimizes the priority
inversion but it cannot cure deadlock.

B. A Review of HSF Implementation in FreeRTOS

A brief overview of our two-level hierarchical scheduling
framework implementation [8] in FreeRTOS is given here.

Both global and local schedulers support fixed-priority
preemptive scheduling (FPPS). Each subsystem is executed
by a server Ss, which is specified by a timing interface
Ss(Ps, Qs), where Ps is the period for that server (Ps > 0),
and Qs is the capacity allocated periodically to the server
(0 < Qs ≤ Ps). Each server has a unique priority ps and a
remaining budget during the runtime of subsystem Bs. Since
the previous implementation not focus on real-time, we only
characterize each task τi by its priority ρi.

The global scheduler maintains a pointer, running server,
that points to the currently running server.

The system maintains two priority-based lists. First is the
ready-server list that contains all the servers that are ready
(their remaining budgets are greater than zero) and is arranged
according to the server’s priority, and second is the release-
server list that contains all the inactive servers whose budget
has depleted (their remaining budget is zero), and will be
activated again at their next activation periods and is arranged
according to the server’s activation times.

Each server within the system also maintains two lists. First
is the ready-task list that keeps track of all the ready tasks of
that server, only the ready list of the currently running server
will be active at any time, and second is the delayed-task list
of FreeRTOS that is used to maintain the tasks when they are
not ready and waiting for their activation.

The hierarchical scheduler starts by calling
vTaskStartScheduler() API and the tasks of the highest
priority ready server starts execution. At each tick interrupt,
• The system tick is incremented.

53

• Check for the server activation events. The newly acti-
vated server is replenished with its maximum budget and
is moved to the ready-server list.

• The global scheduler is called to handle the server events.
• The local scheduler is called to handle the task events.
1) The functionality of the global scheduler: The global

scheduler performs the following functionality:
• At each tick interrupt, the global scheduler decrements

the remaining budget Bs of the running server by one
and handles budget expiration event (i.e. at the budget
depletion, the server is moved from the ready-server list
to the release-server list).

• Selects the highest priority ready server to
run and makes a server context-switch if
required. Either prvChooseNextIdlingServer() or
prvChooseNextDeferrableServer() is called to select
idling or deferrable server, depending on the value
of the configGLOBAL_SERVER_MODE macro in the
FreeRTOSConfig.h file.

• prvAdjustServerNextReadyTime(pxServer) is called to
set up the next activation time to activate the server
periodically.

In idling server, the prvChooseNextIdlingServer() func-
tion selects the first node (with highest priority) from
the ready-server list and makes it the current run-
ning server. While in case of deferrable server, the
prvChooseNextDeferrableServer() function checks in the
ready-server list for the next ready server that has any task
ready to execute when the currently running server has no
ready task even if it’s budget is not exhausted. It also handles
the situation when the server’s remaining budget is greater than
0, but its period ends, in this case the server is replenished with
its full capacity.

2) The functionality of the local scheduler: The local
scheduler is called from within the tick interrupt using the
adopted FreeRTOS kernel function vTaskSwitchContext().
The local scheduler is the original FreeRTOS scheduler with
the following modifications:
• The round robin scheduling policy among equal priority

tasks is changed to FIFO policy to reduce the number of
task context-switches.

• Instead of a single ready-task or delayed-task list (as in
original FreeRTOS), now the local scheduler accesses a
separate ready-task and delayed-task list for each server.

C. Resource sharing in HSF

Stack Resource Policy at global and local levels: We have
implemented the HSRP [3] which extends SRP to HSRP. The
SRP terms are extended as follows:
• Priority. Each task has a priority ρi. Similarly, each

subsystem has an associated priority ps.
• Resource ceiling. Each globally shared resource Rj is

associated with a resource ceiling for global scheduling.
This global ceiling is the highest priority of any subsys-
tem whose task is accessing the global resource. Similarly

each locally shared resource also has a resource ceiling
for local scheduling. This local ceiling is the highest
priority of any task (within the subsystem) using the
resource.

• System/subsystem ceilings. System/subsystem ceilings
are dynamic parameters that change during runtime.
The system/subsystem ceiling is equal to the currently
locked highest global/local resource ceiling in the sys-
tem/subsystem.

Following the rules of SRP, a task τi can preempt the
currently executing task within a subsystem only if τi has a
priority higher than that of running task and, at the same time,
the priority of τi is greater than the current subsystem ceiling.

Following the rules of HSRP, a task τi of the subsystem Si
can preempt the currently executing task of another subsystem
Sj only if Si has a priority higher than that of Sj and, at
the same time, the priority of Si is greater than the current
system ceiling. Moreover, whilst a task τi of the subsystem
Si is accessing a global resource, no other task of the same
subsystem can preempt τi.

D. Overrun Mechanisms

This section explains three overrun mechanisms that can be
used to handle budget expiry during a critical section in the
HSF. Consider a global scheduler that schedules subsystems
according to their periodic interfaces . The subsystem budget
Qs is said to expire at the point when one or more internal
tasks have executed a total of Qs time units within the
subsystem period Ps. Once the budget is expired, no new task
within the same subsystem can initiate its execution until the
subsystems budget is replenished at the start of next subsystem
period.

To prevent excessive priority inversion due to global re-
source lock its desirable to prevent subsystem rescheduling
during critical sections of global resources. In this paper, we
employ the overrun strategy to prevent such rescheduling.
Using overrun, when the budget of subsystem expires and
it has a task that is still locking a global shared resource,
the task continues its execution until it releases the resource.
The extra time needed to execute after the budget expiration
is denoted as overrun time θ. We implement three different
overrun mechanisms [16]:

1) The basic overrun mechanism without payback, denoted
as BO: here no further actions will be taken after the
event of an overrun.

2) The overrun mechanism with payback, denoted as PO:
whenever overrun happens, the subsystem Ss pays back
in its next execution instant, i.e., the subsystem budget
Qs will be decreased by θs i.e. (Qs − θs) for the
subsystems execution instant following the overrun (note
that only the instant following the overrun is affected
even if θs > Qs).

3) The enhanced overrun mechanism with payback, de-
noted as EO: It is based on imposing an offset (de-
laying the budget replenishment of subsystem) equal to
the amount of the overrun θs to the execution instant

54

that follows a subsystem overrun, at this instant, the
subsystem budget is replenished with Qs − θs.

IV. SYSTEM MODEL

In this paper, we consider a two-level hierarchical schedul-
ing framework, in which a global scheduler schedules a system
S that consists of a set of independently developed and
analyzed subsystems Ss, where each subsystem Ss consists
of a local scheduler along with a set of tasks. A system have
a set of globally shared resource (lockable by any task in the
system), and each subsystem has a set of local shared resource
(only lockable by tasks in that subsystem).

A. Subsystem Model

For each subsystem Ss is specified by a subsystem (a.k.a.
server) timing interface Ss = 〈Ps, Qs, ps, Bs, Xs〉, where Ps
is the period and Qs is the capacity allocated periodically to
the subsystem where 0 < Qs ≤ Ps and Xs is the maximum
execution-time that any subsystem-internal task may lock a
shared global resource. Each server Ss has a unique priority
ps and at each instant during run-time a remaining budget Bs.

It should be noted that Xs is used for schedulability analysis
only and our HSRP-implementation does not depend on the
availability of this attribute. In the rest of this paper, we use
the term subsystem and server interchangeably.

B. Task Model

For hard real-time systems, we are considering a simple
periodic task model represented by a set Γ of n number of
tasks. Each task τi is represented as τi = 〈Ti, Ci, ρi, bi〉, where
Ti denotes the period of task τi with worst-case execution time
Ci, ρi as its priority, and bi its worst case local blocking. bi
is the longest execution-time inside a critical section with a
resource-ceiling equal to or higher than ρ amongst all lower
priority task inside the server of τi. A task, τi has a higher
priority than another task, τj , if ρi > ρj . For simplicity, the
deadline for each task is equal to Ti.

C. Scheduling Policy

We are using a fixed-priority scheduling FPS at the both
global and local level. FPS is the de-facto standard used
in industry. For hard-real time analysis we assume unique
priorities for each server and unique priorities for each task
within a server. However, our implementation support shared
priorities, which are then handled in FIFO order (both at global
and local scheduling).

D. Design Considerations

Here we present the challenges and goals that our imple-
mentation should satisfy:

1) The use of HSF with resource sharing and the
overrun mechanism: User should be able to make a
choice for using the HSF with resource sharing or the
simple HSF without using shared resources. Further,
user should be able to make a choice for selecting one
of the overrun mechanisms, BO, PO, or EO.

2) Consistency with the FreeRTOS kernel and keeping
its API intact: To embed the legacy code easily within
a server in a two-level HSF, and to get minimal changes
of the legacy system, it will be good to match the
design of implementation with the underlying FreeRTOS
operating system. To increase the usability and under-
standability of HSF implementation for FreeRTOS users,
major changes should not be made in the underlying
kernel.

3) Managing local/global system ceilings: To ensure the
correct access of shared resources at both local and
global levels, the local and global system ceilings should
be updated properly upon the locking and unlocking of
those resources.

4) Enforcement: Enforcing server execution even at it’s
budget depletion while accessing a global shared re-
source; its currently executing task should not be pre-
empted and the server should not be switched out by
any other higher priority server (whose priority is not
greater than the systemceiling) until the task releases
the resource.

5) Calculating and deducting overrun time of a server
for PO and EO: In case of payback (PO and EO),
the overrun time of the server should be calculated and
deducted from the budget at the next server activation.

6) Protection of shared data structures: The shared data
structures that are used to lock and unlock both local and
global shared resources should be accessed in a mutual
exclusive manner with respect to the scheduler.

V. IMPLEMENTATION

A. Support for Time-triggered Periodic Tasks

Since we are following the periodic resource model [25],
we need the periodic task behavior implemented within the
operating system. Like many other real-time operating sys-
tems, FreeRTOS does not directly support the periodic task
activation. We incorporated the periodic task activation as
given in Figure 2. To do minimal changes in the underlying
operating system and save memory, we add only one addi-
tional variable readyTime to the task TCB, that describes
the time when the task will become ready. A user API
vTaskWaitforNextPeriod(period) is implemented to activate
the task periodically. The FreeRTOS delayed-task list used to
maintain the periodic tasks when they are not ready and wait-
ing for their next activation period to start. Since FreeRTOS
uses ticks, period of the task is given in number of ticks.

// task function
while (TRUE) do {

taskbody();
vTaskWaitforNextPeriod(period);

end while

Fig. 2. Pseudo-code for periodic task model implementation

55

B. Support for Legacy System

To implement legacy applications support in HSF imple-
mentation for the FreeRTOS users, we need to map the
original FreeRTOS API to the new API, so that the user can
run its old code in a subsystem within the HSF. A macro
configHIERARCHICAL_LEGACY must be set in the config file to
utilize legacy support. The user should rename the old main()

function, and remove the vTaskStartScheduler() API from
legacy code.

The legacy code is created in a separate server, and
in addition to the server parameters like period, bud-
get, priority, user also provides a function pointer of the
legacy code (the old main function that has been re-
named). xLegacyServerCreate(period, budget, priority,

*serverHandle, *functionPointer) API is provided for this
purpose. The function first creates a server and then creates
a task called vLegacyTask(*functionPointer) that runs only
once and performs the initialization of the legacy code (ex-
ecutes the old main function which create the initial set of
tasks for the legacy application), and destroys itself. When
the legacy server is replenished first time, all the tasks of
the legacy code are created dynamically within the currently
running legacy server and start executing.

We have adopted the original FreeRTOS xTaskGeneric-

Create function to provide legacy support. If config-

HIERARCHICAL_SCHEDULING and configHIERARCHICAL_LEGACY

macros are set then xServerTaskGenericCreate function is
called that creates the task in the currently executing server
instead of executing the original code of xTaskGenericCreate
function.

This implementation is very simple and easy to
use, user only needs to rename old main(), remove
vTaskStartScheduler() from legacy code, and use a single
API to create the legacy server. It should be noted that the
HSF guarantees separation between servers; thus a legacy
non/soft real-time server (which e.g. is not analyzed for
schedulability or not use predictable resource locking) can
co-exists with hard real-time servers.

C. Support for Resource sharing in HSF

Here we describe the implementation details of the resource
sharing in two-level hierarchical scheduling framework. We
implement the local and global resource sharing as defined by
Davis and Burns [3]. For local resource sharing SRP is used
and for global resource sharing HSRP is used. Further all the
three forms of overrun as given by Behnam et al. [16] are
implemented. The resource sharing is activated by setting the
macro configGLOBAL_SRP in the configuration file.

1) Support for SRP: For local resource sharing we im-
plement SRP to avoid problems like priority inversions and
deadlocks.
The data structures for the local SRP: Each local resource
is represented by the structure localResource that stores
the resource ceiling and the task that currently holds the re-
source as shown in Figure 3. The locked resources are stacked
onto the localSRPList; the FreeRTOS list structure is used

to implement the SRP stack. The list is ordered according to
the resource ceiling, and the first element of list has the highest
resource ceiling, and represents the local system ceiling.

Local Scheduler with SRP-2011-04-18

SubSystem Control
Block

Period
Budget
Remaining Budget
Priority
TaskNumInReadyQueue
CurrentNumberOfTasks
ReadyTime
currentTCB
Ready Task List
Delayed Task List

Local SRP List
OverrunReadytimeOffset
SystemCeiling
GlobalSRPTakenNum
PayBackBudget

. . .

Task Control
Block

Ready Time
ReadyQueueFlag

Local Server

. . .

LocalResource

SRPListItem
ResourceCeiling
OwnerTask

Fig. 3. Data structures to implement SRP

The extended functionality of the local scheduler with SRP:
The only functionality extended is the searching for the next
ready task to execute. Now the scheduler selects a task to
execute if the task has the highest priority among all the ready
tasks and its priority is greater than the current system ceiling,
otherwise the task that has locked the highest (top) resource
in the localSRPList is selected to execute. The API list
for the local SRP is provided in the Appendix.

2) Support for HSRP: HSRP is implemented to provide
global resource sharing among servers. The resource sharing
among servers at the global level can be considered the same
as sharing local resources among tasks at the local level. The
details are as follows:
The data structures for the global HSRP: Each global re-
source is represented by the structure globalResource that
stores the global-resource ceiling and the server that currently
holds the resource as shown in Figure 4. The locked resources
are stacked onto the globalHSRPList; the FreeRTOS list
structure is used to implement the HSRP stack. The list is
ordered according to the resource ceiling, the first element
of the list has the highest resource ceiling and represents the
GlobalSystemCeiling.

Global Scheduler HSRP – 2011-01-18

2-Level Hierarchical
Scheduling System

. . .

. . .
Running Server

Ready Server List

Release Server List

HSRP List

SubSystem Control
Block

Period
Budget
Remaining Budget
Priority
TaskNumInReadyQueue
CurrentNumberOfTasks
ReadyTime
currentTCB
Ready Task List
Delayed Task List

Local SRP List
OverrunReadytimeOffset
SystemCeiling
GlobalSRPTakenNum
PayBackBudget

. . .

GlobalResource

HSRPListItem
GResourceCeiling
OwnerServer

Fig. 4. Data structures to implement HSRP

56

The extended functionality of the global scheduler with
HSRP: To incorporate HSRP into the global scheduler, prv-
ChooseNextIdlingServer() and prvChooseNextDeferrable-

Server() macros are appended with the following functional-
ity: The global scheduler selects a server if the server has the
highest priority among all the ready servers and the server’s
priority is greater than the current GlobalSystemCeiling,
otherwise the server that has locked the highest(top) resource
in the HSRPList is selected to execute. The API list for the
global HSRP is provided in Appendix.

3) Support for Overrun Protocol: We have implemented
three types of overrun mechanisms; without payback (BO),
with payback (PO), and enhanced overrun (EO). Implemen-
tation of BO is very simple, the server simply executes and
overruns its budget, and no further action is required. For PO
and EO we need to measure the overrun amount of time to
pay back at the server’s next activation.
The data for the PO and EO Overrun mechanisms: Two
variables PayBackBudget and OverrunReadytimeOffset are
added to the subsystem structure subSCB to keep a record of
the overrun amount to be deducted from the next budget of the
server as shown in Figure 4. The overrun time is measured and
stored in PayBackBudget. OverrunReadytimeOffset is used in
EO mechanism to impose an offset in the next activation of
server.
The extended functionality of the global scheduler with
Overrun: A new API prvOverrunAdjustServerNextReady-

Time(*pxServer) is used to embed overrun functionality (PO
and EO) into the global scheduler. For both PO and EO,
the amount of overrun, i.e. PayBackBudget is deducted from
the server RemainingBudget at the next activation period of
the server, i.e. Bs = Qs − θs. For EO, in addition to this,
an offset (Os) is calculated that is equal to the amount of
overrun, i.e. Os = θs. The server’s next activation time (the
budget replenishment of subsystem) is delayed by this offset.
OverrunReadytimeOffset variable is used to store the offset
for next activation of the server.

4) Safety Measure: We have modified vTaskDelete

function in order to prevent the system from crash-
ing when users delete a task which still holds a local
SRP or a global HSRP resource. Now it also executes
two private functions prvRemoveLocalResourceFromList

(*pxTaskToDelete), and prvRemoveGlobalResourceFromList

(*pxTaskToDelete), before the task is deleted.

D. Addressing Design Considerations

Here we address how we achieve the design requirements
that are presented in Section IV-D.

1) The use of HSF with resource sharing and the
overrun mechanism: The resource sharing is activated
by setting the macro configGLOBAL_SRP in the con-
figuration file. The type of overrun can be selected
by setting the macro configOVERRUN_PROTOCOL_MODE

to one of the three values: OVERRUN_WITHOUT_PAYBACK,
OVERRUN_PAYBACK, or OVERRUN_PAYBACK_ENHANCED.

2) Consistency with the FreeRTOS kernel and keeping
its API intact: We have kept consistence with the
FreeRTOS from the naming conventions to API, data
structures and the coding style used in our implementa-
tions; for example all the lists used in our implementa-
tion are maintained in a similar way as of FreeRTOS.

3) Managing local/global system ceilings: The correct
access of the shared resources at both local and global
levels is implemented within the functionality of the API
used to lock and unlock those resources.
When a task locks a local/global resource whose
ceiling is higher than the subsystem/system ceiling,
the resource mutex is inserted as the first element
onto the localSRPList/HSRPList, the systemceiling

/GlobalSystemCeiling is updated, and this task/server
becomes the owner of this local/global resource re-
spectively. Each time a global resource is locked, the
GlobalResourceTakenNum is incremented.
Similarly upon unlocking a local/global resource,
that resource is simply removed from the top
of the localSRPList/HSRPList, the systemceiling

/GlobalSystemCeiling is updated, and the owner of
this resource is set to NULL. For global resource, the
GlobalResourceTakenNum is decremented.

4) Enforcement: GlobalResourceTakenNum is used as an
overrun flag, and when its value is greater than zero
(means a task of the currently executing server has
locked a global resource), no other higher priority server
(whose priority is not greater than the systemceiling)
can preempt this server even if its budget depletes.

5) Overrun time of a server for PO and EO:
prvOverrunAdjustServerNextReadyTime API is used to
embed the overrun functionality into the global sched-
uler as explained in section V-C3.

6) Protection of shared data structures: All the func-
tionality of the APIs (for locking and unlocking
both local and global shared resources) is executed
within the FreeRTOS macros portENTER_CRITICAL()

and portEXIT_CRITICAL() to protect the shared data
structures.

VI. SCHEDULABILITY ANALYSIS

This section presents the schedulability analysis of the HSF,
starting with local schedulability analysis (i.e. checking the
schedulability of each task within a server, given the servers
timing interface), followed by global schedulability analysis
(i.e., checking that each server will receive its capacity within
its period given the set of all servers in a system).

A. The Local Schedulability Analysis

The local schedulability analysis can be evaluated as fol-
lows [25]:

∀τi ∃t : 0 < t ≤ Di, rbf(i, t) ≤ sbf(t), (1)

where sbf is the supply bound function, based on the periodic
resource model presented in [25], that computes the minimum

57

possible CPU supply to Ss for every time interval length t,
and rbf(i, t) denotes the request bound function of a task τi
which computes the maximum cumulative execution requests
that could be generated from the time that τi is released up to
time t and is computed as follows:

rbf(i, t) = Ci + bi +
∑

τk∈HP(i)

⌈
t

Tk

⌉
· Ck, (2)

where HP(i) is the set of tasks with priorities higher than that
of τi and bi is the maximum local blocking.

The evaluation of sbf depends on the type of the overrun
mechanism;

a) Overrun without payback:

sbf(t) =

{
t− (k + 1)(Ps −Qs) if t ∈W (k)

(k − 1)Qs otherwise,
(3)

where k = max
(⌈(

t−(Ps−Qs)
)
/Ps
⌉
, 1
)

and W (k) denotes
an interval [(k + 1)Ps − 2Qs, (k + 1)Ps −Qs].

b) Overrun with payback [16]:

sbf(t) = max
(

min
(
f1(t), f2(t)

)
, 0
)
, (4)

where f1(t) is

f1(t) =

{
t− (k + 1)(Ps −Qs)−Xs if t ∈W (k)

(k − 1)Qs otherwise,
(5)

where k = max
(⌈(

t − (Ps − Qs) −Xs

)
/Ps
⌉
, 1
)

and W (k)

denotes an interval [(k+1)Ps−2Qs+Xs, (k+1)Ps−Qs+Xs],
and f2(t) is

f2(t) =





t− (2)(Ps −Qs) if t ∈ V (k)

t− (k + 1)(Ps −Qs)−Xs if t ∈ Z(k)

(k − 1)Qs −Xs otherwise,
(6)

where k = max
(⌈(

t− (Ps −Qs)
)
/Ps
⌉
, 1
)

, V (k) denotes an

interval [2Ps − 2Qs, 2Ps − Qs − Xs], and Z(k) denotes an
interval [(k + 2)Ps − 2Qs, (k + 2)Ps −Qs].

c) Enhanced overrun:

sbf(t) = max
(
f2(t), 0

)
. (7)

B. The Global Schedulability Analysis

A global schedulability condition is

∀Ss ∃t : 0 < t ≤ Ps, RBFs(t) ≤ t. (8)

where RBFs(t) is the request bound function and it is evaluated
depending on the type of server (deferrable or idling) and type
of the overrun mechanism (see [16] for more details). First,
we will assume the idling server and later we will generalize
our analysis to include deferrable server.

d) Overrun without payback:

RBFs(t) = (Qs+Xs+Bls)+
∑

Sk∈HPS(s)

⌈
t

Pk

⌉
·(Qk+Xk). (9)

where HPS(s) is the set of subsystems with priority higher than
that of Ss. Let Bls denote the maximum blocking imposed
to a subsystem Ss, when it is blocked by lower-priority
subsystems.

Bls = max{Xj | Sj ∈ LPS(Ss)}, (10)

where LPS(Ss) is the set of subsystems with priority lower
than that of Ss.

e) Overrun with payback:

RBFs(t) = (Qs+Xs+Bls)+
∑

Sk∈HPS(s)

(⌈
t

Pk

⌉
(Qk) +Xk

)
.

(11)
f) Enhanced overrun:

RBFs(t) = (Qs+Xs+Bls)+
∑

Sk∈HPS(s)

(⌈ t+ Jk
Pk

⌉
(Qk)+Xk

)
.

(12)
Where Js = Xs and the schedulability analysis for this type
is

∀Ss, 0 < ∃t ≤ Ps −Xs, RBFs(t) ≤ t, (13)

For deferrable server, a higher priority server may execute
at the end of its period and then at the beginning of the next
period. To model such behavior a jitter (equal to Pk − (Ok +
Xk)) is added to the ceiling in equations 9, 11 and 12.

C. Implementation Overhead

In this section we will explain how to include the imple-
mentation overheads in the global schedulability analysis.

Looking at the implementation we can distinguish two
types of runtime overhead associated with the system tick:
(1) a repeated overhead every system tick independently if
it will release a new server or not, and (2) an overhead
which occurs whenever a server is activated and it includes
the overhead of scheduling, maybe context switch, budget
depletion after consuming the budget then another context
switch and scheduling and finally it includes the overrun
overhead.

(1) Is called fixed overhead (fo) and it is the result of
updating the system tick and perform some checking and
its value is always fixed. This overhead can be added to
equation 8. This equation assumes that the processor can
provide all CPU time to the servers (t in the right side of
the equation) now we assume that every system tick (st), a
part will be consumed by the operating system (fo) and then
instead of using t in the right side of equation 8, we can use
(1− fo/st)× t to include the fixed overhead. (st defaults to
1ms for our implementation.)

(2) Is called server overhead (so) and repeats periodically
for every server, i.e. with a period Pi. Since the server

58

overhead is executed by the kernel its not enough to model it as
extra execution demand from the server. Instead the overhead
should be modeled as a separate server So (one server So
corresponding to each real server Si) executing at a priority
higher that of any real server with parameters Po = Pi,
Qo = so, and Xo = 0.

The overhead-parameters are dependent on the number of
servers, tasks and priority levels, etc. and should be quantified
with static WCET-analysis which is beyond the scope of this
paper; however some small test cases reported in [8] the
measured worst-case for idling servers are fo = 32µs and
so = 74µs, and for deferrable servers they are fo = 32µs
and so = 85µs for three servers with total seven tasks.

VII. EXPERIMENTAL EVALUATION

In this section, we report the evaluation of behavior and
performance of the resource sharing in HSF implementa-
tion. All measurements are performed on the target platform
EVK1100 [9]. The AVR32UC3A0512 micro-controller runs at
the frequency of 12MHz and its tick interrupt handler at 1ms.

A. Behavior Testing

In this section we perform an experiment to test the behavior
of overrun in case of global resource sharing in HSF imple-
mentation. The experiment is performed to check the overrun
behavior in idling periodic server by means of a trace of the
execution. Two servers S1, and S2 are used in the system, plus
idle server is created. The servers used to test the system are
given in Table I.

Server S1 S2
Priority 2 1
Period 20 40
Budget 10 15

TABLE I
SERVERS USED TO TEST SYSTEM BEHAVIOR.

Note that higher number means higher priority. Task prop-
erties and their assignments to the servers is given in Table II.
T2 and T3 share a global resource. The execution time of
T2 is (3 + 3) that means a normal execution for initial 3 time
units and the critical section execution for the next 3 time units,
similarly T3 (10+8) executes for 10 time units before critical
section and executes for 8 time units within critical section.
The visualization of the executions of budget overrun without
payback (BO) and with payback (PO) for idling periodic server
are presented in Figure 5 and Figure 6 respectively.

Tasks T1 T2 T3
Servers S1 S1 S2
Priority 2 1 1
Period 15 20 60

Execution Time 3 (3 + 3) (10 + 9)

TABLE II
TASKS IN BOTH SERVERS.

Fig. 5. Trace of budget overrun without payback (BO) for Idling server

In the visualization, the arrow represents task arrival, a gray
rectangle means task execution. In Figure 5 at time 20, the high
priority server S1 is replenished, but its priority is not higher
than the global system ceiling, therefore, it cannot preempt
server S2 which is in the critical section. S2 depletes its budget
at time 25, but continues to executes in its critical section until
it unlocks the global resource at time 29. The execution of S1
is delayed by 9 time units.

Fig. 6. Trace of budget overrun with payback (PO) for Idling server

In case of overrun with payback, the overrun time is
deducted from the budget at the next server activation, as

59

shown in Figure 6. At time 40 the server S2 is replenished with
a reduced budget, while in case of overrun without payback
the server is always replenished with its full budget as obvious
from Figure 5.

B. Performance Measures

Here we report the performance measures of lock and
unlock functions for both global and local shared resources.

The execution time of functions to lock and unlock global
and local resources is presented in Table III. For each measure,
a total of 1000 values are computed. The minimum, maximum,
average and standard deviation on these values are calculated
and presented for both types of resource sharing.

Function Min. Max. Average St. Dev.
vGlobalResourceLock 21 21 21 0
vGlobalResourceUnlock 32 32 32 0
vLocalResourceLock 21 32 26.48 5.51
vLocalResourceUnlock 21 21 21 0

TABLE III
THE EXECUTION TIME (IN MICRO-SECONDS (µS)) OF GLOBAL AND

LOCAL LOCK AND UNLOCK FUNCTION.

VIII. CONCLUSIONS

In this paper, we have provided a hard real-time support
for a two-level HSF implementation in an open source real-
time operating system FreeRTOS. We have implemented the
periodic task model within the FreeRTOS kernel. We have
provided a very simple and easy implementation to execute a
legacy system in the HSF with the use of a single API. We have
added the SRP to the FreeRTOS for efficient resource sharing
by avoiding deadlocks. Further we implemented HSRP and
overrun mechanisms (BO, PO, EO) to share global resources
in a two-level HFS implementation. Under assumption of
nested locking, the overrun is bounded and is equal to the
longest resource-holding time. Hence, the temporal isolation
of HSF is subject to the bounded resource-holding time.

We have focused on doing minimal modifications in the
kernel to keep the implementation simple and keeping the orig-
inal FreeRTOS API intact. We have presented the design and
implementation details and have tested our implementations on
the EVK1100 board. We have included the overheads for local-
level and global-level resource sharing into the schedulability
analysis. In future we plan to integrate the virtual node concept
of ProCom model on-top of the presented HSF [6], [7].

REFERENCES

[1] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open
environment. In IEEE Real-Time Systems Symposium (RTSS), 1997.

[2] G. Lipari, P. Gai, M. Trimarchi, G. Guidi, and P. Ancilotti. A hierarchical
framework for component-based real-time systems. Component-Based
Software engineering, LNCS-3054(2004):209–216, May 2005.

[3] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed priority
pre-emptive systems. In IEEE Real-Time Systems Symposium (RTSS’06).

[4] Moris Behnam, Insik Shin, Thomas Nolte, and Mikael Sjödin. SIRAP:
A synchronization protocol for hierarchical resource sharing in real-time
open systems. In Proc. EMSOFT, pages 279–288, October 2007.

[5] FreeRTOS web-site. http://www.freertos.org/.

[6] J. Carlsson, J. Feljan, and M. Sjödin. Deployment Modelling and
Synthesis in a Component Model for Distributed Embedded Systems.
In 36th (SEAA), 2010.

[7] Rafia Inam, Jukka Mäki-Turja, Jan Carlson, and Mikael Sjödin. Using
temporal isolation to achieve predictable integration of real-time com-
ponents. In WiP Session of (ECRTS10), pages 17–20, 2010.

[8] Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, S. M. H. Ashjaei, and
Sara Afshar. Support for hierarchical scheduling in FreeRTOS. In
To appear in the 16th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA11), September 2011.

[9] ATMEL EVK1100 product page. http://www.atmel.com/dyn/Products/.
[10] Daeyoung Kim, Yann-Hang Lee, and M. Younis. Spirit-ukernel for

strongly partitione real-time systems. In Proceedings (RTCSA00), 2000.
[11] T. Baker. Stack-based scheduling of real-time processes. Journal of

Real-Time Systems, 3(1):67–99, 1991.
[12] S. Saewong and R. Rajkumar. Hierarchical reservation support in

resource kernels. In IEEE (RTSS01), 2001.
[13] G. Buttazzo and P. Gai. Efficient edf implementation for small embedded

systems. In International Workshop on (OSPERT06), 2006.
[14] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols:

An approach to real-time synchronization. Journal of IEEE Transactions
on Computers, 39(9):1175–1185, 1990.

[15] N. Fisher, M. Bertogna, and S. Baruah. The design of an edf-scheduled
resource-sharing open environment. In IEEE (RTSS07).

[16] Moris Behnam, Thomas Nolte, Mikael Sjödin, and Insik Shin. Overrun
Methods and Resource Holding Times for Hierarchical Scheduling of
Semi-Independent Real-Time Systems. IEEE TII, 6(1), February 2010.

[17] Moris Behnam, Thomas Nolte, Insik Shin, Mikael Åsberg, and Rein-
der J. Bril. Towards hierarchical scheduling on top of vxworks. In
Proceedings of the Fourth International Workshop (OSPERT’08).

[18] Mikael Åsberg, Moris Behnam, Thomas Nolte, and Reinder J. Bril.
Implementation of overrun and skipping in vxworks. In Proceedings
of the 6th International Workshop (OSPERT10), 2010.

[19] Mike Holenderski, Wim Cools, Reinder J. Bril, and J. J. Lukkien. Ex-
tending an Open-source Real-time Operating System with Hierarchical
Scheduling. Technical Report, Eindhoven University, 2010.

[20] M. Holenderski, W. Cools, Reinder J. Bril, and J. J. Lukkien. Multiplex-
ing Real-time Timed Events. In Work in Progress session of (ETFA09).

[21] M.M.H.P. van den Heuvel, M. Holenderski, W. Cools, R. J. Bril, and
J. J. Lukkien. Virtual Timers in Hierarchical Real-time Systems. In
Work in Progress Session of (RTSS09), December 2009.

[22] M.M.H.P. van den Heuvel, M. Holenderski, W. Cools, R. J. Bril, and J. J.
Lukkien. Extending an HSF-enabled Open-Source Rel-Time Operating
System with Resource sharing. In (OSPERT10), 2010.

[23] Microchip web-site.
[24] EE TIMES web-site. http://www.eetimes.com/design/embedded/4008920/

The-results-for-2010-are-in-.
[25] I. Shin and I. Lee. Periodic resource model for compositional real-time

guarantees. In IEEE (RTSS03), pages 2–13, 2003.

APPENDIX

A synopsis of the application program interface to imple-
ment resource sharing in HSF implementation is presented
below. The names of these API are self-explanatory.

1) xLocalResourcehandle xLocalResourceCreate(uxCeiling)

2) void vLocalResourceDestroy(xLocalResourcehandle)

3) void vLocalResourceLock(xLocalResourcehandle)

4) void vLocalResourceUnLock(xLocalResourcehandle)

5) xGlobalResourcehandle xGlobalResourceCreate

(uxCeiling)

6) void vGlobalResourceDestroy(xGlobalResourcehandle)

7) void vGlobalResourceLock(xGlobalResourcehandle)

8) void vGlobalResourceUnLock(xGlobalResourcehandle)

60

RTOS-Based Embedded Software Development

using Domain-Specific Language

Mohamed-El-Mehdi AICHOUCH* Jean-Christophe PRÉVOTET* Fabienne NOUVEL*

*Université europénne de Bretagne, INSA, IETR, UMR 6164, F-35708 Rennes, France
{Mohamed-El-Mehdi.Aichouch, Jean-Christophe.Prevotet, Fabienne.Nouvel}@insa-rennes.fr

Abstract—Using model-based approaches helps us to
understand complex problems and their potential solutions
through abstraction. Therefore, it is obvious that embedded
systems, which are often among the most complex engineering
systems, can benefit greatly from modeling techniques.
However, the use of models in real projects often exhibits some
limitations. They often cannot be used in existing embedded
system due to their underlying modeling technology. In this
paper, we propose a domain-specific language to create RTOS
models and transform them into a specific source code that can
be executed on existing embedded systems.

I. INTRODUCTION

In this era of intense enthusiasm for automation in
almost all time critical fields, real-time systems are more and
more envisaged in industrial, commercial, medical, space
and military applications. The design of real time embedded
systems is a complex process that depends on the effective
interplay of multiple disciplines, such as mechanics,
electronics, and software engineering. Moreover, real-time
systems have to process many concurrent activities within an
accurate time-frame.

Real-time embedded systems have distinguishing
requirements such as real-time performance and limited
resources. The requirements are often satisfied by adopting a
Real-Time Operating-System (RTOS). As a result, many
embedded applications are designed and implemented to run
directly on top of the RTOS. In some cases, the needs of the
developed application can be fulfilled by a standard existing
RTOS e.g. VxWorks [1], Windows-CE [2], QNX [3] etc. In
other cases, it is often required to add new functionalities,
modify or even develop a specific RTOS from scratch. In
this article we focus on the second case, especially when we
are facing the problem of adding, modifying or creating new
functionalities. In the classic development process, adding or
modifying new functionalities mean that the developer of the
software take the existing RTOS source code and modify it
by hand. This process has some limitations. First, modifying
an existing code means that the designer has a good
knowledge of the architecture. Second, it increases the time
of the development phase and thus the financial costs of the
project. To avoid these problems we propose to follow the
Model-Driven Engineering (MDE) approach in order to help
the designer in building a custom RTOS for embedded
systems.

Model-driven software development is becoming a
viable alternative to the increase of software complexity. A

model-driven approach allows a developer to work at high
level of abstraction without being concerned by the
specificity of hardware and software. A developer only
needs to focus on building an abstract model and automated
tools may be used for the model-to-code transformation [4].
Consequently, the model-driven approach can provide
significant advantages in terms of productivity and
maintenance.

In this paper, we present a Domain-Specific Language to
develop RTOS-based embedded software. Our approach
begins by modeling the RTOS structure and aims to generate
a concrete RTOS-specific implementation at the end. To
reach this purpose, we have defined an RTOS-specific
language to write the RTOS model. Then, we developed a
transformation tool to transform the RTOS model into
source code. Although targeting the specific µC/OS-II
kernel as example for code generation, the proposed tool is
also foreseen to generate other RTOS code.

The paper is organized as follows: section 2 reviews the
basics of model-driven engineering; section 3 presents the
related works. In section 4, the modeling approach of real-
time operating systems using DSL is described. Finally,
section 5 presents the obtained results and how the modeling
approach may be used by a system designer.

II. BASICS OF MODEL-DRIVEN ENGINEERING

a. Model Driven Engineering

The Model-Driven Engineering (MDE) is an approach
for software development, which is based on models as a
first artifact in the development process. Then, a
transformation is applied on these models to map the
information from one model to another or to generate
executable programs. A model is an abstraction, a sufficient
simplification to understand the real system. In this context,
a system may be defined using different sub-models
connected to each other. The definition of a domain specific
modeling language, called meta-modeling, is the key issue
of the model driven engineering. It allows to define the rules,
constraints that will be required to build a specific model.
Once a model is completely defined, it is often necessary to
apply models’ transformation in order to generate custom
code, documentation, test, validation, verification and
execution.

After the adoption of the object oriented approach by the
software industry, the model-driven approach may be seen

61

as the continuity of the initial approach. While the object
oriented approach is founded on the notion of “object that
inherits from” and “object is an instance of”, in MDE the
main concept is a “model” for which there exists no
universal definition. According to the OMG [5], we retain
this definition of a model:

Definition (Model): a model is an abstraction of a
system, modeled upon a set of facts which was built for
particular intent. A model should be used to answer the
question about the modeled system.

A model should be a pertinent abstraction of the system
that it models. The model must answer the questions that we
have about it as precisely as the system itself can do. In
other terms, it should be achievable to substitute the system
by the corresponding model.

In MDE, the notion of model refers explicitly to the
notion of well-formed language. Actually, an operational
model is a model that can be manipulated by a computer.
This language should be clearly defined, and the definition
of a modeling language has been formalized using particular
models, called “meta-model”.

Definition (Meta-model): a meta-model is a specific
model defining a language to describe other models.

The Object Management Group (OMG) uses these two
notions to define the set of the Unified Modeling Language
[6] standards.

b. Unified Modeling Language

UML is the most widely used standard for describing
systems in terms of object concepts. UML is very popular in
the specification and design of software, most often to be
written using an object-oriented language. UML emphasizes
the idea that complex systems are best described through a
number of different views, as no single view can capture all
aspects of such system completely. Moreover, it includes
several different types of model diagrams to capture usage
scenarios, class structures, behaviors, and implementations.

c. Model Driven Architecture

The extensive use of the UML has been a major point in
the transition towards model-driven engineering. After the
acceptance of the key concept of meta-model, many meta-
models have emerged. In order to avoid the multiplicity of
these meta-models within a domain and to circumvent the
incompatibility between these models, the OMG has
proposed a standard language to define meta-models. This
language constitutes a model itself and corresponds to a
“meta-meta-model” named Meta-Object Facility (MOF) [7].

Definition (meta-meta-model): a meta-meta-model is a
model that defines a modeling language, i.e. the necessary
modeling element to define a modeling language. It should
have the ability to define itself.

According to these definitions of the different abstraction
levels, the OMG has organized these notions of modeling
hierarchically. The real world is represented at the lower
level (M0). The models representing this reality are based at
level (M1). The meta-model used to define these models are

at level (M2). Finally, the meta-meta-model, unique and
self-defined, is represented at the top level (M3).

Figure 1. OMG Hierarchical Modeling Levels

The Model-driven Architecture (MDA) [8] relies on the
UML standard to describe the different phases of the
development project cycle. In MDA, a Computational
Independent Model (CIM) is elaborated in order to specify
the solution to the requirement. Then, a Platform-
Independent Model (PIM) of the system is developed and
the model is transformed to obtain a Platform-Specific
Model (PSM). This facilitates early validation and
implementation on different platforms. The judicious and
correct application of all these concepts increases
productivity reduces software development time and
provides high quality products.

d. Domain Specific Language

In the MDA approach, it may be noticed that the model-
driven engineering is tightly associated to UML. However,
an important point here is to separate the MDE approach
from the UML formalism. The reason is that the model-
driven engineering scope is wider than UML. Sometimes
UML must be reduced or extended through mechanisms like
Profiles. These mechanisms generally do not have the
required precision and sometimes can lead to a wrong
decision. In contrast, the model-driven approach encourages
the creation of domain-specific language that the user can
handle easily.

By definition, a Domain-Specific Language (DSL) is a
language designed to be useful for a specific set of tasks, as
opposed to a general purpose language. With DSL,
architects are currently able to create models very rapidly
and efficiently. They are also capable of generating
executable code from the defined models in a very simple
manner.

e. DSL vs. MDA

At the moment, DSL and MDA are the two major
modeling options and are both well supported by the current
modeling tools environment.

In our work, both techniques can be used, but we have
made the choice to use DSL for three main reasons.

62

• DSL do not contain unnecessary aspects of what
they are modeling. DSL tend to be much more
focused on the details of the domain in question and
use the terminology of that domain.

• The long-term cost of using a DSL can be much
lower than using UML, because DSLs are created to
fit a specific domain, In UML, the work that is
required to apply a general-purpose UML to a
specific purpose is often prohibitive.

• The platform-specific code generator is easy to write,
it is just important to use the domain model that the
DSL provides.

III. RELATED WORKS

There are a number of research projects that work on
developing real-time and embedded systems, while applying
the model driven development approach. Examples are
OMEGA, HIDOORS, FLEXICON [10, 11, 12], etc.

We refer to [13] to indicate that some of the related
projects use the development methodology based on UML
for real-time and embedded application. They select a
suitable subset of UML diagram types and concepts as
required by the development methodology and then create a
UML Profile that supports the modeling of the real-time
features. However for validation of the UML specification,
they use the UML Verification Environment into a specific
commercial tool. For example, the Rhapsody CASE-tool [14]
written in C++ is often utilized. However, this tool does not
put emphasis on the implementation aspect in C. Moreover,
the tool does not include custom RTOS services: it only
manages existing RTOS after the transformation of the
application models.

The HOPES [15] project proposes a generic RTOS APIs
that can capture most of the typical RTOS services that can
be used as a means for describing application’s RTOS-
behavior at an early design stage. Authors use their own
transformation tool to generate fully functional code by
transforming generic RTOS APIs to specific RTOS APIs. In
HOPES, designers have to write the application model and
then describe its behavior by inserting RTOS API calls.
From this description, they are finally able to generate the
RTOS source code.

Component-based Software Engineering has emerged as
an alternative approach for the rapid assembly of flexible
software systems, where the main benefits are reuse and
separation of concerns. It has been applied in [16] to propose
a componentization of the µC/OS-II. From the RTOS
resources, reified as components, they present how
component-based applications are designed on top of it. The
componentization process requires a reengineering of the
original implementation of the µC/OS-II. An RTOS
implementation designed following the component paradigm
and the aforementioned flexibility requirements involve an
overhead in term of performance.

IV. RTOS-SPECIFIC LANGUAGE TOOL

The purpose of our approach consists in helping the
system designer to build a custom RTOS very rapidly and
efficiently. The main idea is to propose a tool in which the

designer is able to integrate different RTOS services
according to the application requirements and generate an
optimized and light version of a RTOS.

This approach is composed of three main steps. The first
is based on the design of a complete RTOS model; the
second step consists in applying a transformation on the
result model to produce an RTOS source code. Finally, the
generated source code may be used by the developer through
a RTOS Application Programming Interface (API).

a. Design the structure of the RTOS

Depending on the specifications of the application to be
developed, the designer has to decide which services will be
included in the RTOS. The purpose is to adapt the RTOS to
the application. Many important decisions will be taken at
this stage. For instance, the tasks’ scheduling policy, tasks
communication, tasks placement may be defined at this
point. In our approach, we propose to facilitate these design
decisions by using models. The developer builds a complete
RTOS model from entity models corresponding to each
service. The next step consists in transforming these models
into source code using automatic code generation.

b. Transformation of the RTOS model

The most important benefit of DSL, as with modeling in
general, is the boost in productivity that results from
automatic code generation. The transformation engine will
iterate over the RTOS model and will generate the
associated code for each service model.

c. Use of the RTOS source code

After transforming models to source code, the developer
has a ready to use RTOS in his possession. The next step is
to include this generated source code into the project inside
an Integrated Development Environment (IDE) and start
writing the application code using the provided API of the
RTOS. Three important benefits can be retained from this
step: a clear view of the global architecture of the RTOS
code, the advantage of getting an optimized RTOS source
code and the development time that is saved with the
automatic generation process.

In Section 2, it has been seen that model-driven
engineering promotes the creation of domain-specific
language. The first task in this area is to define the elements
that compose the “modeling language” and the tool to create
them. A modeling language is defined by five concepts: an
abstract syntax, a concrete syntax, a mapping between the
abstract and concrete syntax, the semantic domain and the
mapping between the semantic domain and the abstract
syntax.

d. RTOS Abstract syntax or Meta-Model

The abstract syntax defines the set of concepts and their
relationships. The meta-modeling language OMG standard
MOF offers the elementary concepts and relationships to
define the abstract syntax. Some of these concepts are used
by technologies like the Eclipse Modeling Project [17], and
the Microsoft Visualization and Modeling SDK [18] which
provide the basic framework for modeling. Both of them are
based on the same basic concept inspired from the object

63

oriented approach. Figure 2 shows the architecture of these
concepts. The concept of class is used to represent real
objects. A class is characterized by properties which are
named reference when they are typed by “TypedElement”,
and attribute when they are typed by a “DataType” (ex.
Boolean, String, Int…).

Figure 2. Main concept of meta-modeling (EMOF 2.0)

In reality, an RTOS is composed of services providing
operations. Our RTOS meta-model is based on three main
classes named “RTOSModel”, “Service” and “Operation”.
Two containment relationships are then available. The
“RTOSModel” class has the container for “Service”, and the
“Services” class contains a list of “Operation” (see figure 3).

Figure 3. The main concept of the RTOS meta-model

This basic meta-model is extended to represent the real
services of an RTOS. For each module in the RTOS, a meta-
model entity is defined. For instance, the Task module is
represented by the “Task Manager” class. Each “Service
Manager” class inherits from the abstract “Service” class.
Figure 4 shows some inheritance relationships. Because of
this extensibility, we are able to integrate new “Service” that
will be within a services’ library.

According to this meta-model, it is possible to assist the
software architect to make decision by providing semantic
constraints and validation rules which can be applied on the
model. These facilities reduce the probability of introducing
errors at design time.

Figure 4. Real RTOS services represented in the abstract syntax

We have used the Microsoft Visualization and Modeling
Standard Development Kit (SDK) to define an abstract
syntax. It offers the possibility to create an abstract syntax
by implementing an UML class diagram as a graphical
meta-meta-modeling language. Using the DSL designer, we
have defined the entire abstract syntax in terms of graphical
notation.

e. RTOS Concrete Syntax

The concrete syntax describes how the information that
is encoded in the underlying meta-model elements is
presented through the User Interface of the designer tool.
With this concrete syntax, the user can create model of
RTOS. Our RTOS concrete syntax is based on the graphical
notation and on the mapping between this notation and the
abstract syntax. The graphical notation is created via the
same DSL designer that is used to create the abstract syntax.
We have decided that the “RTOSModel” class should appear
as well as the diagram containing the “Service” models. We
have associated a rectangular shape with compartment to the
“Service” class in order to display its “Operation” list. In
figure 5, we illustrate a model of the µC/OS-II RTOS
implementing the concrete syntax.

64

Figure 5. Design of the µC/OS using the RTOS-DSL tool

The µC/OS model illustrated in the figure 5 conforms to
the RTOS meta-model. For instance, the “os_core” object is
defined by the meta-model class “CoreManager”, the
“os_task” is defined by “TaskManager”, etc. Each service
model represents a real µC/OS-II module.

In order to write this RTOS model, we have used the
toolbox showed in Figure 6. It allows the designer to choose
a specific service and insert it within the diagram.

Figure 6. The toolbox of the RTOS DSL environment.

f. Models’ transformation

As mentioned previously, the key task of domain-
specific languages is to generate code and other artifacts.
Historically, artifact generation has typically been spoken as
simply as code generation. The analogy is often drawn
between the move from assembly code to high-level third
generation languages and the move from those languages to
domain-specific languages. However, the current reality is a
world where software-intensive systems are composed of a
much more diverse group of artifacts than ever before, only
some of which would traditionally be recognized as source
code. Others might be configuration files, either for
packaged applications or middleware and others might be
the content of databases.

The benefits of using DSLs in these situations are also
various. In some cases, raising the level of abstraction is an
adequate benefit itself. In others, complex relationships must
be maintained, and a graphical DSL brings order and visual
understanding to data that would otherwise need more expert
interpretation even if the abstraction level is only minimally
affected.

Nonetheless, it is still true that software systems are
mainly developed in a world where the simple text file
dominates. The ability for a set of text files to be managed
together in single version control system means that this
style of working is unlikely to disappear for some time.
Moreover, the rise of Extensible Markup Language (XML)
as the de facto standard language for data representation has
probably ensured the feasibility of this approach in the near
future.

Consequently, the most important transformation that
can be applied to DSL consists in producing another artifact
as a simple text file, whether that sources code or the
persisted representation of a different DSL.

In order to generate the source code of the RTOS model,
we use a customizable transformation “template” approach.
The key to this technique is that the elements outside of the
control markers (<# and #>) are provided directly to the
output file, whereas code within the markers is evaluated
and used to add structure and dynamic behavior. Figure 7
describes an example of the template source code. The
example shows a small if and else branch test
depending on the value of the flag “GEN_FLAG_EN” which
is true when the developer put an “Event Flag Manager”
service model in the design of the RTOS.

The Transformation Engine reads the “RTOSModel” as
input, iterates over each “Service” to generate the output
source code of the “Service” depending on the template
source code and the parameters that are defined by the
developer.

65

Figure 7. Template source code used by the Transformation Engine

The generated source code can be used easily by adding
the source files generated into the IDE solution as showed in
Figure 8.

Figure 8. The generated source files have been added to the solution of

the developed project

g. The µC/OS-II

As an example, the proposed template is based on the
µC/OS source code. µC/OS-II is a preemptive, real-time
multi-tasking kernel for microprocessors and
microcontrollers. It is implemented in ANSI C and certified
by the Federal Aviation Administration for use in software
intended to be deployed in avionics equipment. It has been
massively used in many embedded and safety critical
systems products worldwide.

The main services provided by µC/OS-II are depicted in
Figure.9, which describes the module structure of the kernel
distribution. The main services are implemented by the Core,
the Task, and Port modules.

Figure 9. µC/OS II Modules

µC/OS-II is implemented as a monolithic kernel, i.e. it is
built from a number of functions that share common global

variables and data types (such as task control block, event
control block, etc.).

It is a highly configurable kernel, whose configuration
relies on more than 70 parameters. Since the kernel is
provided with its source files, configurability is performed
via conditional compilation at pre-compilation time, based
on #define constants. µC/OS-II enables scaling down,
the main objective being to reduce the memory footprint of
the final executable (up to several Kbytes, depending on the
processor). Thus, it is possible to avoid code generation of
non-required services, or to configure essential properties of
the kernel e.g. the tick frequency. The execution time for
most of these services is both constant and deterministic,
which is a compulsory requirement for real-time systems in
order to avoid unpredictable kernel jitter [19].

The selection of µC/OS-II is based on two main reasons.
First, the modularity of µC/OS-II allows the designer to add
or remove services depending on the RTOS model. Second,
the source code of µC/OS II has been ported onto multiple
embedded platforms (DSPs, microcontrollers, soft cores in
FPGAs, etc.). However, our RTOS meta-model, defined in
Section IV -d, allows to model others existing operating
system, and their automatic configuration, assuming that the
existing OS supports OS configuration by #ifdef
statement.

V. RESULTS

We have tested our prototype to generate a specific
µC/OS-II RTOS which is compliant with the x86
architectures. First, we designed a minimal RTOS model
containing the following services: Task, Time, and Core
management with Rate-Monotonic scheduling policy. Figure
10 shows the minimal RTOS model.

Figure 10 RTOS model with a Rate-Monotonic scheduling policy

Then, we have transformed the model into source code.
This operation only requires a few seconds. As can be seen
in Figure 10, we have not included all the services of the
RTOS. Only the required services have been implemented,
leading to a reduction of the memory footprint.

 A typical real-time embedded application has been
written according to the proposed API and a first test has
been led with a rate-monotonic scheduler. The complete
code has been implemented on a x86 architecture.

Note that, if the tests’ results do not meet specific
constraints that are required by the application (for example,
deadline constraints, etc.); it is very simple to generate

66

another version of the OS with other services’ attributes
until a satisfactory solution is reached.

In a second example, we have implemented the same
application but with a different scheduling policy. An
Earliest Deadline First (EDF) has been used and a new
simulation has been performed. Figure 11 depicts this new
model. The model transformation engine modifies the
existing source code of µC/OS-II since the algorithm of the
scheduler function changed and a new member has been
added to the “Task Control Block” struct to handle the
deadline and the period of a task.

Figure 11 RTOS model with Earliest Deadline First scheduling policy

Flexibility is a particularly important factor to consider
in model-driven systems. The useful capability to
interchange RTOS services at high-level improves the
reusability of new developed services. This facility is even
more advantageous when it is employed in large scale
industrial applications. This sometimes avoids hundreds of
developers to work on hundreds of different but related parts
of the models.

Note that compared with the traditional usage of the
µC/OS-II by manually configuring its service (with #ifdef
preprocessing), our method reduces the time of the design
space exploration and the effort of the RTOS designer, by
providing a high abstraction level and accurate language to
automatically configure it.

With traditional approaches, verification of the
application and OS for an architecture is a long task,
performed by simulation and prototyping. As our
methodology is library-oriented, the correctness of the
generated OS is strongly dependent on the quality of the
library. This approach allows a better structure for the code
and makes its verification easier.

We plan now to work on the following improvements:

• RTOS DSL toolkit: Extending it with new service
elements and others target RTOS source code
transformation;

• Evaluation of the Generated OS Code: It is foreseen
to improve its quality in terms of performances, code
size, power, etc.

• Generic APIs: We strive to avoid the recode of all
applications when the developer decides to change
the target OS and architecture.

VI. CONCLUSION

In this paper we have presented a model-driven approach
and a domain-specific tool for the development of RTOS-
based embedded software. A modeling methodology is
applied to build a model of the RTOS’s architecture. As a
case study, this model has been transformed to a target
programming language based on µC/OS-II template source
code. Our ambition is to provide assistance to developers of
RTOS-based embedded application. The proposed tool [20]
contributes to achieve this goal. It can be used to rapidly
design a fully customized RTOS that satisfies the
requirements and constraints of embedded applications.

VII. REFERENCES
[1] VxWorks from Wind River: http://www.windriver.com/

[2] Windows-CE from Microsoft:
http://www.microsoft.com/windowsembedded/en-us/windows-
embedded.aspx

[3] QNX Software System: http://www.qnx.com/

[4] Thomas O. Meservy and Kurt D. Fenstermacher, “Transforming
Software Development: An MDA Road Map,” IEEE Computer, Vol.
38(9) (2005) 52–58

[5] Ed SEIDEWITZ, “What models mean,” IEEE Software, 20(5):26–32,
2003. (Cité pages 28 et 128.)

[6] OMG: UML 2.0 Superstructure Specification. Object Management
Group, ptc/03-08-02 (August 2003)

[7] OMG: Meta Object Facility (MOF) 2.0 Core Specification. Object
Management Group, ptc/03-10-04 (October 2003)

[8] OMG: Model Driven Architecture (MDA). Object Management
Group, ormsc/2001-07-01 (July 2001)

[9] Len Fenster, Brook Hamilton, “UML or DSL: Which Bear Is Best? ,”
The Architecture Journal. Microsoft Corporation, Vol. 23(9) (2010)
32–37

[10] Jozef Hooman Towards, “Formal Support for UML-based
Developement of Embedded Systems,” In Proceedings PROGRESS
2002 Workshop, STW 2002

[11] João Ventura, Fridtjof Siebert, Andy Walter and James Hunt,
“HIDOORS - A High Integrity Distributed Deterministic Java
Environment”, Seventh IEEE International Workshop on Object-
oriented Real-time Dependable Systems (WORDS), San Diego, 7.-9.
January 2002.

[12] Khan, M.U.; Geihs, K.; Gutbrodt, F.; Gohner, P.; Trauter, R.; ,
"Model-driven development of real-time systems with UML 2.0 and
C," Model-Based Development of Computer-Based Systems and
Model-Based Methodologies for Pervasive and Embedded Software,
2006. MBD/MOMPES 2006. Fourth and Third International
Workshop on , vol., no., pp.10 pp.-42, 30-30 March 2006

[13] M. Marcos, E. Estévez, U. Gangoiti, I. Sarachaga and Javier
Barandiarán, “UML Modelling of Industrial Distributed Control
Systems,” Proceedings Sixth Portuguese Conference on Automatic
Control, Controlo 2004, Faro, Portugal, June 7-9

[14] Modeling tool from I-Logix:

http://www.omg.org/mda/mda_files/ILogixMdatool.pdf

[15] Ji Chang Maeng, Dongjin Na, Yongsoon Lee, and Minsoo Ryu,
”Model-Driven Development of RTOS-Based Embedded Software,”
A. Levi et al. (Eds.): ISCIS 2006, LNCS 4263, pp. 687–696, 2006.
Springer-Verlag Berlin Heidelberg, 2006.

[16] F. Loiret, J. Navas, J.-P. Babau, and O. Lobry, “Component-Based
Real-Time operating system for embedded applications,” in
Component-Based Software Engineering, ser. Lecture Notes in
Computer Science, G. Lewis, I. Poernomo, and C. Hofmeister, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, vol. 5582,
ch. 13, pp. 209-226.

[17] Richard C . Gronback, “Eclipse Modeling Project,” Addison-Wesley
(2009).

67

[18] Steve Cook, Gareth Jones, Stuart Kent and Alan Cameron Wills,
“Domain-Specific Development with Visual Studio DSL Tools,”
Addison-Wesley (2007).

[19] Angelov, C., Berthing, J., “A Jitter-Free Kernel for Hard Real-Time
Systems,” In:Wu, Z., Chen, C., Guo, M., Bu, J. (eds.) ICESS 2004.
LNCS, vol. 3605, pp. 388–394.Springer, Heidelberg (2005).

[20] RTOS-DSL source code available on: http://code.google.com/p/rtos-
dsl

68

